1
|
Chen M, Ren G, Zhang X, Yang L, Ding Q, Sun J, Xia J, Xu J, Jiang L, Fang W, Cheng C, Song H. DegU-mediated suppression of carbohydrate uptake in Listeria monocytogenes increases adaptation to oxidative stress. Appl Environ Microbiol 2023; 89:e0101723. [PMID: 37787570 PMCID: PMC10617591 DOI: 10.1128/aem.01017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023] Open
Abstract
The foodborne bacterial pathogen Listeria monocytogenes exhibits remarkable survival capabilities under challenging conditions, severely threatening food safety and human health. The orphan regulator DegU is a pleiotropic regulator required for bacterial environmental adaptation. However, the specific mechanism of how DegU participates in oxidative stress tolerance remains unknown in L. monocytogenes. In this study, we demonstrate that DegU suppresses carbohydrate uptake under stress conditions by altering global transcriptional profiles, particularly by modulating the transcription of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS)-related genes, such as ptsH, ptsI, and hprK. Specifically, in the absence of degU, the transcripts of ptsI are significantly upregulated and those of hprK are significantly downregulated in response to copper ion-induced stress. Overexpression of ptsI significantly increases bacterial growth in vitro, while overexpression of hprK leads to a decrease in growth. We further demonstrate that DegU directly senses oxidative stress, downregulates ptsI transcription, and upregulates hprK transcription. Additionally, through an electrophoretic mobility shift assay, we demonstrate that DegU directly regulates the transcription of ptsI and hprK by binding to specific regions within their respective promoter sequences. Notably, the putative pivotal DegU binding sequence for ptsI is located from 38 to 68 base pairs upstream of the ptsH transcription start site (TSS), whereas for hprK, it is mapped from 36 to 124 base pairs upstream of the hprK TSS. In summary, we elucidate that DegU plays a significant role in suppressing carbohydrate uptake in response to oxidative stress through the direct regulation of ptsI and hprK.ImportanceUnderstanding the adaptive mechanisms employed by Listeria monocytogenes in harsh environments is of great significance. This study focuses on investigating the role of DegU in response to oxidative stress by examining global transcriptional profiles. The results highlight the noteworthy involvement of DegU in this stress response. Specifically, DegU acts as a direct sensor of oxidative stress, leading to the modulation of gene transcription. It downregulates ptsI transcription while it upregulates hprK transcription through direct binding to their promoters. Consequently, these regulatory actions impede bacterial growth, providing a defense mechanism against stress-induced damage. These findings gained from this study may have broader implications, serving as a reference for studying adaptive mechanisms in other pathogenic bacteria and aiding in the development of targeted strategies to control L. monocytogenes and ensure food safety.
Collapse
Affiliation(s)
- Mianmian Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Gengjia Ren
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xian Zhang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Lifeng Yang
- Ningbo College of Health Sciences, Ningbo, China
| | - Qiang Ding
- Ningbo College of Health Sciences, Ningbo, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jing Xia
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jiali Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
- China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
2
|
Yoon CK, Lee SH, Zhang J, Lee HY, Kim MK, Seok YJ. HPr prevents FruR-mediated facilitation of RNA polymerase binding to the fru promoter in Vibrio cholerae. Nucleic Acids Res 2023; 51:5432-5448. [PMID: 36987873 PMCID: PMC10287919 DOI: 10.1093/nar/gkad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphorylation state-dependent interactions of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) components with transcription factors play a key role in carbon catabolite repression (CCR) by glucose in bacteria. Glucose inhibits the PTS-dependent transport of fructose and is preferred over fructose in Vibrio cholerae, but the mechanism is unknown. We have recently shown that, contrary to Escherichia coli, the fructose-dependent transcriptional regulator FruR acts as an activator of the fru operon in V. cholerae and binding of the FruR-fructose 1-phosphate (F1P) complex to an operator facilitates RNA polymerase (RNAP) binding to the fru promoter. Here we show that, in the presence of glucose, dephosphorylated HPr, a general PTS component, binds to FruR. Whereas HPr does not affect DNA-binding affinity of FruR, regardless of the presence of F1P, it prevents the FruR-F1P complex from facilitating the binding of RNAP to the fru promoter. Structural and biochemical analyses of the FruR-HPr complex identify key residues responsible for the V. cholerae-specific FruR-HPr interaction not observed in E. coli. Finally, we reveal how the dephosphorylated HPr interacts with FruR in V. cholerae, whereas the phosphorylated HPr binds to CcpA, which is a global regulator of CCR in Bacillus subtilis and shows structural similarity to FruR.
Collapse
Affiliation(s)
- Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Seung-Hwan Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| | - Jing Zhang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Hye-Young Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Min-Kyu Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
3
|
Xu T, Tao X, He H, Kempher ML, Zhang S, Liu X, Wang J, Wang D, Ning D, Pan C, Ge H, Zhang N, He YX, Zhou J. Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia. THE ISME JOURNAL 2023; 17:823-835. [PMID: 36899058 PMCID: PMC10203250 DOI: 10.1038/s41396-023-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 05/24/2023]
Abstract
Carbohydrate utilization is critical to microbial survival. The phosphotransferase system (PTS) is a well-documented microbial system with a prominent role in carbohydrate metabolism, which can transport carbohydrates through forming a phosphorylation cascade and regulate metabolism by protein phosphorylation or interactions in model strains. However, those PTS-mediated regulated mechanisms have been underexplored in non-model prokaryotes. Here, we performed massive genome mining for PTS components in nearly 15,000 prokaryotic genomes from 4,293 species and revealed a high prevalence of incomplete PTSs in prokaryotes with no association to microbial phylogeny. Among these incomplete PTS carriers, a group of lignocellulose degrading clostridia was identified to have lost PTS sugar transporters and carry a substitution of the conserved histidine residue in the core PTS component, HPr (histidine-phosphorylatable phosphocarrier). Ruminiclostridium cellulolyticum was then selected as a representative to interrogate the function of incomplete PTS components in carbohydrate metabolism. Inactivation of the HPr homolog reduced rather than increased carbohydrate utilization as previously indicated. In addition to regulating distinct transcriptional profiles, PTS associated CcpA (Catabolite Control Protein A) homologs diverged from previously described CcpA with varied metabolic relevance and distinct DNA binding motifs. Furthermore, the DNA binding of CcpA homologs is independent of HPr homolog, which is determined by structural changes at the interface of CcpA homologs, rather than in HPr homolog. These data concordantly support functional and structural diversification of PTS components in metabolic regulation and bring novel understanding of regulatory mechanisms of incomplete PTSs in cellulose-degrading clostridia.
Collapse
Affiliation(s)
- Tao Xu
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Xuanyu Tao
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Hongxi He
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Megan L Kempher
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaochun Liu
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Jun Wang
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Dongyu Wang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Daliang Ning
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- School of computer science, University of Oklahoma, Norman, OK, USA
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, PR China.
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China.
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Thomasen RSS, Jespersen MG, Jørgensen K, Dos Santos PT, Sternkopf Lillebæk EM, Skov MN, Kemp M, Kallipolitis BH. The Global Regulator CcpA of Listeria monocytogenes Confers Sensitivity to Antimicrobial Fatty Acids. Front Microbiol 2022; 13:895942. [PMID: 35591996 PMCID: PMC9113694 DOI: 10.3389/fmicb.2022.895942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Free fatty acids (FFAs) are known to exhibit antimicrobial and anti-virulent properties against bacterial pathogens. Specific FFAs, such as lauric acid (LA; C12:0), exert both effects against the foodborne pathogen Listeria monocytogenes: at low levels, LA acts to inhibit the activity of the virulence regulator PrfA, whereas at higher levels, LA inhibits bacterial growth. Deletion of prfA is known to promote tolerance toward antimicrobial FFAs, suggesting that the response of L. monocytogenes to anti-virulent and antimicrobial FFAs could be linked. In this study, we explored the response of L. monocytogenes toward antimicrobial FFAs holding an anti-virulence activity by isolating strains that can grow at high concentrations of LA. We found that LA-tolerant isolates carry mutations in the gene encoding the global regulator CcpA. Importantly, we discovered that mutation or deletion of ccpA protect L. monocytogenes against the antimicrobial activity of FFAs, whereas the ccpA mutants remain sensitive toward FFA’s PrfA inhibitory effect. A regulatory link involving CcpA, connecting the response toward the antimicrobial and anti-virulence activities of FFAs, is therefore unlikely. To further study how deletion of ccpA promotes FFA tolerance, we performed a transcriptomic analysis of the response to LA. Our data indicated that the FFA-tolerant phenotype of the ∆ccpA strain is not induced upon LA exposure but appears to be an inherent phenotypic trait of the ccpA deletion mutation. Interestingly, we found that the bacterial surface of L. monocytogenes becomes more hydrophilic upon deletion of ccpA, and we demonstrate that CcpA plays a role in the response of L. monocytogenes to other stress conditions, including low pH and antibiotics. Altogether, our study revealed that regulatory activities of CcpA lead to an increased hydrophobicity of the bacterial surface, which may confer sensitivity of L. monocytogenes against the antimicrobial activity of FFAs. Notably, CcpA is not involved in responding to the PrfA inhibitory effect of FFAs, showing that FFA-tolerant strains can still be targeted by the anti-virulent activity of FFAs.
Collapse
Affiliation(s)
- Rikke S S Thomasen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Magnus Ganer Jespersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Katrine Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Patricia T Dos Santos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Eva M Sternkopf Lillebæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marianne N Skov
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital and Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark.,The Regional Department of Clinical Microbiology, Region Zealand, Zealand University Hospital, Koege, Denmark
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Biomolecules 2022; 12:biom12050685. [PMID: 35625613 PMCID: PMC9138534 DOI: 10.3390/biom12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation facilitates the regulation of all fundamental biological processes, which has triggered extensive research of protein kinases and their roles in human health and disease. In addition to their phosphotransferase activity, certain kinases have evolved to adopt additional catalytic functions, while others have completely lost all catalytic activity. We searched the Universal Protein Resource Knowledgebase (UniProtKB) database for bifunctional protein kinases and focused on kinases that are critical for bacterial and human cellular homeostasis. These kinases engage in diverse functional roles, ranging from environmental sensing and metabolic regulation to immune-host defense and cell cycle control. Herein, we describe their dual catalytic activities and how they contribute to disease pathogenesis.
Collapse
|
6
|
Regulation of CcpA on the growth and organic acid production characteristics of ruminal Streptococcus bovis at different pH. BMC Microbiol 2021; 21:344. [PMID: 34911440 PMCID: PMC8672513 DOI: 10.1186/s12866-021-02404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase and pyruvate formate-lyase in Streptococcus bovis, but knowledge of its role in response to different pH is still limited. In this study, a ccpA-knockout strain of S. bovis S1 was constructed and then used to examine the effects of ccpA gene deletion on the growth and fermentation characteristics of S. bovis S1 at pH 5.5 or 6.5. RESULTS There was a significant interaction between strain and pH for the maximum specific growth rate (μmax) and growth lag period (λ), which caused a lowest μmax and a longest λ in ccpA-knockout strain at pH 5.5. Deletion of ccpA decreased the concentration and molar percentage of lactic acid, while increased those of formic acid. Strains at pH 5.5 had decreased concentrations of lactic acid and formic acid compared to pH 6.5. The significant interaction between strain and pH caused the highest production of total organic acids and acetic acid in ccpA-knockout strain at pH 6.5. The activities of α-amylase and lactate dehydrogenase decreased in ccpA-knockout strain compared to the wild-type strain, and increased at pH 5.5 compared to pH 6.5. There was a significant interaction between strain and pH for the activity of acetate kinase, which was the highest in the ccpA-knockout strain at pH 6.5. The expression of pyruvate formate-lyase and acetate kinase was higher in the ccpA-knockout strain compared to wild-type strain. The lower pH improved the relative expression of pyruvate formate-lyase, while had no effect on the relative expression of acetate kinase. The strain × pH interaction was significant for the relative expression of lactate dehydrogenase and α-amylase, both of which were highest in the wild-type strain at pH 5.5 and lowest in the ccpA-knockout strain at pH 6.5. CONCLUSIONS Overall, low pH inhibited the growth of S. bovis S1, but did not affect the fermentation pattern. CcpA regulated S. bovis S1 growth and organic acid fermentation pattern. Moreover, there seemed to be an interaction effect between pH and ccpA deletion on regulating the growth and organic acids production of S. bovis S1.
Collapse
|
7
|
Enterococcus faecalis Maltodextrin Gene Regulation by Combined Action of Maltose Gene Regulator MalR and Pleiotropic Regulator CcpA. Appl Environ Microbiol 2020; 86:AEM.01147-20. [PMID: 32680872 DOI: 10.1128/aem.01147-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023] Open
Abstract
Enterococci are Gram-positive bacteria present in the healthy human microbiota, but they are also a leading cause of nosocomial infections. Maltodextrin utilization by Enterococcus faecalis has been identified as an important factor for colonization of mammalians hosts. Here, we show that the LacI/GalR transcriptional regulator MalR, the maltose gene regulator, is also the main regulator of the operons encoding an ABC transporter (mdxEFG) and three metabolic enzymes (mmdH-gmdH-mmgT) required for the uptake and catabolism of maltotetraose and longer maltodextrins. The utilization of maltose and maltodextrins is consequently coordinated and induced by the disaccharide maltose, which binds to MalR. Carbon catabolite repression of the mdxEFG and mmdH-gmdH-mmgT operons is mediated by both P-Ser-HPr/MalR and P-Ser-HPr/CcpA. The latter complex exerts only moderate catabolite repression, which became visible when comparing maltodextrin operon expression levels of a malR - mutant (with a mutant allele for the malR gene) and a malR - ΔccpA double mutant grown in the presence of maltose, which is transported via a phosphotransferase system and, thus, favors the formation of P-Ser-HPr. Moreover, maltodextrin transport via MdxEFG slows rapidly when glucose is added, suggesting an additional regulation via inducer exclusion. This complex regulation of metabolic operons likely allows E. faecalis to fine-tune gene expression in response to changing environmental conditions.IMPORTANCE Enterococcus faecalis represents a leading cause of hospital-acquired infections worldwide. Several studies highlighted the importance of carbohydrate metabolism in the infection process of this bacterium. The genes required for maltodextrin metabolism are particularly induced during mouse infection and, therefore, should play an important role for pathogenesis. Since no data were hitherto available concerning the regulation of expression of the maltodextrin operons, we have conducted experiments to study the underlying mechanisms.
Collapse
|
8
|
Park H, McGill SL, Arnold AD, Carlson RP. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci 2020; 77:395-413. [PMID: 31768608 PMCID: PMC7015805 DOI: 10.1007/s00018-019-03377-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli. cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli, have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed 'reverse CCR' (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.
Collapse
Affiliation(s)
- Heejoon Park
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - S Lee McGill
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Adrienne D Arnold
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA.
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, USA.
| |
Collapse
|
9
|
Grand M, Blancato VS, Espariz M, Deutscher J, Pikis A, Hartke A, Magni C, Sauvageot N. Enterococcus faecalisMalR acts as a repressor of the maltose operons and additionally mediates their catabolite repression via direct interaction with seryl‐phosphorylated‐HPr. Mol Microbiol 2019; 113:464-477. [DOI: 10.1111/mmi.14431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | - Victor Sebastián Blancato
- Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Rosario Argentina
| | - Martín Espariz
- Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Rosario Argentina
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris‐Saclay Jouy‐en‐Josas France
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico‐Chimique Paris France
| | - Andreas Pikis
- Center for Drug Evaluation and Research, Food and Drug Administration Silver Spring Maryland
- Microbial Biochemistry and Genetics Unit, Laboratory of Cell and Developmental Biology NIDCR, National Institutes of Health Bethesda Maryland
| | | | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario (IBR‐CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Rosario Argentina
| | | |
Collapse
|
10
|
Urem M, Świątek-Połatyńska MA, Rigali S, van Wezel GP. Intertwining nutrient-sensory networks and the control of antibiotic production inStreptomyces. Mol Microbiol 2016; 102:183-195. [DOI: 10.1111/mmi.13464] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Mia Urem
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
| | - Magdalena A. Świątek-Połatyńska
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 Marburg 35043 Germany
| | - Sébastien Rigali
- InBioS, Centre for Protein Engineering; University of Liège; Liège B-4000 Belgium
| | - Gilles P. van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 Wageningen 6708 PB The Netherlands
| |
Collapse
|
11
|
Derkaoui M, Antunes A, Poncet S, Nait Abdallah J, Joyet P, Mazé A, Henry C, Taha MK, Deutscher J, Deghmane AE. The phosphocarrier protein HPr of Neisseria meningitidis interacts with the transcription regulator CrgA and its deletion affects capsule production, cell adhesion, and virulence. Mol Microbiol 2016; 100:788-807. [PMID: 26858137 DOI: 10.1111/mmi.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
The bacterial phosphotransferase system (PTS) transports and phosphorylates sugars, but also carries out numerous regulatory functions. The β-proteobacterium Neisseria meningitidis possesses an incomplete PTS unable to transport carbon sources because it lacks a membrane component. Nevertheless, the residual phosphorylation cascade is functional and the meningococcal PTS was therefore expected to carry out regulatory roles. Interestingly, a ΔptsH mutant (lacks the PTS protein HPr) exhibited reduced virulence in mice and after intraperitoneal challenge it was rapidly cleared from the bloodstream of BALB/c mice. The rapid clearance correlates with lower capsular polysaccharide production by the ΔptsH mutant, which is probably also responsible for its increased adhesion to Hec-1-B epithelial cells. In addition, compared to the wild-type strain more apoptotic cells were detected when Hec-1-B cells were infected with the ΔptsH strain. Coimmunoprecipitation revealed an interaction of HPr and P-Ser-HPr with the LysR type transcription regulator CrgA, which among others controls its own expression. Moreover, ptsH deletion caused increased expression of a ΦcrgA-lacZ fusion. Finally, the presence of HPr or phospho-HPr's during electrophoretic mobility shift assays enhanced the affinity of CrgA for its target sites preceding crgA and pilE, but HPr did not promote CrgA binding to the sia and pilC1 promoter regions.
Collapse
Affiliation(s)
- Meriem Derkaoui
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| | - Ana Antunes
- Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| | - Sandrine Poncet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jamila Nait Abdallah
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| | - Philippe Joyet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Alain Mazé
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Muhamed-Kheir Taha
- Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Centre National de la Recherche Scientifique, UMR8261, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Ala-Eddine Deghmane
- Institut Pasteur, Unité des Infections Bactériennes Invasives, 75000, Paris Cedex, France
| |
Collapse
|
12
|
Fadouloglou VE, Lin HTV, Tria G, Hernández H, Robinson CV, Svergun DI, Luisi BF. Maturation of 6S regulatory RNA to a highly elongated structure. FEBS J 2015; 282:4548-64. [PMID: 26367381 PMCID: PMC7610929 DOI: 10.1111/febs.13516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/04/2015] [Accepted: 09/10/2015] [Indexed: 12/11/2022]
Abstract
As bacterial populations leave the exponential growth phase and enter the stationary phase, their patterns of gene expression undergo marked changes. A key effector of this change is 6S RNA, which is a highly conserved regulatory RNA that impedes the transcription of genes associated with exponential growth by forming an inactivating ternary complex with RNA polymerase and sigma factor σ(70) (σ(70)-RNAP). In Escherichia coli, the endoribonuclease RNase E generates 6S RNA by specific cleavage of a precursor that is nearly twice the size of the 58 kDa mature form. We have explored recognition of the precursor by RNase E, and observed that processing is inhibited under conditions of excess substrate. This finding supports a largely distributive mechanism, meaning that each round of catalysis results in enzyme dissociation and re-binding to the substrate. We show that the precursor molecule and the mature 6S share a structural core dominated by an A-type helix, indicating that processing is not accompanied by extensive refolding. Both precursor and mature forms of 6S have a highly stable secondary structure, adopt an elongated shape, and show the potential to form dimers under specific conditions; nonetheless, 6S has a high structural plasticity that probably enables it to be structurally adapted upon binding to its cognate protein partners. Analysis of the 6S-σ(70)-RNAP complex by native mass spectrometry reveals a stable association with a stoichiometry of 1:1:1. A theoretical 3D model of mature 6S is presented, which is consistent with the experimental data and supports a previously proposed structure with a small stem-loop inside the central bubble.
Collapse
Affiliation(s)
- Vasiliki E Fadouloglou
- Department of Biochemistry, University of Cambridge, UK
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Giancarlo Tria
- European Molecular Biology Laboratory, Hamburg Outstation, European Molecular Biology Laboratory/Deutsches Elektronen Synchrotron, Hamburg, Germany
| | | | | | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, European Molecular Biology Laboratory/Deutsches Elektronen Synchrotron, Hamburg, Germany
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
13
|
Deng C, Peng Q, Song F, Lereclus D. Regulation of cry gene expression in Bacillus thuringiensis. Toxins (Basel) 2014; 6:2194-209. [PMID: 25055802 PMCID: PMC4113751 DOI: 10.3390/toxins6072194] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/02/2023] Open
Abstract
Bacillus thuringiensis differs from the closely related Bacillus cereus group species by its ability to produce crystalline inclusions. The production of these crystals mainly results from the expression of the cry genes, from the stability of their transcripts and from the synthesis, accumulation and crystallization of large amounts of insecticidal Cry proteins. This process normally coincides with sporulation and is regulated by various factors operating at the transcriptional, post-transcriptional, metabolic and post-translational levels.
Collapse
Affiliation(s)
- Chao Deng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qi Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Didier Lereclus
- INRA, UMR1319 Micalis, La Minière, Guyancourt 78280, France.
| |
Collapse
|
14
|
Nutritional control of antibiotic resistance via an interface between the phosphotransferase system and a two-component signaling system. Antimicrob Agents Chemother 2013; 58:957-65. [PMID: 24277024 DOI: 10.1128/aac.01919-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are ubiquitous inhabitants of the gastrointestinal (GI) tract. However, antibiotic-resistant enterococci are also major causes of hospital-acquired infections. Enterococci are intrinsically resistant to cephalosporins, enabling growth to abnormally high densities in the GI tract in patients during cephalosporin therapy, thereby promoting dissemination to other sites where they cause infection. Despite its importance, many questions about the underlying basis for cephalosporin resistance remain. A specific two-component signaling system, composed of the CroS sensor kinase and its cognate response regulator (CroR), is required for cephalosporin resistance in Enterococcus faecalis, but little is known about the factors that control this signaling system to modulate resistance. To explore the signaling network in which CroR participates to influence cephalosporin resistance, we employed a protein fragment complementation assay to detect protein-protein interactions in E. faecalis cells, revealing a previously unknown association of CroR with the HPr protein of the phosphotransferase system (PTS) responsible for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses indicate that association with HPr restricts the ability of CroR to promote cephalosporin resistance and gene expression in a nutrient-dependent manner. Mutational analysis suggests that the interface used by HPr to associate with CroR is distinct from the interface used to associate with other cellular partners. Our results define a physical and functional connection between a critical nutrient-responsive signaling system (the PTS) and a two-component signaling system that drives antibiotic resistance in E. faecalis, and they suggest a general strategy by which bacteria can integrate their nutritional status with diverse environmental stimuli.
Collapse
|
15
|
Kang SW, Yoo AY, Kang HY. Effect of Glucose on Swarming Motility of Paenibacillus sp. CK214. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.2.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Malate-mediated carbon catabolite repression in Bacillus subtilis involves the HPrK/CcpA pathway. J Bacteriol 2011; 193:6939-49. [PMID: 22001508 DOI: 10.1128/jb.06197-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most organisms can choose their preferred carbon source from a mixture of nutrients. This process is called carbon catabolite repression. The Gram-positive bacterium Bacillus subtilis uses glucose as the preferred source of carbon and energy. Glucose-mediated catabolite repression is caused by binding of the CcpA transcription factor to the promoter regions of catabolic operons. CcpA binds DNA upon interaction with its cofactors HPr(Ser-P) and Crh(Ser-P). The formation of the cofactors is catalyzed by the metabolite-activated HPr kinase/phosphorylase. Recently, it has been shown that malate is a second preferred carbon source for B. subtilis that also causes catabolite repression. In this work, we addressed the mechanism by which malate causes catabolite repression. Genetic analyses revealed that malate-dependent catabolite repression requires CcpA and its cofactors. Moreover, we demonstrate that HPr(Ser-P) is present in malate-grown cells and that CcpA and HPr interact in vivo in the presence of glucose or malate but not in the absence of a repressing carbon source. The formation of the cofactor HPr(Ser-P) could be attributed to the concentrations of ATP and fructose 1,6-bisphosphate in cells growing with malate. Both metabolites are available at concentrations that are sufficient to stimulate HPr kinase activity. The adaptation of cells to environmental changes requires dynamic metabolic and regulatory adjustments. The repression strength of target promoters was similar to that observed in steady-state growth conditions, although it took somewhat longer to reach the second steady-state of expression when cells were shifted to malate.
Collapse
|
17
|
Environmental influences on competitive hydrogen peroxide production in Streptococcus gordonii. Appl Environ Microbiol 2011; 77:4318-28. [PMID: 21571883 DOI: 10.1128/aem.00309-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus gordonii is an important member of the oral biofilm. One of its phenotypic traits is the production of hydrogen peroxide (H2O2). H2O2 is an antimicrobial component produced by S. gordonii that is able to antagonize the growth of cariogenic Streptococcus mutans. Strategies that modulate H2O2 production in the oral cavity may be useful as a simple therapeutic mechanism to improve oral health, but little is known about the regulation of H2O2 production. The enzyme responsible for H2O2 production is pyruvate oxidase, encoded by spxB. The functional studies of spxB expression and SpxB abundance presented in this report demonstrate a strong dependence on environmental oxygen tension and carbohydrate availability. Carbon catabolite repression (CCR) modulates spxB expression carbohydrate dependently. Catabolite control protein A (CcpA) represses spxB expression by direct binding to the spxB promoter, as shown by electrophoretic mobility shift assays (EMSA). Promoter mutation studies revealed the requirement of two catabolite-responsive elements (CRE) for CcpA-dependent spxB regulation, as evaluated by spxB expression and phenotypic H2O2 production assays. Thus, molecular mechanisms for the control of S. gordonii spxB expression are presented for the first time, demonstrating the possibility of manipulating H2O2 production for increased competitive fitness.
Collapse
|
18
|
Ueda T, Kaito C, Omae Y, Sekimizu K. Sugar-responsive gene expression and the agr system are required for colony spreading in Staphylococcus aureus. Microb Pathog 2011; 51:178-85. [PMID: 21514374 DOI: 10.1016/j.micpath.2011.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Staphylococcus aureus spreads on soft agar surfaces, which is called "colony spreading". Here, we report that the colony spreading in S. aureus was promoted by the addition of glucose to soft agar plates. Disruption of ccpA and hprK, which are involved in catabolite repression, decreased the colony spreading ability promoted by glucose. Deletion of the agr locus, a virulence regulatory element whose expression is activated by glucose in a ccpA-dependent manner, abolished the colony spreading promoted by glucose. Disruption of clpP and arlRS, which contributes to agr expression, also decreased glucose-promoted colony spreading. These findings suggest that S. aureus colony spreading requires the expression of agr, which is positively regulated by environmental carbon sources, and that virulence gene expression and colony spreading induced by agr are simultaneously activated in the S. aureus infectious process.
Collapse
Affiliation(s)
- Tomofumi Ueda
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
19
|
Antunes A, Martin-Verstraete I, Dupuy B. CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol Microbiol 2010; 79:882-99. [DOI: 10.1111/j.1365-2958.2010.07495.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Schumacher MA, Sprehe M, Bartholomae M, Hillen W, Brennan RG. Structures of carbon catabolite protein A-(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity binding to degenerate DNA operators. Nucleic Acids Res 2010; 39:2931-42. [PMID: 21106498 PMCID: PMC3074128 DOI: 10.1093/nar/gkq1177] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In Gram-positive bacteria, carbon catabolite protein A (CcpA) is the master regulator of carbon catabolite control, which ensures optimal energy usage under diverse conditions. Unlike other LacI-GalR proteins, CcpA is activated for DNA binding by first forming a complex with the phosphoprotein HPr-Ser46-P. Bacillus subtilis CcpA functions as both a transcription repressor and activator and binds to more than 50 operators called catabolite response elements (cres). These sites are highly degenerate with the consensus, WTGNNARCGNWWWCAW. How CcpA–(HPr-Ser46-P) binds such diverse sequences is unclear. To gain insight into this question, we solved the structures of the CcpA–(HPr-Ser46-P) complex bound to three different operators, the synthetic (syn) cre, ackA2 cre and gntR-down cre. Strikingly, the structures show that the CcpA-bound operators display different bend angles, ranging from 31° to 56°. These differences are accommodated by a flexible linkage between the CcpA helix-turn-helix-loop-helix motif and hinge helices, which allows independent docking of these DNA-binding modules. This flexibility coupled with an abundance of non-polar residues capable of non-specific nucleobase interactions permits CcpA–(HPr-Ser46-P) to bind diverse operators. Indeed, biochemical data show that CcpA–(HPr-Ser46-P) binds the three cre sites with similar affinities. Thus, the data reveal properties that license this protein to function as a global transcription regulator.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
21
|
Glucose-dependent activation of Bacillus anthracis toxin gene expression and virulence requires the carbon catabolite protein CcpA. J Bacteriol 2010; 193:52-62. [PMID: 20971911 DOI: 10.1128/jb.01656-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sensing environmental conditions is an essential aspect of bacterial physiology and virulence. In Bacillus anthracis, the causative agent of anthrax, transcription of the two major virulence factors, toxin and capsule, is triggered by bicarbonate, a major compound in the mammalian body. Here it is shown that glucose is an additional signaling molecule recognized by B. anthracis for toxin synthesis. The presence of glucose increased the expression of the protective antigen toxin component-encoding gene (pagA) by stimulating induction of transcription of the AtxA virulence transcription factor. Induction of atxA transcription by glucose required the carbon catabolite protein CcpA via an indirect mechanism. CcpA did not bind specifically to any region of the extended atxA promoter. The virulence of a B. anthracis strain from which the ccpA gene was deleted was significantly attenuated in a mouse model of infection. The data demonstrated that glucose is an important host environment-derived signaling molecule and that CcpA is a molecular link between environmental sensing and B. anthracis pathogenesis.
Collapse
|
22
|
Opsata M, Nes IF, Holo H. Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses. BMC Microbiol 2010; 10:224. [PMID: 20738841 PMCID: PMC2941500 DOI: 10.1186/1471-2180-10-224] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The class IIa bacteriocin, pediocin PA-1, has clear potential as food preservative and in the medical field to be used against Gram negative pathogen species as Enterococcus faecalis and Listeria monocytogenes. Resistance towards class IIa bacteriocins appear in laboratory and characterization of these phenotypes is important for their application. To gain insight into bacteriocin resistance we studied mutants of E. faecalis V583 resistant to pediocin PA-1 by use of transcriptomic analyses. RESULTS Mutants of E. faecalis V583 resistant to pediocin PA-1 were isolated, and their gene expression profiles were analyzed and compared to the wild type using whole-genome microarray. Significantly altered transcription was detected from about 200 genes; most of them encoding proteins involved in energy metabolism and transport. Glycolytic genes were down-regulated in the mutants, but most of the genes showing differential expression were up-regulated. The data indicate that the mutants were relieved from glucose repression and putative catabolic responsive elements (cre) could be identified in the upstream regions of 70% of the differentially expressed genes. Bacteriocin resistance was caused by reduced expression of the mpt operon encoding the mannose-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), and the same transcriptional changes were seen in a mptD-inactivated mutant. This mutant also had decreased transcription of the whole mpt operon, showing that the PTS is involved in its own transcriptional regulation. CONCLUSION Our data confirm the important role of mannose PTS in class IIa bacteriocin sensitivity and we demonstrate its importance involving global carbon catabolite control.
Collapse
Affiliation(s)
- Mona Opsata
- Laboratory of Microbial Gene Technology and Food Microbiology, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway.
| | | | | |
Collapse
|
23
|
Crystal structure of TTHA0807, a CcpA regulator, from Thermus thermophilusHB8. Proteins 2009; 77:747-51. [DOI: 10.1002/prot.22552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Poncet S, Soret M, Mervelet P, Deutscher J, Noirot P. Transcriptional activator YesS is stimulated by histidine-phosphorylated HPr of the Bacillus subtilis phosphotransferase system. J Biol Chem 2009; 284:28188-28197. [PMID: 19651770 PMCID: PMC2788870 DOI: 10.1074/jbc.m109.046334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In low GC content Gram-positive bacteria, the HPr protein is the master regulator of carbon metabolism. HPr is a key component of the phosphoenolpyruvate (PEP):sugar phosphotransferase system that interacts with and/or phosphorylates proteins relevant to carbon catabolite repression. HPr can be phosphorylated by two distinct kinases as follows: the bifunctional enzyme HPr kinase/Ser(P)-HPr phosphorylase (HprK/P) phosphorylating the serine 46 residue (Ser(P)-HPr) and acting as a phosphorylase on Ser(P)-HPr; and the PEP-requiring enzyme I (EI) generating histidine 15-phosphorylated HPr (His(P)-HPr). The various HPr forms interact with numerous enzymes and modulate their activity. By carrying out a genome-wide yeast two-hybrid screen of a Bacillus subtilis library, we identified a novel HPr-interacting protein, the transcriptional activator YesS, which regulates the expression of pectin/rhamnogalacturonan utilization genes. Remarkably, yeast tri-hybrid assays involving the ATP-dependent HprK/P and the PEP-dependent EI suggested that YesS interacts with HPr and His(P)-HPr but not with Ser(P)-HPr. These findings were confirmed by in vitro interaction assays using the purified HPr-binding domain of the YesS protein. Furthermore, pectin utilization and in vivo YesS-mediated transcriptional activation depended upon the presence of His(P)-HPr, indicating that HPr-mediated YesS regulation serves as a novel type of carbon catabolite repression. In the yeast two-hybrid assays, B. subtilis HprK/P and EI were active and specifically recognized their substrates. Both kinases formed long lived complexes only with the corresponding nonphosphorylatable mutant HPr. These findings suggest that two-hybrid assays can be used for the identification of unknown kinases of phosphorylated bacterial proteins detected in phosphoproteome analyses.
Collapse
Affiliation(s)
- Sandrine Poncet
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-AgroParisTech-CNRS, 78850 Thiverval-Grignon
| | - Maryline Soret
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France
| | - Peggy Mervelet
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France
| | - Josef Deutscher
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-AgroParisTech-CNRS, 78850 Thiverval-Grignon.
| | - Philippe Noirot
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France.
| |
Collapse
|
25
|
Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008; 6:613-24. [PMID: 18628769 DOI: 10.1038/nrmicro1932] [Citation(s) in RCA: 1116] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most bacteria can selectively use substrates from a mixture of different carbon sources. The presence of preferred carbon sources prevents the expression, and often also the activity, of catabolic systems that enable the use of secondary substrates. This regulation, called carbon catabolite repression (CCR), can be achieved by different regulatory mechanisms, including transcription activation and repression and control of translation by an RNA-binding protein, in different bacteria. Moreover, CCR regulates the expression of virulence factors in many pathogenic bacteria. In this Review, we discuss the most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner.
Collapse
Affiliation(s)
- Boris Görke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr 8, D-37077 Göttingen, Germany
| | | |
Collapse
|
26
|
Sanchez S, Demain AL. Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 2008; 1:283-319. [PMID: 21261849 PMCID: PMC3815394 DOI: 10.1111/j.1751-7915.2007.00015.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/04/2007] [Accepted: 10/23/2007] [Indexed: 12/01/2022] Open
Abstract
Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well-known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum-derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and important target genes and to quantify metabolic activities necessary for further strain improvement.
Collapse
Affiliation(s)
- Sergio Sanchez
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Arnold L. Demain
- Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ 07940, USA
| |
Collapse
|
27
|
Abstract
Listeria monocytogenes is able to efficiently utilize glycerol as a carbon source. In a defined minimal medium, the growth rate (during balanced growth) in the presence of glycerol is similar to that in the presence of glucose or cellobiose. Comparative transcriptome analyses of L. monocytogenes showed high-level transcriptional upregulation of the genes known to be involved in glycerol uptake and metabolism (glpFK and glpD) in the presence of glycerol (compared to that in the presence of glucose and/or cellobiose). Levels of expression of the genes encoding a second putative glycerol uptake facilitator (GlpF(2)) and a second putative glycerol kinase (GlpK(2)) were less enhanced under these conditions. GlpK(1) but not GlpK(2) was essential for glycerol catabolism in L. monocytogenes under extracellular conditions, while the loss of GlpK(1) affected replication in Caco-2 cells less than did the loss of GlpK(2) and GlpD. Additional genes whose transcription levels were higher in the presence of glycerol than in the presence of glucose and cellobiose included those for two dihydroxyacetone (Dha) kinases and many genes that are under carbon catabolite repression control. Transcriptional downregulation in the presence of glycerol (compared to those in the presence glucose and cellobiose) was observed for several genes and operons that are positively regulated by glucose, including genes involved in glycolysis, N metabolism, and the biosynthesis of branched-chain amino acids. The highest level of transcriptional upregulation was observed for all PrfA-dependent genes during early and late logarithmic growth in glycerol. Under these conditions, a low level of HPr-Ser-P and a high level of HPr-His-P were present in the cells, suggesting that all enzyme IIA (EIIA) (or EIIB) components of the phosphotransferase system (PTS) permeases expressed will be phosphorylated. These and other data suggest that the phosphorylation state of PTS permeases correlates with PrfA activity.
Collapse
|
28
|
Kowalczyk M, Cocaign-Bousquet M, Loubiere P, Bardowski J. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403. Arch Microbiol 2007; 189:187-96. [PMID: 17909747 DOI: 10.1007/s00203-007-0308-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 08/02/2007] [Accepted: 09/13/2007] [Indexed: 11/24/2022]
Abstract
Physiological, biochemical and macroarray analyses of Lactococcus lactis IL1403 and its ccpA and bglR single and double mutants engaged in lactose and beta-glucosides catabolism were performed. The kinetic analysis indicated the presence of different transport systems for salicin and cellobiose. The control of salicin catabolism was found to be mediated by the transcriptional regulator BglR and the CcpA protein. The transcriptional analysis by macroarray technology of genes from the PEP:PTS regions showed that several genes, like ybhE, celB, ptcB and ptcA, were expressed at higher levels both in wild type cells exposed to cellobiose and in the ccpA mutant. We also demonstrated that in L. lactis IL1403 cultured on medium with cellobiose and lactose as carbon sources, after the first phase of cellobiose consumption and then co-metabolism of the two sugars, when cellobiose is exhausted the strain uses lactose as the only carbon source. These data could indicate that lactose and cellobiose are transported by a unique system-a PTS carrier induced by the presence of cellobiose, and negatively controlled by the CcpA regulator.
Collapse
Affiliation(s)
- Magdalena Kowalczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
29
|
Chaptal V, Vincent F, Gueguen-Chaignon V, Monedero V, Poncet S, Deutscher J, Nessler S, Morera S. Structural analysis of the bacterial HPr kinase/phosphorylase V267F mutant gives insights into the allosteric regulation mechanism of this bifunctional enzyme. J Biol Chem 2007; 282:34952-7. [PMID: 17878158 DOI: 10.1074/jbc.m705979200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HPr kinase/phosphorylase (HPrK/P) is a bifunctional enzyme that controls the phosphorylation state of the phospho-carrier protein HPr, which regulates the utilization of carbon sources in Gram-positive bacteria. It uses ATP or pyrophosphate for the phosphorylation of serine 46 of HPr and inorganic phosphate for the dephosphorylation of Ser(P)-46-HPr via a phosphorolysis reaction. HPrK/P is a hexameric protein kinase of a new type with a catalytic core belonging to the family of nucleotide-binding protein with Walker A motif. It exhibits no structural similarity to eukaryotic protein kinases. So far, HPrK/P structures have shown the enzyme in its phosphorylase conformation. They permitted a detailed characterization of the phosphorolysis mechanism. In the absence of a structure with bound nucleotide, we used the V267F mutant enzyme to assess the kinase conformation. Indeed, the V267F replacement was found to cause an almost entire loss of the phosphorylase activity of Lactobacillus casei HPrK/P. In contrast, the kinase activity remained conserved. To elucidate the structural alterations leading to this drastic change of activity, the x-ray structure of the catalytic domain of L. casei HPrK/P-V267F was determined at 2.6A resolution. A comparison with the structure of the wild type enzyme showed that the mutation induces conformation changes compatible with the switch from phosphorylase to kinase function. Together with nucleotide binding fluorescence measurements, these results allowed us to decipher the cooperative behavior of the protein and to gain new insights into the allosteric regulation mechanism of HPrK/P.
Collapse
Affiliation(s)
- Vincent Chaptal
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de Terrasse, 91198 Gif-sur Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The increasing number of genomic and post-genomic studies on Gram-positive organisms and especially on lactic acid bacteria brings a lot of information on sugar catabolism in these bacteria. Like for many other bacteria, glucose is the most preferred source of carbon and energy for Lactococcus lactis. Other carbon sources can induce their own utilization in the absence of well-metabolized sugar. These processes engage numbers of genes and undergo complex mechanisms of regulation. In this review, we discuss various biochemical and genetic control mechanisms involved in sugar catabolism, like regulation by repressors, activators, antiterminators or carbon catabolite repression control.
Collapse
Affiliation(s)
- Magdalena Kowalczyk
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego, Warszawa, Poland.
| | | |
Collapse
|
31
|
Loll B, Saenger W, Biesiadka J. Structure of full-length transcription regulator CcpA in the apo form. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:732-6. [PMID: 17500051 DOI: 10.1016/j.bbapap.2007.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 03/12/2007] [Accepted: 03/15/2007] [Indexed: 11/28/2022]
Abstract
The catabolite control protein A (CcpA) from Bacillus megaterium is a member of the bacterial repressor protein family GalR-LacI. CcpA functions as master transcriptional regulator of carbon catabolite repression/regulation in firmicutes. Here we present the crystal structure of full-length apo CcpA at 2.5 A resolution from B. megaterium. The structure reveals the location of the helix-turn-helix domain as well as the hinge region, which were not visible due to their high flexibility in earlier crystallographic studies on CcpA molecules. The structure of the apo CcpA homodimer in the present form is in contrast to other reported structures for CcpA.
Collapse
Affiliation(s)
- Bernhard Loll
- Institute for Chemistry and Biochemistry/Crystallography, Freie Universität Berlin, Takustrasse 6, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
32
|
Daigle DM, Cao L, Fraud S, Wilke MS, Pacey A, Klinoski R, Strynadka NC, Dean CR, Poole K. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa. J Bacteriol 2007; 189:5441-51. [PMID: 17545281 PMCID: PMC1951821 DOI: 10.1128/jb.00543-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
nalC multidrug-resistant mutants of Pseudomonas aeruginosa show enhanced expression of the mexAB-oprM multidrug efflux system as a direct result of the production of a ca. 6,100-Da protein, PA3719, in these mutants. Using a bacterial two-hybrid system, PA3719 was shown to interact in vivo with MexR, a repressor of mexAB-oprM expression. Isothermal titration calorimetry (ITC) studies confirmed a high-affinity interaction (equilibrium dissociation constant [K(D)], 158.0 +/- 18.1 nM) of PA3719 with MexR in vitro. PA3719 binding to and formation of a complex with MexR obviated repressor binding to its operator, which overlaps the efflux operon promoter, suggesting that mexAB-oprM hyperexpression in nalC mutants results from PA3719 modulation of MexR repressor activity. Consistent with this, MexR repression of mexA transcription in an in vitro transcription assay was alleviated by PA3719. Mutations in MexR compromising its interaction with PA3719 in vivo were isolated and shown to be located internally and distributed throughout the protein, suggesting that they impacted PA3719 binding by altering MexR structure or conformation rather than by having residues interacting specifically with PA3719. Four of six mutant MexR proteins studied retained repressor activity even in a nalC strain producing PA3719. Again, this is consistent with a PA3719 interaction with MexR being necessary to obviate MexR repressor activity. The gene encoding PA3719 has thus been renamed armR (antirepressor for MexR). A representative "noninteracting" mutant MexR protein, MexR(I104F), was purified, and ITC confirmed that it bound PA3719 with reduced affinity (5.4-fold reduced; K(D), 853.2 +/- 151.1 nM). Consistent with this, MexR(I104F) repressor activity, as assessed using the in vitro transcription assay, was only weakly compromised by PA3719. Finally, two mutations (L36P and W45A) in ArmR compromising its interaction with MexR have been isolated and mapped to a putative C-terminal alpha-helix of the protein that alone is sufficient for interaction with MexR.
Collapse
Affiliation(s)
- Denis M Daigle
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schumacher MA, Seidel G, Hillen W, Brennan RG. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. J Mol Biol 2007; 368:1042-50. [PMID: 17376479 DOI: 10.1016/j.jmb.2007.02.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/09/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
In Gram-positive bacteria, carbon catabolite regulation (CCR) is mediated by the carbon catabolite control protein A (CcpA), a member of the LacI-GalR family of transcription regulators. Unlike other LacI-GalR proteins, CcpA is activated to bind DNA by binding the phosphoproteins HPr-Ser46-P or Crh-Ser46-P. However, fine regulation of CCR is accomplished by the small molecule effectors, glucose 6-phosphate (G6P) and fructose 1,6-bisphosphate (FBP), which somehow enhance CcpA-(HPr-Ser46-P) binding to DNA. Unlike the CcpA-(HPr-Ser46-P) complex, DNA binding by CcpA-(Crh-Ser46-P) is not stimulated by G6P or FBP. To understand the fine-tuning mechanism of these effectors, we solved the structures of the CcpA core, DeltaCcpA, which lacks the N-terminal DNA-binding domain, in complex with HPr-Ser46-P and G6P or FBP. G6P and FBP bind in a deep cleft, between the N and C subdomains of CcpA. Neither interacts with HPr-Ser46-P. This suggests that one role of the adjunct corepressors is to buttress the DNA-binding conformation effected by the binding of HPr-Ser46-P to the CcpA dimer N subdomains. However, the structures reveal that an unexpected function of adjunct corepressor binding is to bolster cross interactions between HPr-Ser46-P residue Arg17 and residues Asp69 and Asp99 of the other CcpA subunit. These cross contacts, which are weak or not present in the CcpA-(Crh-Ser46-P) complex, stimulate the CcpA-(HPr-Ser46-P)-DNA interaction specifically. Thus, stabilization of the closed conformation and bolstering of cross contacts between CcpA and its other corepressor, HPr-Ser46-P, provide a molecular explanation for how adjunct corepressors G6P and FBP enhance the interaction between CcpA-(HPr-Ser46-P) and cognate DNA.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, Unit 1000, University of Texas, MD Anderson Cancer Center University, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
34
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1015] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
35
|
Homeyer N, Essigke T, Meiselbach H, Ullmann GM, Sticht H. Effect of HPr phosphorylation on structure, dynamics, and interactions in the course of transcriptional control. J Mol Model 2006; 13:431-44. [PMID: 17139481 DOI: 10.1007/s00894-006-0162-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/04/2006] [Indexed: 11/25/2022]
Abstract
The serine46-phosphorylated form of the bacterial protein HPr fulfils an essential function in carbon catabolite repression (CCR). Using molecular dynamics (MD) we studied the effect of Ser46 phosphorylation on the molecular properties of HPr and its capability to act as the co-repressor of carbon catabolite protein A (CcpA). The calculated pK (a) values for a representative set of HPr(Ser46P) structures indicate that the phosphate group of HPr(Ser46P) exists predominantly in the unprotonated form under neutral conditions. A hydrogen bond detected in HPr(Ser46P) between one phosphate-group oxygen and a side-chain hydrogen of Asn43-an amino acid conserved in all HPr proteins of Gram-positive bacteria that regulate their carbon consumption by CCR-might fulfil an important role in CcpA-HPr(Ser46P) complex formation. MD simulations show that the Ser46P-Asn43 hydrogen bond present in the unbound structure is replaced by intermolecular interactions upon complex formation. The degree to which amino acids in the CcpA-HPr(Ser46P) interface contribute to cofactor binding was analyzed by in silico alanine scanning. Lys307, Arg303, Asp296, Val300, and Tyr295 of CcpA were identified as important amino acids for the CcpA-HPr(Ser46P) interaction. Three of these residues are directly involved in sensing the correct phosphorylation state at His15(HPr) and Ser46(HPr). A substitution of interface residues Val319, Val314, Ser316, Leu321 and Gln320 by alanine showed that these amino acids, which contact helix alpha2 of HPr(Ser46P), play a less prominent role for complex formation.
Collapse
Affiliation(s)
- Nadine Homeyer
- Abteilung für Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
36
|
Wang F, Du G, Li Y, Chen J. Regulation of CCR in the γ-CGTase production from Bacillus macorous by the specific cell growth rate control. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Mooney A, Ward PG, O'Connor KE. Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl Microbiol Biotechnol 2006; 72:1. [PMID: 16823552 DOI: 10.1007/s00253-006-0443-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Large quantities of the potentially toxic compound styrene are produced and used annually by the petrochemical and polymer-processing industries. It is as a direct consequence of this that significant volumes of styrene are released into the environment in both the liquid and the gaseous forms. Styrene and its metabolites are known to have serious negative effects on human health and therefore, strategies to prevent its release, remove it from the environment, and understand its route of degradation were the subject of much research. There are a large number of microbial genera capable of metabolizing styrene as a sole source of carbon and energy and therefore, the possibility of applying these organisms to bioremediation strategies was extensively investigated. From the multitude of biodegradation studies, the application of styrene-degrading organisms or single enzymes for the synthesis of value-added products such as epoxides has emerged.
Collapse
Affiliation(s)
- Aisling Mooney
- Centre for Synthesis and Chemical Biology, School of Biomolecular and Biomedical Sciences, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick G Ward
- Centre for Synthesis and Chemical Biology, School of Biomolecular and Biomedical Sciences, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin E O'Connor
- Centre for Synthesis and Chemical Biology, School of Biomolecular and Biomedical Sciences, College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
38
|
Müller W, Horstmann N, Hillen W, Sticht H. The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis. FEBS J 2006; 273:1251-61. [PMID: 16519689 DOI: 10.1111/j.1742-4658.2006.05148.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Histidine-containing protein (HPr) is a central metabolic sensor in low-GC Gram-positive bacteria and plays a dual role in sugar uptake by the phosphoenolpyruvate-sugar phosphotransferase system and in transcriptional control during carbon catabolite repression. The latter process is mediated by interaction between HPr and the carbon catabolite repression master transcription regulator, carbon catabolite protein A (CcpA), a member of the LacI-GalR family of DNA-binding proteins. We investigated, with a combination of computational and experimental tools, whether HPr can also interact with other transcriptional regulators. To allow rapid identification of paralogous LacI-GalR family members that might interact with HPr in a similar fashion to CcpA, a structure-based computational approach was developed which relies on the analysis of the similarity of protein-protein interfaces between different complexes. A key element of this method is an empirical pair potential derived from a group of orthologous complexes and subsequently used to identify paralogs that exhibit similar properties of their protein interfaces. Application of this method to the family of LacI-GalR repressors in Bacillus subtilis predicted the ribose operon repressor (RbsR) as a novel interaction partner of HPr. This interaction was subsequently confirmed experimentally and suggests that HPr plays an even larger role in transcriptional control than previously expected.
Collapse
Affiliation(s)
- Wolfgang Müller
- Institut für Biochemie, Abteilung Bioinformatik, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
39
|
Hurtado-Gómez E, Fernández-Ballester G, Nothaft H, Gómez J, Titgemeyer F, Neira JL. Biophysical characterization of the enzyme I of the Streptomyces coelicolor phosphoenolpyruvate:sugar phosphotransferase system. Biophys J 2006; 90:4592-604. [PMID: 16581832 PMCID: PMC1471863 DOI: 10.1529/biophysj.105.076935] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first protein in the bacterial phosphoenolpyruvate (PEP):sugar phosphotransferase system is the homodimeric 60-kDa enzyme I (EI), which autophosphorylates in the presence of PEP and Mg2+. The conformational stability and structure of the EI from Streptomyces coelicolor, EI(sc), were explored in the absence and in the presence of its effectors by using several biophysical probes (namely, fluorescence, far-ultraviolet circular dichroism, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry) and computational approaches. The structure of EI(sc) was obtained by homology modeling of the isolated N- and C-terminal domains of other EI proteins. The experimental results indicate that at physiological pH, the dimeric EI(sc) had a well-folded structure; however, at low pH, EI(sc) showed a partially unfolded state with the features of a molten globule, as suggested by fluorescence, far-ultraviolet circular dichroism, FTIR, and 8-anilino-1-naphthalene-sulfonic acid binding. The thermal stability of EI(sc), in the absence of PEP and Mg2+, was maximal at pH 7. The presence of PEP and Mg2+ did not change substantially the secondary structure of the protein, as indicated by FTIR measurements. However, quenching experiments and proteolysis patterns suggest conformational changes in the presence of PEP; furthermore, the thermal stability of EI(sc) was modified depending on the effector added. Our approach suggests that thermodynamical analysis might reveal subtle conformational changes.
Collapse
|
40
|
Schumacher MA, Seidel G, Hillen W, Brennan RG. Phosphoprotein Crh-Ser46-P displays altered binding to CcpA to effect carbon catabolite regulation. J Biol Chem 2005; 281:6793-800. [PMID: 16316990 DOI: 10.1074/jbc.m509977200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Gram-positive bacteria, the catabolite control protein A (CcpA) functions as the master transcriptional regulator of carbon catabolite repression/regulation (CCR). To effect CCR, CcpA binds a phosphoprotein, either HPr-Ser46-P or Crh-Ser46-P. Although Crh and histidine-containing protein (HPr) are structurally homologous, CcpA binds Crh-Ser46-P more weakly than HPr-Ser46-P. Moreover, Crh can form domain-swapped dimers, which have been hypothesized to be functionally relevant in CCR. To understand the molecular mechanism of Crh-Ser46-P regulation of CCR, we determined the structure of a CcpA-(Crh-Ser46-P)-DNA complex. The structure reveals that Crh-Ser46-P does not bind CcpA as a dimer but rather interacts with CcpA as a monomer in a manner similar to that of HPr-Ser46-P. The reduced affinity of Crh-Ser46-P for CcpA as compared with that of HPr-Ser46 P is explained by weaker Crh-Ser46-P interactions in its contact region I to CcpA, which causes this region to shift away from CcpA. Nonetheless, the interface between CcpA and helix alpha 2 of the second contact region (contact region II) of Crh-Ser46-P is maintained. This latter finding demonstrates that this contact region is necessary and sufficient to throw the allosteric switch to activate cre binding by CcpA.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry & Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
41
|
Servant P, Le Coq D, Aymerich S. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol Microbiol 2005; 55:1435-51. [PMID: 15720552 DOI: 10.1111/j.1365-2958.2005.04473.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Bacillus subtilis, the NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GapB) and the phosphoenolpyruvate carboxykinase (PckA) enzymes are necessary for efficient gluconeogenesis from Krebs cycle intermediates. gapB and pckA transcription is repressed in the presence of glucose but not via CcpA, the major transcriptional regulator for catabolite repression in B. subtilis. A B. subtilis mini-Tn10 transposant library was screened for clones affected in catabolite repression of gapB. Inactivation of a previously unknown gene, yqzB (renamed ccpN for control catabolite protein of gluconeogenic genes), was found to relieve not only gapB but also pckA transcription from catabolite repression. Purified CcpN specifically bound to the gapB and pckA promoters. ccpN is co-transcribed constitutively with another unknown gene, yqfL. A yqfL deletion lowers the level of gapB and pckA transcription threefold under both glycolytic and gluconeogenic conditions and a ccpN deletion is epistatic over a yqfL deletion. YqfL is thus a positive regulator of the expression of gapB and pckA, the effect of which is not influenced by the metabolic regime of the cell but appears to be mediated by CcpN. ccpN has homologues in many Firmicutes, but not all, while yqfL homologues are widely distributed in Eubacteria and also present in some plants. In all analysed bacterial genomes, ccpN and yqfL are physically linked together or to putative gluconeogenic genes. CcpN thus orchestrates a novel CcpA-independent mechanism for catabolite repression of gluconeogenic genes highly conserved in Firmicutes and appears as a functional analogue of FruR in Enterobacteria. The physiological significance of the regulation mediated via the three B. subtilis global transcription regulators, CcpA, CggR and CcpN, is discussed.
Collapse
Affiliation(s)
- Pascale Servant
- Microbiologie et Génétique Moléculaire, INRA (UMR1238) and CNRS (UMR2585), Institut National Agronomique Paris-Grignon, F-78850 Thiverval-Grignon, France
| | | | | |
Collapse
|
42
|
Abstract
To succeed, many cells must alternate between life-styles that permit rapid growth in the presence of abundant nutrients and ones that enhance survival in the absence of those nutrients. One such change in life-style, the "acetate switch," occurs as cells deplete their environment of acetate-producing carbon sources and begin to rely on their ability to scavenge for acetate. This review explains why, when, and how cells excrete or dissimilate acetate. The central components of the "switch" (phosphotransacetylase [PTA], acetate kinase [ACK], and AMP-forming acetyl coenzyme A synthetase [AMP-ACS]) and the behavior of cells that lack these components are introduced. Acetyl phosphate (acetyl approximately P), the high-energy intermediate of acetate dissimilation, is discussed, and conditions that influence its intracellular concentration are described. Evidence is provided that acetyl approximately P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis. The merits of each mechanism proposed to explain the interaction of acetyl approximately P with two-component signal transduction pathways are addressed. A short list of enzymes that generate acetyl approximately P by PTA-ACKA-independent mechanisms is introduced and discussed briefly. Attention is then directed to the mechanisms used by cells to "flip the switch," the induction and activation of the acetate-scavenging AMP-ACS. First, evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene. Next, the way in which cells regulate AMP-ACS activity through reversible acetylation is described. Finally, the "acetate switch" as it exists in selected eubacteria, archaea, and eukaryotes, including humans, is described.
Collapse
Affiliation(s)
- Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
43
|
Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 2004; 118:731-41. [PMID: 15369672 DOI: 10.1016/j.cell.2004.08.027] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 07/26/2004] [Accepted: 07/27/2004] [Indexed: 11/24/2022]
Abstract
Carbon catabolite repression (CCR) is one of the most fundamental environmental-sensing mechanisms in bacteria and imparts competitive advantage by establishing priorities in carbon metabolism. In gram-positive bacteria, the master transcription regulator of CCR is CcpA. CcpA is a LacI-GalR family member that employs, as an allosteric corepressor, the phosphoprotein HPr-Ser46-P, which is formed in glucose-replete conditions. Here we report structures of the Bacillus megaterium apoCcpA and a CcpA-(HPr-Ser46-P)-DNA complex. These structures reveal that HPr-Ser46-P mediates a novel two-component allosteric DNA binding activation mechanism that involves both rotation of the CcpA subdomains and relocation of pivot-point residue Thr61, which leads to juxtaposition of the DNA binding regions permitting "hinge" helix formation in the presence of cognate DNA. The structure of the CcpA-(HPr-Ser46-P)-cre complex also reveals the elegant mechanism by which CcpA family-specific interactions with HPr-Ser46-P residues Ser46-P and His15 partition the high-energy CCR and low-energy PTS pathways, the latter requiring HPr-His15-P.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland 97239, USA
| | | | | | | | | | | |
Collapse
|
44
|
Caescu CI, Vidal O, Krzewinski F, Artenie V, Bouquelet S. Bifidobacterium longum requires a fructokinase (Frk; ATP:D-fructose 6-phosphotransferase, EC 2.7.1.4) for fructose catabolism. J Bacteriol 2004; 186:6515-25. [PMID: 15375133 PMCID: PMC516584 DOI: 10.1128/jb.186.19.6515-6525.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the ability of Bifidobacterium spp. to grow on fructose as a unique carbon source has been demonstrated, the enzyme(s) needed to incorporate fructose into a catabolic pathway has hitherto not been defined. This work demonstrates that intracellular fructose is metabolized via the fructose-6-P phosphoketolase pathway and suggests that a fructokinase (Frk; EC 2.7.1.4) is the enzyme that is necessary and sufficient for the assimilation of fructose into this catabolic route in Bifidobacterium longum. The B. longum A10C fructokinase-encoding gene (frk) was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on a Co(2+)-based column, and the pH and temperature optima were determined. A biochemical analysis revealed that Frk displays the same affinity for fructose and ATP (Km(fructose) = 0.739 +/- 0.18 mM and Km(ATP) = 0.756 +/- 0.08 mM), is highly specific for D-fructose, and is inhibited by an excess of ATP (>12 mM). It was also found that frk is inducible by fructose and is subject to glucose-mediated repression. Consequently, this work presents the first characterization at the molecular and biochemical level of a fructokinase from a gram-positive bacterium that is highly specific for D-fructose.
Collapse
Affiliation(s)
- Cristina I Caescu
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS-USTL 8576, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
45
|
Maurer T, Meier S, Kachel N, Munte CE, Hasenbein S, Koch B, Hengstenberg W, Kalbitzer HR. High-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus and characterization of its interaction with the bifunctional HPr kinase/phosphorylase. J Bacteriol 2004; 186:5906-18. [PMID: 15317796 PMCID: PMC516805 DOI: 10.1128/jb.186.17.5906-5918.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/17/2004] [Indexed: 11/20/2022] Open
Abstract
A high-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus was obtained by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy on the basis of 1,766 structural restraints. Twenty-three hydrogen bonds in HPr could be directly detected by polarization transfer from the amide nitrogen to the carbonyl carbon involved in the hydrogen bond. Differential line broadening was used to characterize the interaction of HPr with the HPr kinase/phosphorylase (HPrK/P) of Staphylococcus xylosus, which is responsible for phosphorylation-dephosphorylation of the hydroxyl group of the regulatory serine residue at position 46. The dissociation constant Kd was determined to be 0.10 +/- 0.02 mM at 303 K from the NMR data, assuming independent binding. The data are consistent with a stoichiometry of 1 HPr molecule per HPrK/P monomer in solution. Using transversal relaxation optimized spectroscopy-heteronuclear single quantum correlation, we mapped the interaction site of the two proteins in the 330-kDa complex. As expected, it covers the region around Ser46 and the small helix b following this residue. In addition, HPrK/P also binds to the second phosphorylation site of HPr at position 15. This interaction may be essential for the recognition of the phosphorylation state of His15 and the phosphorylation-dependent regulation of the kinase/phosphorylase activity. In accordance with this observation, the recently published X-ray structure of the HPr/HPrK core protein complex from Lactobacillus casei shows interactions with the two phosphorylation sites. However, the NMR data also suggest differences for the full-length protein from S. xylosus: there are no indications for an interaction with the residues preceding the regulatory Ser46 residue (Thr41 to Lys45) in the protein of S. xylosus. In contrast, it seems to interact with the C-terminal helix of HPr in solution, an interaction which is not observed for the complex of HPr with the core of HPrK/P of L. casei in crystals.
Collapse
Affiliation(s)
- Till Maurer
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Silveira MG, Baumgärtner M, Rombouts FM, Abee T. Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 2004; 70:2748-55. [PMID: 15128528 PMCID: PMC404408 DOI: 10.1128/aem.70.5.2748-2755.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into mechanisms of ethanol toxicity and of acquired ethanol tolerance in this organism. Therefore, the site-specific location of proteins involved in ethanol adaptation, including cytoplasmic, membrane-associated, and integral membrane proteins, was investigated. Ethanol triggers alterations in protein patterns of O. oeni cells stressed with 12% ethanol for 1 h and those of cells grown in the presence of 8% ethanol. Levels of inosine-5'-monophosphate dehydrogenase and phosphogluconate dehydrogenase, which generate reduced nicotinamide nucleotides, were decreased during growth in the presence of ethanol, while glutathione reductase, which consumes NADPH, was induced, suggesting that maintenance of the redox balance plays an important role in ethanol adaptation. Phosphoenolpyruvate:mannose phosphotransferase system (PTS) components of mannose PTS, including the phosphocarrier protein HPr and EII(Man), were lacking in ethanol-adapted cells, providing strong evidence that mannose PTS is absent in ethanol-adapted cells, and this represents a metabolic advantage to O. oeni cells during malolactic fermentation. In cells grown in the presence of ethanol, a large increase in the number of membrane-associated proteins was observed. Interestingly, two of these proteins, dTDT-glucose-4,6-dehydratase and D-alanine:D-alanine ligase, are known to be involved in cell wall biosynthesis. Using a proteomic approach, we provide evidence for an active ethanol adaptation response of O. oeni at the cytoplasmic and membrane protein levels.
Collapse
Affiliation(s)
- M Graça Silveira
- Laboratory of Food Microbiology, Wageningen University, 6700 EV Wageningen, The Netherlands
| | | | | | | |
Collapse
|
47
|
Mazé A, Boël G, Poncet S, Mijakovic I, Le Breton Y, Benachour A, Monedero V, Deutscher J, Hartke A. The Lactobacillus casei ptsHI47T mutation causes overexpression of a LevR-regulated but RpoN-independent operon encoding a mannose class phosphotransferase system. J Bacteriol 2004; 186:4543-55. [PMID: 15231787 PMCID: PMC438589 DOI: 10.1128/jb.186.14.4543-4555.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/07/2004] [Indexed: 11/20/2022] Open
Abstract
A proteome analysis of Lactobacillus casei mutants that are affected in carbon catabolite repression revealed that a 15-kDa protein was strongly overproduced in a ptsHI47T mutant. This protein was identified as EIIA of a mannose class phosphotransferase system (PTS). A 7.1-kb DNA fragment containing the EIIA-encoding open reading frame and five other genes was sequenced. The first gene encodes a protein resembling the RpoN (sigma54)-dependent Bacillus subtilis transcription activator LevR. The following pentacistronic operon is oriented in the opposite direction and encodes four proteins with strong similarity to the proteins of the B. subtilis Lev-PTS and one protein of unknown function. The genes present on the 7.1-kb DNA fragment were therefore called levR and levABCDX. The levABCDX operon was induced by fructose and mannose. No "-12, -24" promoter typical of RpoN-dependent genes precedes the L. casei lev operon, and its expression was therefore RpoN independent but required LevR. Phosphorylation of LevR by P approximately His-HPr stimulates its activity, while phosphorylation by P approximately EIIBLev inhibits it. Disruption of the EIIBLev-encoding levB gene therefore led to strong constitutive expression of the lev operon, which was weaker in a strain carrying a ptsI mutation preventing phosphorylation by both P approximately EIIBLev and P approximately His-HPr. Expression of the L. casei lev operon is also subject to P-Ser-HPr-mediated catabolite repression. The observed slow phosphoenolpyruvate- and ATP-dependent phosphorylation of HPrI47T as well as the slow phosphoryl group transfer from the mutant P approximately His-HPr to EIIALev are assumed to be responsible for the elevated expression of the lev operon in the ptsHI47T mutant.
Collapse
Affiliation(s)
- Alain Mazé
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-INAPG-CNRS, Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Esteban CD, Mahr K, Monedero V, Hillen W, Pérez-Martínez G, Titgemeyer F. Complementation of a Delta ccpA mutant of Lactobacillus casei with CcpA mutants affected in the DNA- and cofactor-binding domains. MICROBIOLOGY-SGM 2004; 150:613-620. [PMID: 14993310 DOI: 10.1099/mic.0.26658-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In low-G+C Gram-positive bacteria, the regulatory protein CcpA has been shown to play a major part in the so-called carbon catabolite repression (CCR) process, as well as in the induction of basic metabolic genes, for which it is considered a global regulator. A strain of Lactobacillus casei that carried a complete deletion of ccpA has been constructed and used to test the effect of CCR on N-acetylglucosaminidase activity and growth performance of a collection of seven CcpA mutations obtained by site-directed mutagenesis. The replaced amino acids were located in the DNA- and cofactor (P-Ser-HPr)-binding domains. Mutations in the DNA-binding domain lacked CCR, as found in Bacillus megaterium. However, mutations in the cofactor-binding domain of L. casei CcpA had a different phenotype to that observed in the previous studies with B. megaterium. Two of them, S80L and T307I, displayed a significant hyper-repression, an effect never reported before for CcpA. Comparison of growth capabilities provided by the different mutants and their ability to sustain CCR demonstrated that CCR, at least on the enzymic activity tested, and the growth defect caused by the CcpA mutations are unrelated features.
Collapse
Affiliation(s)
- Carlos D Esteban
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Polígono de la Coma s/n, Apartado de Correos (PO Box) 73, 46100-Burjassot, Valencia, Spain
| | - Kerstin Mahr
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Vicente Monedero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Polígono de la Coma s/n, Apartado de Correos (PO Box) 73, 46100-Burjassot, Valencia, Spain
| | - Wolfgang Hillen
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Gaspar Pérez-Martínez
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Polígono de la Coma s/n, Apartado de Correos (PO Box) 73, 46100-Burjassot, Valencia, Spain
| | - Fritz Titgemeyer
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
49
|
Poncet S, Mijakovic I, Nessler S, Gueguen-Chaignon V, Chaptal V, Galinier A, Boël G, Mazé A, Deutscher J. HPr kinase/phosphorylase, a Walker motif A-containing bifunctional sensor enzyme controlling catabolite repression in Gram-positive bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:123-35. [PMID: 15023355 DOI: 10.1016/j.bbapap.2003.11.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Carbon catabolite repression (CCR) in Gram-positive bacteria is regulated by the bifunctional enzyme HPr kinase/phosphorylase (HprK/P). This enzyme catalyses the ATP- as well as the pyrophosphate-dependent phosphorylation of Ser-46 in HPr, a phosphocarrier protein of a sugar transport and phosphorylation system. HprK/P also catalyses the pyrophosphate-producing, inorganic phosphate-dependent dephosphorylation (phosphorolysis) of seryl-phosphorylated HPr (P-Ser-HPr). P-Ser-HPr functions as catabolite co-repressor by interacting with the LacI/GalR-type repressor, catabolite control protein A (CcpA), and allowing it to bind to operator sites preceding catabolite-regulated transcription units. HprK/P thus indirectly controls the expression of about 10% of the genes of Gram-positive bacteria. The two antagonistic activities of HprK/P are regulated by intracellular metabolites, which change their concentration in response to the absence or presence of rapidly metabolisable carbon sources (glucose, fructose, etc.) in the growth medium. Biochemical and structural studies revealed that HprK/P exhibits no similarity to eukaryotic protein kinases and that it contains a Walker motif A (or P-loop) as nucleotide binding site. Interestingly, HprK/P has a structural fold resembling that in kinases phosphorylating certain low molecular weight substrates such as nucleosides, nucleotides or oxaloacetate. The structures of the complexes of HprK/P with HPr and P-Ser-HPr have also been determined, which allowed proposing a detailed mechanism for the kinase and phosphorylase functions of HprK/P.
Collapse
Affiliation(s)
- Sandrine Poncet
- Microbiologie et Génétique Moléculaire, CNRS/INRA/INA-PG UMR2585, F-78850 Thiverval-Grignon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The bacterial phosphotransferase system: a perfect link of sugar transport and signal transduction. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b95776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|