1
|
Nova IC, Craig JM, Mazumder A, Laszlo AH, Derrington IM, Noakes MT, Brinkerhoff H, Yang S, Vahedian-Movahed H, Li L, Zhang Y, Bowman JL, Huang JR, Mount JW, Ebright RH, Gundlach JH. Nanopore tweezers show fractional-nucleotide translocation in sequence-dependent pausing by RNA polymerase. Proc Natl Acad Sci U S A 2024; 121:e2321017121. [PMID: 38990947 PMCID: PMC11260103 DOI: 10.1073/pnas.2321017121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/23/2024] [Indexed: 07/13/2024] Open
Abstract
RNA polymerases (RNAPs) carry out the first step in the central dogma of molecular biology by transcribing DNA into RNA. Despite their importance, much about how RNAPs work remains unclear, in part because the small (3.4 Angstrom) and fast (~40 ms/nt) steps during transcription were difficult to resolve. Here, we used high-resolution nanopore tweezers to observe the motion of single Escherichia coli RNAP molecules as it transcribes DNA ~1,000 times improved temporal resolution, resolving single-nucleotide and fractional-nucleotide steps of individual RNAPs at saturating nucleoside triphosphate concentrations. We analyzed RNAP during processive transcription elongation and sequence-dependent pausing at the yrbL elemental pause sequence. Each time RNAP encounters the yrbL elemental pause sequence, it rapidly interconverts between five translocational states, residing predominantly in a half-translocated state. The kinetics and force-dependence of this half-translocated state indicate it is a functional intermediate between pre- and post-translocated states. Using structural and kinetics data, we show that, in the half-translocated and post-translocated states, sequence-specific protein-DNA interaction occurs between RNAP and a guanine base at the downstream end of the transcription bubble (core recognition element). Kinetic data show that this interaction stabilizes the half-translocated and post-translocated states relative to the pre-translocated state. We develop a kinetic model for RNAP at the yrbL pause and discuss this in the context of key structural features.
Collapse
Affiliation(s)
- Ian C. Nova
- Department of Physics, University of Washington, Seattle, WA98195
| | | | - Abhishek Mazumder
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ08854
| | - Andrew H. Laszlo
- Department of Physics, University of Washington, Seattle, WA98195
| | | | | | | | - Shuya Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ08854
| | | | - Lingting Li
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | | | - Jesse R. Huang
- Department of Physics, University of Washington, Seattle, WA98195
| | | | - Richard H. Ebright
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ08854
| | - Jens H. Gundlach
- Department of Physics, University of Washington, Seattle, WA98195
| |
Collapse
|
2
|
L.B. Almeida B, M. Bahrudeen MN, Chauhan V, Dash S, Kandavalli V, Häkkinen A, Lloyd-Price J, S.D. Cristina P, Baptista ISC, Gupta A, Kesseli J, Dufour E, Smolander OP, Nykter M, Auvinen P, Jacobs HT, M.D. Oliveira S, S. Ribeiro A. The transcription factor network of E. coli steers global responses to shifts in RNAP concentration. Nucleic Acids Res 2022; 50:6801-6819. [PMID: 35748858 PMCID: PMC9262627 DOI: 10.1093/nar/gkac540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The robustness and sensitivity of gene networks to environmental changes is critical for cell survival. How gene networks produce specific, chronologically ordered responses to genome-wide perturbations, while robustly maintaining homeostasis, remains an open question. We analysed if short- and mid-term genome-wide responses to shifts in RNA polymerase (RNAP) concentration are influenced by the known topology and logic of the transcription factor network (TFN) of Escherichia coli. We found that, at the gene cohort level, the magnitude of the single-gene, mid-term transcriptional responses to changes in RNAP concentration can be explained by the absolute difference between the gene's numbers of activating and repressing input transcription factors (TFs). Interestingly, this difference is strongly positively correlated with the number of input TFs of the gene. Meanwhile, short-term responses showed only weak influence from the TFN. Our results suggest that the global topological traits of the TFN of E. coli shape which gene cohorts respond to genome-wide stresses.
Collapse
Affiliation(s)
- Bilena L.B. Almeida
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mohamed N M. Bahrudeen
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vatsala Chauhan
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suchintak Dash
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vinodh Kandavalli
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Antti Häkkinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Palma S.D. Cristina
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ines S C Baptista
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abhishekh Gupta
- Center for Quantitative Medicine and Department of Cell Biology, University of Connecticut School of Medicine, 263 Farmington Av., Farmington, CT 06030-6033, USA
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Eric Dufour
- Mitochondrial bioenergetics and metabolism, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Samuel M.D. Oliveira
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Andre S. Ribeiro
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Center of Technology and Systems (CTS-Uninova), NOVA University of Lisbon, 2829-516 Monte de Caparica, Portugal
| |
Collapse
|
3
|
Bharati BK, Gowder M, Zheng F, Alzoubi K, Svetlov V, Kamarthapu V, Weaver JW, Epshtein V, Vasilyev N, Shen L, Zhang Y, Nudler E. Crucial role and mechanism of transcription-coupled DNA repair in bacteria. Nature 2022; 604:152-159. [PMID: 35355008 PMCID: PMC9370829 DOI: 10.1038/s41586-022-04530-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/07/2022] [Indexed: 01/11/2023]
Abstract
Transcription-coupled DNA repair (TCR) is presumed to be a minor sub-pathway of nucleotide excision repair (NER) in bacteria. Global genomic repair is thought to perform the bulk of repair independently of transcription. TCR is also believed to be mediated exclusively by Mfd-a DNA translocase of a marginal NER phenotype1-3. Here we combined in cellulo cross-linking mass spectrometry with structural, biochemical and genetic approaches to map the interactions within the TCR complex (TCRC) and to determine the actual sequence of events that leads to NER in vivo. We show that RNA polymerase (RNAP) serves as the primary sensor of DNA damage and acts as a platform for the recruitment of NER enzymes. UvrA and UvrD associate with RNAP continuously, forming a surveillance pre-TCRC. In response to DNA damage, pre-TCRC recruits a second UvrD monomer to form a helicase-competent UvrD dimer that promotes backtracking of the TCRC. The weakening of UvrD-RNAP interactions renders cells sensitive to genotoxic stress. TCRC then recruits a second UvrA molecule and UvrB to initiate the repair process. Contrary to the conventional view, we show that TCR accounts for the vast majority of chromosomal repair events; that is, TCR thoroughly dominates over global genomic repair. We also show that TCR is largely independent of Mfd. We propose that Mfd has an indirect role in this process: it participates in removing obstructive RNAPs in front of TCRCs and also in recovering TCRCs from backtracking after repair has been completed.
Collapse
Affiliation(s)
- Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Fangfang Zheng
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Khaled Alzoubi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Venu Kamarthapu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Jacob W Weaver
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA. .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
An Introduction to the Structure and Function of the Catalytic Core Enzyme of Escherichia coli RNA Polymerase. EcoSal Plus 2019; 8. [PMID: 30109846 DOI: 10.1128/ecosalplus.esp-0004-2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA polymerase (RNAP) is the essential enzyme responsible for transcribing genetic information stored in DNA to RNA. Understanding the structure and function of RNAP is important for those who study basic principles in gene expression, such as the mechanism of transcription and its regulation, as well as translational sciences such as antibiotic development. With over a half-century of investigations, there is a wealth of information available on the structure and function of Escherichia coli RNAP. This review introduces the structural features of E. coli RNAP, organized by subunit, giving information on the function, location, and conservation of these features to early stage investigators who have just started their research of E. coli RNAP.
Collapse
|
5
|
Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang D, Ebright YW, Ebright RY, Sineva E, Gigliotti M, Srivastava A, Mandal S, Jiang Y, Liu Y, Yin R, Zhang Z, Eng ET, Thomas D, Donadio S, Zhang H, Zhang C, Kapanidis AN, Ebright RH. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Mol Cell 2018; 70:60-71.e15. [PMID: 29606590 PMCID: PMC6205224 DOI: 10.1016/j.molcel.2018.02.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.
Collapse
Affiliation(s)
- Wei Lin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kalyan Das
- Rega Institute and Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| | - David Degen
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Abhishek Mazumder
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego Duchi
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Dongye Wang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard Y Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena Sineva
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Aashish Srivastava
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Sukhendu Mandal
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yi Jiang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Liu
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Ruiheng Yin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Dennis Thomas
- Center for Integrative Proteomics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Haibo Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Changsheng Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Maffioli SI, Zhang Y, Degen D, Carzaniga T, Del Gatto G, Serina S, Monciardini P, Mazzetti C, Guglierame P, Candiani G, Chiriac AI, Facchetti G, Kaltofen P, Sahl HG, Dehò G, Donadio S, Ebright RH. Antibacterial Nucleoside-Analog Inhibitor of Bacterial RNA Polymerase. Cell 2017. [PMID: 28622509 DOI: 10.1016/j.cell.2017.05.042] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug-resistant bacterial pathogens pose an urgent public-health crisis. Here, we report the discovery, from microbial-extract screening, of a nucleoside-analog inhibitor that inhibits bacterial RNA polymerase (RNAP) and exhibits antibacterial activity against drug-resistant bacterial pathogens: pseudouridimycin (PUM). PUM is a natural product comprising a formamidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 6'-amino-pseudouridine. PUM potently and selectively inhibits bacterial RNAP in vitro, inhibits bacterial growth in culture, and clears infection in a mouse model of Streptococcus pyogenes peritonitis. PUM inhibits RNAP through a binding site on RNAP (the NTP addition site) and mechanism (competition with UTP for occupancy of the NTP addition site) that differ from those of the RNAP inhibitor and current antibacterial drug rifampin (Rif). PUM exhibits additive antibacterial activity when co-administered with Rif, exhibits no cross-resistance with Rif, and exhibits a spontaneous resistance rate an order-of-magnitude lower than that of Rif. PUM is a highly promising lead for antibacterial therapy.
Collapse
Affiliation(s)
- Sonia I Maffioli
- NAICONS Srl, 20139 Milan, Italy; Vicuron Pharmaceuticals, 21040 Gerenzano, Italy
| | - Yu Zhang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - David Degen
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Thomas Carzaniga
- Department of Bioscience, University of Milan, 20122 Milan, Italy
| | | | - Stefania Serina
- NAICONS Srl, 20139 Milan, Italy; Vicuron Pharmaceuticals, 21040 Gerenzano, Italy
| | - Paolo Monciardini
- NAICONS Srl, 20139 Milan, Italy; Vicuron Pharmaceuticals, 21040 Gerenzano, Italy
| | | | | | | | - Alina Iulia Chiriac
- Institute of Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53012 Bonn, Germany
| | | | | | - Hans-Georg Sahl
- Institute of Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53012 Bonn, Germany
| | - Gianni Dehò
- Department of Bioscience, University of Milan, 20122 Milan, Italy
| | - Stefano Donadio
- NAICONS Srl, 20139 Milan, Italy; Vicuron Pharmaceuticals, 21040 Gerenzano, Italy.
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Fouqueau T, Blombach F, Werner F. Evolutionary Origins of Two-Barrel RNA Polymerases and Site-Specific Transcription Initiation. Annu Rev Microbiol 2017; 71:331-348. [PMID: 28657884 DOI: 10.1146/annurev-micro-091014-104145] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution-related multisubunit RNA polymerases (RNAPs) carry out RNA synthesis in all domains life. Although their catalytic cores and fundamental mechanisms of transcription elongation are conserved, the initiation stage of the transcription cycle differs substantially in bacteria, archaea, and eukaryotes in terms of the requirements for accessory factors and details of the molecular mechanisms. This review focuses on recent insights into the evolution of the transcription apparatus with regard to (a) the surprisingly pervasive double-Ψ β-barrel active-site configuration among different nucleic acid polymerase families, (b) the origin and phylogenetic distribution of TBP, TFB, and TFE transcription factors, and
Collapse
Affiliation(s)
- Thomas Fouqueau
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; ,
| | - Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; ,
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; ,
| |
Collapse
|
8
|
Walker SS, Degen D, Nickbarg E, Carr D, Soriano A, Mandal M, Painter RE, Sheth P, Xiao L, Sher X, Murgolo N, Su J, Olsen DB, Ebright RH, Young K. Affinity Selection-Mass Spectrometry Identifies a Novel Antibacterial RNA Polymerase Inhibitor. ACS Chem Biol 2017; 12:1346-1352. [PMID: 28323406 DOI: 10.1021/acschembio.6b01133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growing prevalence of drug resistant bacteria is a significant global threat to human health. The antibacterial drug rifampin, which functions by inhibiting bacterial RNA polymerase (RNAP), is an important part of the antibacterial armamentarium. Here, in order to identify novel inhibitors of bacterial RNAP, we used affinity-selection mass spectrometry to screen a chemical library for compounds that bind to Escherichia coli RNAP. We identified a novel small molecule, MRL-436, that binds to RNAP, inhibits RNAP, and exhibits antibacterial activity. MRL-436 binds to RNAP through a binding site that differs from the rifampin binding site, inhibits rifampin-resistant RNAP derivatives, and exhibits antibacterial activity against rifampin-resistant strains. Isolation of mutants resistant to the antibacterial activity of MRL-436 yields a missense mutation in codon 622 of the rpoC gene encoding the RNAP β' subunit or a null mutation in the rpoZ gene encoding the RNAP ω subunit, confirming that RNAP is the functional cellular target for the antibacterial activity of MRL-436, and indicating that RNAP β' subunit residue 622 and the RNAP ω subunit are required for the antibacterial activity of MRL-436. Similarity between the resistance determinant for MRL-436 and the resistance determinant for the cellular alarmone ppGpp suggests a possible similarity in binding site and/or induced conformational state for MRL-436 and ppGpp.
Collapse
Affiliation(s)
- Scott S. Walker
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David Degen
- Department
of Chemistry and Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | | | - Donna Carr
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aileen Soriano
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mihir Mandal
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Payal Sheth
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Li Xiao
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xinwei Sher
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Jing Su
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David B. Olsen
- Merck & Co., Inc., Upper Gwynedd, Pennsylvania 19454, United States
| | - Richard H. Ebright
- Department
of Chemistry and Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Katherine Young
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
9
|
Feng Y, Zhang Y, Ebright RH. Structural basis of transcription activation. Science 2016; 352:1330-3. [PMID: 27284196 DOI: 10.1126/science.aaf4417] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme.
Collapse
Affiliation(s)
- Yu Feng
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Lavysh D, Sokolova M, Minakhin L, Yakunina M, Artamonova T, Kozyavkin S, Makarova KS, Koonin EV, Severinov K. The genome of AR9, a giant transducing Bacillus phage encoding two multisubunit RNA polymerases. Virology 2016; 495:185-96. [PMID: 27236306 DOI: 10.1016/j.virol.2016.04.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022]
Abstract
Bacteriophage AR9 and its close relative PBS1 have been extensively used to construct early Bacillus subtilis genetic maps. Here, we present the 251,042bp AR9 genome, a linear, terminally redundant double-stranded DNA containing deoxyuridine instead of thymine. Multiple AR9 genes are interrupted by non-coding sequences or sequences encoding putative endonucleases. We show that these sequences are group I and group II self-splicing introns. Eight AR9 proteins are homologous to fragments of bacterial RNA polymerase (RNAP) subunits β/β'. These proteins comprise two sets of paralogs of RNAP largest subunits, with each paralog encoded by two disjoint phage genes. Thus, AR9 is a phiKZ-related giant phage that relies on two multisubunit viral RNAPs to transcribe its genome independently of host transcription apparatus. Purification of one of PBS1/AR9 RNAPs has been reported previously, which makes AR9 a promising object for further studies of RNAP evolution, assembly and mechanism.
Collapse
Affiliation(s)
- Daria Lavysh
- Institute of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Maria Sokolova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia.
| | - Leonid Minakhin
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| | - Tatjana Artamonova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| | | | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Konstantin Severinov
- Institute of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia; Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia; Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
11
|
Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection. Proc Natl Acad Sci U S A 2016; 113:E2899-905. [PMID: 27162333 DOI: 10.1073/pnas.1603271113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein-DNA interactions with the downstream part of the nontemplate strand of the transcription bubble ("core recognition element," CRE). Here, we investigated whether sequence-specific RNAP-CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP-CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP-CRE interactions on TSS selection in vitro and in vivo for a library of 4(7) (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP-CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5' merodiploid native-elongating-transcript sequencing, 5' mNET-seq, we assessed effects of RNAP-CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP-CRE interactions determine TSS selection. Our findings establish RNAP-CRE interactions are a functional determinant of TSS selection. We propose that RNAP-CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching).
Collapse
|
12
|
Feng Y, Degen D, Wang X, Gigliotti M, Liu S, Zhang Y, Das D, Michalchuk T, Ebright YW, Talaue M, Connell N, Ebright RH. Structural Basis of Transcription Inhibition by CBR Hydroxamidines and CBR Pyrazoles. Structure 2015; 23:1470-1481. [PMID: 26190576 DOI: 10.1016/j.str.2015.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022]
Abstract
CBR hydroxamidines are small-molecule inhibitors of bacterial RNA polymerase (RNAP) discovered through high-throughput screening of synthetic-compound libraries. CBR pyrazoles are structurally related RNAP inhibitors discovered through scaffold hopping from CBR hydroxamidines. CBR hydroxamidines and pyrazoles selectively inhibit Gram-negative bacterial RNAP and exhibit selective antibacterial activity against Gram-negative bacteria. Here, we report crystal structures of the prototype CBR hydroxamidine, CBR703, and a CBR pyrazole in complex with E. coli RNAP holoenzyme. In addition, we define the full resistance determinant for CBR703, show that the binding site and resistance determinant for CBR703 do not overlap the binding sites and resistance determinants of other characterized RNAP inhibitors, show that CBR703 exhibits no or minimal cross-resistance with other characterized RNAP inhibitors, and show that co-administration of CBR703 with other RNAP inhibitors results in additive antibacterial activities. The results set the stage for structure-based optimization of CBR inhibitors as antibacterial drugs.
Collapse
Affiliation(s)
- Yu Feng
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David Degen
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Xinyue Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shuang Liu
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Deepankar Das
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Trevor Michalchuk
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Meliza Talaue
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Nancy Connell
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, NJ 07101, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
13
|
Vvedenskaya IO, Vahedian-Movahed H, Bird JG, Knoblauch JG, Goldman SR, Zhang Y, Ebright RH, Nickels BE. Interactions between RNA polymerase and the "core recognition element" counteract pausing. Science 2014; 344:1285-9. [PMID: 24926020 DOI: 10.1126/science.1253458] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcription elongation is interrupted by sequences that inhibit nucleotide addition and cause RNA polymerase (RNAP) to pause. Here, by use of native elongating transcript sequencing (NET-seq) and a variant of NET-seq that enables analysis of mutant RNAP derivatives in merodiploid cells (mNET-seq), we analyze transcriptional pausing genome-wide in vivo in Escherichia coli. We identify a consensus pause-inducing sequence element, G₋₁₀Y₋₁G(+1) (where -1 corresponds to the position of the RNA 3' end). We demonstrate that sequence-specific interactions between RNAP core enzyme and a core recognition element (CRE) that stabilize transcription initiation complexes also occur in transcription elongation complexes and facilitate pause read-through by stabilizing RNAP in a posttranslocated register. Our findings identify key sequence determinants of transcriptional pausing and establish that RNAP-CRE interactions modulate pausing.
Collapse
Affiliation(s)
- Irina O Vvedenskaya
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Hanif Vahedian-Movahed
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeremy G Bird
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA. Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Jared G Knoblauch
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Seth R Goldman
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Zhang
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J Microbiol Methods 2014; 103:80-100. [PMID: 24886836 DOI: 10.1016/j.mimet.2014.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 12/29/2022]
Abstract
The major proportion of earth's biological diversity is inhabited by microorganisms and they play a useful role in diversified environments. However, taxonomy of microorganisms is progressing at a snail's pace, thus less than 1% of the microbial population has been identified so far. The major problem associated with this is due to a lack of uniform, reliable, advanced, and common to all practices for microbial identification and systematic studies. However, recent advances have developed many useful techniques taking into account the house-keeping genes as well as targeting other gene catalogues (16S rRNA, rpoA, rpoB, gyrA, gyrB etc. in case of bacteria and 26S, 28S, β-tubulin gene in case of fungi). Some uncultivable approaches using much advanced techniques like flow cytometry and gel based techniques have also been used to decipher microbial diversity. However, all these techniques have their corresponding pros and cons. In this regard, a polyphasic taxonomic approach is advantageous because it exploits simultaneously both conventional as well as molecular identification techniques. In this review, certain aspects of the merits and limitations of different methods for molecular identification and systematics of microorganisms have been discussed. The major advantages of the polyphasic approach have also been described taking into account certain groups of bacteria as case studies to arrive at a consensus approach to microbial identification.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Neelam Mangwani
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Jaya Chakraborty
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| |
Collapse
|
15
|
Degen D, Feng Y, Zhang Y, Ebright KY, Ebright YW, Gigliotti M, Vahedian-Movahed H, Mandal S, Talaue M, Connell N, Arnold E, Fenical W, Ebright RH. Transcription inhibition by the depsipeptide antibiotic salinamide A. eLife 2014; 3:e02451. [PMID: 24843001 PMCID: PMC4029172 DOI: 10.7554/elife.02451] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/18/2014] [Indexed: 12/12/2022] Open
Abstract
We report that bacterial RNA polymerase (RNAP) is the functional cellular target of the depsipeptide antibiotic salinamide A (Sal), and we report that Sal inhibits RNAP through a novel binding site and mechanism. We show that Sal inhibits RNA synthesis in cells and that mutations that confer Sal-resistance map to RNAP genes. We show that Sal interacts with the RNAP active-center 'bridge-helix cap' comprising the 'bridge-helix N-terminal hinge', 'F-loop', and 'link region'. We show that Sal inhibits nucleotide addition in transcription initiation and elongation. We present a crystal structure that defines interactions between Sal and RNAP and effects of Sal on RNAP conformation. We propose that Sal functions by binding to the RNAP bridge-helix cap and preventing conformational changes of the bridge-helix N-terminal hinge necessary for nucleotide addition. The results provide a target for antibacterial drug discovery and a reagent to probe conformation and function of the bridge-helix N-terminal hinge.DOI: http://dx.doi.org/10.7554/eLife.02451.001.
Collapse
Affiliation(s)
- David Degen
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Feng
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | - Yon W Ebright
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | - Sukhendu Mandal
- Waksman Institute, Rutgers University, Piscataway, United States
| | - Meliza Talaue
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Nancy Connell
- Center for Biodefense, New Jersey Medical School, Rutgers University, Newark, United States
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, United States
| | | |
Collapse
|
16
|
Zhang Y, Degen D, Ho MX, Sineva E, Ebright KY, Ebright YW, Mekler V, Vahedian-Movahed H, Feng Y, Yin R, Tuske S, Irschik H, Jansen R, Maffioli S, Donadio S, Arnold E, Ebright RH. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides. eLife 2014; 3:e02450. [PMID: 24755292 PMCID: PMC3994528 DOI: 10.7554/elife.02450] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center ‘i’ and ‘i+1’ nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI:http://dx.doi.org/10.7554/eLife.02450.001 As increasing numbers of bacteria become resistant to antibiotics, new drugs are needed to fight bacterial infections. To develop new antibacterial drugs, researchers need to understand how existing antibiotics work. There are many ways to kill bacteria, but one of the most effective is to target an enzyme called bacterial RNA polymerase. If bacterial RNA polymerase is prevented from working, bacteria cannot synthesize RNA and cannot survive. GE23077 (GE for short) is an antibiotic produced by bacteria found in soil. Although GE stops bacterial RNA polymerase from working, and thereby kills bacteria, it does not affect mammalian RNA polymerases, and so does not kill mammalian cells. Understanding how GE works could help with the development of new antibacterial drugs. Zhang et al. present results gathered from a range of techniques to show how GE inhibits bacterial RNA polymerase. These show that GE works by binding to a site on RNA polymerase that is different from the binding sites of previously characterized antibacterial drugs. The mechanism used to inhibit the RNA polymerase is also different. The newly identified binding site has several features that make it an unusually attractive target for development of antibacterial compounds. Bacteria can become resistant to an antibiotic if genetic mutations lead to changes in the site the antibiotic binds to. However, the site that GE binds to on RNA polymerase is essential for RNA polymerase to function and so cannot readily be changed without crippling the enzyme. Therefore, this type of antibiotic resistance is less likely to develop. In addition, the newly identified binding site for GE on RNA polymerase is located next to the binding site for a current antibacterial drug, rifampin. Zhang et al. therefore linked GE and rifampin to form a two-part (‘bipartite’) compound designed to bind simultaneously to the GE and the rifampin binding sites. This compound was able to inhibit drug-resistant RNA polymerases tens to thousands of times more potently than GE or rifampin alone. DOI:http://dx.doi.org/10.7554/eLife.02450.002
Collapse
Affiliation(s)
- Yu Zhang
- Waksman Institute, Rutgers University, Piscataway, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mycobacterial RNA polymerase requires a U-tract at intrinsic terminators and is aided by NusG at suboptimal terminators. mBio 2014; 5:e00931. [PMID: 24713321 PMCID: PMC3993855 DOI: 10.1128/mbio.00931-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Intrinsic terminators, which encode GC-rich RNA hairpins followed immediately by a 7-to-9-nucleotide (nt) U-rich “U-tract,” play principal roles of punctuating and regulating transcription in most bacteria. However, canonical intrinsic terminators with strong U-tracts are underrepresented in some bacterial lineages, notably mycobacteria, leading to proposals that their RNA polymerases stop at noncanonical intrinsic terminators encoding various RNA structures lacking U-tracts. We generated recombinant forms of mycobacterial RNA polymerase and its major elongation factors NusA and NusG to characterize mycobacterial intrinsic termination. Using in vitro transcription assays devoid of possible mycobacterial contaminants, we established that mycobacterial RNA polymerase terminates more efficiently than Escherichia coli RNA polymerase at canonical terminators with imperfect U-tracts but does not terminate at putative terminators lacking U-tracts even in the presence of mycobacterial NusA and NusG. However, mycobacterial NusG exhibits a novel termination-stimulating activity that may allow intrinsic terminators with suboptimal U-tracts to function efficiently. Bacteria rely on transcription termination to define and regulate units of gene expression. In most bacteria, precise termination and much regulation by attenuation are accomplished by intrinsic terminators that encode GC-rich hairpins and U-tracts necessary to disrupt stable transcription elongation complexes. Thus, the apparent dearth of canonical intrinsic terminators with recognizable U-tracts in mycobacteria is of significant interest both because noncanonical intrinsic terminators could reveal novel routes to destabilize transcription complexes and because accurate understanding of termination is crucial for strategies to combat mycobacterial diseases and for computational bioinformatics generally. Our finding that mycobacterial RNA polymerase requires U-tracts for intrinsic termination, which can be aided by NusG, will guide future study of mycobacterial transcription and aid improvement of predictive algorithms to annotate bacterial genome sequences.
Collapse
|
18
|
Rajesh T, Park HY, Song E, Sung C, Park SH, Lee JH, Yoo D, Kim YG, Jeon JM, Kim BG, Yang YH. A new flow path design for multidimensional protein identification technology using nano-liquid chromatography electrospray ionization mass spectrometry. KOREAN J CHEM ENG 2012. [DOI: 10.1007/s11814-012-0134-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, Ebright RH. Structural basis of transcription initiation. Science 2012; 338:1076-80. [PMID: 23086998 DOI: 10.1126/science.1227786] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During transcription initiation, RNA polymerase (RNAP) binds and unwinds promoter DNA to form an RNAP-promoter open complex. We have determined crystal structures at 2.9 and 3.0 Å resolution of functional transcription initiation complexes comprising Thermus thermophilus RNA polymerase, σ(A), and a promoter DNA fragment corresponding to the transcription bubble and downstream double-stranded DNA of the RNAP-promoter open complex. The structures show that σ recognizes the -10 element and discriminator element through interactions that include the unstacking and insertion into pockets of three DNA bases and that RNAP recognizes the -4/+2 region through interactions that include the unstacking and insertion into a pocket of the +2 base. The structures further show that interactions between σ and template-strand single-stranded DNA (ssDNA) preorganize template-strand ssDNA to engage the RNAP active center.
Collapse
Affiliation(s)
- Yu Zhang
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Chakraborty A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E, Kim T, Chowdhury S, Wigneshweraraj S, Irschik H, Jansen R, Nixon BT, Knight J, Weiss S, Ebright RH. Opening and closing of the bacterial RNA polymerase clamp. Science 2012; 337:591-5. [PMID: 22859489 DOI: 10.1126/science.1218716] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Werner F, Grohmann D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 2011; 9:85-98. [PMID: 21233849 DOI: 10.1038/nrmicro2507] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Opalka N, Brown J, Lane WJ, Twist KAF, Landick R, Asturias FJ, Darst SA. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol 2010; 8. [PMID: 20856905 PMCID: PMC2939025 DOI: 10.1371/journal.pbio.1000483] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/04/2010] [Indexed: 11/25/2022] Open
Abstract
A combination of structural approaches yields a complete atomic model of the highly biochemically characterized Escherichia coli RNA polymerase, enabling fuller exploitation of E. coli as a model for understanding transcription. The Escherichia coli transcription system is the best characterized from a biochemical and genetic point of view and has served as a model system. Nevertheless, a molecular understanding of the details of E. coli transcription and its regulation, and therefore its full exploitation as a model system, has been hampered by the absence of high-resolution structural information on E. coli RNA polymerase (RNAP). We use a combination of approaches, including high-resolution X-ray crystallography, ab initio structural prediction, homology modeling, and single-particle cryo-electron microscopy, to generate complete atomic models of E. coli core RNAP and an E. coli RNAP ternary elongation complex. The detailed and comprehensive structural descriptions can be used to help interpret previous biochemical and genetic data in a new light and provide a structural framework for designing experiments to understand the function of the E. coli lineage-specific insertions and their role in the E. coli transcription program. Transcription, or the synthesis of RNA from DNA, is one of the most important processes in the cell. The central enzyme of transcription is the DNA-dependent RNA polymerase (RNAP), a large, macromolecular assembly consisting of at least five subunits. Historically, much of our fundamental information on the process of transcription has come from genetic and biochemical studies of RNAP from the model bacterium Escherichia coli. More recently, major breakthroughs in our understanding of the mechanism of action of RNAP have come from high resolution crystal structures of various bacterial, archaebacterial, and eukaryotic enzymes. However, all of our high-resolution bacterial RNAP structures are of enzymes from the thermophiles Thermus aquaticus or T. thermophilus, organisms with poorly characterized transcription systems. It has thus far proven impossible to obtain a high-resolution structure of E. coli RNAP, which has made it difficult to relate the large collection of genetic and biochemical data on RNAP function directly to the available structural information. Here, we used a combination of approaches—high-resolution X-ray crystallography of E. coli RNAP fragments, ab initio structure prediction, homology modeling, and single-particle cryo-electron microscopy—to generate complete atomic models of E. coli RNAP. Our detailed and comprehensive structural models provide the heretofore missing structural framework for understanding the function of the highly characterized E. coli RNAP.
Collapse
Affiliation(s)
- Natacha Opalka
- The Rockefeller University, New York, New York, United States of America
| | - Jesse Brown
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - William J. Lane
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
| | | | - Robert Landick
- Departments of Biochemistry and Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Francisco J. Asturias
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (FJA); (SAD)
| | - Seth A. Darst
- The Rockefeller University, New York, New York, United States of America
- * E-mail: (FJA); (SAD)
| |
Collapse
|
23
|
Fay A, Meyer P, Dworkin J. Interactions between late-acting proteins required for peptidoglycan synthesis during sporulation. J Mol Biol 2010; 399:547-61. [PMID: 20417640 DOI: 10.1016/j.jmb.2010.04.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/12/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
The requirement of peptidoglycan synthesis for growth complicates the analysis of interactions between proteins involved in this pathway. In particular, the latter steps that involve membrane-linked substrates have proven largely recalcitrant to in vivo analysis. Here, we have taken advantage of the peptidoglycan synthesis that occurs during sporulation in Bacillus subtilis to examine the interactions between SpoVE, a nonessential, sporulation-specific homolog of the well-conserved and essential SEDS (shape elongation, division, and sporulation) proteins, and SpoVD, a nonessential class B penicillin binding protein. We found that localization of SpoVD is dependent on SpoVE and that SpoVD protects SpoVE from in vivo proteolysis. Co-immunoprecipitations and fluorescence resonance energy transfer experiments indicated that SpoVE and SpoVD interact, and co-affinity purification in Escherichia coli demonstrated that this interaction is direct. Finally, we generated a functional protein consisting of an SpoVE-SpoVD fusion and found that a loss-of-function point mutation in either part of the fusion resulted in loss of function of the entire fusion that was not complemented by a wild-type protein. Thus, SpoVE has a direct and functional interaction with SpoVD, and this conclusion will facilitate understanding the essential function that SpoVE and related SEDS proteins, such as FtsW and RodA, play in bacterial growth and division.
Collapse
Affiliation(s)
- Allison Fay
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
24
|
Pomerantz RT, O'Donnell M. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 2008; 456:762-6. [PMID: 19020502 PMCID: PMC2605185 DOI: 10.1038/nature07527] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 10/06/2008] [Indexed: 11/09/2022]
Abstract
Replication forks are impeded by DNA damage and protein-nucleic acid complexes such as transcribing RNA polymerase. For example, head-on collision of the replisome with RNA polymerase results in replication fork arrest. However, co-directional collision of the replisome with RNA polymerase has little or no effect on fork progression. Here we examine co-directional collisions between a replisome and RNA polymerase in vitro. We show that the Escherichia coli replisome uses the RNA transcript as a primer to continue leading-strand synthesis after the collision with RNA polymerase that is displaced from the DNA. This action results in a discontinuity in the leading strand, yet the replisome remains intact and bound to DNA during the entire process. These findings underscore the notable plasticity by which the replisome operates to circumvent obstacles in its path and may explain why the leading strand is synthesized discontinuously in vivo.
Collapse
Affiliation(s)
- Richard T Pomerantz
- The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
25
|
Salgado PS, Koivunen MRL, Makeyev EV, Bamford DH, Stuart DI, Grimes JM. The structure of an RNAi polymerase links RNA silencing and transcription. PLoS Biol 2007; 4:e434. [PMID: 17147473 PMCID: PMC1750930 DOI: 10.1371/journal.pbio.0040434] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 10/13/2006] [Indexed: 11/19/2022] Open
Abstract
RNA silencing refers to a group of RNA-induced gene-silencing mechanisms that developed early in the eukaryotic lineage, probably for defence against pathogens and regulation of gene expression. In plants, protozoa, fungi, and nematodes, but apparently not insects and vertebrates, it involves a cell-encoded RNA-dependent RNA polymerase (cRdRP) that produces double-stranded RNA triggers from aberrant single-stranded RNA. We report the 2.3-A resolution crystal structure of QDE-1, a cRdRP from Neurospora crassa, and find that it forms a relatively compact dimeric molecule, each subunit of which comprises several domains with, at its core, a catalytic apparatus and protein fold strikingly similar to the catalytic core of the DNA-dependent RNA polymerases responsible for transcription. This evolutionary link between the two enzyme types suggests that aspects of RNA silencing in some organisms may recapitulate transcription/replication pathways functioning in the ancient RNA-based world.
Collapse
Affiliation(s)
- Paula S Salgado
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford, United Kingdom
| | - Minni R. L Koivunen
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
- Department of Biological and Environmental Sciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Eugene V Makeyev
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
- Department of Biological and Environmental Sciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Dennis H Bamford
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
- Department of Biological and Environmental Sciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - David I Stuart
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| | - Jonathan M Grimes
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
26
|
Dailidiene D, Tan S, Ogura K, Zhang M, Lee AH, Severinov K, Berg DE. Urea sensitization caused by separation of Helicobacter pylori RNA polymerase beta and beta' subunits. Helicobacter 2007; 12:103-11. [PMID: 17309746 DOI: 10.1111/j.1523-5378.2007.00479.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The beta and beta' subunits of RNA polymerase are fused in all Helicobacters, but separate in most other taxa. Prior studies had shown that this fusion is not essential for viability in culture or in vivo, but had not tested it for potentially important quantitative effects on phenotype. METHODS The effect of separating rpoB and rpoC sequences on Helicobacter pylori growth was tested in culture and during mouse infection. RESULTS Derivatives of strains X47 and SS1 carrying this "rpoBCsplit" allele colonized mice less vigorously than their wild-type parents in competition tests. With X47 rpoBCsplit, this reduced vigor was evident in wild-type mice, whereas with SS1 rpoBCsplit it was seen only in cytokine IL-10- and IL-12beta-deficient mice. In culture, the rpoBCsplit allele sensitized each of four strains tested (X47, SS1, 88-3887, and AM1) to urea, a metabolite that is secreted into the gastric mucosa; urea sensitization was more severe in X47 than in SS1 genetic backgrounds. The rpoBCsplit allele also caused poorer growth on Ham's F12 agar, a nutritionally limiting medium, but had little effect on sensitivity to mild acidity. CONCLUSIONS H. pylori's normal RNA polymerase beta-beta' subunit fusion contributes quantitatively to fitness. We propose that urea, although important to H. pylori in vivo, also be considered inhibitory; and that H. pylori's natural beta-beta' subunit fusion helps it cope with urea exposure.
Collapse
Affiliation(s)
- Daiva Dailidiene
- Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Tuske S, Sarafianos SG, Wang X, Hudson B, Sineva E, Mukhopadhyay J, Birktoft JJ, Leroy O, Ismail S, Clark AD, Dharia C, Napoli A, Laptenko O, Lee J, Borukhov S, Ebright RH, Arnold E. Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. Cell 2005; 122:541-52. [PMID: 16122422 PMCID: PMC2754413 DOI: 10.1016/j.cell.2005.07.017] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/03/2005] [Accepted: 07/13/2005] [Indexed: 11/17/2022]
Abstract
We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to but not overlapping the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight-bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents.
Collapse
Affiliation(s)
- Steven Tuske
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Stefan G. Sarafianos
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Xinyue Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Brian Hudson
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Elena Sineva
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Jayanta Mukhopadhyay
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Jens J. Birktoft
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Olivier Leroy
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Sajida Ismail
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Arthur D. Clark
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Chhaya Dharia
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Andrew Napoli
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
| | - Oleg Laptenko
- Department of Cell Biology, UMDNJ, Stratford NJ 08084, USA
| | - Jookyung Lee
- Department of Cell Biology, UMDNJ, Stratford NJ 08084, USA
| | | | - Richard H. Ebright
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Eddy Arnold
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
28
|
Mukhopadhyay J, Sineva E, Knight J, Levy RL, Ebright RH. Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol Cell 2005; 14:739-51. [PMID: 15200952 PMCID: PMC2754415 DOI: 10.1016/j.molcel.2004.06.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/13/2004] [Accepted: 04/20/2004] [Indexed: 11/21/2022]
Abstract
The antibacterial peptide microcin J25 (MccJ25) inhibits transcription by bacterial RNA polymerase (RNAP). Biochemical results indicate that inhibition of transcription occurs at the level of NTP uptake or NTP binding by RNAP. Genetic results indicate that inhibition of transcription requires an extensive determinant, comprising more than 50 amino acid residues, within the RNAP secondary channel (also known as the "NTP-uptake channel" or "pore"). Biophysical results indicate that inhibition of transcription involves binding of MccJ25 within the RNAP secondary channel. Molecular modeling indicates that binding of MccJ25 within the RNAP secondary channel obstructs the RNAP secondary channel. We conclude that MccJ25 inhibits transcription by binding within and obstructing the RNAP secondary channel--acting essentially as a "cork in a bottle." Obstruction of the RNAP secondary channel represents an attractive target for drug discovery.
Collapse
Affiliation(s)
- Jayanta Mukhopadhyay
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Elena Sineva
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Jennifer Knight
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Ronald L. Levy
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
| | - Richard H. Ebright
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- To whom correspondence should be addressed. Corresponding Author: Richard H. Ebright, Address: Waksman Institute, Rutgers University, Piscataway NJ 08854, USA, Telephone: (732) 445-5179, Telefax: (732) 445-5735,
| |
Collapse
|
29
|
Lithwick G, Margalit H. Relative predicted protein levels of functionally associated proteins are conserved across organisms. Nucleic Acids Res 2005; 33:1051-7. [PMID: 15718304 PMCID: PMC549420 DOI: 10.1093/nar/gki261] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We show that the predicted protein levels of functionally related proteins change in a coordinated fashion over many unicellular organisms. For each protein, we created a profile containing a protein abundance measure in each of a set of organisms. We show that for functionally related proteins these profiles tend to be correlated. Using the Codon Adaptation Index as a predictor of protein abundance in 48 unicellular organisms, we demonstrated this phenomenon for two types of functional relations: for proteins that physically interact and for proteins involved in consecutive steps within a metabolic pathway. Our results suggest that the protein abundance levels of functionally related proteins co-evolve.
Collapse
Affiliation(s)
| | - Hanah Margalit
- To whom correspondence should be addressed. Tel: +972 2 6758614; Fax: +972 2 6757308;
| |
Collapse
|
30
|
Mooney RA, Landick R. Tethering sigma70 to RNA polymerase reveals high in vivo activity of sigma factors and sigma70-dependent pausing at promoter-distal locations. Genes Dev 2003; 17:2839-51. [PMID: 14630944 PMCID: PMC280631 DOI: 10.1101/gad.1142203] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 10/01/2003] [Indexed: 11/24/2022]
Abstract
Bacterial sigma factors compete for binding to RNA polymerase (RNAP) to control promoter selection, and in some cases interact with RNAP to regulate at least the early stages of transcript elongation. However, the effective concentration of sigmas in vivo, and the extent to which sigma can regulate transcript elongation generally, are unknown. We report that tethering sigma70 to all RNAP molecules via genetic fusion of rpoD to rpoC (encoding sigma70 and RNAP's beta' subunit, respectively) yields viable Escherichia coli strains in which alternative sigma-factor function is not impaired. beta'::sigma70 RNAP transcribed DNA normally in vitro, but allowed sigma70-dependent pausing at extended -10-like sequences anywhere in a transcriptional unit. Based on measurement of the effective concentration of tethered sigma70, we conclude that the effective concentration of sigma70 in E. coli (i.e., its thermodynamic activity) is close to its bulk concentration. At this level, sigma70 would be a bona fide elongation factor able to direct transcriptional pausing even after its release from RNAP during promoter escape.
Collapse
Affiliation(s)
- Rachel Anne Mooney
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
31
|
Santangelo TJ, Mooney RA, Landick R, Roberts JW. RNA polymerase mutations that impair conversion to a termination-resistant complex by Q antiterminator proteins. Genes Dev 2003; 17:1281-92. [PMID: 12756229 PMCID: PMC196057 DOI: 10.1101/gad.1082103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Accepted: 03/24/2003] [Indexed: 11/24/2022]
Abstract
Bacteriophage lambda Q-protein stably binds and modifies RNA polymerase (RNAP) to a termination-resistant form. We describe amino acid substitutions in RNAP that disrupt Q-mediated antitermination in vivo and in vitro. The positions of these substitutions in the modeled RNAP/DNA/RNA ternary elongation complex, and their biochemical properties, suggest that they do not define a binding site for Q in RNAP, but instead act by impairing interactions among core RNAP subunits and nucleic acids that are essential for Q modification. A specific conjecture is that Q modification stabilizes interactions of RNAP with the DNA/RNA hybrid and optimizes alignment of the nucleic acids in the catalytic site. Such changes would inhibit the activity of the RNA hairpin of an intrinsic terminator to disrupt the 5'-terminal bases of the hybrid and remove the RNA 3' terminus from the active site.
Collapse
Affiliation(s)
- Thomas J Santangelo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Structures of multisubunit RNA polymerases strongly differ from the many known structures of single subunit DNA and RNA polymerases. However, in functional complexes of these diverse enzymes, nucleic acids take a similar course through the active center. This finding allows superposition of diverse polymerases and reveals features that are functionally equivalent. The entering DNA duplex is bent by almost 90 degrees with respect to the exiting template-product duplex. At the point of bending, a dramatic twist between subsequent DNA template bases aligns the "coding" base with the binding site for the incoming nucleoside triphosphate (NTP). The NTP enters through an opening that is found in all polymerases, and, in most cases, binds between an alpha-helix and two catalytic metal ions. Subsequent phosphodiester bond formation adds a new base pair to the exiting template-product duplex, which is always bound from the minor groove side. All polymerases may undergo "induced fit" upon nucleic acid binding, but the underlying conformational changes differ.
Collapse
Affiliation(s)
- P Cramer
- Institute of Biochemistry, Gene Center, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| |
Collapse
|
33
|
Mekler V, Kortkhonjia E, Mukhopadhyay J, Knight J, Revyakin A, Kapanidis AN, Niu W, Ebright YW, Levy R, Ebright RH. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 2002; 108:599-614. [PMID: 11893332 DOI: 10.1016/s0092-8674(02)00667-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have used systematic fluorescence resonance energy transfer and distance-constrained docking to define the three-dimensional structures of bacterial RNA polymerase holoenzyme and the bacterial RNA polymerase-promoter open complex in solution. The structures provide a framework for understanding sigma(70)-(RNA polymerase core), sigma(70)-DNA, and sigma(70)-RNA interactions. The positions of sigma(70) regions 1.2, 2, 3, and 4 are similar in holoenzyme and open complex. In contrast, the position of sigma(70) region 1.1 differs dramatically in holoenzyme and open complex. In holoenzyme, region 1.1 is located within the active-center cleft, apparently serving as a "molecular mimic" of DNA, but, in open complex, region 1.1 is located outside the active center cleft. The approach described here should be applicable to the analysis of other nanometer-scale complexes.
Collapse
Affiliation(s)
- Vladimir Mekler
- Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kuznedelov K, Minakhin L, Niedziela-Majka A, Dove SL, Rogulja D, Nickels BE, Hochschild A, Heyduk T, Severinov K. A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition. Science 2002; 295:855-7. [PMID: 11823642 DOI: 10.1126/science.1066303] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In bacteria, promoter recognition depends on the RNA polymerase sigma subunit, which combines with the catalytically proficient RNA polymerase core to form the holoenzyme. The major class of bacterial promoters is defined by two conserved elements (the -10 and -35 elements, which are 10 and 35 nucleotides upstream of the initiation point, respectively) that are contacted by sigma in the holoenzyme. We show that recognition of promoters of this class depends on the "flexible flap" domain of the RNA polymerase beta subunit. The flap interacts with conserved region 4 of sigma and triggers a conformational change that moves region 4 into the correct position for interaction with the -35 element. Because the flexible flap is evolutionarily conserved, this domain may facilitate promoter recognition by specificity factors in eukaryotes as well.
Collapse
Affiliation(s)
- Konstantin Kuznedelov
- Waksman Institute, Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Opalka N, Mooney RA, Richter C, Severinov K, Landick R, Darst SA. Direct localization of a beta-subunit domain on the three-dimensional structure of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2000; 97:617-22. [PMID: 10639128 PMCID: PMC15379 DOI: 10.1073/pnas.97.2.617] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify the location of a domain of the beta-subunit of Escherichia coli RNA polymerase (RNAP) on the three-dimensional structure, we developed a method to tag a nonessential surface of the multisubunit enzyme with a protein density easily detectable by electron microscopy and image processing. Four repeats of the IgG-binding domain of Staphylococcus aureus protein A were inserted at position 998 of the E. coli RNAP beta-subunit. The mutant RNAP supported E. coli growth and showed no apparent functional defects in vitro. The structure of the mutant RNAP was determined by cryoelectron microscopy and image processing of frozen-hydrated helical crystals. Comparison of the mutant RNAP structure with the previously determined wild-type RNAP structure by Fourier difference analysis at 20-A resolution directly revealed the location of the inserted protein domain, thereby locating the region around position 998 of the beta-subunit within the RNAP three-dimensional structure and refining a model for the subunit locations within the enzyme.
Collapse
Affiliation(s)
- N Opalka
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
36
|
Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 1999; 98:811-24. [PMID: 10499798 DOI: 10.1016/s0092-8674(00)81515-9] [Citation(s) in RCA: 632] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The X-ray crystal structure of Thermus aquaticus core RNA polymerase reveals a "crab claw"-shaped molecule with a 27 A wide internal channel. Located on the back wall of the channel is a Mg2+ ion required for catalytic activity, which is chelated by an absolutely conserved motif from all bacterial and eukaryotic cellular RNA polymerases. The structure places key functional sites, defined by mutational and cross-linking analysis, on the inner walls of the channel in close proximity to the active center Mg2+. Further out from the catalytic center, structural features are found that may be involved in maintaining the melted transcription bubble, clamping onto the RNA product and/or DNA template to assure processivity, and delivering nucleotide substrates to the active center.
Collapse
Affiliation(s)
- G Zhang
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
37
|
Malik T, Ahmad K, Buyukuslu N, Cromie K, Glass RE. Intragenic suppression of trans-dominant lethal substitutions in the conserved GEME motif of the beta subunit of RNA polymerase: evidence for functional cooperativity within the C-terminus. Genes Cells 1999; 4:501-15. [PMID: 10526237 DOI: 10.1046/j.1365-2443.1999.00276.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The ubiquitous multimeric RNA polymerases contain two large, conserved subunits, of which the beta subunit has been implicated in all three stages of transcription. We have previously described a genetic system involving random, PCR-mediated mutagenesis of the region of rpoB encoding the C-terminal 116 amino acids of the beta subunit of Escherichia coli RNA polymerase and the characterization of dominant-negative mutations. This study identified the invariant motif GEME (residues 1271-->1274; Cromie et al. 1999). Starting with three of these GEME-motif lethal mutations (G1271E, G1271V, M1273V), we have selected for intragenic suppressors, located within the same 3'-region, that prevent expression of the trans-dominant phenotype. RESULTS We isolated a total of 24 missense mutants and a further 14 frameshift alleles (the latter generating a nested set of C-terminal deletions of the beta subunit) and studied the effect of the missense suppressors in vivo and in vitro. The majority of the second-site substitutions pinpoint highly conserved residues and were allele-specific. In contrast, one particular missense substitution (S1332P) acted on all three primary site mutations whilst not appreciably affecting assembly proficiency, suggesting motif-specific suppression. Two missense substitutions were found to perturb assembly of the beta subunit (M1232T and L1233P) and define a small conserved region (1228-->1233) adjacent to one of the active-site residues identified by affinity-labelling, H1237. The majority of primary mutations were located in three main clusters within the 116 amino acid region. CONCLUSIONS The importance and functional co-operativity of the three main clusters pinpointed is supported by the present isolation of suppressors of three different GEME primary mutations in the same three regions (whereas the suppressors of G1271V and M1273V are located in all three clusters, those for G1271E are all C-terminal of this residue). Moreover, the location of the suppressors suggests that the GEME and HLVDDK regions are present as alpha-helices in holoenzyme, and that functional co-operativity is through one particular face of each helix.
Collapse
Affiliation(s)
- T Malik
- Institute of Genetics, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
38
|
Abstract
A ternary complex composed of RNA polymerase (RNAP), DNA template, and RNA transcript is the central intermediate in the transcription cycle responsible for the elongation of the RNA chain. Although the basic biochemistry of RNAP functioning is well understood, little is known about the underlying structural determinants. The absence of high- resolution structural data has hampered our understanding of RNAP mechanism. However, recent work suggests a structure-function model of the ternary elongation complex, if not at a defined structural level, then at least as a conceptual view, such that key components of RNAP are defined operationally on the basis of compelling biochemical, protein chemical, and genetic data. The model has important implications for mechanisms of transcription elongation and also for initiation and termination.
Collapse
Affiliation(s)
- E Nudler
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA.
| |
Collapse
|
39
|
Raudonikiene A, Zakharova N, Su WW, Jeong JY, Bryden L, Hoffman PS, Berg DE, Severinov K. Helicobacter pylori with separate beta- and beta'-subunits of RNA polymerase is viable and can colonize conventional mice. Mol Microbiol 1999; 32:131-8. [PMID: 10216866 DOI: 10.1046/j.1365-2958.1999.01336.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genes encoding the beta- and beta'-subunits of RNA polymerase (rpoB and rpoC respectively) are fused as one continuous open reading frame in Helicobacter pylori and in other members of this genus, but are separate in other bacterial taxonomic groups, including the closely related genus Campylobacter. To test whether this beta-beta' tethering is essential, we used polymerase chain reaction-based cloning to separate the rpoB and rpoC moieties of the H. pylori rpoB-rpoC fusion gene with a non-polar chloramphenicol resistance cassette containing a new translational start, and introduced this construct into H. pylori by electro-transformation. H. pylori containing these separated rpoB and rpoC genes in place of the native fusion gene produced non-tethered beta and beta' RNAP subunits, grew well in culture and colonized and proliferated well in conventional C57BL/6 mice. Thus, the extraordinary beta-beta' tethering is not essential for H. pylori viability and gastric colonization.
Collapse
Affiliation(s)
- A Raudonikiene
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis 63110, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gadal O, Shpakovski GV, Thuriaux P. Mutants in ABC10beta, a conserved subunit shared by all three yeast RNA polymerases, specifically affect RNA polymerase I assembly. J Biol Chem 1999; 274:8421-7. [PMID: 10085073 DOI: 10.1074/jbc.274.13.8421] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABC10beta, a small polypeptide common to the three yeast RNA polymerases, has close homology to the N subunit of the archaeal enzyme and is remotely related to the smallest subunit of vaccinial RNA polymerase. The eucaryotic, archaeal, and viral polypeptides share an invariant motif CX2C. CC that is strictly essential for yeast growth, as shown by site-directed mutagenesis, whereas the rest of the ABC10beta sequence is fairly tolerant to amino acid replacements. ABC10beta has Zn2+ binding properties in vitro, and the CX2C. CC motif may therefore define an atypical metal-chelating site. Hybrid subunits that derive most of their amino acids from the archaeal subunit are functional in yeast, indicating that the archaeal and eucaryotic polypeptides have a largely equivalent role in the organization of their respective transcription complexes. However, all eucaryotic forms of ABC10beta harbor a HVDLIEK motif that, when mutated or replaced by its archaeal counterpart, leads to a polymerase I-specific lethal defect in vivo. This is accompanied by a specific lack in the largest subunit of RNA polymerase I (A190) in cell-free extracts, showing that the mutant enzyme is not properly assembled in vivo.
Collapse
Affiliation(s)
- O Gadal
- Service de Biochimie et Génétique Moléculaire, Bât. 142, Commissariat à l'Energie Atomique-Saclay. Gif sur Yvette, F 91191 cedex, France
| | | | | |
Collapse
|
41
|
Cromie KD, Ahmad K, Malik T, Buyukuslu N, Glass RE. Trans-dominant mutations in the 3'-terminal region of the rpoB gene define highly conserved, essential residues in the beta subunit of RNA polymerase: the GEME motif. Genes Cells 1999; 4:145-59. [PMID: 10320480 DOI: 10.1046/j.1365-2443.1999.00248.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The multimeric DNA-dependent RNA polymerases are widespread throughout nature. The RNA polymerase of Escherichia coli, which is the most well characterized, consists of a holoenzyme with subunit stoichiometry of alpha2betabeta'sigma. The beta subunit is conserved and has been implicated in all stages of transcription. The extreme C-terminus of the beta subunit, which includes two well-conserved sequence segments, contributes to the active centre and has been proposed to act in transcriptional termination. We describe a genetic system for further characterizing the role of the extreme C-terminus of the beta subunit of E. coli RNA polymerase. This involves random, PCR (Polymerase Chain Reaction)-mediated mutagenesis of the 3' region of rpoB encoding the C-terminal 116 amino acids of beta, followed by the isolation and characterization of trans-dominant-negative mutations. RESULTS Substitutions of conserved residues in this region were obtained that exhibited different degrees of growth inhibition in a host expressing the chromosomal-encoded wild-type form of the beta subunit. A number of different substitutions were isolated within the highly conserved sequence motif GEME (residues 1271-->1274 of the E. coli beta subunit). In addition, substitutions were obtained in the extreme C-terminal (surface-exposed) region of beta and at two residues previously proposed to be in the active site (H1237, K1242). The properties of the purified mutant holoenzymes, assessed by transcription assays in vitro, suggested a promoter blockading action. CONCLUSIONS We have identified an important, highly conserved motif in the beta subunit, GEME (residues 1271-->1274). The nature and effect of the amino acid substitutions at the Gly residue in GEME emphasize the importance of a small, uncharged residue at this position. The in vitro properties of the most extreme trans dominant-negative mutants altered in the GEME motif (and the mutant characteristics in vivo) were similar to those of certain previously identified active-site mutants, suggesting that the altered RNA polymerases were capable of promoter binding and RNA chain initiation but were deficient in the subsequent transcriptional stage.
Collapse
Affiliation(s)
- K D Cromie
- Institute of Genetics, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
| | | | | | | | | |
Collapse
|
42
|
Arthur TM, Burgess RR. Localization of a sigma70 binding site on the N terminus of the Escherichia coli RNA polymerase beta' subunit. J Biol Chem 1998; 273:31381-7. [PMID: 9813048 DOI: 10.1074/jbc.273.47.31381] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli genome encodes genes for seven different sigma subunit species while only having single genes for the alpha, beta, and beta' subunits that make up the RNA polymerase core enzyme. The various sigma factors compete for binding to the core enzyme, upon which they confer promoter DNA-specific transcription initiation to the polymerase. We have mapped a major interaction site between one of the sigma species, sigma70, and beta'. Using far-Western blotting analysis of chemically cleaved and genetically engineered protein fragments, we have identified a N-terminal fragment of beta' (residues 60-309) that could bind sigma70. We were able to more precisely map the interaction domain to amino acid residues 260-309 of beta' using nickel nitrilotriacetic acid co-immobilization assays.
Collapse
Affiliation(s)
- T M Arthur
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
43
|
Zakharova N, Bass I, Arsenieva E, Nikiforov V, Severinov K. Mutations in and monoclonal antibody binding to evolutionary hypervariable region of Escherichia coli RNA polymerase beta' subunit inhibit transcript cleavage and transcript elongation. J Biol Chem 1998; 273:24912-20. [PMID: 9733798 DOI: 10.1074/jbc.273.38.24912] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 190 amino acid-long region centered around position 1050 of the 1407-amino acid-long beta' subunit of Escherichia coli RNA polymerase (RNAP) is absent from homologues in eukaryotes, archaea and many bacteria. In chloroplasts, the corresponding region can be more than 900 amino acids long. The role of this hypervariable region was studied by deletion mutagenesis of the cloned E. coli rpoC, encoding beta'. Long deletions mimicking beta' from Gram-positive bacteria failed to assemble into RNAP. Mutants with short, 40-60-amino acid-long deletions spanning beta' residues 941-1130 assembled into active RNAP in vitro. These mutant enzymes were defective in the transcript cleavage reaction and had dramatically reduced transcription elongation rates at subsaturating substrate concentrations due to prolonged pausing at sites of transcriptional arrest. Binding of a monoclonal antibody, Pyn1, to the hypervariable region inhibited transcription elongation and intrinsic transcript cleavage and, to a lesser degree, GreB-induced transcript cleavage, but did not interfere with GreB binding to RNAP. We propose that mutations in and antibody binding to the hypervariable, functionally dispensable region of beta' inhibit transcript cleavage and elongation by distorting the flanking conserved segment G in the active center.
Collapse
Affiliation(s)
- N Zakharova
- Waksman Institute, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
44
|
Zakharova N, Hoffman PS, Berg DE, Severinov K. The largest subunits of RNA polymerase from gastric helicobacters are tethered. J Biol Chem 1998; 273:19371-4. [PMID: 9677352 DOI: 10.1074/jbc.273.31.19371] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rpoB and rpoC genes of eubacteria and archaea, coding respectively for the beta- and beta'-like subunits of DNA-dependent RNA polymerase, are organized in an operon with rpoB always preceding rpoC. The genome sequence of the gastric pathogen Helicobacter pylori (strain 26695) revealed homologs of two genes in one continuous open reading frame that potentially could encode one 2890-amino acid-long beta-beta' fusion protein. Here, we show that this open reading frame does in fact encode a fused beta-beta' polypeptide. In addition, we establish by DNA sequencing that rpoB and rpoC are also fused in each of four other unrelated strains of H. pylori, as well as in Helicobacter felis, another member of the same genus. In contrast, the rpoB and rpoC genes are separate in two members of the related genus Campylobacter (Campylobacter jejuni and Campylobacter fetus) and encode separate RNA polymerase subunits. The Campylobacter genes are also unusual in overlapping one another rather than being separated by a spacer as in other Gram-negative bacteria. We propose that the unique organization of rpoB and rpoC in H. pylori may contribute to its ability to colonize the human gastric mucosa.
Collapse
Affiliation(s)
- N Zakharova
- Waksman Institute, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
45
|
Nudler E, Gusarov I, Avetissova E, Kozlov M, Goldfarb A. Spatial organization of transcription elongation complex in Escherichia coli. Science 1998; 281:424-8. [PMID: 9665887 DOI: 10.1126/science.281.5375.424] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During RNA synthesis in the ternary elongation complex, RNA polymerase enzyme holds nucleic acids in three contiguous sites: the double-stranded DNA-binding site (DBS) ahead of the transcription bubble, the RNA-DNA heteroduplex-binding site (HBS), and the RNA-binding site (RBS) upstream of HBS. Photochemical cross-linking allowed mapping of the DNA and RNA contacts to specific positions on the amino acid sequence. Unexpectedly, the same protein regions were found to participate in both DBS and RBS. Thus, DNA entry and RNA exit occur close together in the RNA polymerase molecule, suggesting that the three sites constitute a single unit. The results explain how RNA in the integrated unit RBS-HBS-DBS may stabilize the ternary complex, whereas a hairpin in RNA result in its dissociation.
Collapse
Affiliation(s)
- E Nudler
- Department of Biochemistry, New York University Medical Center, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
46
|
Mooney RA, Artsimovitch I, Landick R. Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J Bacteriol 1998; 180:3265-75. [PMID: 9642176 PMCID: PMC107278 DOI: 10.1128/jb.180.13.3265-3275.1998] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- R A Mooney
- Department of Bacteriology, University of Wisconsin, Madison 53706-1567, USA
| | | | | |
Collapse
|