1
|
Kumar A, Madhurima K, Naganathan AN, Vallurupalli P, Sekhar A. Probing excited state 1Hα chemical shifts in intrinsically disordered proteins with a triple resonance-based CEST experiment: Application to a disorder-to-order switch. Methods 2023; 218:198-209. [PMID: 37607621 PMCID: PMC7615522 DOI: 10.1016/j.ymeth.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Over 40% of eukaryotic proteomes and 15% of bacterial proteomes are predicted to be intrinsically disordered based on their amino acid sequence. Intrinsically disordered proteins (IDPs) exist as heterogeneous ensembles of interconverting conformations and pose a challenge to the structure-function paradigm by apparently functioning without possessing stable structural elements. IDPs play a prominent role in biological processes involving extensive intermolecular interaction networks and their inherently dynamic nature facilitates their promiscuous interaction with multiple structurally diverse partner molecules. NMR spectroscopy has made pivotal contributions to our understanding of IDPs because of its unique ability to characterize heterogeneity at atomic resolution. NMR methods such as Chemical Exchange Saturation Transfer (CEST) and relaxation dispersion have enabled the detection of 'invisible' excited states in biomolecules which are transiently and sparsely populated, yet central for function. Here, we develop a 1Hα CEST pulse sequence which overcomes the resonance overlap problem in the 1Hα-13Cα plane of IDPs by taking advantage of the superior resolution in the 1H-15N correlation spectrum. In this sequence, magnetization is transferred after 1H CEST using a triple resonance coherence transfer pathway from 1Hα (i) to 1HN(i + 1) during which the 15N(t1) and 1HN(t2) are frequency labelled. This approach is integrated with spin state-selective CEST for eliminating spurious dips in CEST profiles resulting from dipolar cross-relaxation. We apply this sequence to determine the excited state 1Hα chemical shifts of the intrinsically disordered DNA binding domain (CytRN) of the bacterial cytidine repressor (CytR), which transiently acquires a functional globally folded conformation. The structure of the excited state, calculated using 1Hα chemical shifts in conjunction with other excited state NMR restraints, is a three-helix bundle incorporating a helix-turn-helix motif that is vital for binding DNA.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
2
|
Madhurima K, Nandi B, Munshi S, Naganathan AN, Sekhar A. Functional regulation of an intrinsically disordered protein via a conformationally excited state. SCIENCE ADVANCES 2023; 9:eadh4591. [PMID: 37379390 PMCID: PMC10306299 DOI: 10.1126/sciadv.adh4591] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
A longstanding goal in the field of intrinsically disordered proteins (IDPs) is to characterize their structural heterogeneity and pinpoint the role of this heterogeneity in IDP function. Here, we use multinuclear chemical exchange saturation (CEST) nuclear magnetic resonance to determine the structure of a thermally accessible globally folded excited state in equilibrium with the intrinsically disordered native ensemble of a bacterial transcriptional regulator CytR. We further provide evidence from double resonance CEST experiments that the excited state, which structurally resembles the DNA-bound form of cytidine repressor (CytR), recognizes DNA by means of a "folding-before-binding" conformational selection pathway. The disorder-to-order regulatory switch in DNA recognition by natively disordered CytR therefore operates through a dynamical variant of the lock-and-key mechanism where the structurally complementary conformation is transiently accessed via thermal fluctuations.
Collapse
Affiliation(s)
- Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| | - Bodhisatwa Nandi
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| | - Sneha Munshi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| |
Collapse
|
3
|
Mashruwala AA, Qin B, Bassler BL. Quorum-sensing- and type VI secretion-mediated spatiotemporal cell death drives genetic diversity in Vibrio cholerae. Cell 2022; 185:3966-3979.e13. [PMID: 36167071 PMCID: PMC9623500 DOI: 10.1016/j.cell.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/03/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Bacterial colonies composed of genetically identical individuals can diversify to yield variant cells with distinct genotypes. Variant outgrowth manifests as sectors. Here, we show that Type VI secretion system (T6SS)-driven cell death in Vibrio cholerae colonies imposes a selective pressure for the emergence of variant strains that can evade T6SS-mediated killing. T6SS-mediated cell death occurs in two distinct spatiotemporal phases, and each phase is driven by a particular T6SS toxin. The first phase is regulated by quorum sensing and drives sectoring. The second phase does not require the T6SS-injection machinery. Variant V. cholerae strains isolated from colony sectors encode mutated quorum-sensing components that confer growth advantages by suppressing T6SS-killing activity while simultaneously boosting T6SS-killing defenses. Our findings show that the T6SS can eliminate sibling cells, suggesting a role in intra-specific antagonism. We propose that quorum-sensing-controlled T6SS-driven killing promotes V. cholerae genetic diversity, including in natural habitats and during disease.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Boyang Qin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA,Lead Contact,Correspondence:
| |
Collapse
|
4
|
Munshi S, Gopi S, Subramanian S, Campos LA, Naganathan AN. Protein plasticity driven by disorder and collapse governs the heterogeneous binding of CytR to DNA. Nucleic Acids Res 2019. [PMID: 29538715 PMCID: PMC5934615 DOI: 10.1093/nar/gky176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The amplitude of thermodynamic fluctuations in biological macromolecules determines their conformational behavior, dimensions, nature of phase transitions and effectively their specificity and affinity, thus contributing to fine-tuned molecular recognition. Unique among large-scale conformational changes in proteins are temperature-induced collapse transitions in intrinsically disordered proteins (IDPs). Here, we show that CytR DNA-binding domain, an IDP that folds on binding DNA, undergoes a coil-to-globule transition with temperature in the absence of DNA while exhibiting energetically decoupled local and global structural rearrangements, and maximal thermodynamic fluctuations at the optimal bacterial growth temperature. The collapse is shown to be a continuous transition through a combination of statistical-mechanical modeling and all-atom implicit solvent simulations. Surprisingly, CytR binds single-site cognate DNA with negative cooperativity, described by Hill coefficients less than one, resulting in a graded binding response. We show that heterogeneity arising from varying binding-competent CytR conformations or orientations at the single-molecular level contributes to negative binding cooperativity at the level of bulk measurements due to the conflicting requirements of collapse transition, large fluctuations and folding-upon-binding. Our work reports strong evidence for functionally driven thermodynamic fluctuations in determining the extent of collapse and disorder with implications in protein search efficiency of target DNA sites and regulation.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Luis A Campos
- National Biotechnology Center, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Sousa FL, Parente DJ, Hessman JA, Chazelle A, Teichmann SA, Swint-Kruse L. Data on publications, structural analyses, and queries used to build and utilize the AlloRep database. Data Brief 2016; 8:948-57. [PMID: 27508249 PMCID: PMC4961497 DOI: 10.1016/j.dib.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/22/2016] [Accepted: 07/04/2016] [Indexed: 01/08/2023] Open
Abstract
The AlloRep database (www.AlloRep.org) (Sousa et al., 2016) [1] compiles extensive sequence, mutagenesis, and structural information for the LacI/GalR family of transcription regulators. Sequence alignments are presented for >3000 proteins in 45 paralog subfamilies and as a subsampled alignment of the whole family. Phenotypic and biochemical data on almost 6000 mutants have been compiled from an exhaustive search of the literature; citations for these data are included herein. These data include information about oligomerization state, stability, DNA binding and allosteric regulation. Protein structural data for 65 proteins are presented as easily-accessible, residue-contact networks. Finally, this article includes example queries to enable the use of the AlloRep database. See the related article, “AlloRep: a repository of sequence, structural and mutagenesis data for the LacI/GalR transcription regulators” (Sousa et al., 2016) [1].
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| | - Daniel J Parente
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jacob A Hessman
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Allen Chazelle
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liskin Swint-Kruse
- The Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Watve SS, Thomas J, Hammer BK. CytR Is a Global Positive Regulator of Competence, Type VI Secretion, and Chitinases in Vibrio cholerae. PLoS One 2015; 10:e0138834. [PMID: 26401962 PMCID: PMC4581735 DOI: 10.1371/journal.pone.0138834] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022] Open
Abstract
The facultative pathogen Vibrio cholerae transitions between its human host and aquatic reservoirs where it colonizes chitinous surfaces. Growth on chitin induces expression of chitin utilization genes, genes involved in DNA uptake by natural transformation, and a type VI secretion system that allows contact-dependent killing of neighboring bacteria. We have previously shown that the transcription factor CytR, thought to primarily regulate the pyrimidine nucleoside scavenging response, is required for natural competence in V. cholerae. Through high-throughput RNA sequencing (RNA-seq), we show that CytR positively regulates the majority of competence genes, the three type VI secretion operons, and the four known or predicted chitinases. We used transcriptional reporters and phenotypic analysis to determine the individual contributions of quorum sensing, which is controlled by the transcription factors HapR and QstR; chitin utilization that is mediated by TfoX; and pyrimidine starvation that is orchestrated by CytR, toward each of these processes. We find that in V. cholerae, CytR is a global regulator of multiple behaviors affecting fitness and adaptability in the environment.
Collapse
Affiliation(s)
- Samit S. Watve
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jacob Thomas
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian K. Hammer
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
ABSTRACT
Many Gram-positive and Gram-negative bacteria can become naturally competent to take up extracellular DNA from the environment via a dedicated uptake apparatus. The genetic material that is acquired can (i) be used for nutrients, (ii) aid in genome repair, and (iii) promote horizontal gene transfer when incorporated onto the genome by homologous recombination, the process of “transformation.” Recent studies have identified multiple environmental cues sufficient to induce natural transformation in
Vibrio cholerae
and several other
Vibrio
species. In
V. cholerae
, nutrient limitation activates the cAMP receptor protein regulator, quorum-sensing signals promote synthesis of HapR-controlled QstR, chitin stimulates production of TfoX, and low extracellular nucleosides allow CytR to serve as an additional positive regulator. The network of signaling systems that trigger expression of each of these required regulators is well described, but the mechanisms by which each in turn controls competence apparatus genes is poorly understood. Recent work has defined a minimal set of genes that encode apparatus components and begun to characterize the architecture of the machinery by fluorescence microscopy. While studies with a small set of
V. cholerae
reference isolates have identified regulatory and competence genes required for DNA uptake, future studies may identify additional genes and regulatory connections, as well as revealing how common natural competence is among diverse
V. cholerae
isolates and other
Vibrio
species.
Collapse
|
8
|
Vujanac M, Iyer VS, Sengupta M, Ajdic D. Regulation of Streptococcus mutans PTS Bio by the transcriptional repressor NigR. Mol Oral Microbiol 2015; 30:280-94. [PMID: 25580872 DOI: 10.1111/omi.12093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2014] [Indexed: 11/29/2022]
Abstract
Streptococcus mutans is implicated in human dental caries, and the carbohydrate metabolism of this organism plays an important role in the formation of this disease. Carbohydrate transport and metabolism are essential for the survival of S. mutans in the oral cavity. It is known that a unique phosphoenolpyruvate-sugar phosphotransferase system PTS(B) (io) of S. mutans UA159 is expressed in sucrose-grown biofilms (Mol Oral Microbiol 28: 2013; 114). In this study we analyzed the transcriptional regulation of the operon (O(B) (io) ) encoding the PTS(B) (io) and showed that it was repressed by NigR, a LacI-like transcriptional regulator. Using electro-mobility shift assay, we described two operators to which NigR bound with different affinities. We also identified the transcriptional start site and showed that one of the operators overlaps with the promoter and presumably represses initiation of transcription. Mutational analyses revealed the key nucleotides in the operators required for high-affinity binding of NigR. PTS(B) (io) is expressed in S. mutans biofilms so understanding its regulation may provide improved strategies for caries treatment and prevention.
Collapse
Affiliation(s)
- M Vujanac
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - V S Iyer
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - M Sengupta
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - D Ajdic
- Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
9
|
Ravcheev DA, Khoroshkin MS, Laikova ON, Tsoy OV, Sernova NV, Petrova SA, Rakhmaninova AB, Novichkov PS, Gelfand MS, Rodionov DA. Comparative genomics and evolution of regulons of the LacI-family transcription factors. Front Microbiol 2014; 5:294. [PMID: 24966856 PMCID: PMC4052901 DOI: 10.3389/fmicb.2014.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/28/2014] [Indexed: 12/31/2022] Open
Abstract
DNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes. The comparative genomics approaches enable in silico identification of TF-binding sites and regulon reconstruction. To study the function and evolution of LacI-TFs, we performed genomics-based reconstruction and comparative analysis of their regulons. For over 1300 LacI-TFs from over 270 bacterial genomes, we predicted their cognate DNA-binding motifs and identified target genes. Using the genome context and metabolic subsystem analyses of reconstructed regulons, we tentatively assigned functional roles and predicted candidate effectors for 78 and 67% of the analyzed LacI-TFs, respectively. Nearly 90% of the studied LacI-TFs are local regulators of sugar utilization pathways, whereas the remaining 125 global regulators control large and diverse sets of metabolic genes. The global LacI-TFs include the previously known regulators CcpA in Firmicutes, FruR in Enterobacteria, and PurR in Gammaproteobacteria, as well as the three novel regulators—GluR, GapR, and PckR—that are predicted to control the central carbohydrate metabolism in three lineages of Alphaproteobacteria. Phylogenetic analysis of regulators combined with the reconstructed regulons provides a model of evolutionary diversification of the LacI protein family. The obtained genomic collection of in silico reconstructed LacI-TF regulons in bacteria is available in the RegPrecise database (http://regprecise.lbl.gov). It provides a framework for future structural and functional classification of the LacI protein family and identification of molecular determinants of the DNA and ligand specificity. The inferred regulons can be also used for functional gene annotation and reconstruction of sugar catabolic networks in diverse bacterial lineages.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Matvei S Khoroshkin
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Olga N Laikova
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Olga V Tsoy
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia
| | - Natalia V Sernova
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Svetlana A Petrova
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Faculty of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia
| | | | - Pavel S Novichkov
- Lawrence Berkeley National Laboratory, Genomics Division Berkeley, CA, USA
| | - Mikhail S Gelfand
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | - Dmitry A Rodionov
- Research Scientific Center for Bioinformatics, A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia ; Department of Bioinformatics, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| |
Collapse
|
10
|
Holt AK, Senear DF. The cooperative binding energetics of CytR and cAMP receptor protein support a quantitative model of differential activation and repression of CytR-regulated class III Escherichia coli promoters. Biochemistry 2013; 52:8209-18. [PMID: 24138566 DOI: 10.1021/bi401063c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cAMP receptor protein (CRP) and CytR mediate positive and negative control of nine genes in Escherichia coli, most of which are involved in nucleoside catabolism and recycling. Five promoters share a common architecture in which tandem CRP sites flank an intervening CytR operator (CytO). CytR and CRP bind cooperatively to these promoters to form a three-protein, DNA-bound complex that controls activation and repression, the levels of which vary markedly among the promoters. To understand the specific combinatorial control mechanisms that are responsible for this outcome, we have used quantitative DNase I footprinting to generate individual site isotherms for each site of protein-DNA interaction. The intrinsic affinities of each transcription factor for its respective site and the specific patterns of cooperativity and competition underlying the molecular interactions at each promoter were determined by a global analysis of these titration data. Here we present results obtained for nupGP and tsxP2, adding to results published previously for deoP2, udpP, and cddP. These data allowed us to correlate the reported levels of activation, repression, and induction with the ligation states of these five promoters under physiologically relevant conditions. A general pattern of transcriptional regulation emerges that allows for complex patterns of regulation in this seemingly simple system.
Collapse
Affiliation(s)
- Allison K Holt
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| | | |
Collapse
|
11
|
Naganathan AN, Orozco M. The Conformational Landscape of an Intrinsically Disordered DNA-Binding Domain of a Transcription Regulator. J Phys Chem B 2013; 117:13842-50. [DOI: 10.1021/jp408350v] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Athi N. Naganathan
- Department
of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Modesto Orozco
- IRB-BSC
Joint Research Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Department
of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Sun Y, Bernardy EE, Hammer BK, Miyashiro T. Competence and natural transformation in vibrios. Mol Microbiol 2013; 89:583-95. [PMID: 23803158 DOI: 10.1111/mmi.12307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 01/01/2023]
Abstract
Natural transformation is a major mechanism of horizontal gene transfer in bacteria. By incorporating exogenous DNA elements into chromosomes, bacteria are able to acquire new traits that can enhance their fitness in different environments. Within the past decade, numerous studies have revealed that natural transformation is prevalent among members of the Vibrionaceae, including the pathogen Vibrio cholerae. Four environmental factors: (i) nutrient limitation, (ii) availability of extracellular nucleosides, (iii) high cell density and (iv) the presence of chitin, promote genetic competence and natural transformation in Vibrio cholerae by co-ordinating expression of the regulators CRP, CytR, HapR and TfoX respectively. Studies of other Vibrionaceae members highlight the general importance of natural transformation within this bacterial family.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| | - Eryn E Bernardy
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Brian K Hammer
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Tim Miyashiro
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| |
Collapse
|
13
|
Antonova ES, Bernardy EE, Hammer BK. Natural competence in Vibrio cholerae is controlled by a nucleoside scavenging response that requires CytR-dependent anti-activation. Mol Microbiol 2012; 86:1215-31. [PMID: 23016895 DOI: 10.1111/mmi.12054] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 01/10/2023]
Abstract
Competence for genetic transformation in Vibrio cholerae is triggered by chitin-induced transcription factor TfoX and quorum sensing (QS) regulator HapR. Transformation requires expression of ComEA, described as a DNA receptor in other competent bacteria. A screen for mutants that poorly expressed a comEA-luciferase fusion identified cytR, encoding the nucleoside scavenging cytidine repressor, previously shown in V. cholerae to be a biofilm repressor and positively regulated by TfoX, but not linked to transformation. A ΔcytR mutant was non-transformable and defective in expression of comEA and additional TfoX-induced genes, including pilA (transformation pseudopilus) and chiA-1 (chitinase). In Escherichia coli, 'anti-activation' of nucleoside metabolism genes, via protein-protein interactions between critical residues in CytR and CRP (cAMP receptor protein), is disrupted by exogenous cytidine. Amino acid substitutions of the corresponding V. cholerae CytR residues impaired expression of comEA, pilA and chiA-1, and halted DNA uptake; while exogenous cytidine hampered comEA expression levels and prevented transformation. Our results support a speculative model that when V. cholerae reaches high density on chitin, CytR-CRP interactions 'anti-activate' multiple genes, including a possible factor that negatively controls DNA uptake. Thus, a nucleoside scavenging mechanism couples nutrient stress and cell-cell signalling to natural transformation in V. cholerae as described in other bacterial pathogens.
Collapse
Affiliation(s)
- Elena S Antonova
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | |
Collapse
|
14
|
Sernova NV, Gelfand MS. Comparative genomics of CytR, an unusual member of the LacI family of transcription factors. PLoS One 2012; 7:e44194. [PMID: 23028500 PMCID: PMC3454398 DOI: 10.1371/journal.pone.0044194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
CytR is a transcription regulator from the LacI family, present in some gamma-proteobacteria including Escherichia coli and known not only for its cellular role, control of transport and utilization of nucleosides, but for a number of unusual structural properties. The present study addressed three related problems: structure of CytR-binding sites and motifs, their evolutionary conservation, and identification of new members of the CytR regulon. While the majority of CytR-binding sites are imperfect inverted repeats situated between binding sites for another transcription factor, CRP, other architectures were observed, in particular, direct repeats. While the similarity between sites for different genes in one genome is rather low, and hence the consensus motif is weak, there is high conservation of orthologous sites in different genomes (mainly in the Enterobacteriales) arguing for the presence of specific CytR-DNA contacts. On larger evolutionary distances candidate CytR sites may migrate but the approximate distance between flanking CRP sites tends to be conserved, which demonstrates that the overall structure of the CRP-CytR-DNA complex is gene-specific. The analysis yielded candidate CytR-binding sites for orthologs of known regulon members in less studied genomes of the Enterobacteriales and Vibrionales and identified a new candidate member of the CytR regulon, encoding a transporter named NupT (YcdZ).
Collapse
Affiliation(s)
- Natalia V. Sernova
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), Moscow, Russia
| | - Mikhail S. Gelfand
- A.A.Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, M.V.Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| |
Collapse
|
15
|
Meinhardt S, Manley MW, Becker NA, Hessman JA, Maher LJ, Swint-Kruse L. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression. Nucleic Acids Res 2012; 40:11139-54. [PMID: 22965134 PMCID: PMC3505978 DOI: 10.1093/nar/gks806] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
LacI/GalR transcription regulators have extensive, non-conserved interfaces between their regulatory domains and the 18 amino acids that serve as ‘linkers’ to their DNA-binding domains. These non-conserved interfaces might contribute to functional differences between paralogs. Previously, two chimeras created by domain recombination displayed novel functional properties. Here, we present a synthetic protein family, which was created by joining the LacI DNA-binding domain/linker to seven additional regulatory domains. Despite ‘mismatched’ interfaces, chimeras maintained allosteric response to their cognate effectors. Therefore, allostery in many LacI/GalR proteins does not require interfaces with precisely matched interactions. Nevertheless, the chimeric interfaces were not silent to mutagenesis, and preliminary comparisons suggest that the chimeras provide an ideal context for systematically exploring functional contributions of non-conserved positions. DNA looping experiments revealed higher order (dimer–dimer) oligomerization in several chimeras, which might be possible for the natural paralogs. Finally, the biological significance of repression differences was determined by measuring bacterial growth rates on lactose minimal media. Unexpectedly, moderate and strong repressors showed an apparent induction phase, even though inducers were not provided; therefore, an unknown mechanism might contribute to regulation of the lac operon. Nevertheless, altered growth correlated with altered repression, which indicates that observed functional modifications are significant.
Collapse
Affiliation(s)
- Sarah Meinhardt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
16
|
Moody CL, Tretyachenko-Ladokhina V, Laue TM, Senear DF, Cocco MJ. Multiple conformations of the cytidine repressor DNA-binding domain coalesce to one upon recognition of a specific DNA surface. Biochemistry 2011; 50:6622-32. [PMID: 21688840 DOI: 10.1021/bi200205v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cytidine repressor (CytR) is a member of the LacR family of bacterial repressors with distinct functional features. The Escherichia coli CytR regulon comprises nine operons whose palindromic operators vary in both sequence and, most significantly, spacing between the recognition half-sites. This suggests a strong likelihood that protein folding would be coupled to DNA binding as a mechanism to accommodate the variety of different operator architectures to which CytR is targeted. Such coupling is a common feature of sequence-specific DNA-binding proteins, including the LacR family repressors; however, there are no significant structural rearrangements upon DNA binding within the three-helix DNA-binding domains (DBDs) studied to date. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the CytR DBD free in solution and to determine the high-resolution structure of a CytR DBD monomer bound specifically to one DNA half-site of the uridine phosphorylase (udp) operator. We find that the free DBD populates multiple distinct conformations distinguished by up to four sets of NMR peaks per residue. This structural heterogeneity is previously unknown in the LacR family. These stable structures coalesce into a single, more stable udp-bound form that features a three-helix bundle containing a canonical helix-turn-helix motif. However, this structure differs from all other LacR family members whose structures are known with regard to the packing of the helices and consequently their relative orientations. Aspects of CytR activity are unique among repressors; we identify here structural properties that are also distinct and that might underlie the different functional properties.
Collapse
Affiliation(s)
- Colleen L Moody
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
17
|
Holt AK, Senear DF. An unusual pattern of CytR and CRP binding energetics at Escherichia coli cddP suggests a unique blend of class I and class II mediated activation. Biochemistry 2010; 49:432-42. [PMID: 20000490 DOI: 10.1021/bi901583n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two transcription factors, CRP and CytR, mediate positive and negative control of nine cistrons involved in nucleoside catabolism and recycling in Escherichia coli. The ability of multiple transcription factors to combine in different ways to confer differential gene regulation is of significant interest in both prokaryotic and eukaryotic gene regulation. Analysis of cooperative interactions between CytR and CRP at the deoP2 and udpP promoters has implicated the importance of promoter architecture in controlling repression and induction. These studies have also identified competition between CytR and CRP as an additional contributor to differential regulation. The pattern and energetics of CytR and CRP interactions at the cdd promoter, the most strongly activated of the CytR-regulated promoters, have been delineated using DNase I footprinting. Surprisingly, CRP has greater affinity for the promoter proximal site at cddP, CRP1, than for the distal site, CRP2, in contrast to promoters studied previously. This difference is a major contributor to unusually high CRP-mediated activation of cddP. Additionally, while cytidine binding to CytR nearly eliminates the pairwise interactions between CytR and CRP bound at CRP1, it has little effect on pairwise cooperativity between CytR and CRP bound at CRP2 or as a consequence on the overall cooperativity of the three-protein complex in which CRP is bound to both sites. The effect of cytidine binding on cooperativity differs between the three promoters studied thus far. We propose that the different patterns of interaction reflect the spacing between CytR half-sites and the location of the CytR operator in relation to the two CRP sites.
Collapse
Affiliation(s)
- Allison K Holt
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
18
|
Linked equilibria in regulation of transcription initiation. Methods Cell Biol 2007. [PMID: 17964927 DOI: 10.1016/s0091-679x(07)84002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Assembly of transcriptional regulatory complexes often involves multiple binding processes and these binding processes are frequently coupled to one another. Small molecule binding can promote or inhibit DNA-binding or protein-protein interactions. DNA binding may be coupled to protein association. Finally, proteins may bind cooperatively to multiple sites in a transcriptional regulatory region. The level of transcription initiation at a promoter reflects the assembly of regulatory complexes in a transcription control region. Quantitative mechanistic understanding of regulatory complex assembly requires dissection of the assembly process into its constituent interactions followed by measurements of linkage between the individual binding processes. Methods and approaches to achieving this quantitative understanding of transcription regulation are outlined in this chapter.
Collapse
|
19
|
Tretyachenko-Ladokhina V, Cocco MJ, Senear DF. Flexibility and adaptability in binding of E. coli cytidine repressor to different operators suggests a role in differential gene regulation. J Mol Biol 2006; 362:271-86. [PMID: 16919681 DOI: 10.1016/j.jmb.2006.06.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 11/19/2022]
Abstract
Interactions between DNA-bound transcription factors CytR and CRP regulate the promoters of the Escherichia coli CytR regulon. A distinctive feature of the palindromic CytR operators is highly variable length central spacers (0-9 bp). Previously we demonstrated distinct modes of CytR binding to operators that differ in spacer length. These different modes are characterized by opposite enthalpic and entropic contributions at 25 degrees C. Of particular note were radically different negative DeltaCp values suggesting variable contribution from coupled protein folding and/or DNA structural transitions. We proposed that the CytR DNA binding-domain adopts either a more rigid or flexible DNA-bound conformation in response to the different spacer lengths. More recently, similar effects were shown to contribute to discrimination between operator and non-specific DNA binding by LacR, a CytR homolog. Here we have extended the thermodynamic analysis to the remaining natural CytR operators plus a set of synthetic operators designed to isolate spacing as the single variable. The thermodynamic results show a broad and monotonic range of effects that are primarily dependent on spacer length. The magnitude of effects suggests participation by more than the DNA-binding domain. 15N HSQC NMR and CD spectral analyses were employed to characterize the structural basis for these effects. The results indicate that while CytR forms a well-ordered structure in solution, it is highly dynamic. We propose a model in which a large ensemble of native state conformations narrows upon binding, to an extent governed by operator spacing. This in turn is expected to constrain intermolecular interactions in the CytR-CRP-DNA complex, thus generating operator-specific effects on repression and induction of transcription.
Collapse
|
20
|
Oehler S, Alberti S, Müller-Hill B. Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Nucleic Acids Res 2006; 34:606-12. [PMID: 16432263 PMCID: PMC1345695 DOI: 10.1093/nar/gkj453] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In vivo induction of the Escherichia coli lactose operon as a function of inducer concentration generates a sigmoidal curve, indicating a non-linear response. Suggested explanations for this dependence include a 2:1 inducer–repressor stoichiometry of induction, which is the currently accepted view. It is, however, known for decades that, in vitro, operator binding as a function of inducer concentration is not sigmoidal. This discrepancy between in vivo and in vitro data has so far not been resolved. We demonstrate that the in vivo non-linearity of induction is due to cooperative repression of the wild-type lac operon through DNA loop formation. In the absence of DNA loops, in vivo induction curves are hyperbolic. In the light of this result, we re-address the question of functional molecular inducer–repressor stoichiometry in induction of the lac operon.
Collapse
Affiliation(s)
- Stefan Oehler
- IMBB-FoRTH, PO Box 1385, GR-71110 Heraklion, Crete, Greece.
| | | | | |
Collapse
|
21
|
Chahla M, Wooll J, Laue TM, Nguyen N, Senear DF. Role of protein-protein bridging interactions on cooperative assembly of DNA-bound CRP-CytR-CRP complex and regulation of the Escherichia coli CytR regulon. Biochemistry 2003; 42:3812-25. [PMID: 12667072 DOI: 10.1021/bi0271143] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unlinked operons that comprise the Escherichia coli CytR regulon are controlled coordinately through interactions between two gene regulatory proteins, the cAMP receptor protein (CRP) and the cytidine repressor (CytR). CytR controls the balance between CRP-mediated recruitment and activation of RNA polymerase and transcriptional repression. Cooperative interactions between CytR, when bound to an operator (CytO) located upstream of a CytR-regulated promoter, and CRP, when bound to flanking tandem promoters, are critical to the regulatory role of CytR. When CytR binds cytidine, cooperativity is reduced resulting in increased transcriptional activity. However, this cytidine-mediated effect varies among promoters, suggesting that coupling between cytidine binding to CytR and CytR-CRP association is sensitive to promoter structure. To investigate the chemical and structural basis for these effects, we investigated how cytidine binding affects association between CytR and CRP in solution and how it affects the binding of CytR deletion mutants lacking the DNA binding HTH domain, with tandem CRP dimers bound to either udpP or deoP2. Deletion mutants that, as we show here, retain the native functions of the allosteric, inducer-binding domain but do not bind DNA were expressed and purified. We refer to these as Core domain. Despite only weak association between CytR and CRP in solution, our results demonstrate the formation of a relatively stable complex in which the Core domain forms a protein bridge between tandem CRP dimers when bound to either udpP or deoP2. The DeltaG(o) for bridge complex formation is about -7.8 kcal/mol. This is well in excess of that required to account for cooperativity (-2.5 to -3 kcal/mol). The bridge complexes are significantly destabilized by cytidine binding, and to the same extent in both promoter complexes (DeltaDeltaG(o) approximately +2 kcal/mol). Even with this destabilization, DeltaG(o) for bridge complex formation by cytidine-liganded Core domain is still sufficient by itself to account for cooperativity. These findings demonstrate that direct coupling between cytidine binding to CytR and CytR-CRP association does not account for promoter-specific effects on cooperativity. Instead, cytidine binding must induce a CytR conformation that is more rigid or in some other way less tolerant of the variation in the geometric arrangement of operator sites between different promoters.
Collapse
Affiliation(s)
- Mayy Chahla
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
22
|
Tretyachenko-Ladokhina V, Ross JBA, Senear DF. Thermodynamics of E. coli cytidine repressor interactions with DNA: distinct modes of binding to different operators suggests a role in differential gene regulation. J Mol Biol 2002; 316:531-46. [PMID: 11866516 DOI: 10.1006/jmbi.2001.5302] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between the Escherichia coli cytidine repressor protein (CytR) and its operator sites at the different promoters that comprise the CytR regulon, play an important role in the regulation of these promoters. The natural operators are palindromes separated by variable length central spacers (0-9 bp). We have suggested that this variability affects the flexibility of CytR-DNA contacts, thereby affecting the critical protein-protein interactions between CytR and the cAMP receptor protein (CRP) that underlie differential repression and activation of CytR-regulated genes. To assess this hypothesis, we investigated the thermodynamics of CytR binding to the natural operator sequences found in udpP and deoP2. To separate effects due to spacing from effects due to the differing sequences of the recognition half-sites of these two operators, we also investigated CytR binding to artificial hybrid operators, in which the half-site sequences of udpP and deoP2 were exchanged. Thermodynamic parameters, DeltaS(o), DeltaH(o) and DeltaC(o)(p), were determined by van't Hoff analysis of CytR binding, monitored by changes in the steady-state fluorescence anisotropy of dye-conjugated, operator-containing oligonucleotides. Large differences in thermodynamics were observed that depend primarily on the central spacer rather than the sequences of the recognition half-sites. Binding to operators with deoP2 spacing results in a very large, negative DeltaC(o)(p). Association is strongly favored enthalpically and strongly disfavored entropically at ambient temperature. By contrast, binding to operators with udpP spacing results in a small, negative DeltaC(o)(p). Association is weakly favored both enthalpically and entropically at ambient temperature. A difference of such magnitude in DeltaDeltaC(o)(p) has not been reported previously for specific binding of a transcription factor to different sites. The identical salt dependence of CytR binding to deoP2 and udpP operators indicates that ion-dependent processes do not contribute significantly to this difference. Thus, the different thermodynamic effects appear to reflect distinctly different modes of site-specific DNA binding. We discuss similarities to operator binding by CytR homologs among LacI family repressors, and we consider how different CytR binding modes might affect interactions with other components of the gene regulatory machinery that contribute to differential gene regulation.
Collapse
|
23
|
Gavigan SA, Nguyen T, Nguyen N, Senear DF. Role of multiple CytR binding sites on cooperativity, competition, and induction at the Escherichia coli udp promoter. J Biol Chem 1999; 274:16010-9. [PMID: 10347150 DOI: 10.1074/jbc.274.23.16010] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CytR repressor fulfills dual roles as both a repressor of transcription from promoters of the Escherichia coli CytR regulon and a co-activator in some circumstances. Transcription is repressed by a three-protein complex (cAMP receptor protein (CRP)-CytR-CRP) that is stabilized by cooperative interactions between CRP and CytR. However, cooperativity also means that CytR can recruit CRP and, by doing so, can act as a co-activator. The central role of cooperativity in regulation is highlighted by the fact that binding of the inducer, cytidine, to CytR is coupled to CytR-CRP cooperativity; this underlies the mechanism for induction. Similar interactions at the different promoters of the CytR regulon coordinate expression of the transport proteins and enzymes required for nucleoside catabolism but also provide differential expression of these genes. A fundamental question in both prokaryotic and eukaryotic gene regulation is how combinatorial mechanisms of this sort regulate differential expression. Recently, we showed that CytR binds specifically to multiple sites in the E. coli deoP promoter, thereby providing competition for CRP binding to CRP operator site 1 (CRP1) and CRP2 as well as cooperativity. The effect of the competition at this promoter is to negate the role of CytR in recruiting CRP. Here, we have used quantitative footprint and mobility shift analysis to investigate CRP and CytR binding to the E. coli udp promoter. Here too, we find that CytR both cooperates and competes for CRP binding. However, consistent with both the distribution of CytR recognition motifs in the sequence of the promoter and the regulation of the promoter, the competition is limited to CRP2. When cytidine binds to CytR, the effect on cooperativity is very different at the udp promoter than at the deoP2 promoter. Cooperativity with CRP at CRP1 is nearly eliminated, but the effect on CytR-CRP2 cooperativity is negligible. These results are discussed in relation to the current structural model of CytR in which the core, inducer-binding domain is tethered to the helix-turn-helix, DNA-binding domain via flexible peptide linkers.
Collapse
Affiliation(s)
- S A Gavigan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
24
|
Thomsen LE, Pedersen M, Nørregaard-Madsen M, Valentin-Hansen P, Kallipolitis BH. Protein-ligand interaction: grafting of the uridine-specific determinants from the CytR regulator of Salmonella typhimurium to Escherichia coli CytR. J Mol Biol 1999; 288:165-75. [PMID: 10329134 DOI: 10.1006/jmbi.1999.2668] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the LacI family of transcriptional repressors respond to the presence of small effector molecules. The binding of the ligands affect the proteins ability to repress transcription by stabilizing a conformation that, in most cases, is unfavorable for high-affinity DNA binding. The CytR anti-activator diverges from the other family members by relying on the cooperative DNA binding with the global regulator CRP. The inducers of CytR do not affect CytR-DNA binding per se, but alleviate repression by interrupting protein-protein interactions between the two regulators. Here, we have studied of the CytR-inducer interaction by exploring a discrepancy in the inducer response observed for the homologous CytR regulators of Escherichia coli and Salmonella typhimurium. CytR of S. typhimurium (CytRSt) appears to respond to the presence of both uridine and cytidine nucleosides, whereas E. coli CytR (CytREc) responds to cytidine only. We have used a combination of genetic and structural modeling studies to provide detailed information regarding the nature of this discrepancy. By analysis of hybrid CytR proteins followed by site-directed mutagenesis, we have successfully transferred the specificity determinants for uridine from CytRSt to CytREc, revealing that serine substitutions of only two residues (G131 and A152) in CytREc is required to make CytREc sensitive to uridine. In addition, by employing a genetic screen for induction of defective mutants, we have identified four amino acid residues in CytRSt that appear to be important for the response to uridine. The implications of these findings for the understanding of the ligand binding and induction of CytR are discussed in the context of the structural knowledge of CytR and homologous protein-ligand complexes.
Collapse
Affiliation(s)
- L E Thomsen
- Department of Molecular Biology, Odense University, Campusvej 55, Odense M, DK-5230, Denmark
| | | | | | | | | |
Collapse
|
25
|
Senear DF, Perini LT, Gavigan SA. Analysis of interactions between CytR and CRP at CytR-regulated promoters. Methods Enzymol 1998; 295:403-24. [PMID: 9750230 DOI: 10.1016/s0076-6879(98)95051-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- D F Senear
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
26
|
Abstract
For a long time, repression of transcription in Escherichia coli was thought to be generally caused by one repressor binding to one operator. Recent work has indicated the frequent presence of auxiliary operators and helper proteins. The recent solution of the X-ray structures of Lac and Pur repressors were breakthroughs; yet, it has become painfully clear that important aspects of repression are still not understood.
Collapse
Affiliation(s)
- B Müller-Hill
- Institut für Genetik der Universität zu Köln, Weyertal 121, D-50931 Köln, Germany.
| |
Collapse
|