1
|
Takamatsu S, Korekane H, Ohtsubo K, Oguri S, Park JY, Matsumoto A, Taniguchi N. N-acetylglucosaminyltransferase (GnT) assays using fluorescent oligosaccharide acceptor substrates: GnT-III, IV, V, and IX (GnT-Vb). Methods Mol Biol 2014; 1022:283-98. [PMID: 23765669 DOI: 10.1007/978-1-62703-465-4_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Determining glycosyltransferase activities gives a clue for better understanding an underlying mechanism for glycomic alterations of carrier molecules. N-glycan branch formation is concertedly regulated by cooperative and competitive activities of N-acetylglucosaminyltransferases (GnTs). Here, we describe methods for large scale preparation of the oligosaccharide acceptor substrate, fluorescence-labeling of oligosaccharides by pyridylamination, quality control, and reversed phase HPLC-based measurement of GnT activities including GnT-III, IV, V, and IX.
Collapse
Affiliation(s)
- Shinji Takamatsu
- Division of Systems Glycobiology Research Group, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
Chinese hamster ovary (CHO) mutant cells with a wide variety of alterations in the glycosylation of proteins and lipids have been isolated by selection for resistance to the cytotoxicity of plant lectins. These CHO mutants have been used to characterize glycosylation pathways, to identify genes that code for glycosylation activities, to elucidate functional roles of glycans that mediate biological processes, and for glycosylation engineering. In this chapter, we briefly describe the available panel of lectin-resistant CHO mutants and summarize their glycan alterations and the biochemical and genetic bases of mutation.
Collapse
|
3
|
André S, Kojima S, Prahl I, Lensch M, Unverzagt C, Gabius HJ. Introduction of extended LEC14-type branching into core-fucosylated biantennary N-glycan. FEBS J 2005; 272:1986-98. [PMID: 15819890 DOI: 10.1111/j.1742-4658.2005.04637.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of enzymatic substitutions modifies the basic structure of complex-type biantennary N-glycans. Among them, a beta1,2-linked N-acetylglucosamine residue is introduced to the central mannose moiety of the core-fucosylated oligosaccharide by N-acetylglucosaminyltransferase VII. This so-called LEC14 epitope can undergo galactosylation at the beta1,2-linked N-acetylglucosamine residue. Guided by the hypothesis that structural modifications in the N-glycan alter its capacity to serve as ligand for lectins, we prepared a neoglycoprotein with the extended LEC14 N-glycan and tested its properties in three different assays. In order to allow comparison to previous results on other types of biantennary N-glycans the functionalization of the glycans for coupling and assay conditions were deliberately kept constant. Compared to the core-fucosylated N-glycan no significant change in affinity was seen when testing three galactoside-specific proteins. However, cell positivity in flow cytofluorimetry was enhanced in six of eight human tumor lines. Analysis of biodistribution in tumor-bearing mice revealed an increase of blood clearance by about 40%, yielding a favorable tumor/blood ratio. Thus, the extended LEC14 motif affects binding properties to cellular lectins on cell surfaces and organs when compared to the core-fucosylated biantennary N-glycan. The results argue in favor of the concept of viewing substitutions as molecular switches for lectin-binding affinity. Moreover, they have potential relevance for glycoengineering of reagents in tumor imaging.
Collapse
Affiliation(s)
- Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
The four essential building blocks of cells are proteins, nucleic acids, lipids, and glycans. Also referred to as carbohydrates, glycans are composed of saccharides that are typically linked to lipids and proteins in the secretory pathway. Glycans are highly abundant and diverse biopolymers, yet their functions have remained relatively obscure. This is changing with the advent of genetic reagents and techniques that in the past decade have uncovered many essential roles of specific glycan linkages in living organisms. Glycans appear to modulate biological processes in the development and function of multiple physiologic systems, in part by regulating protein-protein and cell-cell interactions. Moreover, dysregulation of glycan synthesis represents the etiology for a growing number of human genetic diseases. The study of glycans, known as glycobiology, has entered an era of renaissance that coincides with the acquisition of complete genome sequences for multiple organisms and an increased focus upon how posttranslational modifications to protein contribute to the complexity of events mediating normal and disease physiology. Glycan production and modification comprise an estimated 1% of genes in the mammalian genome. Many of these genes encode enzymes termed glycosyltransferases and glycosidases that reside in the Golgi apparatus where they play the major role in constructing the glycan repertoire that is found at the cell surface and among extracellular compartments. We present a review of the recently established functions of glycan structures in the context of mammalian genetic studies focused upon the mouse and human species. Nothing tends so much to the advancement of knowledge as the application of a new instrument. The native intellectual powers of men in different times are not so much the causes of the different success of their labours, as the peculiar nature of the means and artificial resources in their possession. T. Hager: Force of Nature (1)
Collapse
Affiliation(s)
- John B Lowe
- Department of Pathology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
5
|
Inamori KI, Endo T, Ide Y, Fujii S, Gu J, Honke K, Taniguchi N. Molecular cloning and characterization of human GnT-IX, a novel beta1,6-N-acetylglucosaminyltransferase that is specifically expressed in the brain. J Biol Chem 2003; 278:43102-9. [PMID: 12941944 DOI: 10.1074/jbc.m308255200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel beta1,6-N-acetylglucosaminyltransferase (beta1, 6GnT) cDNA was identified by a BLAST search using the amino acid sequence of human GnT-V as a query. The full-length sequence was determined by a combination of 5'-rapid amplification of cDNA end analysis and a further data base search. The open reading frame encodes a 792 amino acid protein with a type II membrane protein structure typical of glycosyltransferases. The entire sequence identity to human GnT-V is 42%. When pyridylaminated (PA) agalacto biantennary N-linked oligosaccharide was used as an acceptor substrate, the recombinant enzyme generated a novel product other than the expected GnT-V product, (GlcNAcbeta1,2-Manalpha1,3-)[GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1,6-]Manbeta1,4-GlcNAcbeta1,4-GlcNAc-PA. This new product was identified as [GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1,3-][Glc-NAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1,6-]Manbeta1,4-GlcNAcbeta1,4-GlcNAc-PA by mass spectrometry and 1H NMR. Namely, the new GnT (designated as GnT-IX) has beta1,6GnT activity not only to the alpha1,6-linked mannose arm but also to the alpha1,3-linked mannose arm of N-glycan, forming a unique structure that has not been reported to date. Northern blot analysis showed that the GnT-IX gene is exclusively expressed in the brain, whereas the GnT-V gene is expressed ubiquitously. These results suggest that GnT-IX is responsible for the synthesis of a unique oligosaccharide structure in the brain.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Brain/enzymology
- Cell Line
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA/metabolism
- DNA, Complementary/metabolism
- Genetic Vectors
- Glycosylation
- Humans
- Ligands
- Magnetic Resonance Spectroscopy
- Models, Chemical
- Molecular Sequence Data
- N-Acetylglucosaminyltransferases/biosynthesis
- N-Acetylglucosaminyltransferases/chemistry
- N-Acetylglucosaminyltransferases/genetics
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Neurons/metabolism
- Oligosaccharides/metabolism
- Open Reading Frames
- Precipitin Tests
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tissue Distribution
Collapse
Affiliation(s)
- Kei-ichiro Inamori
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Piva M, Moreno JI, Sharpe-Timms KL. Glycosylation and over-expression of endometriosis-associated peritoneal haptoglobin. Glycoconj J 2002; 19:33-41. [PMID: 12652078 DOI: 10.1023/a:1022580813870] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peritoneal endometriotic tissues synthesize and secrete haptoglobin (pHp), which has an analogous nucleotide sequence to hepatic haptoglobin found in serum (sHp). This study performed enzymatic digestions and lectin binding assays to determine if differences in protein glycosylation exist between sHp and pHp, which may provide insight into pHp function and/or identify epitopes for development of novel methods of medical management of endometriosis. To reduce the dependence on surgical collection of peritoneal tissues from women, recombinant peritoneal Hp (rpHp) was produced and its glycosylation analyzed for future functional studies. These results showed the apparent molecular weight of pHp was 3 kDa smaller than sHp. Desialylation and complete N-deglycosylation elicited similar shifts in sHp and pHp electrophoretic migration, suggesting similar sialic acid content and indicating the 3 kDa variance was due to carbohydrate content, not protein degradation, respectively. Sequential deglycosylation of the four sHp N-glycan chains caused a 3 kDa shift per N-glycan removed suggesting the 3 kDa difference between sHp and pHp may be one N-glycan chain. Lectin ELISA and lectin-blotting analyses demonstrated increased pHp and rpHp interactions with MAL and LTL but no difference in binding to SNL compared to sHp from healthy individuals, identifying variations in the ratios of alpha(2-3) to alpha(2-6) sialic acid and fucose residues. Recombinant pHp was 100-fold over-expressed with a similar glycosylation pattern to pHp, albeit in an unprocessed alpha-beta Hp polypeptide form. These results are the first to identify differences between pHp and sHp glycosylation and lay groundwork further studies to characterize anomalies in glycan composition and structure, which likely impart pHp with known immunomodulatory functions and may be used as epitopes for development of immune based therapeutics for novel, non-surgical management of endometriosis.
Collapse
Affiliation(s)
- Marta Piva
- Department of Obstetrics and Gynecology, The University of Missouri, Columbia, MO 65212, USA
| | | | | |
Collapse
|
7
|
Prahl I, Unverzagt C. Synthesis of a LEC14 nonasaccharide, a core-fucosylated, biantennary N-glycan with a novel GlcNAc residue in the core region. Tetrahedron Lett 2000. [DOI: 10.1016/s0040-4039(00)01836-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Taguchi T, Ogawa T, Inoue S, Inoue Y, Sakamoto Y, Korekane H, Taniguchi N. Purification and characterization of UDP-GlcNAc: GlcNAcbeta 1-6(GlcNAcbeta 1-2)Manalpha 1-R [GlcNAc to Man]-beta 1, 4-N-acetylglucosaminyltransferase VI from hen oviduct. J Biol Chem 2000; 275:32598-602. [PMID: 10903319 DOI: 10.1074/jbc.m004673200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new beta1,4-N-acetylglucosaminyltransferase (GnT) responsible for the formation of branched N-linked complex-type sugar chains has been purified 64,000-fold in 16% yield from a homogenate of hen oviduct by column chromatography procedures using Q-Sepharose FF, Ni(2+)-chelating Sepharose FF, and UDP-hexanolamine-agarose. This enzyme catalyzes the transfer of GlcNAc from UDP-GlcNAc to tetraantennary oligosaccharide and produces pentaantennary oligosaccharide with the beta1-4-linked GlcNAc residue on the Manalpha1-6 arm. It requires a divalent cation such as Mn(2+) and has an apparent molecular weight of 72,000 under nonreducing conditions. The enzyme does not act on biantennary oligosaccharide (GnT I and II product), and beta1,6-N-acetylglucosaminylation of the Manalpha1-6 arm (GnT V product) is essential for its activity. This clearly distinguishes it from GnT IV, which is known to generate a beta1-4-linked GlcNAc residue only on the Manalpha1-3 arm. Based on these findings, we conclude that this enzyme is UDP-GlcNAc:GlcNAcbeta1-6(GlcNAcbeta1-2)Manalpha1-R [GlcNAc to Man]-beta1,4-N-acetylglucosaminyltransferase VI. This is the only known enzyme that has not been previously purified among GnTs responsible for antenna formation on the cores of N-linked complex-type sugar chains.
Collapse
Affiliation(s)
- T Taguchi
- RIKEN (Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang A, Potvin B, Zaiman A, Chen W, Kumar R, Phillips L, Stanley P. The gain-of-function Chinese hamster ovary mutant LEC11B expresses one of two Chinese hamster FUT6 genes due to the loss of a negative regulatory factor. J Biol Chem 1999; 274:10439-50. [PMID: 10187834 DOI: 10.1074/jbc.274.15.10439] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The LEC11 Chinese hamster ovary (CHO) gain-of-function mutant expresses an alpha(1,3)fucosyltransferase (alpha(1,3)Fuc-T) activity that generates the LeX, sialyl-LeX, and VIM-2 glycan determinants and has been extensively used for studies of E-selectin ligand specificity. In order to identify regulatory mechanisms that control alpha(1,3)Fuc-T expression in mammals, mechanisms of FUT gene expression were investigated in LEC11 cells and two new, independent mutants, LEC11A and LEC11B. Northern and ribonuclease protection analyses, using probes that span the coding region of a cloned CHO FUT gene, detected transcripts in each LEC11 mutant but not in CHO cells or other gain-of-function CHO mutants that express a different alpha(1,3)Fuc-T activity. Coding region sequence analysis and alpha(1,3)Fuc-T acceptor specificity comparisons with recombinant human Fuc-TV and Fuc-TVI showed that the cloned FUT gene is orthologous to the human FUT6 gene. Southern analyses identified two closely related FUT6 genes in the Chinese hamster, whose evolutionary relationships are discussed. The blots showed that rearrangements had occurred in LEC11A and LEC11 genomic DNA, consistent with a cis mechanism of FUT6 gene activation in these mutants. By contrast, somatic cell hybrid analyses revealed that LEC11B cells express FUT6 gene transcripts due to the loss of a trans-acting, negative regulatory factor. Sequencing of reverse transcriptase-polymerase chain reaction products identified unique 5'- and 3'-untranslated region sequences in FUT6 gene transcripts from each LEC11 mutant. Northern and Southern analyses with gene-specific probes showed that LEC11A cells express only the cgFUT6A gene (where cg is Cricetulus griseus), whereas LEC11 and LEC11B cells express only the cgFUT6B gene. In LEC11A x LEC11B hybrid cells, the cgFUT6A gene was predominantly expressed, as predicted if a trans-acting negative regulatory factor functions to suppress cgFUT6B gene expression in CHO cells. This factor is predicted to be a cell type-specific regulator of FUT6 gene expression in mammals.
Collapse
Affiliation(s)
- A Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, 10461, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Auchincloss A, Alexander A, Kohorn B. Requirement for three membrane-spanning alpha-helices in the post-translational insertion of a thylakoid membrane protein. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50038-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|