1
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
2
|
Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet 2021; 12:614379. [PMID: 33603774 PMCID: PMC7885269 DOI: 10.3389/fgene.2021.614379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rabbits are one of the most used experimental animals for investigating the mechanisms of human cardiovascular disease and lipid metabolism because they are phylogenetically closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first used to study human atherosclerosis more than 100 years ago and are still playing an important role in cardiovascular research. Furthermore, transgenic rabbits generated by pronuclear microinjection provided another means to investigate many gene functions associated with human disease. Because of the lack of both rabbit embryonic stem cells and the genome information, for a long time, it has been a dream for scientists to obtain knockout rabbits generated by homologous recombination-based genomic manipulation as in mice. This obstacle has greatly hampered using genetically modified rabbits to disclose the molecular mechanisms of many human diseases. The advent of genome editing technologies has dramatically extended the applications of experimental animals including rabbits. In this review, we will update genetically modified rabbits, including transgenic, knock-out, and knock-in rabbits during the past decades regarding their use in cardiovascular research and point out the perspectives in future.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Pathology, Xi'an Medical University, Xi'an, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Abstract
Transgenic rabbits have contributed to the progress of biomedical science as human disease models because of their unique features, such as the lipid metabolism system similar to humans and medium body size that facilitates handling and experimental manipulation. In fact, many useful transgenic rabbits have been generated and used in research fields such as lipid metabolism and atherosclerosis, cardiac failure, immunology, and oncogenesis. However, there have been long-term problems, namely that the transgenic efficiency when using pronuclear microinjection is low compared with transgenic mice and production of knockout rabbits is impossible owing to the lack of embryonic stem cells for gene targeting in rabbits. Despite these limitations, the emergence of novel genome editing technology has changed the production of genetically modified animals including the rabbit. We are finally able to produce both transgenic and knockout rabbit models to analyze gain- and loss-of-functions of specific genes. It is expected that the use of genetically modified rabbits will extend to various research fields. In this review, we describe the unique features of rabbits as laboratory animals, the current status of their development and use, and future perspectives of transgenic rabbit models for human diseases.
Collapse
|
4
|
Fan J, Chen Y, Yan H, Niimi M, Wang Y, Liang J. Principles and Applications of Rabbit Models for Atherosclerosis Research. J Atheroscler Thromb 2018; 25:213-220. [PMID: 29046488 PMCID: PMC5868506 DOI: 10.5551/jat.rv17018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 02/02/2023] Open
Abstract
Rabbits are one of the most used experimental animals for biomedical research, particularly as a bioreactor for the production of antibodies. However, many unique features of the rabbit have also made it as an excellent species for examining a number of aspects of human diseases such as atherosclerosis. Rabbits are phylogenetically closer to humans than rodents, in addition to their relatively proper size, tame disposition, and ease of use and maintenance in the laboratory facility. Due to their short life spans, short gestation periods, high numbers of progeny, low cost (compared with other large animals) and availability of genomics and proteomics, rabbits usually serve to bridge the gap between smaller rodents (mice and rats) and larger animals, such as dogs, pigs and monkeys, and play an important role in many translational research activities such as pre-clinical testing of drugs and diagnostic methods for patients. The principle of using rabbits rather than other animals as an experimental model is very simple: rabbits should be used for research, such as translational research, that is difficult to accomplish with other species. Recently, rabbit genome sequencing and transcriptomic profiling of atherosclerosis have been successfully completed, which has paved a new way for researchers to use this model in the future. In this review, we provide an overview of the recent progress using rabbits with specific reference to their usefulness for studying human atherosclerosis.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Manabu Niimi
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Jingyan Liang
- Research Center for Vascular Biology, Yangzhou University School of Medicine, Yangzhou, China
| |
Collapse
|
5
|
The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:123-30. [DOI: 10.1016/j.pbiomolbio.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
|
6
|
Yeang C, Cotter B, Tsimikas S. Experimental Animal Models Evaluating the Causal Role of Lipoprotein(a) in Atherosclerosis and Aortic Stenosis. Cardiovasc Drugs Ther 2016; 30:75-85. [DOI: 10.1007/s10557-015-6634-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, Chen YE. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther 2015; 146:104-19. [PMID: 25277507 PMCID: PMC4304984 DOI: 10.1016/j.pharmthera.2014.09.009] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Shimokato 1110, Chuo-City 409-3898, Japan.
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Teruo Watanabe
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Gaeta G, Lanero S, Barra S, Silvestri N, Cuomo V, Materazzi C, Vitagliano G. Sex hormones and lipoprotein(a) concentration. Expert Opin Investig Drugs 2011; 20:221-38. [DOI: 10.1517/13543784.2011.548804] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Zhao S, Wei K, Yu Q, Li Y, Cheng F, Wang Y, Yang P, Fan J, Liu E. General topic: applications of transgenic rabbits in biomedical research - based on literature search. WORLD RABBIT SCIENCE 2010. [DOI: 10.4995/wrs.2010.7279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Anuurad E, Boffa MB, Koschinsky ML, Berglund L. Lipoprotein(a): A Unique Risk Factor for Cardiovascular Disease. Clin Lab Med 2006; 26:751-72. [PMID: 17110238 DOI: 10.1016/j.cll.2006.07.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipoprotein(a) (Lp(a)) is present in humans and primates. It has many properties in common with low-density lipoprotein, but contains a unique protein moiety designated apo(a), which is linked to apolipoprotein B-100 by a single disulfide bond. International standards for Lp(a) measurement and optimized Lp(a) assays insensitive to isoform size are not yet widely available. Lp(a) is a risk factor for coronary artery disease, and smaller size apo(a) is associated with coronary artery disease. The physiologic role of Lp(a) is unknown.
Collapse
Affiliation(s)
- Erdembileg Anuurad
- Department of Medicine, VA Northern California Health Care System, UCD Medical Center, University of California-Davis, 4150 V Street, Suite G400, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
11
|
Boffa MB, Marcovina SM, Koschinsky ML. Lipoprotein(a) as a risk factor for atherosclerosis and thrombosis: mechanistic insights from animal models. Clin Biochem 2004; 37:333-43. [PMID: 15087247 DOI: 10.1016/j.clinbiochem.2003.12.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/10/2003] [Accepted: 12/10/2003] [Indexed: 02/05/2023]
Abstract
Evidence continues to accumulate from epidemiological studies that elevated plasma concentrations of lipoprotein(a) [Lp(a)] are a risk factor for a variety of atherosclerotic and thrombotic disorders. Lp(a) is a unique lipoprotein particle consisting of a moiety identical to low-density lipoprotein to which the glycoprotein apolipoprotein(a) [apo(a)] that is homologous to plasminogen is covalently attached. These features have suggested that Lp(a) may contribute to both proatherogenic and prothrombotic/antifibrinolytic processes and in vitro studies have identified many such candidate mechanisms. Despite intensive research, however, definition of the molecular mechanisms underlying the epidemiological data has proven elusive. Moreover, an effective and well-tolerated regimen to lower Lp(a) levels has yet to be developed. The use of animal models holds great promise for resolving these questions. Establishment of animal models for Lp(a) has been hampered by the absence of this lipoprotein from common small laboratory animals. Transgenic mice and rabbits expressing human apo(a) have been developed and these have been used to: (i) examine regulation of apo(a) gene expression; (ii) study the mechanism and molecular determinants of Lp(a) assembly from LDL and apo(a); (iii) demonstrate that apo(a)/Lp(a) are indeed proatherogenic and antifibrinolytic; and (iv) identify structural domains in apo(a) that mediate its pathogenic effects. The recent construction of transgenic apo(a) rabbits is a particularly promising development in view of the excellent utility of the rabbit as a model of advanced atherosclerosis.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
12
|
Teivainen PA, Eliassen KA, Berg K, Torsdalen K, Svindland A. Atherogenesis and vascular calcification in mice expressing the human LPA gene. PATHOPHYSIOLOGY 2004; 11:113-120. [PMID: 15364123 DOI: 10.1016/j.pathophys.2004.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 06/30/2004] [Indexed: 11/16/2022] Open
Abstract
Background: Lp(a) lipoprotein (Lp(a)) contains polymorphic glycoprotein, apolipoprotein(a) (apo(a)) and low density lipoprotein (LDL). The extensive homology between apo(a) and plasminogen is believed to contribute to the pathogenicity of apo(a), but the precise mechanisms by which Lp(a) participates in atherogenesis is still unknown. We used LPA-yeast artificial chromosome (LPA-YAC) transgenic mice with or without the human APOB (hAPOB) gene to study pathogenicity of apo(a)/Lp(a) and illucidate its role in regulation of serum lipid levels. Methods: Middle-aged (1-year-old) mice were fed a control (AIN-76), a high-cholesterol (HC) or a high-cholesterol/high-fat (HCHF) diet for 7 weeks. For the study of serum total apo(a) and lipid levels, mice were sampled prior to the experiment, at 2 weeks and at 7 weeks when the animals were sacrificed. Hearts with ascending aorta were fixed in formalin, embedded in gelatine and prepared for sections on a cryostat. Livers were washed in ice cold saline and submerged in RNAlater trade mark buffer and stored at -70 degrees C until mRNA analysis. Results: Wild type mice fed the control diet did not develop aortic lesions. Presence of the LPA gene was sufficient to induce development of aortic lesions, but neither coexpression of the hAPOB gene nor feeding the HC diet or the HCHF diet augmented the development of aortic lesions in LPA-YAC transgenic mice. On the control diet transgenic females had larger aortic lesion size than transgenic males. Furthermore, aortic lesions in transgenic females were associated with calcification more often than in transgenic males. Serum total cholesterol levels were higher both in wild type and LPA-YAC transgenic males than in females mainly because of higher serum high-density lipoprotein cholesterol levels. HC and HCHF feeding had more pronounced effect on total cholesterol levels in LPA-YAC/hAPOB transgenic mice than in either wild type or LPA-YAC transgenic mice, due to increased low density lipoprotein cholesterol levels. Furthermore, these diets reduced serum total apo(a) levels in both transgenic mouse lines. Conclusion: Expression of the human LPA gene in mice is sufficient to trigger development of aortic lesions. Similar frequency of calcified lesions in LPA-YAC transgenic mice with or without hAPOB gene may suggest that apo(a) is the part of the Lp(a) molecule that causes aortic calcification. The basis for reduced serum total apo(a) level in response to cholesterol feeding is not clear, but interplay between LPA and factors involved in cholesterol or bile acid homeostasis is worth of future studies.
Collapse
Affiliation(s)
- Päivi A. Teivainen
- Institute of Medical Genetics, University of Oslo, P.O. Box 1036, Blindern, NO-0315 Oslo, Norway; Department of Medical Genetics, Ullevål University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
13
|
Bosze Z, Hiripi L, Carnwath JW, Niemann H. The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Res 2004; 12:541-53. [PMID: 14601653 DOI: 10.1023/a:1025816809372] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Until recently, transgenic rabbits were produced exclusively by pronuclear microinjection which results in additive random insertional transgenesis; however, progress in somatic cell cloning based on nuclear transfer will soon make it possible to produce rabbits with modifications to specific genes by the combination of homologous recombination and subsequent prescreening of nuclear donor cells. Transgenic rabbits have been found to be excellent animal models for inherited and acquired human diseases including hypertrophic cardiomyopathy, perturbed lipoprotein metabolism and atherosclerosis. Transgenic rabbits have also proved to be suitable bioreactors for the production of recombinant protein both on an experimental and a commercial scale. This review summarizes recent research based on the transgenic rabbit model.
Collapse
Affiliation(s)
- Zs Bosze
- Department of Animal Biology, Agricultural Biotechnology Center Gödöllo, Hungary.
| | | | | | | |
Collapse
|
14
|
Abstract
Genetically modified laboratory animals provide a powerful approach for studying gene expression and regulation and allow one to directly examine structure-function and cause-and-effect relationships in pathophysiological processes. Today, transgenic mice are available as a research tool in almost every research institution. On the other hand, the development of a relatively large mammalian transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided an alternative way to produce therapeutic proteins to treat human diseases. Transgenic rabbits expressing human genes have been used as a model for cardiovascular disease, AIDS, and cancer research. The recombinant proteins can be produced from the milk of transgenic rabbits not only at lower cost but also on a relatively large scale. One of the most promising and attractive recombinant proteins derived from transgenic rabbit milk, human alpha-glucosidase, has been successfully used to treat the patients who are genetically deficient in this enzyme. Although the pronuclear microinjection is still the major and most popular method for the creation of transgenic rabbits, recent progress in gene targeting and animal cloning has opened new avenues that should make it possible to produce transgenic rabbits by somatic cell nuclear transfer in the future. Based on a computer-assisted search of the studies of transgenic rabbits published in the English literature here, we introduce to the reader the achievements made thus far with transgenic rabbits, with emphasis on the application of these rabbits as human disease models and live bioreactors for producing human therapeutic proteins and on the recent progress in cloned rabbits.
Collapse
Affiliation(s)
- Jianglin Fan
- Laboratory of Cardiovascular Disease, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan.
| | | |
Collapse
|
15
|
Sun H, Unoki H, Wang X, Liang J, Ichikawa T, Arai Y, Shiomi M, Marcovina SM, Watanabe T, Fan J. Lipoprotein(a) enhances advanced atherosclerosis and vascular calcification in WHHL transgenic rabbits expressing human apolipoprotein(a). J Biol Chem 2002; 277:47486-92. [PMID: 12196525 DOI: 10.1074/jbc.m205814200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High lipoprotein(a) (Lp(a)) levels are a major risk factor for the development of atherosclerosis. The risk of elevated Lp(a) concentration is increased significantly in patients who also have high levels of low density lipoprotein (LDL) cholesterol. To test the hypothesis that increased plasma levels of Lp(a) may enhance the development of atherosclerosis in the setting of hypercholesterolemia, we generated Watanabe heritable hyperlipidemic (WHHL) transgenic (Tg) rabbits expressing human apolipoprotein(a) (apo(a)). We report here that Tg WHHL rabbits developed more extensive advanced atherosclerotic lesions than did non-Tg WHHL rabbits. In particular, the advanced atherosclerotic lesions in Tg WHHL rabbits were frequently associated with calcification, which was barely evident in non-Tg WHHL rabbits. To investigate the molecular mechanism of Lp(a)-induced vascular calcification, we examined the effect of human Lp(a) on cultured rabbit aortic smooth muscle cells and found that smooth muscle cells treated with Lp(a) showed increased alkaline phosphatase activity and enhanced calcium accumulation. These results demonstrate for the first time that Lp(a) accelerates advanced atherosclerotic lesion formation and may play an important role in vascular calcification.
Collapse
Affiliation(s)
- Huijun Sun
- Laboratory of Cardiovascular Disease, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moghadasian MH, Frohlich JJ, McManus BM. Advances in experimental dyslipidemia and atherosclerosis. J Transl Med 2001; 81:1173-83. [PMID: 11555665 DOI: 10.1038/labinvest.3780331] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Among the models of dyslipidemia and atherosclerosis, a number of wild-type, naturally defective, and genetically modified animals (rabbits, mice, pigeons, dogs, pigs, and monkeys) have been characterized. In particular, their similarities to and differences from humans in respect to relevant biochemical, physiologic, and pathologic conditions have been evaluated. Features of atherosclerotic lesions and their specific relationship to plasma lipoprotein particles have been critically reviewed and summarized. All animal models studied have limitations: the most significant advantages and disadvantages of using a specific animal species are outlined here. New insights in lipid metabolism and genetic background with regard to variations in pathogenesis of dyslipidemia-associated atherogenesis have also been reviewed. Evidence suggests that among wild-type species, strains of White Carneau pigeons and Watanabe Heritable Hyperlipidemic and St. Thomas's Hospital rabbits are preferable to the cholesterol-fed wild-type animal species in dyslipidemia and atherosclerosis research. Evidence for the usefulness of both wild-type and transgenic animals in studying the involvement of inflammatory pathways and Chlamydia pneumoniae infection in pathogenesis of atherosclerosis has also been summarized. Transgenic mice and rabbits are excellent tools for studying specific gene-related disorders. However, despite these significant achievements in animal experimentation, there are no suitable animal models for several rare types of fatal dyslipidemia-associated disorders such as phytosterolemia and cerebrotendinous xanthomatosis. An excellent model of diabetic atherosclerosis is unavailable. The question of reversibility of atherosclerosis still remains unanswered. Further work is needed to overcome these deficiencies.
Collapse
Affiliation(s)
- M H Moghadasian
- Healthy Heart Program, Department of Pathology and Laboratory Medicine, St. Paul's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
17
|
Abstract
Elevated plasma levels of lipoprotein (a) [Lp(a)] constitutes an independent risk factor for coronary heart disease, stroke, and restenosis. Over the past years, our understanding of the genetics, metabolism and pathophysiology of Lp(a) have increased considerably. However, the precise mechanism(s) by which this atherogenic lipoprotein mediates the development of atherosclerosis remains unclear. This is partly due to the lack of appropriate animal models since apolipoprotein (a) [apo(a)], a distinct component of Lp(a) is found only in primates and humans. Development of transgenic mice expressing human apo(a) has provided an alternative means to investigate many aspects of Lp(a). However, human apo(a) in transgenic mice can not bind to murine apoB to form Lp(a) particles. In this aspect, we generated transgenic rabbits expressing human apo(a). In the plasma of transgenic rabbits, unlike the plasma of transgenic mice, about 80% of the apo(a) was associated with rabbit apo B and was contained in the fractions with density 1.02-1.10 g/ml, indicating the formation of Lp(a). Our study suggests that transgenic rabbits expressing human apo(a) exhibit efficient assembly of Lp(a) and can be used as an animal model for the study of human Lp(a).
Collapse
Affiliation(s)
- J Fan
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Japan.
| | | |
Collapse
|
18
|
Fan J, Watanabe T. Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis. J Atheroscler Thromb 2001; 7:26-32. [PMID: 11425041 DOI: 10.5551/jat1994.7.26] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The rabbit has been extensively utilized as an ideal model of atherosclerosis because of its size, easy manipulation, and extraordinary response to dietary cholesterol. The availability of spontaneously hypercholesterolemic model, Watanabe heritable hyperlipidemic rabbits (WHHL) and St. Thomas rabbits, has also provided insights into understanding human familiar hypercholesterolemia and atherosclerosis. With the advent of genetically engineered rabbits, transgenic rabbits have become a novel means to explore a number of proteins that are associated with cardiovascular diseases including atherosclerosis. To date, transgenes for human apo(a), apoA-I, apoB, apoE2, apoE3, hepatic lipase, lecithin: cholesterol acyltransferase (LCAT), lipoprotein lipase, 15-lipoxygenase, as well as for rabbit apolipoprotein B mRNA-editing enzyme catalytic polypeptide 1 (APOBEC-1), have been expressed in rabbits. In addition, human apoA-I, LCAT and apo(a) have been introduced into WHHL rabbits which have deficient LDL receptor function. All of these transgenes have been found to have significant effects on plasma lipoprotein metabolism or/and atherosclerosis. These studies have revealed new insights into the mechanisms responsible for the development of atherosclerosis. In this article, we provide a brief review on the rabbit model for the study of atherosclerosis with emphasis on transgenic rabbit models developed during the past few years.
Collapse
Affiliation(s)
- J Fan
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Japan.
| | | |
Collapse
|
19
|
Abstract
In 1993, several groups, working independently, reported the successful generation of transgenic mice with yeast artificial chromosomes (YACs) using standard techniques. The transfer of these large fragments of cloned genomic DNA correlated with optimal expression levels of the transgenes, irrespective of their location in the host genome. Thereafter, other groups confirmed the advantages of YAC transgenesis and position-independent and copy number-dependent transgene expression were demonstrated in most cases. The transfer of YACs to the germ line of mice has become popular in many transgenic facilities to guarantee faithful expression of transgenes. This technique was rapidly exported to livestock and soon transgenic rabbits, pigs and other mammals were produced with YACs. Transgenic animals were also produced with bacterial or P1-derived artificial chromosomes (BACs/PACs) with similar success. The use of YACs, BACs and PACs in transgenesis has allowed the discovery of new genes by complementation of mutations, the identification of key regulatory sequences within genomic loci that are crucial for the proper expression of genes and the design of improved animal models of human genetic diseases. Transgenesis with artificial chromosomes has proven useful in a variety of biological, medical and biotechnological applications and is considered a major breakthrough in the generation of transgenic animals. In this report, we will review the recent history of YAC/BAC/PAC-transgenic animals indicating their benefits and the potential problems associated with them. In this new era of genomics, the generation and analysis of transgenic animals carrying artificial chromosome-type transgenes will be fundamental to functionally identify and understand the role of new genes, included within large pieces of genomes, by direct complementation of mutations or by observation of their phenotypic consequences.
Collapse
Affiliation(s)
- P Giraldo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Madrid, Spain
| | | |
Collapse
|
20
|
Fan J, Shimoyamada H, Sun H, Marcovina S, Honda K, Watanabe T. Transgenic rabbits expressing human apolipoprotein(a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet. Arterioscler Thromb Vasc Biol 2001; 21:88-94. [PMID: 11145938 DOI: 10.1161/01.atv.21.1.88] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High lipoprotein(a) [Lp(a)] levels constitute an independent risk factor for the development of atherosclerosis. However, the relationship between Lp(a) and atherosclerosis is not fully understood. To examine the effect of Lp(a) on the development of atherosclerosis, we studied transgenic rabbits expressing human apolipoprotein(a) [apo(a)], which was assembled into Lp(a) in the plasma. Human apo(a) transgenic rabbits fed a 0.3% cholesterol diet for 16 weeks had more extensive atherosclerotic lesions than did nontransgenic rabbits, although the cholesterol levels in the plasma of both groups were similarly elevated. Compared with the lesions in control rabbits, the areas of the atherosclerotic lesions in human apo(a) transgenic rabbits were significantly increased in the aorta, the iliac artery, and the carotid artery. Furthermore, human apo(a) transgenic rabbits on a cholesterol-rich diet had a greater degree of coronary atherosclerosis than did control rabbits. Immunohistochemical analysis revealed that human apo(a) was frequently deposited in the atherosclerotic lesions of transgenic rabbits. We conclude that Lp(a) may have proatherogenic effects in the setting of a cholesterol-rich diet in transgenic rabbits.
Collapse
Affiliation(s)
- J Fan
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Defects of the LDL receptor in WHHL transgenic rabbits lead to a marked accumulation of plasma lipoprotein[a]. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32043-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Kagawa A, Azuma H, Akaike M, Kanagawa Y, Matsumoto T. Aspirin reduces apolipoprotein(a) (apo(a)) production in human hepatocytes by suppression of apo(a) gene transcription. J Biol Chem 1999; 274:34111-5. [PMID: 10567380 DOI: 10.1074/jbc.274.48.34111] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
High serum lipoprotein(a) (Lp(a)) is a risk factor for vascular disorders. Our preliminary observations suggest that, in some patients with coronary heart disease with high serum Lp(a) levels, administration of aspirin reduced Lp(a) levels. Therefore, we aimed to analyze the effects of aspirin on the production of apo(a), the expression of apolipoprotein(a) (apo(a)) mRNA and the transcriptional activity of apo(a) gene promoter. Aspirin (5 mM) reduced the apo(a) levels in culture medium of human hepatocytes and suppressed apo(a) mRNA expression to 73% and 85% of the controls, respectively. Aspirin also reduced the transcriptional activity of apo(a) gene transfected into HepG2 hepatoma cells in a dose-dependent manner, with a maximal effect at 5 mM (44.3 +/- 1.5% of the control). Sodium salicylate (5 mM) also reduced apo(a) gene transcription, whereas indomethacin (10 microM) had no effect. Deletion analysis of apo(a) gene promoter showed that promoter region extending from -30 to +138 is critical for the effect of aspirin. Furthermore, enhanced production, mRNA expression, and gene transcription of apo(a) by interleukin-6 were also inhibited by aspirin. These results demonstrate that aspirin reduces apo(a) production from hepatocytes via reduction of the transcriptional activity of apo(a) gene with suppression of apo(a) mRNA expression. The suppression of apo(a) production by aspirin may at least in part play a role in the anti-atherogenic effect of aspirin in vascular disorders.
Collapse
Affiliation(s)
- A Kagawa
- First Department of Internal Medicine, University of Tokushima School of Medicine, Kuramoto-cho 3, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|
24
|
Abstract
The production of recombinant human proteins in the milk of transgenic dairy animals offers a safe, renewable source of commercially important proteins that cannot be produced as efficiently in adequate quantities by other methods. A decade of success in expressing a variety of proteins in livestock has brought three human recombinant proteins to human clinical trials. Recent progress has drawn on molecular biology and reproductive physiology to improve the efficiency of producing and reproducing useful transgenic founder animals, and to improve the expression of heterologous proteins in their milk.
Collapse
|
25
|
Fan J, Challah M, Watanabe T. Transgenic rabbit models for biomedical research: current status, basic methods and future perspectives. Pathol Int 1999; 49:583-94. [PMID: 10504518 DOI: 10.1046/j.1440-1827.1999.00923.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The creation of genetically modified laboratory and livestock animals is one of the most dramatic advances derived from recombinant DNA technology. Over the past decade, the development of a large mammal transgenic model, transgenic rabbits, has provided unprecedented opportunities for investigators to study the mechanisms of human diseases and has also provided a novel way to produce foreign proteins for both therapeutic and commercial purposes. Recent progress in gene targeting and animal cloning has opened new avenues for production of transgenic rabbits. In this review, we will introduce the reader to the progress that has been achieved in transgenic rabbits with emphasis on the application of these rabbits as human disease models and bioproducers of human therapeutic proteins.
Collapse
Affiliation(s)
- J Fan
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Japan.
| | | | | |
Collapse
|
26
|
Ramharack R, Bocan TM, Imperiale MJ, Spahr MA. Recombinant adenovirus vector mediated expression of lipoprotein (a) [Lp(a)] in rabbit plasma. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:322-8. [PMID: 10366775 DOI: 10.1016/s1388-1981(99)00065-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipoprotein (a) [Lp(a)] is a heterodimer of apolipoprotein (a) [apo(a)] and apolipoprotein B-100 (apoB-100) of low density lipoprotein linked by a disulfide bond. Apo(a) and apoB-100 are synthesized by the liver and covalently associate or couple to form Lp(a) extracellularly. Elevated plasma Lp(a) is an independent risk factor for vascular injury disorders such as restenosis after balloon angioplasty and accelerated graft atherosclerosis following heart transplantation. Lp(a) is not expressed in laboratory animals making studies of its pathophysiology difficult. To overcome this problem, we explored the possibility of generating Lp(a) in rabbit plasma using replication-deficient adenovirus vector mediated gene delivery. Rabbits were chosen because of their large vessels and unlike mouse or rat, rabbit apoB-100 could interact with apo(a) to generate Lp(a). The recombinant (r) adenovirus vector construct used encoded a 200 kDa apo(a) [Ad-apo(a)]. Ad-apo(a) injection into the rabbit marginal vein caused the appearance of plasma rLp(a). Injection of a r adenovirus vector expressing the bacterial LacZ gene (Ad-LacZ) or PBS (vehicle) did not result in detectable plasma rLp(a). These are the first results to demonstrate plasma expression of rLp(a) in rabbits using adenovirus vector mediated gene transfer. Therefore, this system may be suitable for investigating Lp(a)'s role in the development of vascular injury diseases in a rabbit model.
Collapse
Affiliation(s)
- R Ramharack
- Department of Cardiovascular Therapeutics, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | | | |
Collapse
|
27
|
|
28
|
Abstract
Lipoprotein(a) is an atherogenic, cholesterol ester-rich lipoprotein of unknown physiological function. The unusual species distribution of lipoprotein(a) and the extreme polymorphic nature of its distinguishing apolipoprotein component, apolipoprotein(a), have provided unique challenges for the investigation of its biochemistry, genetics, metabolism and atherogenicity. Some fundamental questions regarding this enigmatic lipoprotein have escaped elucidation, as will be highlighted in this review.
Collapse
Affiliation(s)
- H H Hobbs
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas 75235, USA.
| | | |
Collapse
|
29
|
Fontana P, Mooser V, Bovet P, Shamlaye C, Burnand B, Lenain V, Marcovina SM, Riesen W, Darioli R. Dose-dependent inverse relationship between alcohol consumption and serum Lp(a) levels in black African males. Arterioscler Thromb Vasc Biol 1999; 19:1075-82. [PMID: 10195938 DOI: 10.1161/01.atv.19.4.1075] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serum or plasma levels of Lp(a) vary widely between individuals and are higher in Africans and their descendants compared with white persons. In whites, high serum levels of Lp(a) are associated with the premature development of atherosclerosis. In both ethnic groups, serum Lp(a) levels are highly genetically determined and only a few environmental or physiological factors, like testosterone or estrogen, have been shown to lower serum Lp(a) levels. In whites, alcohol consumption is associated with lower serum Lp(a) levels. However, the mechanism underlying this association and whether it holds true for blacks is not known. To address these questions, we analyzed serum Lp(a) levels in 333 middle-aged males of African descent from the Seychelles Islands (Indian Ocean). In addition, we analyzed the size of the apo(a) isoforms and the serum levels of albumin and sex hormones in a subset of 279 subjects. Serum Lp(a) levels were similar in teetotalers (median, 32.5 mg/dL; n=42) and occasional drinkers (median, 34.1 mg/dL; n=112). In contrast, individuals consuming 10 to 80 g of ethanol/d (n=83) and heavy drinkers (>80 g of ethanol/d, n=96) had a 9% and 32% lower median Lp(a) level than teetotalers, respectively (P=0.01). The size distribution of the apo(a) isoforms and the mean serum levels of albumin, estradiol, and luteinizing hormone were similar in teetotalers and occasional drinkers compared with moderate and heavy drinkers. These latter 2 groups had lower serum levels of testosterone and sex hormone-binding globulin. These data indicate that alcohol intake is associated in a dose-dependent manner with lower serum Lp(a) levels in males of African descent and that this association is not related to the size of the apo(a) isoforms, to the synthetic function of the liver, or to sex hormone biochemical status.
Collapse
Affiliation(s)
- P Fontana
- Medical Policlinic, Institute of Social and Preventive Medicine, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Fan J, Araki M, Wu L, Challah M, Shimoyamada H, Lawn RM, Kakuta H, Shikama H, Watanabe T. Assembly of lipoprotein (a) in transgenic rabbits expressing human apolipoprotein (a). Biochem Biophys Res Commun 1999; 255:639-44. [PMID: 10049763 DOI: 10.1006/bbrc.1999.0242] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of human lipoprotein (a) [Lp(a)] has been hampered due to the lack of appropriate animal models since apolipoprotein (a) [apo(a)] is found only in primates and humans. In addition, human apo(a) in transgenic mice can not bind to murine apoB to form Lp(a) particles. In this study, we generated three independent transgenic rabbits expressing human apo(a) in their plasma at 1.8-4.5 mg/dl. In the plasma of transgenic rabbits, unlike the plasma of transgenic mice, about 80% of the apo(a) was covalently associated with rabbit apo-B and was contained in the fractions with density 1.02-1.10 g/ml, indicating the formation of Lp(a). These results suggest that transgenic rabbits expressing human apo(a) exhibit efficient assembly of Lp(a) and can be used as an animal model for the study of human Lp(a).
Collapse
Affiliation(s)
- J Fan
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nassir F, Bonen DK, Davidson NO. Apolipoprotein(a) synthesis and secretion from hepatoma cells is coupled to triglyceride synthesis and secretion. J Biol Chem 1998; 273:17793-800. [PMID: 9651381 DOI: 10.1074/jbc.273.28.17793] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apolipoprotein(a) (apo(a)) is synthesized and secreted from liver cells and represents one of the two major protein components of the atherogenic lipoprotein, Lp(a). Little is known, however, of the factors that regulate the secretion of this protein. We have undertaken an analysis of the response to oleate supplementation in stable clones of HepG2 and McA-RH7777 cells expressing either a 6 K-IV or 17 K-IV isoform of apo(a). These cell lines were examined by pulse-chase analysis and each demonstrated an increase (range 2-6-fold) in apo(a) secretion following supplementation with 0.8 mM oleate. Microsomal membranes, prepared from HepG2 cells expressing a 6 K-IV apo(a) isoform, demonstrated that oleate supplementation increased the apparent protection of apo(a) from protease digestion, suggesting that alterations in the translocation efficiency of apo(a) may accompany the addition of oleate. Cells incubated with brefeldin A demonstrated increased recovery of the precursor form of apo(a) with oleate supplementation, suggesting that alterations in post-translational degradation may also contribute to the observed increase in apo(a) secretion following oleate addition. To further characterize the oleate-dependent increase in apo(a) secretion, cells were incubated with an inhibitor of the microsomal triglyceride transfer protein. These experiments demonstrated a dose-dependent decrease in apo(a) secretion from both cell lines. Furthermore, addition of either the microsomal triglyceride transfer protein inhibitor or triacsin C, an inhibitor of acyl-CoA synthase, completely abrogated the oleate-dependent increase in apo(a) secretion. Taken together, these data provide evidence that apo(a) secretion from hepatoma cells may be linked to elements of cellular triglyceride assembly and secretion.
Collapse
Affiliation(s)
- F Nassir
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|