1
|
Khan MM, Wilkens S. Molecular mechanism of Oxr1p mediated disassembly of yeast V-ATPase. EMBO Rep 2024; 25:2323-2347. [PMID: 38565737 PMCID: PMC11094088 DOI: 10.1038/s44319-024-00126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The eukaryotic vacuolar H+-ATPase (V-ATPase) is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel subcomplexes. We recently reported that the TLDc protein Oxr1p induces V-ATPase disassembly in vitro. Whether and how Oxr1p is involved in enzyme disassembly in vivo, however, is not known. Here, using yeast genetics and fluorescence microscopy, we show that Oxr1p is essential for efficient V-ATPase disassembly in the cell. Supporting biochemical and biophysical in vitro experiments show that whereas Oxr1p-driven holoenzyme disassembly can occur in the absence of nucleotides, the presence of ATP greatly accelerates the process. ATP hydrolysis is needed, however, for subsequent release of Oxr1p so that the free V1 can adopt the autoinhibited conformation. Overall, our study unravels the molecular mechanism of Oxr1p-induced disassembly that occurs in vivo as part of the canonical V-ATPase regulation by reversible disassembly.
Collapse
Affiliation(s)
- Md Murad Khan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
2
|
Zboińska M, Romero LC, Gotor C, Kabała K. Regulation of V-ATPase by Jasmonic Acid: Possible Role of Persulfidation. Int J Mol Sci 2023; 24:13896. [PMID: 37762199 PMCID: PMC10531226 DOI: 10.3390/ijms241813896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Vacuolar H+-translocating ATPase (V-ATPase) is a proton pump crucial for plant growth and survival. For this reason, its activity is tightly regulated, and various factors, such as signaling molecules and phytohormones, may be involved in this process. The aim of this study was to explain the role of jasmonic acid (JA) in the signaling pathways responsible for the regulation of V-ATPase in cucumber roots and its relationship with other regulators of this pump, i.e., H2S and H2O2. We analyzed several aspects of the JA action on the enzyme, including transcriptional regulation, modulation of protein levels, and persulfidation of selected V-ATPase subunits as an oxidative posttranslational modification induced by H2S. Our results indicated that JA functions as a repressor of V-ATPase, and its action is related to a decrease in the protein amount of the A and B subunits, the induction of oxidative stress, and the downregulation of the E subunit persulfidation. We suggest that both H2S and H2O2 may be downstream components of JA-dependent negative proton pump regulation. The comparison of signaling pathways induced by two negative regulators of the pump, JA and cadmium, revealed that multiple pathways are involved in the V-ATPase downregulation in cucumber roots.
Collapse
Affiliation(s)
- Magdalena Zboińska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, C. Américo Vespucio, 49, 41092 Sevilla, Spain; (L.C.R.); (C.G.)
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
3
|
Wilkens S, Khan MM, Knight K, Oot R. Tender love and disassembly: How a TLDc domain protein breaks the V-ATPase. Bioessays 2023; 45:e2200251. [PMID: 37183929 PMCID: PMC10392918 DOI: 10.1002/bies.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Vacuolar ATPases (V-ATPases, V1 Vo -ATPases) are rotary motor proton pumps that acidify intracellular compartments, and, when localized to the plasma membrane, the extracellular space. V-ATPase is regulated by a unique process referred to as reversible disassembly, wherein V1 -ATPase disengages from Vo proton channel in response to diverse environmental signals. Whereas the disassembly step of this process is ATP dependent, the (re)assembly step is not, but requires the action of a heterotrimeric chaperone referred to as the RAVE complex. Recently, an alternative pathway of holoenzyme disassembly was discovered that involves binding of Oxidation Resistance 1 (Oxr1p), a poorly characterized protein implicated in oxidative stress response. Unlike conventional reversible disassembly, which depends on enzyme activity, Oxr1p induced dissociation can occur in absence of ATP. Yeast Oxr1p belongs to the family of TLDc domain containing proteins that are conserved from yeast to mammals, and have been implicated in V-ATPase function in a variety of tissues. This brief perspective summarizes what we know about the molecular mechanisms governing both reversible (ATP dependent) and Oxr1p driven (ATP independent) V-ATPase dissociation into autoinhibited V1 and Vo subcomplexes.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Md. Murad Khan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Kassidy Knight
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Rebecca Oot
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
4
|
Huang CW, Deed RC, Parish-Virtue K, Pilkington LI, Walker ME, Jiranek V, Fedrizzi B. Characterization of polysulfides in Saccharomyces cerevisiae cells and finished wine from a cysteine-supplemented model grape medium. Food Microbiol 2022; 109:104124. [DOI: 10.1016/j.fm.2022.104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
|
5
|
Conan P, Léon A, Gourdel M, Rollet C, Chaïr L, Caroff N, Le Goux N, Le Jossic-Corcos C, Sinane M, Gentile L, Maillebouis L, Loaëc N, Martin J, Vilaire M, Corcos L, Mignen O, Croyal M, Voisset C, Bihel F, Friocourt G. Identification of 8-Hydroxyquinoline Derivatives That Decrease Cystathionine Beta Synthase (CBS) Activity. Int J Mol Sci 2022; 23:ijms23126769. [PMID: 35743210 PMCID: PMC9223588 DOI: 10.3390/ijms23126769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
CBS encodes a pyridoxal 5′-phosphate-dependent enzyme that catalyses the condensation of homocysteine and serine to form cystathionine. Due to its implication in some cancers and in the cognitive pathophysiology of Down syndrome, the identification of pharmacological inhibitors of this enzyme is urgently required. However, thus far, attempts to identify such molecules have only led to the identification of compounds with low potency and limited selectivity. We consequently developed an original, yeast-based screening method that identified three FDA-approved drugs of the 8-hydroxyquinoline family: clioquinol, chloroxine and nitroxoline. These molecules reduce CBS enzymatic activity in different cellular models, proving that the molecular mechanisms involved in yeast phenotypic rescue are conserved in mammalian cells. A combination of genetic and chemical biology approaches also revealed the importance of copper and zinc intracellular levels in the regulation of CBS enzymatic activity—copper promoting CBS activity and zinc inhibiting its activity. Taken together, these results indicate that our effective screening approach identified three new potent CBS inhibitors and provides new findings for the regulation of CBS activity, which is crucial to develop new therapies for CBS-related human disorders.
Collapse
Affiliation(s)
- Pierre Conan
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Alice Léon
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Mathilde Gourdel
- Inserm, Université de Nantes, CHU Nantes, CNRS, L’Institut Du Thorax, 44000 Nantes, France; (M.G.); (M.C.)
- CRNH-Ouest Mass Spectrometry Core Facility, 44000 Nantes, France
| | - Claire Rollet
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Loubna Chaïr
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Noéline Caroff
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Nelig Le Goux
- Inserm U1227, Lymphocytes B, Autoimmunité et Immunothérapies, Université de Brest, 29200 Brest, France; (N.L.G.); (O.M.)
| | - Catherine Le Jossic-Corcos
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Maha Sinane
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Lucile Gentile
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Louise Maillebouis
- CRB-Biojel, Institut Jérôme Lejeune, 75015 Paris, France; (L.M.); (M.V.)
| | - Nadège Loaëc
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Jennifer Martin
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Marie Vilaire
- CRB-Biojel, Institut Jérôme Lejeune, 75015 Paris, France; (L.M.); (M.V.)
| | - Laurent Corcos
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Olivier Mignen
- Inserm U1227, Lymphocytes B, Autoimmunité et Immunothérapies, Université de Brest, 29200 Brest, France; (N.L.G.); (O.M.)
| | - Mikael Croyal
- Inserm, Université de Nantes, CHU Nantes, CNRS, L’Institut Du Thorax, 44000 Nantes, France; (M.G.); (M.C.)
- CRNH-Ouest Mass Spectrometry Core Facility, 44000 Nantes, France
- Inserm, Université de Nantes, CHU Nantes, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000 Nantes, France
| | - Cécile Voisset
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
| | - Frédéric Bihel
- Laboratoire d’Innovation Thérapeutique, LIT, UMR7200, IMS MEDALIS, Faculty of Pharmacy, CNRS, Université de Strasbourg, 67400 Illkirch, France;
| | - Gaëlle Friocourt
- Inserm, Université de Brest, EFS, UMR 1078, GGB, 29200 Brest, France; (P.C.); (A.L.); (C.R.); (L.C.); (N.C.); (C.L.J.-C.); (M.S.); (L.G.); (N.L.); (J.M.); (L.C.); (C.V.)
- Correspondence: ; Tel.: +33-(0)2-98-01-83-87
| |
Collapse
|
6
|
Zubareva VM, Lapashina AS, Shugaeva TE, Litvin AV, Feniouk BA. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences. BIOCHEMISTRY (MOSCOW) 2021; 85:1613-1630. [PMID: 33705299 DOI: 10.1134/s0006297920120135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion-translocating ATPases and ATP synthases (F-, V-, A-type ATPases, and several P-type ATPases and ABC-transporters) catalyze ATP hydrolysis or ATP synthesis coupled with the ion transport across the membrane. F-, V-, and A-ATPases are protein nanomachines that combine transmembrane transport of protons or sodium ions with ATP synthesis/hydrolysis by means of a rotary mechanism. These enzymes are composed of two multisubunit subcomplexes that rotate relative to each other during catalysis. Rotary ATPases phosphorylate/dephosphorylate nucleotides directly, without the generation of phosphorylated protein intermediates. F-type ATPases are found in chloroplasts, mitochondria, most eubacteria, and in few archaea. V-type ATPases are eukaryotic enzymes present in a variety of cellular membranes, including the plasma membrane, vacuoles, late endosomes, and trans-Golgi cisternae. A-type ATPases are found in archaea and some eubacteria. F- and A-ATPases have two main functions: ATP synthesis powered by the proton motive force (pmf) or, in some prokaryotes, sodium-motive force (smf) and generation of the pmf or smf at the expense of ATP hydrolysis. In prokaryotes, both functions may be vitally important, depending on the environment and the presence of other enzymes capable of pmf or smf generation. In eukaryotes, the primary and the most crucial function of F-ATPases is ATP synthesis. Eukaryotic V-ATPases function exclusively as ATP-dependent proton pumps that generate pmf necessary for the transmembrane transport of ions and metabolites and are vitally important for pH regulation. This review describes the diversity of rotary ion-translocating ATPases from different organisms and compares the structural, functional, and regulatory features of these enzymes.
Collapse
Affiliation(s)
- V M Zubareva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A S Lapashina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A V Litvin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Zhong H, Song Y, Wang P, Feng B, Zhang X, Che L, Lin Y, Xu S, Li J, Wu D, Fang Z. Mammary Protein Synthesis upon Long-Term Nutritional Restriction Was Attenuated by Oxidative-Stress-Induced Inhibition of Vacuolar H +-Adenosine Triphosphatase/Mechanistic Target of Rapamycin Complex 1 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8950-8957. [PMID: 31189310 DOI: 10.1021/acs.jafc.9b02170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To determine how nutritional restriction compromised milk synthesis, sows were fed 100% (control) or 76% (restricted) of the recommended feed allowance from postpartum day (PD)-1 to PD-28. In comparison to the control, more body reserves loss, increased plasma triglyceride and high-density lipoprotein cholesterol levels, and decreased plasma methionine concentrations were observed in the restricted group at PD-21. The increased plasma malondialdehyde level, decreased plasma histidine and taurine concentrations, and decreased glutathione peroxidase activity were observed at PD-28 when backfat loss further increased in the restricted group. In mammary glands, vacuolar H+-adenosine triphosphatase (v-ATPase), as the upstream of the mechanistic target of rapamycin (mTOR) signaling, showed decreased activity, while phosphorylation of mTOR, S6 kinase, and eukaryotic translation initiation factor 4E-binding protein 1 and β-casein abundance all decreased following feed restriction. Altogether, long-term nutrition restriction could induce progressively aggravated oxidative stress and compromise mammary protein synthesis through repression of v-ATPase/mTORC1 signaling.
Collapse
Affiliation(s)
- Heju Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Yumo Song
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Peng Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute , Sichuan Agricultural University , Chengdu , Sichuan 611130 , People's Republic of China
| |
Collapse
|
8
|
Comparative Genomic Screen in Two Yeasts Reveals Conserved Pathways in the Response Network to Phenol Stress. G3-GENES GENOMES GENETICS 2019; 9:639-650. [PMID: 30647105 PMCID: PMC6404616 DOI: 10.1534/g3.118.201000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Living organisms encounter various perturbations, and response mechanisms to such perturbations are vital for species survival. Defective stress responses are implicated in many human diseases including cancer and neurodegenerative disorders. Phenol derivatives, naturally occurring and synthetic, display beneficial as well as detrimental effects. The phenol derivatives in this study, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and bisphenol A (BPA), are widely used as food preservatives and industrial chemicals. Conflicting results have been reported regarding their biological activity and correlation with disease development; understanding the molecular basis of phenol action is a key step for addressing issues relevant to human health. This work presents the first comparative genomic analysis of the genetic networks for phenol stress response in an evolutionary context of two divergent yeasts, Schizosaccharomyces pombe and Saccharomyces cerevisiae. Genomic screening of deletion strain libraries of the two yeasts identified genes required for cellular response to phenol stress, which are enriched in human orthologs. Functional analysis of these genes uncovered the major signaling pathways involved. The results provide a global view of the biological events constituting the defense process, including cell cycle arrest, DNA repair, phenol detoxification by V-ATPases, reactive oxygen species alleviation, and endoplasmic reticulum stress relief through ergosterol and the unfolded protein response, revealing novel roles for these cellular pathways.
Collapse
|
9
|
Konarzewska P, Sherr GL, Ahmed S, Ursomanno B, Shen CH. Vma3p protects cells from programmed cell death through the regulation of Hxk2p expression. Biochem Biophys Res Commun 2017; 493:233-239. [PMID: 28899778 DOI: 10.1016/j.bbrc.2017.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
In yeast, the vacuolar proton-pumping ATPase (V-ATPase) acidifies vacuoles to maintain pH of cytoplasm. Yeast cells lacking V-ATPase activity, due to a disruption of any VMA (vacuolar membrane ATPase) gene, remain viable but demonstrate growth defects. Although it has been suggested that VMA genes are critical for phospholipid biosynthesis, the link between VMA genes and phospholipid biosynthesis is still uncertain. Here, we found that cells lacking Vma3p, one of the major V-ATPase assembly genes, had a growth defect in the absence of inositol, suggesting that Vma3p is important in phospholipid biosynthesis. Through real-time PCR, we found that cells lacking Vma3p down-regulated HXK2 expression. Furthermore, acetic acid sensitivity assay showed that cells lacking Vma3p were more sensitive to acetic acid than WT cells. HXK2 encodes hexokinase 2 which can phosphorylate glucose during phospholipid biosynthesis. Since cells lacking HXK2 are sensitive to acetic acid and this is an indicator of programmed cell death, our observations suggest that Vma3p plays an important role in programmed cell death. Taken together, we have proposed a working model to describe how Vma3p protects cells against apoptosis through the regulation of HXK2 expression.
Collapse
Affiliation(s)
- Paulina Konarzewska
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York 10016, USA
| | - Goldie Libby Sherr
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York 10016, USA
| | - Suzanne Ahmed
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Brendon Ursomanno
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Chang-Hui Shen
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York 10016, USA; Institute for Macromolecular Assemblies, City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
| |
Collapse
|
10
|
Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, Xie M, Jiang N, May H, Kyrychenko V, Schneider JW, Gillette TG, Hill JA. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation 2016; 133:1668-87. [PMID: 26984939 DOI: 10.1161/circulationaha.115.017443] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. METHODS AND RESULTS Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. CONCLUSIONS Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Dan L Li
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Zhao V Wang
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Guanqiao Ding
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Wei Tan
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Xiang Luo
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Alfredo Criollo
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Min Xie
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Nan Jiang
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Herman May
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Viktoriia Kyrychenko
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Jay W Schneider
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Thomas G Gillette
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Joseph A Hill
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
11
|
Winter G, Cordente AG, Curtin C. Formation of hydrogen sulfide from cysteine in Saccharomyces cerevisiae BY4742: genome wide screen reveals a central role of the vacuole. PLoS One 2014; 9:e113869. [PMID: 25517415 PMCID: PMC4269451 DOI: 10.1371/journal.pone.0113869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/31/2014] [Indexed: 11/24/2022] Open
Abstract
Discoveries on the toxic effects of cysteine accumulation and, particularly, recent findings on the many physiological roles of one of the products of cysteine catabolism, hydrogen sulfide (H2S), are highlighting the importance of this amino acid and sulfur metabolism in a range of cellular activities. It is also highlighting how little we know about this critical part of cellular metabolism. In the work described here, a genome-wide screen using a deletion collection of Saccharomyces cerevisiae revealed a surprising set of genes associated with this process. In addition, the yeast vacuole, not previously associated with cysteine catabolism, emerged as an important compartment for cysteine degradation. Most prominent among the vacuole-related mutants were those involved in vacuole acidification; we identified each of the eight subunits of a vacuole acidification sub-complex (V1 of the yeast V-ATPase) as essential for cysteine degradation. Other functions identified included translation, RNA processing, folate-derived one-carbon metabolism, and mitochondrial iron-sulfur homeostasis. This work identified for the first time cellular factors affecting the fundamental process of cysteine catabolism. Results obtained significantly contribute to the understanding of this process and may provide insight into the underlying cause of cysteine accumulation and H2S generation in eukaryotes.
Collapse
Affiliation(s)
- Gal Winter
- School of Biomedical and Health Sciences, College of Health and Science, University of Western Sydney, Parramatta, NSW, Australia
- The Australian Wine Research Institute, Adelaide, SA, Australia
- Centre for Microbial Electrosynthesis (CEMES), University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| | | | - Chris Curtin
- The Australian Wine Research Institute, Adelaide, SA, Australia
| |
Collapse
|
12
|
Kabała K, Janicka-Russak M, Anklewicz A. Mechanism of Cd and Cu action on the tonoplast proton pumps in cucumber roots. PHYSIOLOGIA PLANTARUM 2013; 147:207-217. [PMID: 22607526 DOI: 10.1111/j.1399-3054.2012.01655.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of Cd and Cu on the tonoplast proton pumps, V-ATPase (EC 3.6.3.14) and V-PPase (EC 3.6.1.1) was investigated in cucumber roots subjected to 10 µM metals for 3 and 6 days. Both hydrolytic and transporting activities of V-ATPase as well as V-PPase increased under copper stress. In contrast, all activities examined were inhibited after the exposure of plants to cadmium. Cd and Cu changed the efficiency of coupling between proton transport and ATP hydrolysis whereas H(+) /PP(i) stoichiometry was not modified. Pre-incubation of control tonoplast vesicles with copper caused the stimulation of V-ATPase as well as V-PPase, indicating direct activation by Cu ions. Pre-treatment with cadmium had no significant effect on the activities of both enzymes. The gene expression and western blot analyses showed that observed modifications in enzyme activities were not related to the changes in the transcript levels of genes encoding V-ATPase subunit A and c, and V-PPase or in amounts of enzyme proteins. Moreover, the addition of reduced or oxidized glutathione (GSH and GSSG) to the reaction medium containing tonoplast vesicles isolated from stressed roots did not change the activity level of either enzyme when compared with the controls, suggesting that heavy metal-induced modifications are not simple reversible redox modulations.
Collapse
Affiliation(s)
- Katarzyna Kabała
- Department of Plant Physiology, Institute of Plant Biology, University of Wrocław, Wrocław, Poland
| | | | | |
Collapse
|
13
|
Abstract
ATP-hydrolysis and proton pumping by the V-ATPase (vacuolar proton-translocating ATPase) are subject to redox regulation in mammals, yeast and plants. Oxidative inhibition of the V-ATPase is ascribed to disulfide-bond formation between conserved cysteine residues at the catalytic site of subunit A. Subunits containing amino acid substitutions of one of three conserved cysteine residues of VHA-A were expressed in a vha-A null mutant background in Arabidopsis. In vitro activity measurements revealed a complete absence of oxidative inhibition in the transgenic line expressing VHA-A C256S, confirming that Cys256 is necessary for redox regulation. In contrast, oxidative inhibition was unaffected in plants expressing VHA-A C279S and VHA-A C535S, indicating that disulfide bridges involving these cysteine residues are not essential for oxidative inhibition. In vivo data suggest that oxidative inhibition might not represent a general regulatory mechanism in plants.
Collapse
|
14
|
Hasegawa S, Ogata T, Tanaka K, Ando A, Takagi H, Shima J. Overexpression of vacuolar H+-ATPase-related genes in bottom-fermenting yeast enhances ethanol tolerance and fermentation rates during high-gravity fermentation. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/jib.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sonoko Hasegawa
- Research Division of Microbial Sciences; Kyoto University; Kyoto; Japan
| | - Tomoo Ogata
- Research Laboratories for Brewing; Asahi Breweries Ltd; Ibaraki; Japan
| | - Koichi Tanaka
- Research Division of Microbial Sciences; Kyoto University; Kyoto; Japan
| | - Akira Ando
- NARO Food Research Institute; Ibaraki; Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Nara; Japan
| | - Jun Shima
- Research Division of Microbial Sciences; Kyoto University; Kyoto; Japan
| |
Collapse
|
15
|
Baumann O, Walz B. The blowfly salivary gland - a model system for analyzing the regulation of plasma membrane V-ATPase. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:450-458. [PMID: 22133312 DOI: 10.1016/j.jinsphys.2011.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are heteromultimeric proteins that use the energy of ATP hydrolysis for the electrogenic transport of protons across membranes. They are common to all eukaryotic cells and are located in the plasma membrane or in membranes of acid organelles. In many insect epithelia, V-ATPase molecules reside in large numbers in the apical plasma membrane and create an electrochemical proton gradient that is used for the acidification or alkalinization of the extracellular space, the secretion or reabsorption of ions and fluids, the import of nutrients, and diverse other cellular activities. Here, we summarize our results on the functions and regulation of V-ATPase in the tubular salivary gland of the blowfly Calliphora vicina. In this gland, V-ATPase activity energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). Because of particular morphological and physiological features, the blowfly salivary glands are a superior and exemplary system for the analysis of the intracellular signaling pathways and mechanisms that modulate V-ATPase activity and solute transport in an insect epithelium.
Collapse
Affiliation(s)
- Otto Baumann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | | |
Collapse
|
16
|
Wolfe DM, Padilla-Lopez S, Vitiello SP, Pearce DA. pH-dependent localization of Btn1p in the yeast model for Batten disease. Dis Model Mech 2010; 4:120-5. [PMID: 20959629 PMCID: PMC3008966 DOI: 10.1242/dmm.006114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Btn1p the yeast homolog of human CLN3, which is associated with juvenile Batten disease has been implicated in several cellular pathways. Yeast cells lacking BTN1 are unable to couple ATP hydrolysis and proton pumping activities by the vacuolar ATPase (V-ATPase). In this work, we demonstrate that changes in extracellular pH result in altered transcription of BTN1, as well as a change in the glycosylation state and localization of Btn1p. At high pH, Btn1p expression was increased and the protein was mainly located in vacuolar membranes. However, low pH decreased Btn1p expression and changed its location to undefined punctate membranes. Moreover, our results suggest that differential Btn1p localization may be regulated by its glycosylation state. Underlying pathogenic implications for Batten disease of altered cellular distribution of CLN3 are discussed.
Collapse
Affiliation(s)
- Devin M Wolfe
- Center for Neural Development and Disease, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
17
|
Toei M, Saum R, Forgac M. Regulation and isoform function of the V-ATPases. Biochemistry 2010; 49:4715-23. [PMID: 20450191 DOI: 10.1021/bi100397s] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The vacuolar (H(+))-ATPases are ATP-dependent proton pumps that acidify intracellular compartments and, in some cases, transport protons across the plasma membrane of eukaryotic cells. Intracellular V-ATPases play an important role in normal physiological processes such as receptor-mediated endocytosis, intracellular membrane trafficking, pro-hormone processing, protein degradation, and the coupled uptake of small molecules, such as neurotransmitters. They also function in the entry of various pathogenic agents, including many envelope viruses, like influenza virus, and toxins, like anthrax toxin. Plasma membrane V-ATPases function in renal pH homeostasis, bone resorption and sperm maturation, and various disease processes, including renal tubular acidosis, osteopetrosis, and tumor metastasis. V-ATPases are composed of a peripheral V(1) domain containing eight different subunits that is responsible for ATP hydrolysis and an integral V(0) domain containing six different subunits that translocates protons. In mammalian cells, most of the V-ATPase subunits exist in multiple isoforms which are often expressed in a tissue specific manner. Isoforms of one of the V(0) subunits (subunit a) have been shown to possess information that targets the V-ATPase to distinct cellular destinations. Mutations in isoforms of subunit a lead to the human diseases osteopetrosis and renal tubular acidosis. A number of mechanisms are employed to regulate V-ATPase activity in vivo, including reversible dissociation of the V(1) and V(0) domains, control of the tightness of coupling of proton transport and ATP hydrolysis, and selective targeting of V-ATPases to distinct cellular membranes. Isoforms of subunit a are involved in regulation both via the control of coupling and via selective targeting. This review will begin with a brief introduction to the function, structure, and mechanism of the V-ATPases followed by a discussion of the role of V-ATPase subunit isoforms and the mechanisms involved in regulation of V-ATPase activity.
Collapse
Affiliation(s)
- Masashi Toei
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
18
|
Jefferies KC, Cipriano DJ, Forgac M. Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 2008; 476:33-42. [PMID: 18406336 PMCID: PMC2543942 DOI: 10.1016/j.abb.2008.03.025] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/05/2008] [Accepted: 03/07/2008] [Indexed: 02/07/2023]
Abstract
The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V(1)) responsible for hydrolysis of ATP and an integral domain (V(0)) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V(1) and V(0) domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.
Collapse
Affiliation(s)
| | | | - Michael Forgac
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111
| |
Collapse
|
19
|
Ruotolo R, Marchini G, Ottonello S. Membrane transporters and protein traffic networks differentially affecting metal tolerance: a genomic phenotyping study in yeast. Genome Biol 2008; 9:R67. [PMID: 18394190 PMCID: PMC2643938 DOI: 10.1186/gb-2008-9-4-r67] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 02/26/2008] [Accepted: 04/07/2008] [Indexed: 01/01/2023] Open
Abstract
Genomic phenotyping was used to assess the role of all non-essential S. cerevisiae proteins in modulating cell viability after exposure to cadmium, nickel and other metals. Background The cellular mechanisms that underlie metal toxicity and detoxification are rather variegated and incompletely understood. Genomic phenotyping was used to assess the roles played by all nonessential Saccharomyces cerevisiae proteins in modulating cell viability after exposure to cadmium, nickel, and other metals. Results A number of novel genes and pathways that affect multimetal as well as metal-specific tolerance were discovered. Although the vacuole emerged as a major hot spot for metal detoxification, we also identified a number of pathways that play a more general, less direct role in promoting cell survival under stress conditions (for example, mRNA decay, nucleocytoplasmic transport, and iron acquisition) as well as proteins that are more proximally related to metal damage prevention or repair. Most prominent among the latter are various nutrient transporters previously not associated with metal toxicity. A strikingly differential effect was observed for a large set of deletions, the majority of which centered on the ESCRT (endosomal sorting complexes required for transport) and retromer complexes, which - by affecting transporter downregulation and intracellular protein traffic - cause cadmium sensitivity but nickel resistance. Conclusion The data show that a previously underestimated variety of pathways are involved in cadmium and nickel tolerance in eukaryotic cells. As revealed by comparison with five additional metals, there is a good correlation between the chemical properties and the cellular toxicity signatures of various metals. However, many conserved pathways centered on membrane transporters and protein traffic affect cell viability with a surprisingly high degree of metal specificity.
Collapse
Affiliation(s)
- Roberta Ruotolo
- Department of Biochemistry and Molecular Biology, Viale G.P. Usberti 23/A, University of Parma, I-43100 Parma, Italy
| | | | | |
Collapse
|
20
|
Lin WY, Chang JY, Hish CH, Pan TM. Profiling the Monascus pilosus proteome during nitrogen limitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:433-441. [PMID: 18095644 DOI: 10.1021/jf072420e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Monascus species have the unique ability to economically produce many secondary metabolites. However, the influence of nitrogen limitation on Monascus secondary metabolite production and metabolic performance remains unclear. Varying the carbon/nitrogen (C/N) ratios in the range from 20 to 60 in cultivation of Monascus pilosus by glucose nitrate medium, our resulting data showed that red pigment production was significantly suppressed and more sensitive to nitrogen limitation than cellular biomass growth at a C/N ratio of 60. Using a comparative proteomic approach, combining two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight/time-of-flight liquid chromatography-mass spectrometry, and tandem mass spectrometry, proteins with modified expression in the nitrogen-limited (C/N ratio 60) Monascus filamentous cells were identified. The results revealed that the deregulated proteins identified were involved in amino acid biosynthesis, protein translation, antioxidant-related enzymes, glycolysis, and transcriptional regulation. The results suggested that, under nitrogen limitation-induced suppression of protein translation and of expression of the related energy-generating enzymes, nitrogen limitation induced a switch of metabolic flux from glycolysis to the tricarboxylic acid (TCA) cycle for maintaining cellular energy homeostasis, resulting in repression of the metabolic shift of the polyketide biosynthesis pathway for red pigment production.
Collapse
Affiliation(s)
- Wun-Yuan Lin
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan
| | | | | | | |
Collapse
|
21
|
Davis-Kaplan SR, Compton MA, Flannery AR, Ward DM, Kaplan J, Stevens TH, Graham LA. PKR1 Encodes an Assembly Factor for the Yeast V-Type ATPase. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84116-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Jeong SY, Choi CH, Kim JS, Park SJ, Kang SO. Thioredoxin reductase is required for growth and regulates entry into culmination of Dictyostelium discoideum. Mol Microbiol 2006; 61:1443-56. [PMID: 16899077 DOI: 10.1111/j.1365-2958.2006.05329.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The thioredoxin system, consisting of thioredoxin, thioredoxin reductase and NADPH, has been well established to be critical for the redox regulation of protein function and signalling. To investigate the role of thioredoxin reductase (Trr) in Dictyostelium discoideum, we generated mutant cells that underexpress or overexpress Trr. Trr-underexpressing cells exhibited severe defects in axenic growth and development. Trr-overexpressing (TrrOE) cells formed very tiny plaques on a bacterial lawn and had a lower rate of bacterial uptake. When developed in the dark, TrrOE cells exhibited a slugger phenotype, defined by a prolonged migrating slug stage. Like other slugger mutants, they were hypersensitive to ammonia, which has been known to inhibit culmination by raising the pH of intracellular acidic compartments. Interestingly, TrrOE cells showed defective acidification of intracellular compartments and decreased activity of vacuolar H+-ATPase which functions in the acidification of intracellular compartments. Moreover, biochemical studies revealed that the thioredoxin system can directly reduce the catalytic subunit of vacuolar H+-ATPase whose activity is regulated by reversible disulphide bond formation. Taken together, these results suggest that Dictyostelium Trr may be essential for growth and play a role in regulation of phagocytosis and culmination, possibly through the modulation of vacuolar H+-ATPase activity.
Collapse
Affiliation(s)
- Sun-Young Jeong
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
23
|
Davis-Kaplan SR, Compton MA, Flannery AR, Ward DM, Kaplan J, Stevens TH, Graham LA. PKR1Encodes an Assembly Factor for the Yeast V-Type ATPase. J Biol Chem 2006; 281:32025-35. [PMID: 16926153 DOI: 10.1074/jbc.m606451200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deletion of the yeast gene PKR1 (YMR123W) results in an inability to grow on iron-limited medium. Pkr1p is localized to the membrane of the endoplasmic reticulum. Cells lacking Pkr1p show reduced levels of the V-ATPase subunit Vph1p due to increased turnover of the protein in mutant cells. Reduced levels of the V-ATPase lead to defective copper loading of Fet3p, a component of the high affinity iron transport system. Levels of Vph1p in cells lacking Pkr1p are similar to cells unable to assemble a functional V-ATPase due to lack of a V0 subunit or an endoplasmic reticulum (ER) assembly factor. However, unlike yeast mutants lacking a V0 subunit or a V-ATPase assembly factor, low levels of Vph1p present in cells lacking Pkr1p are assembled into a V-ATPase complex, which exits the ER and is present on the vacuolar membrane. The V-ATPase assembled in the absence of Pkr1p is fully functional because the mutant cells are able to weakly acidify their vacuoles. Finally, overexpression of the V-ATPase assembly factor Vma21p suppresses the growth and acidification defects of pkr1Delta cells. Our data indicate that Pkr1p functions together with the other V-ATPase assembly factors in the ER to efficiently assemble the V-ATPase membrane sector.
Collapse
Affiliation(s)
- Sandra R Davis-Kaplan
- Division of Immunology and Cell Biology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132-2501, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.
Collapse
Affiliation(s)
- Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA.
| |
Collapse
|
25
|
Mimura H, Nakanishi Y, Maeshima M. Disulfide-bond formation in the H+-pyrophosphatase ofStreptomyces coelicolorand its implications for redox control and enzyme structure. FEBS Lett 2005; 579:3625-31. [PMID: 15963991 DOI: 10.1016/j.febslet.2005.05.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 11/16/2022]
Abstract
Redox control of disulfide-bond formation in the H+-pyrophosphatase of Streptomyces coelicolor was investigated using cysteine mutants expressed in Escherichia coli. The wild-type enzyme, but not a cysteine-less mutant, was reversibly inactivated by oxidation. To determine the residues involved in oxidative inactivation, different cysteine residues were replaced. Analysis with a cysteine-modifying reagent revealed that the formation of a disulfide bond between cysteines 253 and 621 was responsible for enzyme inactivation. This result suggests that residues in different cytoplasmic loops are close to each other in the tertiary structure. Both cysteine residues are conserved in K+-independent (type II) H+-pyrophosphatases.
Collapse
Affiliation(s)
- Hisatoshi Mimura
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
26
|
Sambade M, Alba M, Smardon AM, West RW, Kane PM. A genomic screen for yeast vacuolar membrane ATPase mutants. Genetics 2005; 170:1539-51. [PMID: 15937126 PMCID: PMC1365767 DOI: 10.1534/genetics.105.042812] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
V-ATPases acidify multiple organelles, and yeast mutants lacking V-ATPase activity exhibit a distinctive set of growth defects. To better understand the requirements for organelle acidification and the basis of these growth phenotypes, approximately 4700 yeast deletion mutants were screened for growth defects at pH 7.5 in 60 mm CaCl(2). In addition to 13 of 16 mutants lacking known V-ATPase subunits or assembly factors, 50 additional mutants were identified. Sixteen of these also grew poorly in nonfermentable carbon sources, like the known V-ATPase mutants, and were analyzed further. The cwh36Delta mutant exhibited the strongest phenotype; this mutation proved to disrupt a previously uncharacterized V-ATPase subunit. A small subset of the mutations implicated in vacuolar protein sorting, vps34Delta, vps15Delta, vps45Delta, and vps16Delta, caused both Vma- growth phenotypes and lower V-ATPase activity in isolated vacuoles, as did the shp1Delta mutation, implicated in both protein sorting and regulation of the Glc7p protein phosphatase. These proteins may regulate V-ATPase targeting and/or activity. Eight mutants showed a Vma- growth phenotype but no apparent defect in vacuolar acidification. Like V-ATPase-deficient mutants, most of these mutants rely on calcineurin for growth, particularly at high pH. A requirement for constitutive calcineurin activation may be the predominant physiological basis of the Vma- growth phenotype.
Collapse
Affiliation(s)
- Maria Sambade
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | |
Collapse
|
27
|
Yoshida K, Kawachi M, Mori M, Maeshima M, Kondo M, Nishimura M, Kondo T. The Involvement of Tonoplast Proton Pumps and Na+(K+)/H+ Exchangers in the Change of Petal Color During Flower Opening of Morning Glory, Ipomoea tricolor cv. Heavenly Blue. ACTA ACUST UNITED AC 2005; 46:407-15. [PMID: 15695444 DOI: 10.1093/pcp/pci057] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The petal color of morning glory, Ipomoea tricolor cv. Heavenly Blue, changes from purplish red to blue during flower opening. This color change is caused by an unusual increase in vacuolar pH from 6.6 to 7.7 in the colored adaxial and abaxial cells. To clarify the mechanism underlying the alkalization of epidermal vacuoles in the open petals, we focused on vacuolar H+-ATPase (V-ATPase), H+-pyrophosphatase (V-PPase) and an isoform of Na+/H+ exchanger (NHX1). We isolated red and blue protoplasts from the petals in bud and fully open flower, respectively, and purified vacuolar membranes. The membranes contained V-ATPase, V-PPase and NHX1, which were immunochemically detected, with relatively high transport activity. NHX1 could be detected only in the vacuolar membranes prepared from flower petals and its protein level was the highest in the colored petal epidermis of the open flower. These results suggest that the increase of vacuolar pH in the petals during flower opening is due to active transport of Na+ and/or K+ from the cytosol into vacuoles through a sodium- or potassium-driven Na+(K+)/H+ exchanger NXH1 and that V-PPase and V-ATPase may prevent the over-alkalization. This systematic ion transport maintains the weakly alkaline vacuolar pH, producing the sky-blue petals.
Collapse
Affiliation(s)
- Kumi Yoshida
- Graduate School of Information Science, Nagoya University, Chikusa, Nagoya, 464-8601 Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
30
|
Gong Y, Duvvuri M, Krise JP. Separate Roles for the Golgi Apparatus and Lysosomes in the Sequestration of Drugs in the Multidrug-resistant Human Leukemic Cell Line HL-60. J Biol Chem 2003; 278:50234-9. [PMID: 14522995 DOI: 10.1074/jbc.m306606200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sequestration of drugs away from cellular target sites into cytoplasmic organelles of multidrug-resistant (MDR) cancer cells has been recently shown to be a cause for ineffective drug therapy. This process is poorly understood despite the fact that it has been observed in a large number of MDR cancer cell lines. Analysis of drug sequestration in these cells has traditionally been done using fluorescent anthracycline antibiotics (i.e. daunorubicin, doxorubicin). This narrow selection of substrates has resulted in a limited understanding of sequestration mechanisms and the intracellular compartments that are involved. To better characterize this phenotype, we chose to examine the sequestration of molecules having different acid/base properties in the MDR HL-60 human leukemic cell line. Here we show that weakly basic drug daunorubicin is sequestered into lysosomes according to a pH partitioning type mechanism, whereas sulforhodamime 101, a zwitterionic molecule, is sequestered into the Golgi apparatus through a drug transporter-mediated process. Quantitative intracellular pH measurements reveal that the lysosome-tocytosol pH gradient is expanded in the MDR line. Moreover, the MDR cells overexpress the multidrug resistance-related protein (MRP1), which is localized to the Golgi apparatus. These results demonstrate, for the first time, that two distinct mechanisms for intracellular compartmentalization are operational in a single MDR cell line.
Collapse
Affiliation(s)
- Yuping Gong
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
31
|
Fernandes AR, Durão PJ, Santos PM, Sá-Correia I. Activation and significance of vacuolar H+-ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Biochem Biophys Res Commun 2003; 312:1317-24. [PMID: 14652018 DOI: 10.1016/j.bbrc.2003.11.072] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The stimulation of the activity of the H(+)-ATPase present in the vacuolar membrane (V-ATPase) of Saccharomyces cerevisiae is here described in response to a moderate stress induced by 2,4-dichlorophenoxyacetic acid (2,4-D). This in vivo activation (up to 5-fold) took place essentially during the adaptation period, preceding cell division under herbicide stress, in coordination with a marked activation of plasma membrane H(+)-ATPase (PM-ATPase) (up to 30-fold) and the decrease of intracellular and vacuolar pH values, suggesting that activation may be triggered by acidification. Single deletion of VMA1 and genes encoding other V-ATPase subunits led to a more extended period of adaptation and to slower growth under 2,4-D stress. Results suggest that a functional V-ATPase is required to counteract, more rapidly and efficiently, the dissipation of the physiological H(+)-gradient across vacuolar membrane registered during 2,4-D adaptation.
Collapse
Affiliation(s)
- A R Fernandes
- Biological Sciences Research Group, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, 1049-001, Lisbon, Portugal
| | | | | | | |
Collapse
|
32
|
Abstract
The vacuolar H(+)-ATPases (or V-ATPases) are a family of ATP-dependent proton pumps responsible for acidification of intracellular compartments and, in certain cases, proton transport across the plasma membrane of eukaryotic cells. They are multisubunit complexes composed of a peripheral domain (V(1)) responsible for ATP hydrolysis and an integral domain (V(0)) responsible for proton translocation. Based upon their structural similarity to the F(1)F(0) ATP synthases, the V-ATPases are thought to operate by a rotary mechanism in which ATP hydrolysis in V(1) drives rotation of a ring of proteolipid subunits in V(0). This review is focused on the current structural knowledge of the V-ATPases as it relates to the mechanism of ATP-driven proton translocation.
Collapse
Affiliation(s)
- Shoko Kawasaki-Nishi
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | |
Collapse
|
33
|
Rizzo VF, Coskun U, Radermacher M, Ruiz T, Armbruster A, Gruber G. Resolution of the V1 ATPase from Manduca sexta into subcomplexes and visualization of an ATPase-active A3B3EG complex by electron microscopy. J Biol Chem 2003; 278:270-5. [PMID: 12414800 DOI: 10.1074/jbc.m208623200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The effect of the ATPase activity of Manduca sexta V(1) ATPase by the amphipathic detergent lauryldimethylamine oxide (LDAO) and the relationship of these activities to the subunit composition of V(1) were studied. The V(1) was highly activated in the presence of 0.04-0.06% LDAO combined with release of the subunits H, C, and F from the enzyme. Increase of LDAO concentration to 0.1-0.2% caused the characterized subcomplexes A(3)B(3)HEGF and A(3)B(3)EG with a remaining ATPase activity of 52 and 65%, respectively. The hydrolytic-active A(3)B(3)EG subcomplex has been visualized by electron microscopy showing six major masses of density in a pseudo-hexagonal arrangement surrounding a seventh mass. The compositions of the various subcomplexes and fragments of V(1) provide an organization of the subunits in the enzyme in the framework of the known three-dimensional reconstruction of the V(1) ATPase from M. sexta (Radermacher, M., Ruiz, T., Wieczorek, H., and Grüber, G. (2001) J. Struct. Biol. 135, 26-37).
Collapse
Affiliation(s)
- Vincenzo F Rizzo
- Universität des Saarlandes, Fachrichtung 2.5-Biophysik, D-66421 Homburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Staleva L, Manga P, Orlow SJ. Pink-eyed dilution protein modulates arsenic sensitivity and intracellular glutathione metabolism. Mol Biol Cell 2002; 13:4206-20. [PMID: 12475946 PMCID: PMC138627 DOI: 10.1091/mbc.e02-05-0282] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2002] [Revised: 08/10/2002] [Accepted: 08/29/2002] [Indexed: 11/11/2022] Open
Abstract
Mutations in the mouse p (pink-eyed dilution) and human P genes lead to melanosomal defects and ocular developmental abnormalities. Despite the critical role played by the p gene product in controlling tyrosinase processing and melanosome biogenesis, its precise biological function is still not defined. We have expressed p heterologously in the yeast Saccharomyces cerevisiae to study its function in greater detail. Immunofluorescence studies revealed that p reaches the yeast vacuolar membrane via the prevacuolar compartment. Yeast cells expressing p exhibited increased sensitivity to a number of toxic compounds, including arsenicals. Similarly, cultured murine melanocytes expressing a functional p gene were also found to be more sensitive to arsenical compounds compared with p-null cell lines. Intracellular glutathione, known to play a role in detoxification of arsenicals, was diminished by 50% in p-expressing yeast. By using the glutathione-conjugating dye monochlorobimane, in combination with acivicin, an inhibitor of vacuolar gamma-glutamyl cysteine transpeptidase, involved in the breakdown of glutathione, we found that p facilitates the vacuolar accumulation of glutathione. Our data demonstrate that the pink-eyed dilution protein increases cellular sensitivity to arsenicals and other metalloids and can modulate intracellular glutathione metabolism.
Collapse
Affiliation(s)
- Liliana Staleva
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
35
|
Abstract
The pH of intracellular compartments in eukaryotic cells is a carefully controlled parameter that affects many cellular processes, including intracellular membrane transport, prohormone processing and transport of neurotransmitters, as well as the entry of many viruses into cells. The transporters responsible for controlling this crucial parameter in many intracellular compartments are the vacuolar (H+)-ATPases (V-ATPases). Recent advances in our understanding of the structure and regulation of the V-ATPases, together with the mapping of human genetic defects to genes that encode V-ATPase subunits, have led to tremendous excitement in this field.
Collapse
Affiliation(s)
- Tsuyoshi Nishi
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
36
|
Tavakoli N, Kluge C, Golldack D, Mimura T, Dietz KJ. Reversible redox control of plant vacuolar H+-ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:51-9. [PMID: 11696186 DOI: 10.1046/j.1365-313x.2001.01130.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plant vacuolar proton pump can be subjected to reversible redox regulation in vitro. The redox-dependent activity change involves disulfide bridge formation not only in Vatp A, as reported for bovine V-ATPase, but also in the stalk subunit Vatp E. Microsomal membranes isolated from barley leaves were analysed for their activity of bafilomycin-sensitive ATP hydrolysis and proton pumping using quinacrine fluorescence quenching in vesicle preparations. ATP hydrolysis and proton pumping activity were inhibited by H2O2. H2O2-deactivated ATPase was reactivated by cysteine and glutathione. The glutathione concentration needed for half maximal reactivation was 1 mmol l-1. The activity loss was accompanied by shifts in electrophoretic mobility of Vatp A and E which were reversed upon reductive reactivation. The redox-dependent shift was also seen with recombinant Vatp E, and was absent following site-directed mutagenesis of either of the two cys residues conserved throughout all plant Vatp E sequences. V-ATPase was also inhibited by oxidized thioredoxin. These results support the hypothesis that tuning of vacuolar ATPase activity can be mediated by redox control depending on the metabolic requirements.
Collapse
Affiliation(s)
- N Tavakoli
- Lehrstuhl für Stoffwechselphysiologie und Biochemie der Pflanzen, W5, Universität Bielefeld, 33501 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
37
|
Kawamura Y, Arakawa K, Maeshima M, Yoshida S. ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase. ACTA ACUST UNITED AC 2001; 268:2801-9. [PMID: 11358495 DOI: 10.1046/j.1432-1327.2001.02139.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vacuolar H+-ATPase (V-ATPase) consists of a catalytic head, a stalk part and a membrane domain. We indirectly investigated the interaction between the A subunit (catalytic head) and the E subunit (stalk part) using an ATP analogue, adenosine 5'-[beta,gamma-imino]triphosphate (AMP-PNP), which holds the enzyme in the substrate-binding state. AMP-PNP treatment caused a mobility shift of the E subunit with a faster migration in SDS/polyacrylamide gel electrophoresis without a reductant, while ATP treatment did not. A mobility shift of the E subunit has been detected in several plants. As polypeptides with intramolecular disulfide bonds migrate faster than those without disulfide bonds, the mobility shift may be due to the formation of an intramolecular disulfide bond by two cysteine residues conserved among several plant species. The mobility shift may be involved in the binding of AMP-PNP to the ATP-binding site, which exists in the A and B subunits, as it was inhibited by the addition of ATP. Pretreatment with 2'-3'-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), which modifies the ATP-binding site of the B subunit under UV illumination, did not inhibit the mobility shift of the E subunit caused by AMP-PNP treatment. The response of V-ATPase following the AMP-PNP binding may cause a conformational change in the E subunit into a form that is susceptible to oxidation of cysteine residues. This is the first demonstration of interaction between the A and E subunits in the substrate-binding state of a plant V-ATPase.
Collapse
Affiliation(s)
- Y Kawamura
- Cryobiosystem Research Center, Iwate University, Iwate, Japan
| | | | | | | |
Collapse
|
38
|
Davies S, Elliott MH, Floor E, Truscott TG, Zareba M, Sarna T, Shamsi FA, Boulton ME. Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med 2001; 31:256-65. [PMID: 11440838 DOI: 10.1016/s0891-5849(01)00582-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Lipofuscin accumulates with age in a variety of highly metabolically active cells, including the retinal pigment epithelium (RPE) of the eye, where its photoreactivity has the potential for cellular damage. The aim of this study was to assess the phototoxic potential of lipofuscin in the retina. RPE cell cultures were fed isolated lipofuscin granules and maintained in basal medium for 7 d. Control cells lacking granules were cultured in an identical manner. Cultures were either maintained in the dark or exposed to visible light (2.8 mWcm2) at 37 degrees C for up to 48 h. Cells were subsequently assessed for alterations in cell morphology, cell viability, lysosomal stability, lipid peroxidation, and protein oxidation. Exposure of lipofuscin-fed cells to short wavelength visible light (390-550 nm) caused lipid peroxidation (increased levels of malondialdehyde and 4-hydroxy-nonenal), protein oxidation (protein carbonyl formation), loss of lysosomal integrity, cytoplasmic vacuolation, and membrane blebbing culminating in cell death. This effect was wavelength-dependent because light exposure at 550 to 800 nm had no adverse effect on lipofuscin-loaded cells. These results confirm the photoxicity of lipofuscin in a cellular system and implicate it in cell dysfunction such as occurs in ageing and retinal diseases.
Collapse
Affiliation(s)
- S Davies
- Cell and Molecular Biology Unit, Department of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Urbatsch IL, Gimi K, Wilke-Mounts S, Lerner-Marmarosh N, Rousseau ME, Gros P, Senior AE. Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the two nucleotide-binding sites in human P-glycoprotein. J Biol Chem 2001; 276:26980-7. [PMID: 11356825 DOI: 10.1074/jbc.m010829200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human wild-type and Cys-less P-glycoproteins were expressed in Pichia pastoris and purified in high yield in detergent-soluble form. Both ran on SDS gels as a single 140-kDa band in the presence of reducing agent and showed strong verapamil-stimulated ATPase activity in the presence of added lipid. The wild type showed spontaneous formation of higher molecular mass species in the absence of reducing agent, and its ATPase was activated by dithiothreitol. Oxidation with Cu(2+) generated the same higher molecular mass species, primarily at 200 and approximately 300 kDa, in high yield. Cross-linking was reversed by dithiothreitol and prevented by pretreatment with N-ethylmaleimide. Using proteins containing different combinations of naturally occurring Cys residues, it was demonstrated that an inhibitory intramolecular disulfide bond forms between Cys-431 and Cys-1074 (located in the Walker A sequences of nucleotide-binding sites 1 and 2, respectively), giving rise to the 200-kDa species. In addition, dimeric P-glycoprotein species ( approximately 300 kDa) form by intermolecular disulfide bonding between Cys-431 and Cys-1074. The ready formation of the intramolecular disulfide between Cys-431 and Cys-1074 establishes that the two nucleotide-binding sites of P-glycoprotein are structurally very close and capable of intimate functional interaction, consistent with available information on the catalytic mechanism. Formation of such a disulfide in vivo could, in principle, underlie a regulatory mechanism and might provide a means of intervention to inhibit P-glycoprotein.
Collapse
Affiliation(s)
- I L Urbatsch
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Grüber G, Svergun DI, Godovac-Zimmermann J, Harvey WR, Wieczorek H, Koch MH. Evidence for major structural changes in the Manduca sexta midgut V1 ATPase due to redox modulation. A small angle X-ray scattering study. J Biol Chem 2000; 275:30082-7. [PMID: 10893230 DOI: 10.1074/jbc.m002976200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shape and overall dimensions of the oxidized and reduced form of the V(1) ATPase from Manduca sexta were investigated by synchrotron radiation x-ray solution scattering. The radius of gyration of the oxidized and reduced complex differ noticeably, with dimensions of 6. 20 +/- 0.06 and 5.84 +/- 0.06 nm, respectively, whereas the maximum dimensions remain constant at 22.0 +/- 0.1 nm. Comparison of the low resolution shapes of both forms, determined ab initio, indicates that the main structural alteration occurs in the head piece, where the major subunits A and B are located, and at the bottom of the stalk. In conjunction with the solution scattering data, decreased susceptibility to tryptic digestion and tryptophan fluorescence of the reduced V(1) molecule provide the first strong evidence for major structural changes in the V(1) ATPase because of redox modulation.
Collapse
Affiliation(s)
- G Grüber
- Universität Osnabrück, Fachbereich Biologie/Chemie, D-49069 Osnabrück, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Maclean KN, Janosík M, Oliveriusová J, Kery V, Kraus JP. Transsulfuration in Saccharomyces cerevisiae is not dependent on heme: purification and characterization of recombinant yeast cystathionine beta-synthase. J Inorg Biochem 2000; 81:161-71. [PMID: 11051561 DOI: 10.1016/s0162-0134(00)00100-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystathionine beta-synthase [CBS; L-serine hydro-lyase (adding homocysteine), EC 4.2.1.22] catalyzes the first committed step of transsulfuration in both yeast and humans. It has been established previously that human CBS is a hemeprotein but although the heme group appears to be essential for CBS activity, the exact function of the heme group is unknown. CBS activity is absent in heme deficient strains of Saccharomyces cerevisiae grown without heme supplementation. CBS activity can be restored by supplementing these strains with heme, implying that there is a heme requirement for yeast CBS. We subcloned, overexpressed and purified yeast CBS. The yeast enzyme shows absolute pyridoxal 5'-phosphate (PLP) dependence for activity but we could find no evidence for the presence of a heme group. Given the degree of sequence and mechanistic similarity between yeast and human CBS, this result indicates that heme is unlikely to play a direct catalytic role in the human CBS reaction mechanism. Further characterization revealed that, in contrast to human CBS, S-adenosylmethionine (AdoMet) does not activate yeast CBS. Yeast CBS was found to be coordinately regulated with proliferation in S. cerevisiae. This finding is the most likely explanation of the observed apparent heme dependence of transsulfuration in vivo.
Collapse
Affiliation(s)
- K N Maclean
- Department of Pediatrics, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | | | |
Collapse
|
42
|
Lerner-Marmarosh N, Gimi K, Urbatsch IL, Gros P, Senior AE. Large scale purification of detergent-soluble P-glycoprotein from Pichia pastoris cells and characterization of nucleotide binding properties of wild-type, Walker A, and Walker B mutant proteins. J Biol Chem 1999; 274:34711-8. [PMID: 10574938 DOI: 10.1074/jbc.274.49.34711] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (Pgp; mouse MDR3) was expressed in Pichia pastoris, grown in fermentor culture, and purified. The final pure product is of high specific ATPase activity and is soluble at low detergent concentration. 120 g of cells yielded 6 mg of pure Pgp; >4 kg of cells were obtained from a single fermentor run. Properties of the pure protein were similar to those of previous preparations, except there was significant ATPase activity in absence of added lipid. Mutant mouse MDR3 P-glycoproteins were purified by the same procedure after growth of cells in flask culture, with similar yields and purity. This procedure should open up new avenues of structural, biophysical, and biochemical studies of Pgp. Equilibrium nucleotide-binding parameters of wild-type mouse MDR3 Pgp were studied using 2'-(3')-O-(2,4,6-trinitrophenyl)adenosine tri- and diphosphate. Both analogs were found to bind with K(d) in the low micromolar range, to a single class of site, with no evidence of cooperativity. ATP displacement of the analogs was seen. Similar binding was seen with K429R/K1072R and D551N/D1196N mutant mouse MDR3 Pgp, showing that these Walker A and B mutations had no significant effect on affinity or stoichiometry of nucleotide binding. These residues, known to be critical for catalysis, are concluded to be involved primarily in stabilization of the catalytic transition state in Pgp.
Collapse
Affiliation(s)
- N Lerner-Marmarosh
- Department of Biochemistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
43
|
Ono BI, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J, Paszewski A. Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 1999; 15:1365-75. [PMID: 10509018 DOI: 10.1002/(sici)1097-0061(19990930)15:13<1365::aid-yea468>3.0.co;2-u] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Using a Saccharomyces cerevisiae strain having the activities of serine O-acetyl-transferase (SATase), O-acetylserine/O-acetylhomoserine sulphydrylase (OAS/OAH SHLase), cystathionine beta-synthase (beta-CTSase) and cystathionine gamma-lyase (gamma-CTLase), we individually disrupted CYS3(coding for gamma-CTLase) and CYS4 (coding for beta-CTSase). The obtained gene disruptants were cysteine-dependent and incorporated the radioactivity of (35)S-sulphate into homocysteine but not into cysteine or glutathione. We concluded, therefore, that SATase and OAS/OAH SHLase do not constitute a cysteine biosynthetic pathway and that cysteine is synthesized exclusively through the pathway constituted with beta-CTSase and gamma-CTLase; note that OAS/OAH SHLase supplies homocysteine to this pathway by acting as OAH SHLase. From further investigation upon the cys3-disruptant, we obtained results consistent with our earlier suggestion that cysteine and OAS play central roles in the regulation of sulphate assimilation. In addition, we found that sulphate transport activity was not induced at all in the cys4-disruptant, suggesting that CYS4 plays a role in the regulation of sulphate assimilation.
Collapse
Affiliation(s)
- B I Ono
- Department of Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Cuozzo JW, Kaiser CA. Competition between glutathione and protein thiols for disulphide-bond formation. Nat Cell Biol 1999; 1:130-5. [PMID: 10559898 DOI: 10.1038/11047] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has long been assumed that the oxidized form of glutathione, the tripeptide glutamate-cysteine-glycine, is a source of oxidizing equivalents needed for the formation of disulphide bonds in proteins within the endoplasmic reticulum (ER), although the in vivo function of glutathione in the ER has never been studied directly. Here we show that the major pathway for oxidation in the yeast ER, defined by the protein Ero1, is responsible for the oxidation of both glutathione and protein thiols. However, mutation and overexpression studies show that glutathione competes with protein thiols for the oxidizing machinery. Thus, contrary to expectation, cellular glutathione contributes net reducing equivalents to the ER; these reducing equivalents can buffer the ER against transient hyperoxidizing conditions.
Collapse
Affiliation(s)
- J W Cuozzo
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- M Forgac
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
46
|
Abstract
The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPases have similar structure and mechanism of action with F-ATPase and several of their subunits evolved from common ancestors. In eukaryotic cells, F-ATPases are confined to the semi-autonomous organelles, chloroplasts, and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. The mechanistic and structural relations between the two enzymes prompted us to suggest similar functional units in V-ATPase as was proposed to F-ATPase and to assign some of the V-ATPase subunit to one of four parts of a mechanochemical machine: a catalytic unit, a shaft, a hook, and a proton turbine. It was the yeast genetics that allowed the identification of special properties of individual subunits and the discovery of factors that are involved in the enzyme biogenesis and assembly. The V-ATPases play a major role as energizers of animal plasma membranes, especially apical plasma membranes of epithelial cells. This role was first recognized in plasma membranes of lepidopteran midgut and vertebrate kidney. The list of animals with plasma membranes that are energized by V-ATPases now includes members of most, if not all, animal phyla. This includes the classical Na+ absorption by frog skin, male fertility through acidification of the sperm acrosome and the male reproductive tract, bone resorption by mammalian osteoclasts, and regulation of eye pressure. V-ATPase may function in Na+ uptake by trout gills and energizes water secretion by contractile vacuoles in Dictyostelium. V-ATPase was first detected in organelles connected with the vacuolar system. It is the main if not the only primary energy source for numerous transport systems in these organelles. The driving force for the accumulation of neurotransmitters into synaptic vesicles is pmf generated by V-ATPase. The acidification of lysosomes, which are required for the proper function of most of their enzymes, is provided by V-ATPase. The enzyme is also vital for the proper function of endosomes and the Golgi apparatus. In contrast to yeast vacuoles that maintain an internal pH of approximately 5.5, it is believed that the vacuoles of lemon fruit may have a pH as low as 2. Similarly, some brown and red alga maintain internal pH as low as 0.1 in their vacuoles. One of the outstanding questions in the field is how such a conserved enzyme as the V-ATPase can fulfill such diverse functions.
Collapse
Affiliation(s)
- N Nelson
- Department of Biochemistry, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
47
|
Forgac M. The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione. J Biol Chem 1999; 274:1301-5. [PMID: 9880499 DOI: 10.1074/jbc.274.3.1301] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been previously demonstrated that the vacuolar H+-ATPase (V-ATPase) of clathrin-coated vesicles is reversibly inhibited by disulfide bond formation between conserved cysteine residues at the catalytic site on the A subunit (Feng, Y., and Forgac, M. (1994) J. Biol. Chem. 269, 13224-13230). Proton transport and ATPase activity of the purified, reconstituted V-ATPase are now shown to be inhibited by the nitric oxide-generating reagent S-nitrosoglutathione (SNG). The K0.5 for inhibition by SNG following incubation for 30 min at 37 degreesC is 200-400 microM. As with disulfide bond formation at the catalytic site, inhibition by SNG is reversed upon treatment with 100 mM dithiothreitol and is partially protected in the presence of ATP. Also as with disulfide bond formation, treatment of the V-ATPase with SNG protects activity from subsequent inactivation by N-ethylmaleimide, as demonstrated by restoration of activity by dithiothreitol following sequential treatment of the V-ATPase with SNG and N-ethylmaleimide. Moreover, inhibition by SNG is readily reversed by dithiothreitol but not by the reduced form of glutathione, suggesting that the disulfide bond formed at the catalytic site of the V-ATPase may not be immediately reduced under intracellular conditions. These results suggest that SNG inhibits the V-ATPase through disulfide bond formation between cysteine residues at the catalytic site and that nitric oxide (or nitrosothiols) might act as a negative regulator of V-ATPase activity in vivo.
Collapse
Affiliation(s)
- M Forgac
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
48
|
Dietz KJ, Heber U, Mimura T. Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:87-92. [PMID: 9733929 DOI: 10.1016/s0005-2736(98)00094-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using tonoplast vesicles, we have investigated the activity of the vacuolar H+-ATPase which is the dominant proton pump at the tonoplast of mesophyll cells. Bafilomycin-sensitive ATP hydrolysis or acidification of tonoplast vesicles in the presence of ATP were measured at varying ATP, ADP and Pi concentrations, and in the presence of oxidized or reduced glutathione. Increased ATP/ADP ratios as reported for the extrachloroplast cytoplasm during the induction phase of photosynthesis at high or low CO2 (P. Gardeström, Biochim. Biophys. Acta 1183 (1993) 327-332) increased the activity of the V-ATPase in simulation experiments with vesicles. Depending on reported subsequent decreases in cytoplasmic ATP/ADP ratios in the presence of high or low CO2, the ATPase activity of tonoplast vesicles changed in simulation experiments to lower values. More than 10 mM phosphate was required to decrease the ATPase activity in vesicles significantly at ATP/ADP ratios of 3 or higher, indicating that ATPase activity is controlled more by ratios of ATP to ADP than by phosphorylation potentials (ATP)/(ADP)(Pi). Oxidized glutathione was inhibitory. The results permit interpretation of the observation that on illumination of previously darkened leaves the pH of the vacuoles of mesophyll cells decreases indicating energized transport of protons across the tonoplast into acidic vacuoles, and that the extent of vacuolar acidification depends on the CO2 concentration of the surrounding air (Z.-H. Yin, S. Neimanis, U. Heber, Planta 182 (1990) 253-261). We conclude that short term control of tonoplast ATPase activity in leaves during dark/light transients can essentially be understood on the basis of reported changes in cytoplasmic ATP/ADP ratios, with a possible participation of redox modulation.
Collapse
Affiliation(s)
- K J Dietz
- Lehrstuhl für Stoffwechselphysiologie und Biochemie der Pflanzen, Universität Bielefeld, 33615 Bielefeld, Germany.
| | | | | |
Collapse
|