1
|
Wang F, Zhang Q, Zhang F, Zhang E, Li M, Ma S, Guo J, Yang Z, Zhu J. Adenovirus vector-mediated single chain variable fragments target the nucleocapsid protein of porcine epidemic diarrhea virus and protect against viral infection in piglets. Front Immunol 2023; 14:1058327. [PMID: 36761768 PMCID: PMC9902916 DOI: 10.3389/fimmu.2023.1058327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) mainly infects the intestinal epithelial cells of pigs, causing porcine epidemic diarrhea (PED). In particular, the virus causes severe diarrhea, dehydration, and death in neonatal piglets. Maternal immunity effectively protects neonatal piglets from PEDV infection; however, maternal antibodies can only prevent PEDV attachment and entry into target cells, but have no effects on intracellular viruses. Intracellular antibodies targeting virus-encoded proteins are effective in preventing viral infection. We previously identified four single chain variable fragments (scFvs), ZW1-16, ZW3-21, ZW1-41, and ZW4-16, which specifically targeted the PEDV N protein and significantly inhibited PEDV replication and up-regulated interferon-λ1 (IFN-λ1) expression in host cells. In our current study, the four scFvs were subcloned into replication-defective adenovirus vectors to generate recombinant adenoviruses rAdV-ZW1-16, rAdV-ZW3-21, rAdV-ZW1-41, and rAdV-ZW4-16. ScFvs were successfully expressed in Human Embryonic Kidney 293 (HEK293) cells and intestinal porcine epithelial cell line J2 (IPEC-J2) and were biosafe for piglets as indicated by body temperature and weight, scFv excretion in feces, IFN-γ and interleukin-4 (IL-4) expression in jejunum, and pathological changes in porcine tissue after oral administration. Western blotting, immunofluorescence, and immunohistochemical analyses showed that scFvs were expressed in porcine jejunum. The prophylactic effects of rAdV-ZW, a cocktail of the four rAdV-scFvs, on piglet diarrhea caused by PEDV was investigated. Clinical symptoms in piglets orally challenged with PEDV, following a two-time treatment with rAdV-ZW, were significantly reduced when compared with PEDV-infected piglets treated with phosphate buffered saline (PBS) or rAdV-wild-type. Also, no death and jejunal lesions were observed. ScFv co-localization with the PEDV N protein in vivo was also observed. Next, the expression of pro-inflammatory serum cytokines such as tumor necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, and IFN-λ was assessed by enzyme-linked immunosorbent assay (ELISA), which showed that scFvs significantly suppressed PEDV-induced pro-inflammatory cytokine expression and restored PEDV-inhibited IFN-λ expression. Therefore, our study supported a promising role for intracellular scFvs targeting the PEDV N protein to prevent and treat diarrhea in PEDV-infected piglets.
Collapse
Affiliation(s)
- Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China,Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Qing Zhang, ; Jianguo Zhu,
| | - Fanqing Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - En Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianming Guo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Qing Zhang, ; Jianguo Zhu,
| |
Collapse
|
2
|
Improved scFv Anti-LOX-1 Binding Activity by Fusion with LOX-1-Binding Peptides. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8946935. [PMID: 29094051 PMCID: PMC5637825 DOI: 10.1155/2017/8946935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/20/2017] [Indexed: 12/28/2022]
Abstract
The oxidized low-density lipoprotein receptor-1 (LOX-1) targeted single-chain variable fragment (scFvs) is a promising molecule for the targeted delivery of imaging and therapeutic molecules of atherosclerotic diseases; however, its applications are limited by the inherent low antigen affinity. In this study, the three-dimensional (3D) model of the anti-LOX-1 scFv was constructed and its docking with the LOX-1 protein was developed. To improve the LOX-1-binding activity, the anti-LOX-1 scFv was designed to fuse with one of three LOX-1-binding heptapeptides, LTPATAI, FQTPPQL, and LSIPPKA, at its N-terminus and C-terminus and in the linker region, which have different LOX-1-binding interfaces with the anti-LOX-1 scFv analyzed by an array of computational approaches. These scFv/peptide fusions were constructed, successfully expressed in Brevibacillus choshinensis hosts, and purified by a two-step column purification process. The antigen binding activity, structural characteristics, thermal stability, and stability in serum of these fusion proteins were examined. Results showed that the scFv with N-terminal fusing peptides proteins demonstrated increased LOX-1-binding activity without decrease in stability. These findings will help increase the application efficacy of LOX-1 targeting scFv in LOX-1-based therapy.
Collapse
|
3
|
Crystal structure of tissue factor in complex with antibody 10H10 reveals the signaling epitope. Cell Signal 2017; 36:139-144. [DOI: 10.1016/j.cellsig.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 04/28/2017] [Accepted: 05/05/2017] [Indexed: 11/21/2022]
|
4
|
Chen H, Chen Z, Wu B, Ullah J, Zhang T, Jia J, Wang H, Tan T. Influences of Various Peptide Linkers on the Thermotoga maritima MSB8 Nitrilase Displayed on the Spore Surface of Bacillus subtilis. J Mol Microbiol Biotechnol 2017; 27:64-71. [PMID: 28103592 DOI: 10.1159/000454813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/25/2016] [Indexed: 11/19/2022] Open
Abstract
In the present study, fusion genes composed of Thermotoga maritima MSB8 nitrilase and Bacillus subtilis 168 outer coat protein CotG were constructed with various peptide linkers and displayed on B. subtilis DB 403 spores. The successful display of CotG-nit fusion proteins on the spore surface of B. subtilis was verified by Western blot analysis and activity measurement. It was demonstrated that the fusion with linker GGGGSEAAAKGGGGS presented the highest thermal and pH stability, which is 2.67- and 1.9-fold of the fusion without linker. In addition, fusion with flexible linker (GGGGS)3 demonstrated better thermal and pH stability than fusions with linkers GGGGS and (GGGGS)2. Fusion with rigid linker (EAAAK) demonstrated better thermal stability than fusions with linkers (EAAAK)2 and (EAAAK)3. Fusions with linker (EAAAK)2 demonstrated better pH stability than fusions with linkers (EAAAK) and (EAAAK)3. In the presence of 1 mM dithiothreitol, 1% (v/v) sodium dodecyl sulfate, and 20% (v/v) ethanol, the optimal linkers of the fusions were MGSSSN, GGGGSEAAAKGGGGS, and (GGGGS)3, respectively. In summary, our results showed that optimizing the peptide linkers with different type, length, and amino acid composition of the fusion proteins would be an efficient way to maintain the stability of fusion proteins and thus improve the nitrilase display efficiency, which could provide an effective method for rational design peptide linkers of displayed nitrilase on B. subtilis.
Collapse
Affiliation(s)
- Huayou Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jee PF, Chen FS, Shu MH, Wong WF, Abdul Rahim R, AbuBakar S, Chang LY. Insertion of single-chain variable fragment (scFv) peptide linker improves surface display of influenza hemagglutinin (HA1) on non-recombinant Lactococcus lactis. Biotechnol Prog 2016; 33:154-162. [PMID: 27802566 DOI: 10.1002/btpr.2400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Heterologous protein displayed on the surface of Lactococcus lactis using the binding domain of N-acetylmuramidase (AcmA) has a potential application in vaccine delivery. In this study, we developed a non-recombinant L. lactis surface displaying the influenza A (H1N1) 2009 hemagglutinin (HA1). Three recombinant proteins, HA1/L/AcmA, HA1/AcmA, and HA1 were overexpressed in Escherichia coli, and purified. In the binding study using flow cytometry, the HA1/L/AcmA, which contained the single-chain variable fragment (scFv) peptide linker showed significantly higher percentage of binding counts and mean fluorescence binding intensity (MFI) (51.7 ± 1.4% and 3,594.0 ± 675.9, respectively) in comparison to the HA1/AcmA without the scFv peptide linker (41.1 ± 1.5% and 1,652.0 ± 34.1, respectively). Higher amount of HA1/L/AcmA (∼2.9 × 104 molecules per cell) was displayed on L. lactis when compared to HA1/AcmA (∼1.1 × 104 molecules per cell) in the immunoblotting analysis. The HA1/L/AcmA completely agglutinated RBCs at comparable amount of protein to that of HA1/AcmA and HA1. Computational modeling of protein structures suggested that scFv peptide linker in HA1/L/AcmA kept the HA1 and the AcmA domain separated at a much longer distance in comparison to HA1/AcmA. These findings suggest that insertion of the scFv peptide linker between HA1 and AcmA improved binding of recombinant proteins to L. lactis. Hence, insertion of scFv peptide linker can be further investigated as a potential approach for improvement of heterologous proteins displayed on the surface of L. lactis using the AcmA binding domain. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:154-162, 2017.
Collapse
Affiliation(s)
- Pui-Fong Jee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fez-Shin Chen
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Meng-Hooi Shu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Abstract
In situ proteolysis is the method of proactively adding tiny amounts of nonspecific proteases to aid in the crystallization of proteins and protein macromolecular complexes. The simplicity of the procedure and high recovery rate make it a method of first choice for recalcitrant targets. An improved and updated in situ proteolysis protocol used in high-throughput structural biology platforms is described.
Collapse
Affiliation(s)
- Yufeng Tong
- Structural Genomics Consortium, University of Toronto, 101 College Street, MaRS Centre, South Tower, Suite 700, Toronto, ON, Canada, M5G 1L7,
| | | | | | | |
Collapse
|
7
|
Sushma K, Vijayalakshmi MA, Krishnan V, Satheeshkumar PK. Cloning, expression, purification and characterization of a single chain variable fragment specific to tumor necrosis factor alpha in Escherichia coli. J Biotechnol 2011; 156:238-44. [DOI: 10.1016/j.jbiotec.2011.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 11/29/2022]
|
8
|
Recombinant snake venom cystatin inhibits the growth, invasion and metastasis of B16F10 cells and MHCC97H cells in vitro and in vivo. Toxicon 2011; 57:704-11. [PMID: 21329716 DOI: 10.1016/j.toxicon.2011.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 01/25/2011] [Accepted: 02/08/2011] [Indexed: 02/01/2023]
Abstract
Studies have shown that expression of snake venom cystatin (sv-cystatin) in mouse melanoma cells and human gastric carcinoma cells can inhibit their invasion and metastasis. To advance the research into the biological features and pharmaceutical applications of sv-cystatin, we investigated the expression of recombinant sv-cystatin in an optimized Pichia pastoris system. Approximately 5 mg/L of bioactive sv-cystatin was obtained with a purity of 95.08%. Kinetic analyses of recombinant sv-cystatin revealed highly effective inhibitory efficiency against papain (Ki = 2.67 nM). We further investigated the effects of recombinant sv-cystatin on the invasion and metastasis of B16F10 cells and MHCC97H cells in vitro and in vivo. Matrigel invasion assays showed significant inhibition of recombinant sv-cystatin on the tumor cells in vitro. For experimental lung colonization assays, C57BL/6 mice inoculated in the lateral tail vein with B16F10 cells were treated with three i.v. injections of recombinant sv-cystatin (25 and 50 mg/kg) 24 h before cell inoculation, and 2 h and 24 h after cell inoculation. Administration of recombinant sv-cystatin significantly suppressed the formation of lung tumor colonies. For spontaneous metastasis assays, MHCC97H cells were inoculated s.c. into nude mice. After 24 h, recombinant sv-cystatin was administered by i.p. injections at 25, 50 or 100 mg/kg once daily for 5 days. Administration of recombinant sv-cystatin significantly decreased the formation of lung tumor colonies. Taken together, recombinant sv-cystatin inhibits the invasion and metastasis of tumor cells in vitro and in vivo. These results may facilitate the future evaluation of the pharmaceutical applications of sv-cystatin.
Collapse
|
9
|
Crowley E, O’Mara ML, Kerr ID, Callaghan R. Transmembrane helix 12 plays a pivotal role in coupling energy provision and drug binding in ABCB1. FEBS J 2010; 277:3974-85. [DOI: 10.1111/j.1742-4658.2010.07789.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Gu X, Jia X, Feng J, Shen B, Huang Y, Geng S, Sun Y, Wang Y, Li Y, Long M. Molecular modeling and affinity determination of scFv antibody: proper linker peptide enhances its activity. Ann Biomed Eng 2009; 38:537-49. [PMID: 19816775 DOI: 10.1007/s10439-009-9810-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 09/23/2009] [Indexed: 11/29/2022]
Abstract
One of existing strategies to engineer active antibody is to link V(H) and V(L) domains via a linker peptide. How the composition, length, and conformation of the linker affect antibody activity, however, remains poorly understood. In this study, a dual approach that coordinates molecule modeling, biological measurements, and affinity evaluation was developed to quantify the binding activity of a novel stable miniaturized anti-CD20 antibody or single-chain fragment variable (scFv) with a linker peptide. Upon computer-guided homology modeling, distance geometry analysis, and molecular superimposition and optimization, three new linker peptides PT1, PT2, and PT3 with respective 7, 10, and 15 residues were proposed and three engineered antibodies were then constructed by linking the cloned V(H) and V(L) domains and fusing to a derivative of human IgG1. The binding stability and activity of scFv-Fc chimera to CD20 antigen was quantified using a micropipette adhesion frequency assay and a Scatchard analysis. Our data indicated that the binding affinity was similar for the chimera with PT2 or PT3 and approximately 24-fold higher than that for the chimera with PT1, supporting theoretical predictions in molecular modeling. These results further the understanding in the impact of linker peptide on antibody structure and activity.
Collapse
Affiliation(s)
- Xin Gu
- Institute of Basic Medical Sciences, P.O. Box 130 (3), Taiping Road, Beijing 100850, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Crowley E, O'Mara ML, Reynolds C, Tieleman DP, Storm J, Kerr ID, Callaghan R. Transmembrane helix 12 modulates progression of the ATP catalytic cycle in ABCB1. Biochemistry 2009; 48:6249-58. [PMID: 19456124 DOI: 10.1021/bi900373x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multidrug efflux pumps, such as P-glycoprotein (ABCB1), present major barriers to the success of chemotherapy in a number of clinical settings. Molecular details of the multidrug efflux process by ABCB1 remain elusive, in particular, the interdomain communication associated with bioenergetic coupling. The present investigation has focused on the role of transmembrane helix 12 (TM12) in the multidrug efflux process of ABCB1. Cysteine residues were introduced at various positions within TM12, and their effect on ATPase activity, nucleotide binding, and drug interaction were assessed. Mutation of several residues within TM12 perturbed the maximal ATPase activity of ABCB1, and the underlying cause was a reduction in basal (i.e., drug-free) hydrolysis of the nucleotide. Two of the mutations (L976C and F978C) were found to reduce the binding of [gamma-(32)P]-azido-ATP to ABCB1. In contrast, the A980C mutation within TM12 enhanced the rate of ATP hydrolysis; once again, this was due to modified basal activity. Several residues also caused reductions in the potency of stimulation of ATP hydrolysis by nicardipine and vinblastine, although the effects were independent of changes in drug binding per se. Overall, the results indicate that TM12 plays a key role in the progression of the ATP hydrolytic cycle in ABCB1, even in the absence of the transported substrate.
Collapse
Affiliation(s)
- Emily Crowley
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
12
|
Lu P, Feng MG. Bifunctional enhancement of a β-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol 2008; 79:579-87. [PMID: 18415095 DOI: 10.1007/s00253-008-1468-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/20/2008] [Accepted: 03/23/2008] [Indexed: 11/29/2022]
Affiliation(s)
- Ping Lu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | | |
Collapse
|
13
|
Mal TK, Takahata S, Ki S, Zheng L, Kokubo T, Ikura M. Functional silencing of TATA-binding protein (TBP) by a covalent linkage of the N-terminal domain of TBP-associated factor 1. J Biol Chem 2007; 282:22228-38. [PMID: 17553784 DOI: 10.1074/jbc.m702988200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
General transcription factor TFIID is comprised of TATA-binding protein (TBP) and TBP-associated factors (TAFs), together playing critical roles in regulation of transcription initiation. The TAF N-terminal domain (TAND) of yeast TAF1 containing two subdomains, TAND1 (residues 10-37) and TAND2 (residues 46-71), is sufficient to interact with TBP and suppress the TATA binding activity of TBP. However, the detailed structural analysis of the complex between yeast TBP and TAND12 (residues 6-71) was hindered by its poor solubility and stability in solution. Here we report a molecular engineering approach where the N terminus of TBP is fused to the C terminus of TAND12 via linkers of various lengths containing (GGGS)(n) sequence, (n = 1, 2, 3). The length of the linker within the TAND12-TBP fusion has a significant effect on solubility and stability (SAS). The construct with (GGGS)(3) linker produces the best quality single-quantum-coherence (HSQC) NMR spectrum with markedly improved SAS. In parallel to these observations, the TAND12-TBP fusion exhibits marked reduction of TBP function in binding to TAF1 as well as temperature sensitivity in in vivo yeast cell growth. Remarkably, the temperature sensitivity was proportional to the length of the linker in the fusions: the construct with (GGGS)(3) linker did not grow at 20 degrees C, while those with (GGGS)(1) and (GGGS)(2) linkers did. These results together indicate that the native interaction between TBP and TAND12 is well maintained in the TAND12-(GGGS)(3)-TBP fusion and that this fusion approach provides an excellent model system to investigate the structural detail of the TBP-TAF1 interaction.
Collapse
Affiliation(s)
- Tapas K Mal
- Division of Signaling Biology, Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, Toronto Medical Discovery Towers, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
14
|
The effect of the hexahistidine-tag in the oligomerization of HSC70 constructs. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 844:328-34. [PMID: 16904956 DOI: 10.1016/j.jchromb.2006.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/14/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
The hexahistidine is a fusion tag used for the isolation of proteins via an immobilized metal-ion affinity chromatography (IMAC). In the present study, we have purified and analyzed two constructs of the heat shock protein HSC70 in the presence or the absence of the His-tag (C30WT-His(+)/C30WT and C30DeltaL-His(+)/C30DeltaL). The oligomerization properties of the constructs were analyzed by size exclusion chromatography (SEC) and analytical ultracentrifugation (AU). Results from SEC analysis indicated that the His-tag promotes the dimerization of C30DeltaL-His(+) but has no effect on the elution profile of C30WT-His(+), compared to their respective untagged forms C30DeltaL and C30WT. These observations were also confirmed by AU analysis which indicates that C30DeltaL is stabilized in the dimeric form in the presence of the His-tag. These results emphasize the need to remove the His-tag before structural characterization of some recombinant proteins.
Collapse
|
15
|
Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK. Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 2005; 44:12454-70. [PMID: 16156658 DOI: 10.1021/bi050736e] [Citation(s) in RCA: 517] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many protein-protein and protein-nucleic acid interactions involve coupled folding and binding of at least one of the partners. Here, we propose a protein structural element or feature that mediates the binding events of initially disordered regions. This element consists of a short region that undergoes coupled binding and folding within a longer region of disorder. We call these features "molecular recognition elements" (MoREs). Examples of MoREs bound to their partners can be found in the alpha-helix, beta-strand, polyproline II helix, or irregular secondary structure conformations, and in various mixtures of the four structural forms. Here we describe an algorithm that identifies regions having propensities to become alpha-helix-forming molecular recognition elements (alpha-MoREs) based on a discriminant function that indicates such regions while giving a low false-positive error rate on a large collection of structured proteins. Application of this algorithm to databases of genomics and functionally annotated proteins indicates that alpha-MoREs are likely to play important roles protein-protein interactions involved in signaling events.
Collapse
|
16
|
Matsuzawa SI, Cuddy M, Fukushima T, Reed JC. Method for targeting protein destruction by using a ubiquitin-independent, proteasome-mediated degradation pathway. Proc Natl Acad Sci U S A 2005; 102:14982-7. [PMID: 16219697 PMCID: PMC1257734 DOI: 10.1073/pnas.0507512102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
With the euchromatic portion of several mammalian genomes now sequenced, emphasis has turned to ascertaining the functions of gene products. A method for targeting destruction of selected proteins in mammalian cells is described, based on the ubiquitin-independent mechanism by which ornithine decarboxylase (ODC) is degraded by the 26S proteasome in collaboration with antizyme (AZ). We show that expressing whole proteins, protein domains, or peptide ligands fused to the N terminus of ODC promotes proteasome-dependent degradation of these chimeric fusion proteins and their interacting cellular target proteins. Moreover, the degradation of the interacting (targeted) protein depends on coexpression of AZ in about half of cases, providing an inducible switch for triggering the degradation process. By using 12 pairs of interacting proteins for testing, direct comparisons with several alternative strategies for achieving targeted protein destruction based on the concept of induced ubiquitination revealed advantages of the ODC/AZ system, which does not require posttranslational attachment of ubiquitin to target proteins. As proof of concept, the ODC/AZ system was used to ablate expression of specific endogenous proteins (e.g., TRAF6; Rb), and was shown to create the expected lesions in cellular pathways that require these proteins. Altogether, these findings reveal a strategy for achieving targeted destruction of cellular proteins, thus providing an additional tool for revealing the cellular phenotypes of gene products.
Collapse
|
17
|
Hamdy N, Goustin AS, Desaulniers JP, Li M, Chow CS, Al-Katib A. Sheep red blood cells armed with anti-CD20 single-chain variable fragments (scFvs) fused to a glycosylphosphatidylinositol (GPI) anchor: a strategy to target CD20-positive tumor cells. J Immunol Methods 2005; 297:109-24. [PMID: 15777935 DOI: 10.1016/j.jim.2004.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 11/30/2004] [Accepted: 12/01/2004] [Indexed: 11/21/2022]
Abstract
Single-chain variable fragment antibodies (scFv) retain antigen specificity and offer advantages over intact antibodies as therapeutic agents. We cloned the cDNA of the V(H) and V(kappa) regions from a mouse hybridoma (HB-9645) directed against human CD20. In addition to the basic scFv construct (V(kappa)-L-V(H)), we genetically engineered a secretory signal, six histidine residues, and a 'Flu' tag to facilitate secretion, purification, and detection. A glycosyl-phosphatidylinositol (GPI) modification signal was added at the C terminus. The GPI-tagged and the non-tagged scFvs were expressed in high yields on the surface of stably transfected insect cells. The CD20-binding properties of purified non-GPI tagged scFv were examined using flow cytometry and immunocytochemistry. The non-GPI-tagged scFv selectively recognizes CD20-positive cells in a concentration-dependent manner. Double-flow cytometry analysis using fresh peripheral blood lymphocytes and WSU-FSCCL cells revealed that our scFv resolves the B-cell population better than the intact antibody. The GPI-tagged scFv was loaded onto the surface of sheep erythrocytes to form rosettes with CD20-positive cells. The genetically engineered anti-CD20 scFv and GPI-tagged derivative have binding specificity for the CD20 antigen. The scFvs described here has potential uses as an in vivo tumor-imaging agent and as a carrier vehicle for targeted delivery of cytocidal agents to CD20-positive cancer cells.
Collapse
Affiliation(s)
- Nayera Hamdy
- Lymphoma Research Laboratory, Department of Internal Medicine, School of Medicine, Wayne State University Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
18
|
Feng J, Xie Z, Guo N, Shen B. Design and assembly of anti-CD16 ScFv antibody with two different linker peptides. J Immunol Methods 2003; 282:33-43. [PMID: 14604538 DOI: 10.1016/j.jim.2003.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several studies have focused on the effect of different lengths of linker peptides on the properties of single-chain Fv (ScFv). The expressing level and stability of anti-CD16 ScFv with common linker peptide (Gly(4)Ser)(3) were very poor. Considering 3-D structures of heavy and light chain variable region gene of anti-CD16 antibody, a novel linker peptide PT7 (i.e. Gly(3)SerAla(3)) was designed. As a comparison, the linker PT5 (Gly(4)Ser) was chosen to construct anti-CD16 ScFv. A molecular modeling of anti-CD16 ScFv antibody with the two different linker peptides was designed using computer-assisted modeling techniques and molecular dynamics method. Based on the crystal structure of human IgG1 Fc fragment-Fc gamma receptor III (Fc gamma RIII) complex, putative interactions between anti-CD16 ScFv antibody with two different linker peptide and Fc gamma receptor III fragment were predicted with Docking method. Using molecular graphic techniques, the structure-function relationship of anti-CD16 ScFv antibody with two different linker peptides was analyzed and the combining ability was predicted. The binding activity to Daudi cells by FACS showed that anti-CD16 ScFv antibody with two different linker peptides possessed similar ability and the experimental result was consistent with the theoretical prediction.
Collapse
Affiliation(s)
- Jiannan Feng
- Beijing Institute of Basic Medical Sciences, PO Box 130 (3), Beijing 100850, PR China
| | | | | | | |
Collapse
|
19
|
Lee YC, Boehm MK, Chester KA, Begent RHJ, Perkins SJ. Reversible dimer formation and stability of the anti-tumour single-chain Fv antibody MFE-23 by neutron scattering, analytical ultracentrifugation, and NMR and FT-IR spectroscopy. J Mol Biol 2002; 320:107-27. [PMID: 12079338 DOI: 10.1016/s0022-2836(02)00403-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MFE-23 is a single chain Fv (scFv) antibody molecule used to target colorectal cancer through its high affinity for the tumour marker carcinoembryonic antigen (CEA). ScFv molecules are formed from peptide-linked antibody V(H) and V(L) domains, and many of these form dimers. Our recent crystal structure for MFE-23 showed that this formed an unusual symmetric back-to-back association of two monomers that is consistent with a domain-swapped diabody structure. Neutron scattering and modelling fits showed that MFE-23 existed as compact V(H)-V(L)-linked monomers at therapeutically relevant concentrations below 1 mg/ml. Size-exclusion gel chromatography showed that the monomeric and dimeric forms of MFE-23 could be separated, and that the proportions of these two forms depended on the starting MFE-23 concentration. Sedimentation equilibrium experiments by analytical ultracentrifugation at nine concentrations of MFE-23 indicated a reversible monomer-dimer self-association equilibrium with an association constant of 1.9x10(3)-2.2x10(3) M(-1). Sedimentation velocity experiments using the time derivative g(s(*)) method showed that MFE-23-His has a concentration-dependent weight average sedimentation coefficient that increased from 1.8 S for the monomer to about 3-6 S for the dimer. Both values agreed with those calculated from the MFE-23 crystal structure. In relation to the thermal stability of MFE-23, denaturation experiments by (1)H NMR and FT-IR spectroscopy showed that the molecule is stable up to 47 degrees C, after which denaturation was irreversible. MFE-23 dimerisation is discussed in terms of a new model for diabody structures, in which the V(H) and V(L) domains in the monomer are able to dissociate and reassociate to form a dimer, or diabody, but in which symmetric back-to-back contacts between the two monomers are formed. This dimerisation in solution is attributed to the complementary nature of the C-terminal surface of the MFE-23 monomer. Crystal structures for seven other scFv molecules have shown that, while the contact residues for symmetric back-to-back dimer formation in MFE-23 are not fully conserved, in principle, back-to-back contacts can be formed in these too. This offers possibilities for the creation of other forms of scFv molecules.
Collapse
Affiliation(s)
- Yie Chia Lee
- Department of Biochemistry and Molecular Biology, Royal Free and University College Medical School, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
20
|
Niv R, Assaraf YG, Segal D, Pirak E, Reiter Y. Targeting multidrug resistant tumor cells with a recombinant single-chain FV fragment directed to P-glycoprotein. Int J Cancer 2001; 94:864-72. [PMID: 11745490 DOI: 10.1002/ijc.1552] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The MDR1 gene product P-glycoprotein (Pgp) plays a key role in multidrug resistance of cancer cells. Pgp is an ATP-driven efflux pump that extrudes a variety of dissimilar hydrophobic cytotoxic compounds. P-glycoprotein overexpression results in multidrug resistance (MDR) of tumor cell lines in vitro as well as in cancer patients. To selectively target and eliminate MDR tumor cells, we have isolated a monoclonal antibody that specifically reacts with the first extracellular loop of the human Pgp. We have cloned the variable domain genes of this antibody and assembled a functional single-chain Fv fragment capable of specifically targeting various Pgp-expressing MDR carcinoma cells lines. Targeting and specific elimination of Pgp-dependent MDR human cancer cells was achieved by constructing a single-chain immunotoxin in which the scFv fragment was fused to a truncated form of Pseudomonas exotoxin (PE38). We conclude that recombinant Fv-immunotoxins or other Fv-based molecules armed with potent cytotoxins represent an effective tool in targeted cancer therapy aimed at specific elimination of MDR tumor cell sub-populations. Recombinant antibody fragments targeting MDR proteins such as Pgp may be also used for intracellular expression and consequent phenotypic knockout of MDR.
Collapse
Affiliation(s)
- R Niv
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
21
|
Heike Y, Kasono K, Kunisaki C, Hama S, Saijo N, Tsuruo T, Kuntz DA, Rose DR, Curiel DT. Overcoming multi-drug resistance using an intracellular anti-MDR1 sFv. Int J Cancer 2001. [DOI: 10.1002/1097-0215(200102)9999:9999<::aid-ijc1150>3.0.co;2-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Goel A, Colcher D, Koo JS, Booth BJ, Pavlinkova G, Batra SK. Relative position of the hexahistidine tag effects binding properties of a tumor-associated single-chain Fv construct. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1523:13-20. [PMID: 11099853 DOI: 10.1016/s0304-4165(00)00086-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hexahistidine tag (His-tag) is the most widely used tag for affinity purification of recombinant proteins for their structural and functional analysis. In the present study, single chain Fv (scFv) constructs were engineered form the monoclonal antibody (MAb) CC49 which is among the most extensively studied MAb for cancer therapy. For achieving efficient purification of scFvs by immobilized metal-ion affinity chromatography (IMAC), a His-tag was placed either at the C-terminal (scFv-His6) or N-terminal (His6-scFv) of the coding sequence. Solid-phase radioimmunoassay for scFv-His6 showed only 20-25% binding whereas both His6-scFv and scFv (no His-tag) showed 60-65% binding. Surface plasmon resonance studies by BIAcore revealed the binding affinity constant (KA) for His6-scFv and scFv as 1.19 x 10(6) M(-1) and 3.27 x 10(6) M(-1), respectively. No K(A) value could be calculated for scFv-His6 due to poor binding kinetics (kon and koff). Comparative homology modeling for scFv and scFv-His6 showed that the C-terminal position of the His-tag partially covered the antigen-binding site of the protein. The study demonstrates that the C-terminal position of His-tag on the CC49 scFv adversely affects the binding properties of the construct. The results emphasize the importance of functional characterization of recombinant proteins expressed with purification tags.
Collapse
Affiliation(s)
- A Goel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198, USA
| | | | | | | | | | | |
Collapse
|
23
|
van Den Elsen JM, Kuntz DA, Hoedemaeker FJ, Rose DR. Antibody C219 recognizes an alpha-helical epitope on P-glycoprotein. Proc Natl Acad Sci U S A 1999; 96:13679-84. [PMID: 10570132 PMCID: PMC24124 DOI: 10.1073/pnas.96.24.13679] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ABC transporter, P-glycoprotein, is an integral membrane protein that mediates the ATP-driven efflux of drugs from multidrug-resistant cancer and HIV-infected cells. Anti-P-glycoprotein antibody C219 binds to both of the ATP-binding regions of P-glycoprotein and has been shown to inhibit its ATPase activity and drug binding capacity. C219 has been widely used in a clinical setting as a tumor marker, but recent observations of cross-reactivity with other proteins, including the c-erbB2 protein in breast cancer cells, impose potential limitations in detecting P-glycoprotein. We have determined the crystal structure at a resolution of 2.4 A of the variable fragment of C219 in complex with an epitope peptide derived from the nucleotide binding domain of P-glycoprotein. The 14-residue peptide adopts an amphipathic alpha-helical conformation, a secondary structure not previously observed in structures of antibody-peptide complexes. Together with available biochemical data, the crystal structure of the C219-peptide complex indicates the molecular basis of the cross-reactivity of C219 with non-multidrug resistance-associated proteins. Alignment of the C219 epitope with the recent crystal structure of the ATP-binding subunit of histidine permease suggests a structural basis for the inhibition of the ATP and drug binding capacity of P-glycoprotein by C219. The results provide a rationale for the development of C219 mutants with improved specificity and affinity that could be useful in antibody-based P-glycoprotein detection and therapy in multidrug resistant cancers.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- Amino Acid Sequence
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Crystallography, X-Ray
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Immunoglobulin Fragments/chemistry
- Immunoglobulin Fragments/immunology
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
Collapse
Affiliation(s)
- J M van Den Elsen
- Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto M5G 2M9, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Abstract
Acquired drug resistance represents a major cause of chemotherapy failure in patients with cancer. The characterization of the molecular pathways involved in drug resistance has provided us with new targets to overcome this problem. Many of these target proteins are often overexpressed in human cancers. A number of gene therapy strategies, including antisense oligonucleotides, ribozymes and single-chain antibodies, have been developed to achieve the selective modulation and inhibition of various cellu- lar proteins. Thus, these approaches can be exploited to modulate the resistance phenotype of tumor cells. These gene therapy strategies represent a novel and unique way to enhance the sensitivity of tumor cells to chemotherapeutic drugs. This review will focus on the use of intracellular immunization as a means to modulate the expression of specific genetic determinants involved in the drug resistance phenotype.
Collapse
Affiliation(s)
- A Pich
- Département de Microbiologie, Faculté de Médecine, Université de Sherbrooke, 3001 12ième Avenue Nord, Sherbrooke, Québec, Canada J1H 5N4
| | | |
Collapse
|