1
|
Portman JR, Qayyum MZ, Murakami KS, Strick TR. On the stability of stalled RNA polymerase and its removal by RapA. Nucleic Acids Res 2022; 50:7396-7405. [PMID: 35819188 PMCID: PMC9303389 DOI: 10.1093/nar/gkac558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Stalling of the transcription elongation complex formed by DNA, RNA polymerase (RNAP) and RNA presents a serious obstacle to concurrent processes due to the extremely high stability of the DNA-bound polymerase. RapA, known to remove RNAP from DNA in an ATP-dependent fashion, was identified over 50 years ago as an abundant binding partner of RNAP; however, its mechanism of action remains unknown. Here, we use single-molecule magnetic trapping assays to characterize RapA activity and begin to specify its mechanism of action. We first show that stalled RNAP resides on DNA for times on the order of 106 seconds and that increasing positive torque on the DNA reduces this lifetime. Using stalled RNAP as a substrate we show that the RapA protein stimulates dissociation of stalled RNAP from positively supercoiled DNA but not negatively supercoiled DNA. We observe that RapA-dependent RNAP dissociation is torque-sensitive, is inhibited by GreB and depends on RNA length. We propose that stalled RNAP is dislodged from DNA by RapA via backtracking in a supercoiling- and torque-dependent manner, suggesting that RapA’s activity on transcribing RNAP in vivo is responsible for resolving conflicts between converging polymerase molecular motors.
Collapse
Affiliation(s)
- James R Portman
- Institut de Biologie de l'Ecole Normale Supérieure, PSL Université, INSERM, CNRS, Paris 75005, France.,Horizons 2020 Innovative Training Network, DNAREPAIRMAN, Paris 75005, France
| | - M Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Terence R Strick
- Institut de Biologie de l'Ecole Normale Supérieure, PSL Université, INSERM, CNRS, Paris 75005, France.,Horizons 2020 Innovative Training Network, DNAREPAIRMAN, Paris 75005, France.,Equipe Labellisée de la Ligue Nationale Contre le Cancer, Paris 75013, France
| |
Collapse
|
2
|
Qayyum MZ, Molodtsov V, Renda A, Murakami KS. Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. J Biol Chem 2021; 297:101404. [PMID: 34774797 PMCID: PMC8666675 DOI: 10.1016/j.jbc.2021.101404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 01/27/2023] Open
Abstract
After transcription termination, cellular RNA polymerases (RNAPs) are occasionally trapped on DNA, impounded in an undefined post-termination complex (PTC), limiting the free RNAP pool and subsequently leading to inefficient transcription. In Escherichia coli, a Swi2/Snf2 family of ATPase called RapA is known to be involved in countering such inefficiency through RNAP recycling; however, the precise mechanism of this recycling is unclear. To better understand its mechanism, here we determined the structures of two sets of E. coli RapA–RNAP complexes, along with the RNAP core enzyme and the elongation complex, using cryo-EM. These structures revealed the large conformational changes of RNAP and RapA upon their association that has been implicated in the hindrance of PTC formation. Our results along with DNA-binding assays reveal that although RapA binds RNAP away from the DNA-binding main channel, its binding can allosterically close the RNAP clamp, thereby preventing its nonspecific DNA binding and PTC formation. Taken together, we propose that RapA acts as a guardian of RNAP by which RapA prevents nonspecific DNA binding of RNAP without affecting the binding of promoter DNA recognition σ factor, thereby enhancing RNAP recycling.
Collapse
Affiliation(s)
- M Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Vadim Molodtsov
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Renda
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
3
|
Shi W, Zhou W, Chen M, Yang Y, Hu Y, Liu B. Structural basis for activation of Swi2/Snf2 ATPase RapA by RNA polymerase. Nucleic Acids Res 2021; 49:10707-10716. [PMID: 34428297 PMCID: PMC8501970 DOI: 10.1093/nar/gkab744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/14/2022] Open
Abstract
RapA is a bacterial RNA polymerase (RNAP)-associated Swi2/Snf2 ATPase that stimulates RNAP recycling. The ATPase activity of RapA is autoinhibited by its N-terminal domain (NTD) but activated with RNAP bound. Here, we report a 3.4-Å cryo-EM structure of Escherichia coli RapA-RNAP elongation complex, in which the ATPase active site of RapA is structurally remodeled. In this process, the NTD of RapA is wedged open by RNAP β' zinc-binding domain (ZBD). In addition, RNAP β flap tip helix (FTH) forms extensive hydrophobic interactions with RapA ATPase core domains. Functional assay demonstrates that removing the ZBD or FTH of RNAP significantly impairs its ability to activate the ATPase activity of RapA. Our results provide the structural basis of RapA ATPase activation by RNAP, through the active site remodeling driven by the ZBD-buttressed large-scale opening of NTD and the direct interactions between FTH and ATPase core domains.
Collapse
Affiliation(s)
- Wei Shi
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
4
|
Suppressor Mutations in Type II Secretion Mutants of Vibrio cholerae: Inactivation of the VesC Protease. mSphere 2020; 5:5/6/e01125-20. [PMID: 33328352 PMCID: PMC7771236 DOI: 10.1128/msphere.01125-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genome-wide transposon mutagenesis has identified the genes encoding the T2SS in Vibrio cholerae as essential for viability, but the reason for this is unclear. Mutants with deletions or insertions in these genes can be isolated, suggesting that they have acquired secondary mutations that suppress their growth defect. The type II secretion system (T2SS) is a conserved transport pathway responsible for the secretion of a range of virulence factors by many pathogens, including Vibrio cholerae. Disruption of the T2SS genes in V. cholerae results in loss of secretion, changes in cell envelope function, and growth defects. While T2SS mutants are viable, high-throughput genomic analyses have listed these genes among essential genes. To investigate whether secondary mutations arise as a consequence of T2SS inactivation, we sequenced the genomes of six V. cholerae T2SS mutants with deletions or insertions in either the epsG, epsL, or epsM genes and identified secondary mutations in all mutants. Two of the six T2SS mutants contain distinct mutations in the gene encoding the T2SS-secreted protease VesC. Other mutations were found in genes coding for V. cholerae cell envelope proteins. Subsequent sequence analysis of the vesC gene in 92 additional T2SS mutant isolates identified another 19 unique mutations including insertions or deletions, sequence duplications, and single-nucleotide changes resulting in amino acid substitutions in the VesC protein. Analysis of VesC variants and the X-ray crystallographic structure of wild-type VesC suggested that all mutations lead to loss of VesC production and/or function. One possible mechanism by which V. cholerae T2SS mutagenesis can be tolerated is through selection of vesC-inactivating mutations, which may, in part, suppress cell envelope damage, establishing permissive conditions for the disruption of the T2SS. Other mutations may have been acquired in genes encoding essential cell envelope proteins to prevent proteolysis by VesC. IMPORTANCE Genome-wide transposon mutagenesis has identified the genes encoding the T2SS in Vibrio cholerae as essential for viability, but the reason for this is unclear. Mutants with deletions or insertions in these genes can be isolated, suggesting that they have acquired secondary mutations that suppress their growth defect. Through whole-genome sequencing and phenotypic analysis of T2SS mutants, we show that one means by which the growth defect can be suppressed is through mutations in the gene encoding the T2SS substrate VesC. VesC homologues are present in other Vibrio species and close relatives, and this may be why inactivation of the T2SS in species such as Vibrio vulnificus, Vibrio sp. strain 60, and Aeromonas hydrophila also results in a pleiotropic effect on their outer membrane assembly and integrity.
Collapse
|
5
|
García JE, Labarthe MM, Pagnussat LA, Amenta M, Creus CM, Maroniche GA. Signs of a phyllospheric lifestyle in the genome of the stress-tolerant strain Azospirillum brasilense Az19. Syst Appl Microbiol 2020; 43:126130. [PMID: 32882650 DOI: 10.1016/j.syapm.2020.126130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/26/2020] [Indexed: 11/28/2022]
Abstract
Azospirillum brasilense Az19 is a plant-beneficial bacterium capable of protecting plants from the negative effects of drought. The objective of this study was to determine and analyze the genomic sequence of strain Az19 as a means of identifying putative stress-adaptation mechanisms. A high-quality draft genome of ca. 7 Mb with a predicted coding potential of 6710 genes was obtained. Phylogenomic analyses confirmed that Az19 belongs to the brasilense clade and is closely related to strains Az39 and REC3. Functional genomics revealed that the denitrification pathway of Az19 is incomplete, which was in agreement with a reduced growth on nitrate under low O2 concentrations. Putative genes of the general stress response and oxidative stress-tolerance, as well as synthesis of exopolysaccharides, carotenoids, polyamines and several osmolytes, were detected. An additional poly-beta-hydroxybutyrate (PHB) synthase coding gene was found in Az19 genome, but the accumulation of PHB did not increase under salinity. The detection of exclusive genes related to DNA repair led to discover that strain Az19 also has improved UV-tolerance, both in vitro and in planta. Finally, the analysis revealed the presence of multiple kaiC-like genes, which could be involved in stress-tolerance and, possibly, light responsiveness. Although A. brasilense has been a model for the study of beneficial plant-associated rhizobacteria, the evidence collected in this current study suggests, for the first time in this bacterial group, an unexpected possibility of adaptation to the phyllosphere.
Collapse
Affiliation(s)
- Julia E García
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola, Nicolas Repetto and de los Reseros, Hurlingham B1686, Buenos Aires, Argentina
| | - Maria M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina
| | - Luciana A Pagnussat
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, 2290 Godoy Cruz str., CABA C1425FQB, Argentina
| | - Melina Amenta
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, km 73.5 226 route, Balcarce B7620, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, 2290 Godoy Cruz str., CABA C1425FQB, Argentina.
| |
Collapse
|
6
|
Moreno-Del Alamo M, Torres R, Manfredi C, Ruiz-Masó JA, Del Solar G, Alonso JC. Bacillus subtilis PcrA Couples DNA Replication, Transcription, Recombination and Segregation. Front Mol Biosci 2020; 7:140. [PMID: 32793628 PMCID: PMC7385302 DOI: 10.3389/fmolb.2020.00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Bacillus subtilis PcrA abrogates replication-transcription conflicts in vivo and disrupts RecA nucleoprotein filaments in vitro. Inactivation of pcrA is lethal. We show that PcrA depletion lethality is suppressed by recJ (involved in end resection), recA (the recombinase), or mfd (transcription-coupled repair) inactivation, but not by inactivating end resection (addAB or recQ), positive and negative RecA modulators (rarA or recX and recU), or genes involved in the reactivation of a stalled RNA polymerase (recD2, helD, hepA, and ywqA). We also report that B. subtilis mutations previously designated as recL16 actually map to the recO locus, and confirm that PcrA depletion lethality is suppressed by recO inactivation. The pcrA gene is epistatic to recA or mfd, but it is not epistatic to addAB, recJ, recQ, recO16, rarA, recX, recU, recD2, helD, hepA, or ywqA in response to DNA damage. PcrA depletion led to the accumulation of unsegregated chromosomes, and this defect is increased by recQ, rarA, or recU inactivation. We propose that PcrA, which is crucial to maintain cell viability, is involved in different DNA transactions.
Collapse
Affiliation(s)
- María Moreno-Del Alamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Candela Manfredi
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - José A Ruiz-Masó
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Gloria Del Solar
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, Spain
| | - Juan Carlos Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Buhl M, Kästle C, Geyer A, Autenrieth IB, Peter S, Willmann M. Molecular Evolution of Extensively Drug-Resistant (XDR) Pseudomonas aeruginosa Strains From Patients and Hospital Environment in a Prolonged Outbreak. Front Microbiol 2019; 10:1742. [PMID: 31440214 PMCID: PMC6694792 DOI: 10.3389/fmicb.2019.01742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/15/2019] [Indexed: 11/24/2022] Open
Abstract
In this study, we aimed to elucidate a prolonged outbreak of extensively drug-resistant (XDR) Pseudomonas aeruginosa, at two adjacent hospitals over a time course of 4 years. Since all strains exhibited a similar antibiotic susceptibility pattern and carried the carbapenemase gene blaVIM, a monoclonal outbreak was assumed. To shed light on the intra-hospital evolution of these strains over time, whole genome sequence (WGS) analysis of 100 clinical and environmental outbreak strains was employed. Phylogenetic analysis of the core genome revealed the outbreak to be polyclonal, rather than monoclonal as initially suggested. The vast majority of strains fell into one of two major clusters, composed of 27 and 59 strains, and their accessory genome each revealed over 400 and 600 accessory genes, respectively, thus indicating an unexpectedly high structural diversity among phylogenetically clustered strains. Further analyses focused on the cluster with 59 strains, representing the hospital from which both clinical and environmental strains were available. Our investigation clearly shows both accumulation and loss of genes occur very frequently over time, as reflected by analysis of protein enrichment as well as functional enrichment. In addition, we investigated adaptation through single nucleotide polymorphisms (SNPs). Among the genes affected by SNPs, there are a multidrug efflux pump (mexZ) and a mercury detoxification operon (merR) with deleterious mutations, potentially leading to loss of repression with resistance against antibiotics and disinfectants. Our results not only confirm WGS to be a powerful tool for epidemiologic analyses, but also provide insights into molecular evolution during an XDR P. aeruginosa hospital outbreak. Genome mutation unveiled a striking genetic plasticity on an unexpectedly high level, mostly driven by horizontal gene transfer. Our study adds valuable information to the molecular understanding of “real-world” Intra-hospital P. aeruginosa evolution and is a step forward toward more personalized medicine in infection control.
Collapse
Affiliation(s)
- Michael Buhl
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Christina Kästle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - André Geyer
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Matthias Willmann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Yamada TG, Suetsugu Y, Deviatiiarov R, Gusev O, Cornette R, Nesmelov A, Hiroi N, Kikawada T, Funahashi A. Transcriptome analysis of the anhydrobiotic cell line Pv11 infers the mechanism of desiccation tolerance and recovery. Sci Rep 2018; 8:17941. [PMID: 30560869 PMCID: PMC6298976 DOI: 10.1038/s41598-018-36124-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
The larvae of the African midge, Polypedilum vanderplanki, can enter an ametabolic state called anhydrobiosis to overcome fatal desiccation stress. The Pv11 cell line, derived from P. vanderplanki embryo, shows desiccation tolerance when treated with trehalose before desiccation and resumes proliferation after rehydration. However, the molecular mechanisms of this desiccation tolerance remain unknown. Here, we performed high-throughput CAGE-seq of mRNA and a differentially expressed gene analysis in trehalose-treated, desiccated, and rehydrated Pv11 cells, followed by gene ontology analysis of the identified differentially expressed genes. We detected differentially expressed genes after trehalose treatment involved in various stress responses, detoxification of harmful chemicals, and regulation of oxidoreduction that were upregulated. In the desiccation phase, L-isoaspartyl methyltransferase and heat shock proteins were upregulated and ribosomal proteins were downregulated. Analysis of differentially expressed genes during rehydration supported the notion that homologous recombination, nucleotide excision repair, and non-homologous recombination were involved in the recovery process. This study provides initial insights into the molecular mechanisms underlying the extreme desiccation tolerance of Pv11 cells.
Collapse
Affiliation(s)
- Takahiro G Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Yoshitaka Suetsugu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | | | - Oleg Gusev
- Kazan Federal University, Kazan, Tatarstan, 420008, Russia.,RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Richard Cornette
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | | | - Noriko Hiroi
- Faculty of Pharmaceutical Science, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, 756-0884, Japan
| | - Takahiro Kikawada
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
9
|
Abstract
A large number of SNF2 family, DNA and ATP-dependent motor proteins are needed during transcription, DNA replication, and DNA repair to manipulate protein-DNA interactions and change DNA structure. SMARCAL1, ZRANB3, and HLTF are three related members of this family with specialized functions that maintain genome stability during DNA replication. These proteins are recruited to replication forks through protein-protein interactions and bind DNA using both their motor and substrate recognition domains (SRDs). The SRD provides specificity to DNA structures like forks and junctions and confers DNA remodeling activity to the motor domains. Remodeling reactions include fork reversal and branch migration to promote fork stabilization, template switching, and repair. Regulation ensures these powerful activities remain controlled and restricted to damaged replication forks. Inherited mutations in SMARCAL1 cause a severe developmental disorder and mutations in ZRANB3 and HLTF are linked to cancer illustrating the importance of these enzymes in ensuring complete and accurate DNA replication. In this review, we examine how these proteins function, concentrating on their common and unique attributes and regulatory mechanisms.
Collapse
Affiliation(s)
- Lisa A Poole
- a Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - David Cortez
- a Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
10
|
The Pneumococcal Type 1 Pilus Genes Are Thermoregulated and Are Repressed by a Member of the Snf2 Protein Family. J Bacteriol 2017; 199:JB.00078-17. [PMID: 28507246 DOI: 10.1128/jb.00078-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/05/2017] [Indexed: 12/24/2022] Open
Abstract
In Streptococcus pneumoniae, the type 1 pilus is involved in many steps of pathogenesis, including adherence to epithelial cells, mediation of inflammation, escape from macrophages, and the formation of biofilms. The type 1 pilus genes are expressed in a bistable fashion with cells switching between "on" and "off" expression states. Bistable expression of these genes is due to their control by RlrA, a positive regulator subject to control by a positive-feedback loop. The type 1 pilus genes are also thought to be negatively regulated by a large number of repressors. Here we show that expression of the type 1 pilus genes is thermosensitive and switched off at growth temperatures below 31°C. We also report that the on expression state of the type 1 pilus genes is highly stable, a phenomenon which we show likely contributed to the erroneous identification of many proteins as negative regulators of these genes. Finally, we exploited the effect of low temperature on pilus gene expression to help identify SP_1523, an Snf2-type protein, as a novel negative regulator of the pilus genes. Our findings establish that the type 1 pilus genes are thermoregulated and are repressed by a member of the Snf2 protein family. They also refute the notion that these genes are controlled by 8 previously described negative regulators.IMPORTANCEStreptococcus pneumoniae is the leading cause of death from respiratory infections in children. Many bacterial factors contribute to pneumococcal virulence and nasopharyngeal colonization. The type 1 pneumococcal pilus plays an important role in mouse models and in epithelial adherence and is expressed in a bistable fashion. Here we show that the "on" state is highly stable, which may explain the prior misidentification of negative regulators of pilus expression. We also show that expression of pilus genes is thermosensitive: virtually no expression can be detected at temperatures found in the anterior nares of humans. We took advantage of this property to identify a negative regulator of pilus expression, a member of a family of proteins widely conserved across Gram-positive bacteria.
Collapse
|
11
|
Kakar S, Fang X, Lubkowska L, Zhou YN, Shaw GX, Wang YX, Jin DJ, Kashlev M, Ji X. Allosteric Activation of Bacterial Swi2/Snf2 (Switch/Sucrose Non-fermentable) Protein RapA by RNA Polymerase: BIOCHEMICAL AND STRUCTURAL STUDIES. J Biol Chem 2015; 290:23656-69. [PMID: 26272746 PMCID: PMC4583045 DOI: 10.1074/jbc.m114.618801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 07/22/2015] [Indexed: 11/06/2022] Open
Abstract
Members of the Swi2/Snf2 (switch/sucrose non-fermentable) family depend on their ATPase activity to mobilize nucleic acid-protein complexes for gene expression. In bacteria, RapA is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein that mediates RNAP recycling during transcription. It is known that the ATPase activity of RapA is stimulated by its interaction with RNAP. It is not known, however, how the RapA-RNAP interaction activates the enzyme. Previously, we determined the crystal structure of RapA. The structure revealed the dynamic nature of its N-terminal domain (Ntd), which prompted us to elucidate the solution structure and activity of both the full-length protein and its Ntd-truncated mutant (RapAΔN). Here, we report the ATPase activity of RapA and RapAΔN in the absence or presence of RNAP and the solution structures of RapA and RapAΔN either ligand-free or in complex with RNAP. Determined by small-angle x-ray scattering, the solution structures reveal a new conformation of RapA, define the binding mode and binding site of RapA on RNAP, and show that the binding sites of RapA and σ(70) on the surface of RNAP largely overlap. We conclude that the ATPase activity of RapA is inhibited by its Ntd but stimulated by RNAP in an allosteric fashion and that the conformational changes of RapA and its interaction with RNAP are essential for RNAP recycling. These and previous findings outline the functional cycle of RapA, which increases our understanding of the mechanism and regulation of Swi2/Snf2 proteins in general and of RapA in particular. The new structural information also leads to a hypothetical model of RapA in complex with RNAP immobilized during transcription.
Collapse
Affiliation(s)
- Smita Kakar
- From the Macromolecular Crystallography Laboratory
| | | | - Lucyna Lubkowska
- Gene Regulation and Chromosome Biology Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Yan Ning Zhou
- Gene Regulation and Chromosome Biology Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Gary X Shaw
- From the Macromolecular Crystallography Laboratory
| | | | - Ding Jun Jin
- Gene Regulation and Chromosome Biology Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Mikhail Kashlev
- Gene Regulation and Chromosome Biology Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Xinhua Ji
- From the Macromolecular Crystallography Laboratory,
| |
Collapse
|
12
|
Krasich R, Wu SY, Kuo HK, Kreuzer KN. Functions that protect Escherichia coli from DNA-protein crosslinks. DNA Repair (Amst) 2015; 28:48-59. [PMID: 25731940 DOI: 10.1016/j.dnarep.2015.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Pathways for tolerating and repairing DNA-protein crosslinks (DPCs) are poorly defined. We used transposon mutagenesis and candidate gene approaches to identify DPC-hypersensitive Escherichia coli mutants. DPCs were induced by azacytidine (aza-C) treatment in cells overexpressing cytosine methyltransferase; hypersensitivity was verified to depend on methyltransferase expression. We isolated hypersensitive mutants that were uncovered in previous studies (recA, recBC, recG, and uvrD), hypersensitive mutants that apparently activate phage Mu Gam expression, and novel hypersensitive mutants in genes involved in DNA metabolism, cell division, and tRNA modification (dinG, ftsK, xerD, dnaJ, hflC, miaA, mnmE, mnmG, and ssrA). Inactivation of SbcCD, which can cleave DNA at protein-DNA complexes, did not cause hypersensitivity. We previously showed that tmRNA pathway defects cause aza-C hypersensitivity, implying that DPCs block coupled transcription/translation complexes. Here, we show that mutants in tRNA modification functions miaA, mnmE and mnmG cause defects in aza-C-induced tmRNA tagging, explaining their hypersensitivity. In order for tmRNA to access a stalled ribosome, the mRNA must be cleaved or released from RNA polymerase. Mutational inactivation of functions involved in mRNA processing and RNA polymerase elongation/release (RNase II, RNaseD, RNase PH, RNase LS, Rep, HepA, GreA, GreB) did not cause aza-C hypersensitivity; the mechanism of tmRNA access remains unclear.
Collapse
Affiliation(s)
- Rachel Krasich
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - Sunny Yang Wu
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - H Kenny Kuo
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States
| | - Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Durham NC 27710, United States.
| |
Collapse
|
13
|
Abstract
RNA polymerase (RNAP) loses activity during transcription as it stalls at various inactive states due to erratic translocation. Reactivation of these stalled RNAPs is essential for efficient RNA synthesis. Here we report a 4.7-Å resolution crystal structure of the Escherichia coli RNAP core enzyme in complex with ATPase RapA that is involved in reactivating stalled RNAPs. The structure reveals that RapA binds at the RNA exit channel of the RNAP and makes the channel unable to accommodate the formation of an RNA hairpin. The orientation of RapA on the RNAP core complex suggests that RapA uses its ATPase activity to propel backward translocation of RNAP along the DNA template in an elongation complex. This structure provides insights into the reactivation of stalled RNA polymerases and helps support ATP-driven backward translocation as a general mechanism for transcriptional regulation.
Collapse
|
14
|
Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution. Appl Environ Microbiol 2015; 81:1932-41. [PMID: 25556191 DOI: 10.1128/aem.03494-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N'-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH.
Collapse
|
15
|
Stec-Dziedzic E, Lyżeń R, Skärfstad E, Shingler V, Szalewska-Pałasz A. Characterization of the transcriptional stimulatory properties of the Pseudomonas putida RapA protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23207688 DOI: 10.1016/j.bbagrm.2012.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA polymerase-associated factors can significantly affect its performance at specific promoters. Here we identified a Pseudomonas putida RNA polymerases-associated protein as a homolog of Escherichia coli RapA. We found that P. putida RapA stimulates the transcription from promoters dependent on a variety of σ-factors (σ(70), σ(S), σ(54), σ(32), σ(E)) in vitro. The level of stimulation varied from 2- to 10-fold, with the maximal effect observed with the σ(E)-dependent PhtrA promoter. Stimulation by RapA was apparent in the multi-round reactions and was modulated by salt concentration in vitro. However, in contrast to findings with E. coli RapA, P. putida RapA-mediated stimulation of transcription was also evident using linear templates. These properties of P. putida RapA were apparent using either E. coli- or P. putida-derived RNA polymerases. Analysis of individual steps of transcription revealed that P. putida RapA enhances the stability of competitor-resistant open-complexes formed by RNA polymerase at promoters. In vivo, P. putida RapA can complement the inhibitory effect of high salt on growth of an E. coli RapA null strain. However, a P. putida RapA null mutant was not sensitive to high salt. The in vivo effects of lack of RapA were only detectable for the σ(E)-PhtrA promoter where the RapA-deficiency resulted in lower activity. The presented characteristics of P. putida RapA indicate that its functions may extend beyond a role in facilitating RNA polymerase recycling to include a role in transcription initiation efficiency.
Collapse
Affiliation(s)
- Ewa Stec-Dziedzic
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
16
|
Cummins J, Gahan CG. Signature tagged mutagenesis in the functional genetic analysis of gastrointestinal pathogens. Gut Microbes 2012; 3:93-103. [PMID: 22555467 PMCID: PMC3370953 DOI: 10.4161/gmic.19578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Signature tagged mutagenesis is a genetic approach that was developed to identify novel bacterial virulence factors. It is a negative selection method in which unique identification tags allow analysis of pools of mutants in mixed populations. The approach is particularly well suited to functional genetic analysis of the gastrointestinal phase of infection in foodborne pathogens and has the capacity to guide the development of novel vaccines and therapeutics. In this review we outline the technical principles underpinning signature-tagged mutagenesis as well as novel sequencing-based approaches for transposon mutant identification such as TraDIS (transposon directed insertion-site sequencing). We also provide an analysis of screens that have been performed in gastrointestinal pathogens which are a global health concern (Escherichia coli, Listeria monocytogenes, Helicobacter pylori, Vibrio cholerae and Salmonella enterica). The identification of key virulence loci through the use of signature tagged mutagenesis in mice and relevant larger animal models is discussed.
Collapse
Affiliation(s)
- Joanne Cummins
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland
| | - Cormac G.M. Gahan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland,School of Pharmacy; University College Cork; Cork, Ireland,Correspondence to: Cormac G.M. Gahan,
| |
Collapse
|
17
|
Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 2011; 193:6039-56. [PMID: 21908672 DOI: 10.1128/jb.05535-11] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.
Collapse
|
18
|
Proshkin SA, Mironov AS. Regulation of bacterial transcription elongation. Mol Biol 2011. [DOI: 10.1134/s0026893311020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Jin DJ, Zhou YN, Shaw G, Ji X. Structure and function of RapA: a bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:470-5. [PMID: 21419241 DOI: 10.1016/j.bbagrm.2011.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
Abstract
One of the hallmarks of the Swi2/Snf2 family members is their ability to modify the interaction between DNA-binding protein and DNA in controlling gene expression. The studies of Swi2/Snf2 have been mostly focused on their roles in chromatin and/or nucleosome remodeling in eukaryotes. A bacterial Swi2/Snf2 protein named RapA from Escherichia coli is a unique addition to these studies. RapA is an RNA polymerase (RNAP)-associated protein and an ATPase. It binds nucleic acids including RNA and DNA. The ATPase activity of RapA is stimulated by its interaction with RNAP, but not with nucleic acids. RapA and the major sigma factor σ70 compete for binding to core RNAP. After one transcription cycle in vitro, RNAP is immobilized in an undefined posttranscription/posttermination complex (PTC), thus becoming unavailable for reuse. RapA stimulates RNAP recycling by ATPase-dependent remodeling of PTC, leading to the release of sequestered RNAP, which then becomes available for reuse in another cycle of transcription. Recently, the crystal structure of RapA that is also the first full-length structure for the entire Swi2/Snf2 family was determined. The structure provides a framework for future studies of the mechanism of RNAP recycling in transcription. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ding Jun Jin
- Center for Cancer Research, Natioal Cancer Institute, National Institute of Health, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
20
|
Richmond M, Pasupula RR, Kansara SG, Autery JP, Monk BM, Sukhodolets MV. RapA, Escherichia coli RNA polymerase SWI/SNF subunit-dependent polyadenylation of RNA. Biochemistry 2011; 50:2298-312. [PMID: 21299217 DOI: 10.1021/bi101017x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we describe RapA-dependent polyadenylation of model RNA substrates and endogenous, RNA polymerase-associated nucleic acid fragments. We demonstrate that the Escherichia coli RNA polymerase obtained through the classic purification procedure carries endogenous RNA oligonucleotides, which, in the presence of ATP, are polyriboadenylated in a RapA-dependent manner by an accessory poly(rA) polymerase. RNA polymerase isolated from poly(A) polymerase- (PAP-) and polynucleotide phosphorylase- (PNP-) deficient E. coli strain lacks accessory (rA)(n)-synthetic activity. Experiments with reconstituted RNA polymerase-PAP and RNA polymerase-PNP mixtures suggest that RapA enables the polyadenylation by PAP of RNA polymerase-associated RNA. Mutations disrupting RapA's ATP-hydrolytic function disrupt RapA-dependent polyadenylation, and the rapA(-)E. coli strain displays a measurable reduction in RNA polyadenylation. RapA-dependent polyadenylation can also be modulated by mutations in the section of RapA's SWI/SNF domain linked to interaction with single-stranded nucleic acid. We have developed enzymatic assays in which model, synthetic RNAs are polyriboadenylated in a RapA-dependent manner. Taken together, our results are consistent with RapA acting as an RNA polymerase-associated, ATP-dependent RNA translocase. Our work further links RapA to RNA remodeling and provides new mechanistic insights into the functional interaction between RNA polymerase and RapA.
Collapse
Affiliation(s)
- Michael Richmond
- Department of Chemistry and Biochemistry, Lamar University, Beaumont, Texas 77710, United States
| | | | | | | | | | | |
Collapse
|
21
|
Yawn B, Zhang L, Mura C, Sukhodolets MV. RapA, the SWI/SNF subunit of Escherichia coli RNA polymerase, promotes the release of nascent RNA from transcription complexes. Biochemistry 2009; 48:7794-806. [PMID: 19580329 DOI: 10.1021/bi9004123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RapA, a prokaryotic member of the SWI/SNF protein superfamily, is an integral part of the RNA polymerase transcription complex. RapA's function and catalytic mechanism have been linked to nucleic acid remodeling. In this work, we show that mutations in the interface between RapA's SWI/SNF and double-stranded nucleic acid-binding domains significantly alter ATP hydrolysis in purified RapA. The effects of individual mutations on ATP hydrolysis loosely correlated with RapA's nucleic acid remodeling activity, indicating that the interaction between these domains may be important for the RapA-mediated remodeling of nonproductive transcription complexes. In this study, we introduced a model system for in vitro transcription of a full-length Escherichia coli gene (slyD). To study the function of RapA, we fractionated and identified in vitro transcription reaction intermediates in the presence or absence of RapA. These experiments demonstrated that RapA contributes to the formation of free RNA species during in vitro transcription. This work further refines our models for RapA function in vivo and establishes a new role in RNA management for a representative of the SWI/SNF protein superfamily.
Collapse
Affiliation(s)
- Brandon Yawn
- Department of Chemistry, Lamar University, Beaumont, Texas 77710, USA
| | | | | | | |
Collapse
|
22
|
Lei L, Du C, Yang P, Xie F, Ou P, Han W, Wang J. Screening of strain-specific Actinobacillus pleuropneumoniae genes using a combination method. J Microbiol Methods 2009; 77:145-51. [PMID: 19318057 DOI: 10.1016/j.mimet.2009.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/19/2009] [Indexed: 12/27/2022]
Abstract
We describe a three-step method designed to identify distinct antigen-coding genes between two related bacterial genomes by: (a) constructing a subtractive library using Representational Difference Analysis (RDA), (b) characterization of gene expression in vitro using a ribosome display system combined with antibody screening and (c) gene recovery and confirmation using RT-PCR and reverse Southern hybridization, respectively. To test the efficacy of this strategy we screened the antigen-coding gene profile of Actinobacillus pleuropneumoniae (APP) strains CCVC259 and CCVC263 that do not elicit cross-protective immunity. This strategy identified six different DNA fragments from CCVC259 and 10 different DNA fragments from CCVC263. Of six sequences identified from CCVC259, 2 were not significantly similar, two were 74% and 87% homologous to the sequences encoding for the Ralstonia eutropha H16 conserved membrane protein and transcriptional regulator respectively, and two were >96% homologous to the Pseudomonas alcaligenes putative transposase subunit genes IS1474 and IS1475. Among ten unique DNA fragments identified from strain CCVC263, eight were homologous to DNA fragments encoding the TBP 1 precursor, ATP-dependent helicase HepA, glycosylase, methyltransferase and GTPase in the APP L20 genome and two genes identified had no significant similarity. Our findings indicated that the three-step method could be utilized to identify unique antigen-coding genes and may be a powerful and efficient technique for serotype-specific identification of pathogens and polyvalent vaccine design.
Collapse
Affiliation(s)
- Liancheng Lei
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Haseltine CA, Kowalczykowski SC. An archaeal Rad54 protein remodels DNA and stimulates DNA strand exchange by RadA. Nucleic Acids Res 2009; 37:2757-70. [PMID: 19282450 PMCID: PMC2677860 DOI: 10.1093/nar/gkp068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rad54 protein is a key member of the RAD52 epistasis group required for homologous recombination in eukaryotes. Rad54 is a duplex DNA translocase that remodels both DNA and protein–DNA complexes, and functions at multiple steps in the recombination process. Here we use biochemical criteria to demonstrate the existence of this important protein in a prokaryotic organism. The Sulfolobus solfataricus Rad54 (SsoRad54) protein is a double-strand DNA-dependent ATPase that can alter the topology of duplex DNA. Like its eukaryotic homolog, it interacts directly with the S. solfataricus Rad51 homologue, SsoRadA, to stimulate DNA strand exchange. Confirmation of this protein as an authentic Rad54 homolog establishes an essential phylogenetic bridge for identifying Rad54 homologs in the archaeal and bacterial domains.
Collapse
Affiliation(s)
- Cynthia A Haseltine
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
24
|
Shaw G, Gan J, Zhou YN, Zhi H, Subburaman P, Zhang R, Joachimiak A, Jin DJ, Ji X. Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription. Structure 2008; 16:1417-27. [PMID: 18786404 DOI: 10.1016/j.str.2008.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Revised: 06/11/2008] [Accepted: 06/30/2008] [Indexed: 11/30/2022]
Abstract
RapA, as abundant as sigma70 in the cell, is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein with ATPase activity. It stimulates RNAP recycling during transcription. We report a structure of RapA that is also a full-length structure for the entire Swi2/Snf2 family. RapA contains seven domains, two of which exhibit novel protein folds. Our model of RapA in complex with ATP and double-stranded DNA (dsDNA) suggests that RapA may bind to and translocate on dsDNA. Our kinetic template-switching assay shows that RapA facilitates the release of sequestered RNAP from a posttranscrption/posttermination complex for transcription reinitiation. Our in vitro competition experiment indicates that RapA binds to core RNAP only but is readily displaceable by sigma70. RapA is likely another general transcription factor, the structure of which provides a framework for future studies of this bacterial Swi2/Snf2 protein and its important roles in RNAP recycling during transcription.
Collapse
Affiliation(s)
- Gary Shaw
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Affinity isolation and I-DIRT mass spectrometric analysis of the Escherichia coli O157:H7 Sakai RNA polymerase complex. J Bacteriol 2007; 190:1284-9. [PMID: 18083804 DOI: 10.1128/jb.01599-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria contain a single multisubunit RNA polymerase that is responsible for the synthesis of all RNA. Previous studies of the Escherichia coli K-12 laboratory strain identified a group of effector proteins that interact directly with RNA polymerase to modulate the efficiency of transcription initiation, elongation, or termination. Here we used a rapid affinity isolation technique to isolate RNA polymerase from the pathogenic Escherichia coli strain O157:H7 Sakai. We analyzed the RNA polymerase enzyme complex using mass spectrometry and identified associated proteins. Although E. coli O157:H7 Sakai contains more than 1,600 genes not present in the K-12 strain, many of which are predicted to be involved in transcription regulation, all of the identified proteins in this study were encoded on the "core" E. coli genome.
Collapse
|
27
|
McKinley BA, Sukhodolets MV. Escherichia coli RNA polymerase-associated SWI/SNF protein RapA: evidence for RNA-directed binding and remodeling activity. Nucleic Acids Res 2007; 35:7044-60. [PMID: 17913745 PMCID: PMC2175355 DOI: 10.1093/nar/gkm747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicase-like SWI/SNF proteins are present in organisms belonging to distant kingdoms from bacteria to humans, indicating that they perform a very basic and ubiquitous form of nucleic acid management; current studies associate the activity of SWI/SNF proteins with remodeling of DNA and DNA–protein complexes. The bacterial SWI/SNF homolog RapA—an integral part of the Escherichia coli RNA polymerase complex—has been implicated in remodeling post-termination DNA–RNA polymerase–RNA ternary complexes (PTC), however its explicit nucleic acid substrates and mechanism remain elusive. Our work presents evidence indicating that RNA is a key substrate of RapA. Specifically, the formation of stable RapA–RNA intermediates in transcription and other, independent lines of evidence presented herein indicate that RapA binds and remodels RNA during transcription. Our results are consistent with RapA promoting RNA release from DNA–RNA polymerase–RNA ternary complexes; this process may be accompanied by the destabilization of non-canonical DNA–RNA complexes (putative DNA–RNA triplexes). Taken together, our data indicate a novel RNA remodeling activity for RapA, a representative of the SWI/SNF protein superfamily.
Collapse
Affiliation(s)
| | - Maxim V. Sukhodolets
- *To whom correspondence should be addressed. +1 409 880 7905 (office) +1 409 880 7906 (laboratory)+1 409 880 8270
| |
Collapse
|
28
|
Flaus A, Martin DMA, Barton GJ, Owen-Hughes T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 2006; 34:2887-905. [PMID: 16738128 PMCID: PMC1474054 DOI: 10.1093/nar/gkl295] [Citation(s) in RCA: 522] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/18/2006] [Accepted: 04/05/2006] [Indexed: 12/14/2022] Open
Abstract
The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members. Multiple sequence alignment of the helicase-related regions enables 24 distinct subfamilies to be identified, a considerable expansion over earlier surveys. Where information is known, there is a good correlation between biological or biochemical function and these assignments, suggesting Snf2 family motor domains are tuned for specific tasks. Scanning of complete genomes reveals all eukaryotes contain members of multiple subfamilies, whereas they are less common and not ubiquitous in eubacteria or archaea. The large sample of Snf2 proteins enables additional distinguishing conserved sequence blocks within the helicase-like motor to be identified. The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function.
Collapse
Affiliation(s)
- Andrew Flaus
- Division of Gene Regulation and Expression, University of DundeeDundee DD1 5EH, Scotland, UK
- Bioinformatics and Computational Biology Research Group, School of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - David M. A. Martin
- Bioinformatics and Computational Biology Research Group, School of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Geoffrey J. Barton
- Bioinformatics and Computational Biology Research Group, School of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Tom Owen-Hughes
- To whom correspondence should be addressed. Tel: +44 0 1382 385796; Fax: +44 0 1382 388702;
| |
Collapse
|
29
|
Borukhov S, Lee J, Laptenko O. Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol Microbiol 2005; 55:1315-24. [PMID: 15720542 DOI: 10.1111/j.1365-2958.2004.04481.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Like transcription initiation, the elongation and termination stages of transcription cycle serve as important targets for regulatory factors in prokaryotic cells. In this review, we discuss the recent progress in structural and biochemical studies of three evolutionarily conserved elongation factors, GreA, NusA and Mfd. These factors affect RNA polymerase (RNAP) processivity by modulating transcription pausing, arrest, termination or anti-termination. With structural information now available for RNAP and models of ternary elongation complexes, the interaction between these factors and RNAP can be modelled, and possible molecular mechanisms of their action can be inferred. The models suggest that these factors interact with RNAP at or near its three major, nucleic acid-binding channels: Mfd near the upstream opening of the primary (DNA-binding) channel, NusA in the vicinity of both the primary channel and the RNA exit channel, and GreA within the secondary (backtracked RNA-binding) channel, and support the view that these channels are involved in the maintenance of RNAP processivity.
Collapse
Affiliation(s)
- Sergei Borukhov
- Department of Microbiology and Immunology, SUNY Health Sciences Center at Brooklyn, Brooklyn, NY 11203, USA.
| | | | | |
Collapse
|
30
|
Makarova KS, Aravind L, Koonin EV. SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. Trends Biochem Sci 2002; 27:384-6. [PMID: 12151216 DOI: 10.1016/s0968-0004(02)02140-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A previously undetected domain with a CxCx(n)CxH pattern of predicted zinc-chelating residues was identified in a variety of prokaryotic and eukaryotic proteins. These include bacterial ATPases of the SWI2/SNF2 family, plant MuDR transposases and transposase-derived Far1 nuclear proteins, and vertebrate MEK kinase-1. This domain was designated SWIM after SWI2/SNF2 and MuDR, and is predicted to have DNA-binding and protein-protein interaction functions in different contexts.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
31
|
Nechaev S, Yuzenkova Y, Niedziela-Majka A, Heyduk T, Severinov K. A novel bacteriophage-encoded RNA polymerase binding protein inhibits transcription initiation and abolishes transcription termination by host RNA polymerase. J Mol Biol 2002; 320:11-22. [PMID: 12079331 DOI: 10.1016/s0022-2836(02)00420-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xp10 is a lytic bacteriophage of Xanthomonas oryzae, a Gram-negative bacterium that causes rice blight. We purified an Xp10 protein, p7, that binds to and inhibits X. oryzae RNA polymerase (RNAP). P7 is a novel 73 amino acid-long protein; it does not bind to and hence does not affect transcription by Escherichia coli RNAP. Analysis of E. coli/X. oryzae RNAP hybrids locates the p7 binding site to the largest X. oryzae RNAP subunit, beta'. Binding of p7 to X. oryzae RNAP holoenzyme prevents large conformational change that places the sigma subunit region 4 into the correct position for interaction with the -35 promoter element. As a result, open promoter complex formation on the -10/-35 class promoters is inhibited. Inhibition of promoter complex formation on the extended -10 class promoters is less efficient. The p7 protein also abolishes factor-independent transcription termination by X. oryzae RNAP by preventing the release of nascent RNA at terminators. Further physiological and mechanistic studies of this novel transcription factor should provide additional insights into its biological role and the processes of promoter recognition and transcription termination.
Collapse
Affiliation(s)
- Sergei Nechaev
- Waksman Institute for Microbiology, Rutgers, The State University, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
32
|
Salmelin C, Vilpo J. Chlorambucil-induced high mutation rate and suicidal gene downregulation in a base excision repair-deficient Escherichia coli strain. Mutat Res 2002; 500:125-34. [PMID: 11890942 DOI: 10.1016/s0027-5107(02)00004-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlorambucil (CLB; N,N-bis(2-chloroethyl)-p-aminophenylbutyric acid) is a bifunctional alkylating agent widely used as an anticancer drug and also as an immunosuppressant. Its chemical structure and clinical experience indicate that CLB is mutagenic and carcinogenic. We have investigated the ability of CLB to induce mutations and gene expression changes in the wild-type (WT) Escherichia coli strain AB1157 and in the base excision repair-deficient (alkA1, tag-1) E. coli strain MV1932 using a rifampicin (rif) forward mutation system and a cDNA array method. The results showed that CLB is a potent mutagen in MV1932 cells compared with the E. coli WT strain AB1157, emphasizing the role of 3-methyladenine DNA glycosylases I and II in protecting the cells from CLB-induced DNA damage and subsequent mutations. Global gene expression profiling revealed that nine genes in WT E. coli and 100 genes in MV1932, of a total of 4290 genes, responded at least 2.5-fold to CLB. Interestingly, all of these MV1932 genes were downregulated, while 22% were upregulated in WT cells. The downregulated genes in MV1932 represented most (19/23) functional categories, and unexpectedly, many of them code for proteins responsible for genomic integrity. These include: (i) RecF (SOS-response, adaptive mutation), (ii) RecC (resistance to cross-linking agents), (iii) HepA (DNA repair, a possible substitute of RecBCD), (iv) Ssb (DNA recombination repair, controls RecBCD), and (v) SbcC (genetic recombination). Our results strongly suggest that in addition to the DNA damage itself, the downregulation of central protecting genes is responsible for the decreased cell survival (demonstrated in a previous work) and the increased mutation rate (this work) of DNA repair-deficient cells, when exposed to CLB.
Collapse
Affiliation(s)
- Camilla Salmelin
- Leukemia Research Laboratory, Department of Clinical Chemistry, Tampere University Hospital and Tampere University Medical School, P.O. Box 2000, FIN-33521 Tampere, Finland
| | | |
Collapse
|
33
|
Merrell DS, Hava DL, Camilli A. Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 2002; 43:1471-91. [PMID: 11952899 DOI: 10.1046/j.1365-2958.2002.02857.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite over 100 years of study, the intestinal pathogen Vibrio cholerae still causes epidemic disease in areas of the world where there is poor sanitation. While cholera toxin and the toxin-coregulated pilus (TCP) are known to be essential for full virulence, the role that other factors play has remained ill-defined. Herein, we describe a large-scale signature-tagged mutagenesis (STM) screen utilizing 100 pools of 96 mutants each to identify factors involved in colonization of the infant mouse small intestine. A total of 164 mutants representing transposition events into 95 different open reading frames were shown to be recovered at greatly reduced numbers from the infant mouse model. Analysis of the sites of insertion revealed multiple independent mutations within the rfb gene cluster, needed for synthesis of lipopolysaccharide (LPS), and the tcp gene cluster, needed for synthesis of the TCP. More importantly, in addition to these previously known colonization factors, we identified many genes whose activity in colonization was not previously appreciated. These can be divided into a number of functional groups, which include production of factors involved in metabolic activities, regulation of cellular processes, transport, adaptation to stress and unknown functions. In addition, we describe the reiterative use of STM, whereby colonization-defective mutants were assembled into virulence-attenuated pools (VAPs), which were used to begin to reveal roles that the identified virulence factors play in the infection process. Nine new factors were shown to be crucial for the V. cholerae acid tolerance response, which has previously been hypothesized to be important for epidemic spread of cholera. Competition assays of these nine acid tolerance response (ATR)-defective mutants revealed that mutations in gshB, hepA and recO result in a 1000-fold reduction in colonization.
Collapse
Affiliation(s)
- D Scott Merrell
- Tufts University School of Medicine, Department of Molecular Biology and Microbiology, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
34
|
Suzuki T, Kanagawa T, Kamagata Y. Identification of a gene essential for sheathed structure formation in Sphaerotilus natans, a filamentous sheathed bacterium. Appl Environ Microbiol 2002; 68:365-71. [PMID: 11772646 PMCID: PMC126559 DOI: 10.1128/aem.68.1.365-371.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphaerotilus natans, a filamentous bacterium that causes bulking in activated sludge processes, can assume two distinct morphologies, depending on the substrate concentration for growth; in substrate-rich media it grows as single rod-shaped cells, whereas in substrate-limited media it grows as filaments. To identify genes responsible for sheath formation, we carried out transposon Tn5 mutagenesis. Of the approximately 20,000 mutants obtained, 7 did not form sheathed structures. Sequencing of the Tn5-flanking regions showed that five of the seven Tn5 insertions converged at the same open reading frame, designated sthA. The deduced amino acids encoded by sthA were found to be homologous to glycosyltransferase, which is known to be involved in linking sugars to lipid carriers during bacterial exopolysaccharide biosynthesis. Disruption of the gene of the wild-type strain by inserting a kanamycin resistance gene cassette also resulted in sheathless growth under either type of nutrient condition. These findings indicate that sthA is a crucial component responsible for sheath formation.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Research Institute of Biological Resources, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | | | | |
Collapse
|
35
|
Sukhodolets MV, Cabrera JE, Zhi H, Jin DJ. RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. Genes Dev 2001; 15:3330-41. [PMID: 11751638 PMCID: PMC312849 DOI: 10.1101/gad.936701] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report that RapA, an Escherichia coli RNA polymerase (RNAP)-associated homolog of SWI2/SNF2, is capable of dramatic activation of RNA synthesis. The RapA-mediated transcriptional activation in vitro depends on supercoiled DNA and high salt concentrations, a condition that is likely to render the DNA superhelix tightly compacted. Moreover, RapA activates transcription by stimulating RNAP recycling. Mutational analyses indicate that the ATPase activity of RapA is essential for its function as a transcriptional activator, and a rapA null mutant exhibits a growth defect on nutrient plates containing high salt concentrations in vivo. Thus, RapA acts as a general transcription factor and an integral component of the transcription machinery. The mode of action of RapA in remodeling posttranscription or posttermination complexes is discussed.
Collapse
Affiliation(s)
- M V Sukhodolets
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
36
|
Cabrera JE, Jin DJ. Growth phase and growth rate regulation of the rapA gene, encoding the RNA polymerase-associated protein RapA in Escherichia coli. J Bacteriol 2001; 183:6126-34. [PMID: 11567013 PMCID: PMC99692 DOI: 10.1128/jb.183.20.6126-6134.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli rapA gene encodes the RNA polymerase (RNAP)-associated protein RapA, which is a bacterial member of the SWI/SNF helicase-like protein family. We have studied the rapA promoter and its regulation in vivo and determined the interaction between RNAP and the promoter in vitro. We have found that the expression of rapA is growth phase dependent, peaking at the early log phase. The growth phase control of rapA is determined at least by one particular feature of the promoter: it uses CTP as the transcription-initiating nucleotide instead of a purine, which is used for most E. coli promoters. We also found that the rapA promoter is subject to growth rate regulation in vivo and that it forms intrinsic unstable initiation complexes with RNAP in vitro. Furthermore, we have shown that a GC-rich or discriminator sequence between the -10 and +1 positions of the rapA promoter is responsible for its growth rate control and the instability of its initiation complexes with RNAP.
Collapse
Affiliation(s)
- J E Cabrera
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
37
|
Solinger JA, Heyer WD. Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc Natl Acad Sci U S A 2001; 98:8447-53. [PMID: 11459988 PMCID: PMC37456 DOI: 10.1073/pnas.121009898] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rad54 and Rad51 are important proteins for the repair of double-stranded DNA breaks by homologous recombination in eukaryotes. As previously shown, Rad51 protein forms nucleoprotein filaments on single-stranded DNA, and Rad54 protein directly interacts with such filaments to enhance synapsis, the homologous pairing with a double-stranded DNA partner. Here we demonstrate that Saccharomyces cerevisiae Rad54 protein has an additional role in the postsynaptic phase of DNA strand exchange by stimulating heteroduplex DNA extension of established joint molecules in Rad51/Rpa-mediated DNA strand exchange. This function depended on the ATPase activity of Rad54 protein and on specific protein:protein interactions between the yeast Rad54 and Rad51 proteins.
Collapse
Affiliation(s)
- J A Solinger
- Division of Biological Sciences, Section of Microbiology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
38
|
Sukhodolets MV, Jin DJ. Interaction between RNA polymerase and RapA, a bacterial homolog of the SWI/SNF protein family. J Biol Chem 2000; 275:22090-7. [PMID: 10801781 DOI: 10.1074/jbc.m000056200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we identified a novel Escherichia coli RNA polymerase (RNAP)-associated protein, an ATPase, called RapA (Sukhodolets, M. V. , and Jin, D. J. (1998) J. Biol. Chem. 273, 7018-7023). RapA is a bacterial homolog of SWI2/SNF2. We showed that RapA forms a stable complex with RNAP holoenzyme and that binding to RNAP holoenzyme stimulates the ATPase activity of RapA. We have further analyzed the interactions between purified RapA and the two forms of RNAP: core RNAP and RNAP holoenzyme. We found that RapA interacts with either form of RNAP. However, RapA exhibits higher affinity for core RNAP than for RNAP holoenzyme. Chemical cross-linking of the RNAP-RapA complex indicated that the RapA-binding sites are located at the interface between the alpha and beta' subunits of RNAP. Contrary to previously reported results (Muzzin, O., Campbell, E., A., Xia, L., Severinova, E., Darst, S. A., and Severinov, K. (1998) J. Biol. Chem. 273, 15157-15161), our in vivo analysis of a rapA null mutant suggested that RapA is not likely to be directly involved in DNA repair.
Collapse
Affiliation(s)
- M V Sukhodolets
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
39
|
Coleman MA, Eisen JA, Mohrenweiser HW. Cloning and characterization of HARP/SMARCAL1: a prokaryotic HepA-related SNF2 helicase protein from human and mouse. Genomics 2000; 65:274-82. [PMID: 10857751 DOI: 10.1006/geno.2000.6174] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The SNF2 gene family consists of a large group of proteins involved in transcriptional regulation, maintenance of chromosome integrity, and various aspects of DNA repair. We cloned a novel SNF2 family human cDNA, with sequence identity to the Escherichia coli RNA polymerase-binding protein HepA and named the human hepA-related protein (HHARP/SMARCAL1). In addition, the mouse ortholog (Mharp/Smarcal1) was cloned, and the Caenorhabditis elegans ortholog (CEHARP) was identified in the GenBank database. Phylogenetic analysis indicates that the HARP proteins share a high level of sequence similarity to the seven motif helicase core region (SNF2 domain) with identifiable orthologs in other eukaryotic species, except for yeast. Purified His-tagged HARP/SMARCAL1 protein exhibits single-stranded DNA-dependent ATPase activity, consistent with it being a member of the SNF2 family of proteins. Both the human and the mouse genes consist of 17 exons and 16 introns. The human gene maps to chromosome 2q34-q36, and the mouse gene is localized to the syntenic region of chromosome 1 (between markers Gls and Acrg). HARP/SMARCAL1 transcripts are ubiquitously expressed in human and mouse tissues, with testis presenting the highest levels of mRNA expression in humans.
Collapse
Affiliation(s)
- M A Coleman
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, California 94551, USA.
| | | | | |
Collapse
|
40
|
Abstract
Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.
Collapse
Affiliation(s)
- N C Kyrpides
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemistry and Life Sciences, MC 110, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
41
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|