1
|
Baker A, Lin CC, Lett C, Karpinska B, Wright MH, Foyer CH. Catalase: A critical node in the regulation of cell fate. Free Radic Biol Med 2023; 199:56-66. [PMID: 36775107 DOI: 10.1016/j.freeradbiomed.2023.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Catalase (CAT) is an extensively studied if somewhat enigmatic enzyme that is at the heart of eukaryotic antioxidant systems with a canonical role in peroxisomal function. The CAT family of proteins exert control over a wide range of plant growth and defence processes. CAT proteins are subject to many types of post-translational modification (PTM), which modify activity, ligand binding, stability, compartmentation and function. The CAT interactome involves many cytosolic and nuclear proteins that appear to be essential for protein functions. Hence, the CAT network of roles extends far beyond those associated with peroxisomal metabolism. Some pathogen effector proteins are able to redirect CAT to the nucleus and recent evidence indicates CAT can traffic to the nucleus in the absence of exogenous proteins. While the mechanisms that target CAT to the nucleus are not understood, CAT activity in the cytosol and nucleus is promoted by interactions with nucleoredoxin. Here we discuss recent findings that have been pivotal in generating a step change in our understanding of CAT functions in plant cells.
Collapse
Affiliation(s)
- Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Chi-Chuan Lin
- Centre for Plant Sciences and School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Casey Lett
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Megan H Wright
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Christine H Foyer
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
2
|
Genetically Modified Heat Shock Protein90s and Polyamine Oxidases in Arabidopsis Reveal Their Interaction under Heat Stress Affecting Polyamine Acetylation, Oxidation and Homeostasis of Reactive Oxygen Species. PLANTS 2019; 8:plants8090323. [PMID: 31484414 PMCID: PMC6783977 DOI: 10.3390/plants8090323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
One Sentence Summary Heat shock proteins90 (HSP90s) induce acetylation of polyamines (PAs) and interact with polyamine oxidases (PAOs) affecting oxidation of PAs and hydrogen peroxide (H2O2) homeostasis in Arabidopsis thaliana. Abstract The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.
Collapse
|
3
|
Barros-Barbosa A, Rodrigues TA, Ferreira MJ, Pedrosa AG, Teixeira NR, Francisco T, Azevedo JE. The intrinsically disordered nature of the peroxisomal protein translocation machinery. FEBS J 2018; 286:24-38. [PMID: 30443986 DOI: 10.1111/febs.14704] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Despite having a membrane that is impermeable to all but the smallest of metabolites, peroxisomes acquire their newly synthesized (cytosolic) matrix proteins in an already folded conformation. In some cases, even oligomeric proteins have been reported to translocate the organelle membrane. The protein sorting machinery that accomplishes this feat must be rather flexible and, unsurprisingly, several of its key components have large intrinsically disordered domains. Here, we provide an overview on these domains and their interactions trying to infer their functional roles in this protein sorting pathway.
Collapse
Affiliation(s)
- Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Nélson R Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| |
Collapse
|
4
|
Fernández-Higuero JÁ, Betancor-Fernández I, Mesa-Torres N, Muga A, Salido E, Pey AL. Structural and functional insights on the roles of molecular chaperones in the mistargeting and aggregation phenotypes associated with primary hyperoxaluria type I. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:119-152. [PMID: 30635080 DOI: 10.1016/bs.apcsb.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To carry out their biological function in cells, proteins must be folded and targeted to the appropriate subcellular location. These processes are controlled by a vast collection of interacting proteins collectively known as the protein homeostasis network, in which molecular chaperones play a prominent role. Protein homeostasis can be impaired by inherited mutations leading to genetic diseases. In this chapter, we focus on a particular disease, primary hyperoxaluria type 1 (PH1), in which disease-associated mutations exacerbate protein aggregation in the cell and mistarget the peroxisomal alanine:glyoxylate aminotransferase (AGT) protein to mitochondria, in part due to native state destabilization and enhanced interaction with Hsp60, 70 and 90 chaperone systems. After a general introduction of molecular chaperones and PH1, we review our current knowledge on the structural and energetic features of PH1-causing mutants that lead to these particular pathogenic mechanisms. From this perspective, and in the context of the key role of molecular chaperones in PH1 pathogenesis, we present and discuss current and future perspectives for pharmacological treatments for this disease.
Collapse
Affiliation(s)
- José Ángel Fernández-Higuero
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Arturo Muga
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, ITB, University of La Laguna, Tenerife, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain.
| |
Collapse
|
5
|
Dobriyal N, Tripathi P, Sarkar S, Tak Y, Verma AK, Sahi C. Partial dispensability of Djp1's J domain in peroxisomal protein import in Saccharomyces cerevisiae results from genetic redundancy with another class II J protein, Caj1. Cell Stress Chaperones 2017; 22:445-452. [PMID: 28261750 PMCID: PMC5425370 DOI: 10.1007/s12192-017-0779-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 01/17/2023] Open
Abstract
J proteins are obligate co-chaperones of Hsp70s. Via their signature J domain, all J proteins interact with their partner Hsp70s and stimulate their weak ATPase activity, which is vital for Hsp70 functions. The dependency of J proteins on their J domain is such that mutations in critical amino acids in the J domain often results into a null phenotype for a particular J protein. Here, we show that the J domain of Djp1, a cytosolic J protein important for peroxisomal protein import in Saccharomyces cerevisiae, is partially dispensable. A complete deletion of Djp1 J domain resulted into only partial loss in peroxisomal protein import function. Instead, the C-terminal domain of Djp1 was found to be essential for proper localization of the peroxisomal targeted GFP-PTS1. Furthermore, we show that Caj1, another cytosolic J protein, also has some role in peroxisomal protein import. Caj1 was found to be partially redundant with Djp1 as cells lacking both Djp1 and Caj1 resulted into a much more severe defect in GFP-PTS1 localization. Based on these results, we propose that dispensability of J domains could be attributed to genetic redundancy between different J proteins sharing common structural topology and cellular localization.
Collapse
Affiliation(s)
- Neha Dobriyal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Prerna Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Susrita Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Yogesh Tak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Amit K Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
6
|
Reumann S, Chowdhary G, Lingner T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:790-803. [PMID: 26772785 DOI: 10.1016/j.bbamcr.2016.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/22/2022]
Abstract
Our knowledge of the proteome of plant peroxisomes and their functional plasticity is far from being complete, primarily due to major technical challenges in experimental proteome research of the fragile cell organelle. Several unexpected novel plant peroxisome functions, for instance in biotin and phylloquinone biosynthesis, have been uncovered recently. Nevertheless, very few regulatory and membrane proteins of plant peroxisomes have been identified and functionally described up to now. To define the matrix proteome of plant peroxisomes, computational methods have emerged as important powerful tools. Novel prediction approaches of high sensitivity and specificity have been developed for peroxisome targeting signals type 1 (PTS1) and have been validated by in vivo subcellular targeting analyses and thermodynamic binding studies with the cytosolic receptor, PEX5. Accordingly, the algorithms allow the correct prediction of many novel peroxisome-targeted proteins from plant genome sequences and the discovery of additional organelle functions. In this review, we provide an overview of methodologies, capabilities and accuracies of available prediction algorithms for PTS1 carrying proteins. We also summarize and discuss recent quantitative, structural and mechanistic information of the interaction of PEX5 with PTS1 carrying proteins in relation to in vivo import efficiency. With this knowledge, we develop a model of how proteins likely evolved peroxisomal targeting signals in the past and still nowadays, in which order the two import pathways might have evolved in the ancient eukaryotic cell, and how the secondary loss of the PTS2 pathway probably happened in specific organismal groups.
Collapse
Affiliation(s)
- S Reumann
- Department of Plant Biochemistry and Infection Biology, Biocentre Klein Flottbek, University of Hamburg, D-22609 Hamburg, Germany; Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway.
| | - G Chowdhary
- Centre for Organelle Research, University of Stavanger, N-4036 Stavanger, Norway; KIIT School of Biotechnology, Campus XI, KIIT University, I-751024 Bhubaneswar, India.
| | - T Lingner
- Department of Bioinformatics, Institute for Microbiology and Genetics, D-37077 Goettingen, Germany.
| |
Collapse
|
7
|
Freitas MO, Francisco T, Rodrigues TA, Lismont C, Domingues P, Pinto MP, Grou CP, Fransen M, Azevedo JE. The peroxisomal protein import machinery displays a preference for monomeric substrates. Open Biol 2016; 5:140236. [PMID: 25854684 PMCID: PMC4422123 DOI: 10.1098/rsob.140236] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and transported by the shuttling receptor PEX5 to the peroxisomal membrane docking/translocation machinery, where they are translocated into the organelle matrix. Under certain experimental conditions this protein import machinery has the remarkable capacity to accept already oligomerized proteins, a property that has heavily influenced current models on the mechanism of peroxisomal protein import. However, whether or not oligomeric proteins are really the best and most frequent clients of this machinery remain unclear. In this work, we present three lines of evidence suggesting that the peroxisomal import machinery displays a preference for monomeric proteins. First, in agreement with previous findings on catalase, we show that PEX5 binds newly synthesized (monomeric) acyl-CoA oxidase 1 (ACOX1) and urate oxidase (UOX), potently inhibiting their oligomerization. Second, in vitro import experiments suggest that monomeric ACOX1 and UOX are better peroxisomal import substrates than the corresponding oligomeric forms. Finally, we provide data strongly suggesting that although ACOX1 lacking a peroxisomal targeting signal can be imported into peroxisomes when co-expressed with ACOX1 containing its targeting signal, this import pathway is inefficient.
Collapse
Affiliation(s)
- Marta O Freitas
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal
| | - Tânia Francisco
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Celien Lismont
- Departement Cellulaire en Moleculaire Geneeskunde, KU Leuven-Universiteit Leuven, Leuven, Belgium
| | - Pedro Domingues
- Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Manuel P Pinto
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal
| | - Cláudia P Grou
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal
| | - Marc Fransen
- Departement Cellulaire en Moleculaire Geneeskunde, KU Leuven-Universiteit Leuven, Leuven, Belgium
| | - Jorge E Azevedo
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
The first minutes in the life of a peroxisomal matrix protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:814-20. [PMID: 26408939 DOI: 10.1016/j.bbamcr.2015.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/30/2023]
Abstract
In the field of intracellular protein sorting, peroxisomes are most famous by their capacity to import oligomeric proteins. The data supporting this remarkable property are abundant and, understandably, have inspired a variety of hypothetical models on how newly synthesized (cytosolic) proteins reach the peroxisome matrix. However, there is also accumulating evidence suggesting that many peroxisomal oligomeric proteins actually arrive at the peroxisome still as monomers. In support of this idea, recent data suggest that PEX5, the shuttling receptor for peroxisomal matrix proteins, is also a chaperone/holdase, binding newly synthesized peroxisomal proteins in the cytosol and blocking their oligomerization. Here we review the data behind these two different perspectives and discuss their mechanistic implications on this protein sorting pathway.
Collapse
|
9
|
Kim PK, Hettema EH. Multiple pathways for protein transport to peroxisomes. J Mol Biol 2015; 427:1176-90. [PMID: 25681696 PMCID: PMC4726662 DOI: 10.1016/j.jmb.2015.02.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/15/2022]
Abstract
Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive most if not all of their proteins from the ER (endoplasmic reticulum), peroxisomes contain dedicated machineries for import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available data on matrix and membrane protein import into peroxisomes. Peroxisomal membrane and matrix proteins require distinct factors for their transport. Matrix proteins fold in the cytosol prior to their import. Loaded targeting receptors form part of the matrix protein translocation pore. Many membrane proteins are directly inserted into the peroxisomal membrane. Some peroxisomal membrane proteins are transported via the ER to peroxisomes.
Collapse
Affiliation(s)
- P K Kim
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - E H Hettema
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, South Yorkshire S10 2TN, United Kingdom.
| |
Collapse
|
10
|
Abstract
Peroxisomes carry out various oxidative reactions that are tightly regulated to adapt to the changing needs of the cell and varying external environments. Accordingly, they are remarkably fluid and can change dramatically in abundance, size, shape and content in response to numerous cues. These dynamics are controlled by multiple aspects of peroxisome biogenesis that are coordinately regulated with each other and with other cellular processes. Ongoing studies are deciphering the diverse molecular mechanisms that underlie biogenesis and how they cooperate to dynamically control peroxisome utility. These important challenges should lead to an understanding of peroxisome dynamics that can be capitalized upon for bioengineering and the development of therapies to improve human health.
Collapse
Affiliation(s)
- Jennifer J Smith
- 1] Seattle Biomedical Research Institute, 307 Westlake Avenue North, 98109-5240, USA. [2] Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5219, USA
| | | |
Collapse
|
11
|
Otera H, Fujiki Y. Pex5p imports folded tetrameric catalase by interaction with Pex13p. Traffic 2012; 13:1364-77. [PMID: 22747494 DOI: 10.1111/j.1600-0854.2012.01391.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Abstract
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Biology, Faculty of Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | | |
Collapse
|
12
|
The unusual extended C-terminal helix of the peroxisomal α/β-hydrolase Lpx1 is involved in dimer contacts but dispensable for dimerization. J Struct Biol 2011; 175:362-71. [DOI: 10.1016/j.jsb.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 11/24/2022]
|
13
|
Kaur N, Reumann S, Hu J. Peroxisome biogenesis and function. THE ARABIDOPSIS BOOK 2009; 7:e0123. [PMID: 22303249 PMCID: PMC3243405 DOI: 10.1199/tab.0123] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis.
Collapse
Affiliation(s)
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and
- Plant Biology Department, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
14
|
Grunau S, Schliebs W, Linnepe R, Neufeld C, Cizmowski C, Reinartz B, Meyer HE, Warscheid B, Girzalsky W, Erdmann R. Peroxisomal targeting of PTS2 pre-import complexes in the yeast Saccharomyces cerevisiae. Traffic 2009; 10:451-60. [PMID: 19183303 DOI: 10.1111/j.1600-0854.2008.00876.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.
Collapse
Affiliation(s)
- Silke Grunau
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Luo B, Norris C, Bolstad ESD, Knecht DA, Grant DF. Protein quaternary structure and expression levels contribute to peroxisomal-targeting-sequence-1-mediated peroxisomal import of human soluble epoxide hydrolase. J Mol Biol 2008; 380:31-41. [PMID: 18513744 DOI: 10.1016/j.jmb.2008.04.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 01/26/2023]
Abstract
The peroxisomal targeting sequence 1 (PTS1) is a consensus tripeptide 1 (S/C/A)(K/R/H)(L/M) that is found at the C-terminus of most peroxisomal proteins. However, the only known mammalian protein containing a terminal methionine PTS1 (SKM), human soluble epoxide hydrolase (hsEH), shows both peroxisomal and cytosolic localizations in vivo. Mechanisms regulating the subcellular localization of hsEH thus remain unclear. Here we utilized green fluorescent protein-hsEH fusion constructs to study the peroxisomal targeting of hsEH in transiently and stably transfected Chinese hamster ovary cells. Our results suggest that the peroxisomal import of hsEH is regulated by three factors. First, we show that SKM is required, but not sufficient, for peroxisomal import. Second, by manipulating protein expression levels, we show that SKM mediates peroxisomal import of wild-type hsEH only when expression levels are high. Third, we show that amino acid modifications that decrease subunit oligomerization and presumably enhance accessibility of the SKM motif confer peroxisomal targeting even at low protein expression levels. We conclude that, in hsEH, SKM is a necessary but inefficient and context-dependent PTS1. Peroxisomal import occurs when expression levels are high or when the SKM motif is accessible. These results provide a mechanistic basis for understanding the cell-specific and tissue-specific localization of hsEH in vivo.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|
16
|
Hageman J, Vos MJ, van Waarde MAWH, Kampinga HH. Comparison of Intra-organellar Chaperone Capacity for Dealing with Stress-induced Protein Unfolding. J Biol Chem 2007; 282:34334-45. [PMID: 17875648 DOI: 10.1074/jbc.m703876200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are equipped with comparable chaperone capacities is largely unknown, mainly due to the lack of suitable reporters that allow such a comparison. Here we describe the development of fluorescent luciferase reporters that are sorted to various cellular locations (nucleus, cytoplasm, endoplasmic reticulum, and peroxisomes) and that differ minimally in their intrinsic thermal stability properties. When heating living cells, the rate of inactivation was most rapid for the nuclear-targeted luciferase, indicating that the nucleus is the most sensitive organelle toward heat-induced denaturing stress. Post-heat re-activation, however, occurred at equal kinetics irrespective of luciferase localization. Also, induction of thermotolerance by a priming heat treatment, that coordinately up-regulates all heat-inducible chaperones, resulted in a transient heat resistance of the luciferase in all organelles in a comparable manner. Overexpression of the main heat-inducible Hsp70 family member, HspA1A, protected only the cytosolic and nuclear, but not the other luciferases. Together, our data suggest that in each compartment investigated, including the peroxisome in which so far no chaperones could be detected, chaperone machines are present and can be induced with activities similar to those present in the cytosolic/nuclear compartment.
Collapse
Affiliation(s)
- Jurre Hageman
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
17
|
Luo GR, Chen S, Le WD. Are heat shock proteins therapeutic target for Parkinson's disease? Int J Biol Sci 2006; 3:20-6. [PMID: 17200688 PMCID: PMC1622889 DOI: 10.7150/ijbs.3.20] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/27/2006] [Indexed: 01/24/2023] Open
Abstract
Heat shock proteins (HSPs), known as molecular chaperone to assist protein folding, have recently become a research focus in Parkinson's disease (PD) because the pathogenesis of this disease is highlighted by the intracellular protein misfolding and inclusion body formation. The present review will focus on the functions of different HSPs and their protective roles in PD. It is postulated that HSPs may serve as protein folding machinery and work together with ubiquitin-proteasome system (UPS) to assist in decomposing aberrant proteins. Failure of UPS is thought to play a key role in the pathogenesis of PD. In addition, HSPs may possess anti-apoptotic effects and keep the homeostasis of dopaminergic neurons against stress conditions. The critical role of HSPs and recent discovery of some novel HSPs inducers suggest that HSPs may be potential therapeutic targets for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Guang-Rui Luo
- Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
18
|
Léon S, Goodman JM, Subramani S. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1552-64. [PMID: 17011644 DOI: 10.1016/j.bbamcr.2006.08.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/30/2022]
Abstract
Based on earlier suggestions that peroxisomes may have arisen from endosymbionts that later lost their DNA, it was expected that protein transport into this organelle would have parallels to systems found in other organelles of endosymbiont origin, such as mitochondria and chloroplasts. This review highlights three features of peroxisomal matrix protein import that make it unique in comparison with these other subcellular compartments - the ability of this organelle to transport folded, co-factor-bound and oligomeric proteins, the dynamics of the import receptors during the matrix protein import cycle and the existence of a peroxisomal quality-control pathway, which insures that the peroxisome membrane is cleared of cargo-free receptors.
Collapse
Affiliation(s)
- Sébastien Léon
- Section of Molecular Biology, Division of Biological Sciences, University California, Room 3230 Bonner Hall, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
19
|
Harrison-Lowe N, Olsen LJ. Isolation of glyoxysomes from pumpkin cotyledons. CURRENT PROTOCOLS IN CELL BIOLOGY 2006; Chapter 3:Unit 3.19. [PMID: 18228487 DOI: 10.1002/0471143030.cb0319s29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Peroxisomes are single-membrane-bound organelles found in virtually all eukaryotes. In plants, there are several classes of peroxisomes. Glyoxysomes are found in germinating seedlings and contain enzymes specific for the glyoxylate cycle, including isocitrate lyase and malate synthase. After seedlings become photosynthetic, leaf peroxisomes participate in reactions of the photorespiration pathway and contain characteristic enzymes such as glycolate oxidase and hydroxypyruvate reductase. As leaves begin to senesce, leaf peroxisomes are transformed back into glyoxysomes. Root peroxisomes in the nodules of legumes, for example, sequester enzymes such as allantoinase and uricase, which contribute to nitrogen metabolism in these tissues. Thus, peroxisomes participate in many metabolic pathways and contain specific enzyme complements, depending on the tissue source. All peroxisomes contain catalase to degrade hydrogen peroxide and enzymes to accomplish beta-oxidation of fatty acids. Glyoxysomes can be isolated from pumpkin cotyledons by standard differential centrifugation and density separation, as described in this article.
Collapse
|
20
|
Pratt WB, Galigniana MD, Harrell JM, DeFranco DB. Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 2005; 16:857-72. [PMID: 15157665 DOI: 10.1016/j.cellsig.2004.02.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Accepted: 01/30/2004] [Indexed: 11/16/2022]
Abstract
The ubiquitous protein chaperone hsp90 has been shown to regulate more than 100 proteins involved in cellular signalling. These proteins are called 'client proteins' for hsp90, and a multiprotein hsp90/hsp70-based chaperone machinery forms client protein.hsp90 heterocomplexes in the cytoplasm and the nucleus. In the case of signalling proteins that act as transcription factors, the client protein.hsp90 complexes also contain one of several TPR domain immunophilins or immunophilin homologs that bind to a TPR domain binding site on hsp90. Using several intracellular receptors and the tumor suppressor p53 as examples, we review evidence that dynamic assembly of heterocomplexes with hsp90 is required for rapid movement through the cytoplasm to the nucleus along microtubular tracks. The role of the immunophilin in this system is to connect the client protein.hsp90 complex to cytoplasmic dynein, the motor protein for retrograde movement toward the nucleus. Upon arrival at the nuclear pores, the receptor.hsp90.immunophilin complexes are transferred to the nuclear interior by importin-dependent facilitated diffusion. The unliganded receptors then distribute within the nucleus to diffuse patches from which they proceed in a ligand-dependent manner to discrete nuclear foci where chromatin binding occurs. We review evidence that dynamic assembly of heterocomplexes with hsp90 is required for movement to these foci and for the dynamic exchange of transcription factors between chromatin and the nucleoplasm.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, 1301 Med. Sci. Res. Building III, Ann Arbor, MI 48109-0632, USA.
| | | | | | | |
Collapse
|
21
|
Gerges NZ, Tran IC, Backos DS, Harrell JM, Chinkers M, Pratt WB, Esteban JA. Independent functions of hsp90 in neurotransmitter release and in the continuous synaptic cycling of AMPA receptors. J Neurosci 2004; 24:4758-66. [PMID: 15152036 PMCID: PMC6729466 DOI: 10.1523/jneurosci.0594-04.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/05/2004] [Accepted: 04/05/2004] [Indexed: 11/21/2022] Open
Abstract
The delivery of neurotransmitter receptors into synapses is essential for synaptic function and plasticity. In particular, AMPA-type glutamate receptors (AMPA receptors) reach excitatory synapses according to two distinct routes: a regulated pathway, which operates transiently during synaptic plasticity, and a constitutive pathway, which maintains synaptic function under conditions of basal transmission. However, the specific mechanisms that distinguish these two trafficking pathways are essentially unknown. Here, we evaluate the role of the molecular chaperone hsp90 (heat shock protein 90) in excitatory synaptic transmission in the hippocampus. On one hand, we found that hsp90 is necessary for the efficient neurotransmitter release at the presynaptic terminal. In addition, we identified hsp90 as a critical component of the cellular machinery that delivers AMPA receptors into the postsynaptic membrane. Using the hsp90-specific inhibitors radicicol and geldanamycin, we show that hsp90 is required for the constitutive trafficking of AMPA receptors into synapses during their continuous cycling between synaptic and nonsynaptic sites. In contrast, hsp90 function is not required for either the surface delivery of AMPA receptors into the nonsynaptic plasma membrane or for the acute, regulated delivery of AMPA receptors into synapses during plasticity induction (long-term potentiation). The synaptic cycling of AMPA receptors was also blocked by an hsp90-binding tetratricopeptide repeat (TPR) domain, suggesting that the role of hsp90 in AMPA receptor trafficking is mediated by a TPR domain-containing protein. These results demonstrate new roles for hsp90 in synaptic function by controlling neurotransmitter release and, independently, by mediating the continuous cycling of synaptic AMPA receptors.
Collapse
Affiliation(s)
- Nashaat Z Gerges
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Barroso JF, Elholm M, Flatmark T. Tight binding of deoxyribonucleotide triphosphates to human thymidine kinase 2 expressed in Escherichia coli. Purification and partial characterization of its dimeric and tetrameric forms. Biochemistry 2004; 42:15158-69. [PMID: 14690426 DOI: 10.1021/bi035230f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human thymidine kinase 2 (hTK2) phosphorylates pyrimidine deoxyribonucleosides to the corresponding nucleoside monophosphates, using a nucleotide triphosphate as a phosphate donor. In this study, hTK2 was cloned and expressed at high levels in Escherichia coli as a fusion protein with maltose-binding protein. Induction of a heat-shock response by ethanol and coexpression of plasmid-encoded GroEL/ES chaperonins at 28 degrees C minimized the nonspecific aggregation of the hybrid protein and improved the recovery of three homooligomeric forms of the properly folded enzyme, i.e., dimer > tetramer > hexamer. The dimer and the tetramer were isolated in stable and highly purified forms after proteolytic removal of the fusion partner. Both oligomers contained a substoichiometric amount of deoxyribonucleotide triphosphates (dTTP > dCTP > dATP), known to be strong feedback inhibitors of the enzyme. Steady-state kinetic studies were consistent with the presence of endogenous inhibitors, and both oligomeric forms revealed a lag phase of at least approximately 5 min, which was abolished on preincubation with substrate (dThd or dCyd). The rather similar kinetic properties of the two oligomeric forms indicate that the basic functional unit is a dimer. Molecular docking experiments with a modeled hTK2 three-dimensional structure accurately predicted the binding positions at the active site of the natural substrates (dThd, dCyd, and ATP) and inhibitors (dTTP and dCTP), with highly conserved orientations obtained for all ligands. The calculated relative nonbonded interaction energies are in agreement with the biochemical data and show that the inhibitor complexes have lower stabilization energies (higher affinity) than the substrates.
Collapse
Affiliation(s)
- João Filipe Barroso
- Department of Biochemistry and Molecular Biology, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | | |
Collapse
|
23
|
Oliveira ME, Gouveia AM, Pinto RA, Sá-Miranda C, Azevedo JE. The energetics of Pex5p-mediated peroxisomal protein import. J Biol Chem 2003; 278:39483-8. [PMID: 12885776 DOI: 10.1074/jbc.m305089200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most newly synthesized peroxisomal matrix proteins are targeted to the organelle by Pex5p, the peroxisomal cycling receptor. According to current models of peroxisomal biogenesis, Pex5p interacts with cargo proteins in the cytosol and transports them to the peroxisomal membrane. After delivering the passenger protein into the peroxisomal matrix, Pex5p returns to the cytosol to catalyze additional rounds of transportation. Obviously, such cyclic pathway must require energy, and indeed, data confirming this need are already available. However, the exact step(s) of this cycle where energy input is necessary remains unclear. Here, we present data suggesting that insertion of Pex5p into the peroxisomal membrane does not require ATP hydrolysis. This observation raises the possibility that at the peroxisomal membrane ATP is needed predominantly (if not exclusively) downstream of the protein translocation step to reset the Pex5p-mediated transport system.
Collapse
|
24
|
Lisenbee CS, Karnik SK, Trelease RN. Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic 2003; 4:491-501. [PMID: 12795694 DOI: 10.1034/j.1600-0854.2003.00107.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peroxisomal ascorbate peroxidase (APX) sorts indirectly via a subdomain of the ER (peroxisomal ER) to the boundary membrane of peroxisomes in tobacco Bright Yellow 2 cells. This novel subdomain characteristically appears as fluorescent reticular/circular compartments distributed variously in the cytoplasm. Further characterizations are presented herein. A peptide possessing the membrane targeting information for peroxisomal APX was fused to GFP (GFP-APX). Transiently expressed GFP-APX sorted to peroxisomes and to reticular/circular compartments; in both cases, the GFP moiety faced the cytosol. Of particular interest, both homotypic and heterotypic aggregates of peroxisomes, mitochondria, and/or plastids were formed. The latter two organelles comprised the circular portion of the reticular/circular compartments, apparently as a consequence of oligomerization (zippering) of the GFP moieties after insertion into the outer membranes of the affected organelles. These results, coupled with the accumulation of endogenous peroxisomal APX in cytoplasmic, noncircular compartment(s) following treatment with brefeldin A, indicate that authentic peroxisomal ER is composed only of a reticular compartment(s). Equally important, the data show that overexpressed, membrane-targeted GFP fusion proteins have a propensity to form organelle aggregates that may lead to misinterpretations of sorting pathways of trafficked proteins.
Collapse
Affiliation(s)
- Cayle S Lisenbee
- Department of Plant Biology and Graduate Program in Molecular and Cellular Biology, Arizona State University, Tempe, AZ 85287-1601, USA
| | | | | |
Collapse
|
25
|
Abstract
Peroxisomes are essential organelles that may be involved in various functions, dependent on organism, cell type, developmental stage of the cell, and the environment. Until recently, peroxisomes were viewed as a class of static organelles that developed by growth and fission from pre-existing organelles. Recent observations have challenged this view by providing evidence that peroxisomes may be part of the endomembrane system and constitute a highly dynamic population of organelles that arises and is removed upon environmental demands. Additionally, evidence is now accumulating that peroxisomes may arise by alternative methods. This review summarizes relevant recent data on this subject. In addition, the progress in the understanding of the principles of the peroxisomal matrix protein import machinery is discussed.
Collapse
Affiliation(s)
- Marten Veenhuis
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NL-9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
26
|
Brocard CB, Jedeszko C, Song HC, Terlecky SR, Walton PA. Protein structure and import into the peroxisomal matrix. Traffic 2003; 4:74-82. [PMID: 12559034 DOI: 10.1034/j.1600-0854.2003.40203.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins destined for the peroxisomal matrix are synthesized in the cytosol, and imported post-translationally. It has been previously demonstrated that stably folded proteins are substrates for peroxisomal import. Mammalian peroxisomes do not contain endogenous chaperone molecules. Therefore, it is possible that proteins are required to fold into their stable, tertiary conformation in order to be imported into the peroxisome. These investigations were undertaken to determine whether proteins rendered incapable of folding were also substrates for import into peroxisomes. Reduction of albumin resulted in a less compact tertiary structure as measured by analytical centrifugation. Microinjection of unfolded albumin molecules bearing the PTS1 targeting signal resulted in their import into peroxisomes. Kinetic analysis indicated that native and unfolded molecules were imported into peroxisomes at comparable rates. While import was unaffected by treatment with cycloheximide, hsc70 molecules were observed to be imported along with the unfolded albumin molecules. These results indicate that proteins, which are incapable of assuming their native conformation, are substrates for peroxisomal import. When combined with previous observations demonstrating the import of stably folded proteins, these results support the model that tertiary structure has no effect on protein import into the peroxisomal matrix.
Collapse
Affiliation(s)
- Cécile B Brocard
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
27
|
Kamigaki A, Mano S, Terauchi K, Nishi Y, Tachibe-Kinoshita Y, Nito K, Kondo M, Hayashi M, Nishimura M, Esaka M. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:161-75. [PMID: 12943550 DOI: 10.1046/j.0960-7412.2003.001605.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many peroxisomal proteins are imported into peroxisomes via recognition of the peroxisomal targeting signal (PTS1) present at the C-termini by the PTS1 receptor (Pex5p). Catalase, a peroxisomal protein, has PTS1-like motifs around or at the C-terminus. However, it remains unclear whether catalase is imported into peroxisome via the PTS1 system. In this work, we analyzed the PTS of pumpkin catalase (Cat1). A full or truncated pumpkin Cat1 cDNA fused at the 3' end of the green fluorescent protein (GFP) coding sequence was introduced and stably expressed in tobacco BY-2 (Nicotiana tabacum cv. Bright Yellow 2) cells or Arabidopsis thaliana by Agrobacterium-mediated transformation. The cellular localization of GFP was analyzed by fluorescence microscopy. The results showed that the C-terminal 10-amino acid region containing an SKL motif-like tripeptide (SHL) was not required for the import into peroxisomes. Surprisingly, the C-terminal 3-amino acid region was required for the import when the fusion proteins were transiently expressed by using particle gun bombardment, suggesting that the transient expression system is inadequate to analyze the targeting signal. We proposed that the C-terminal amino acid region from 13 to 11 (QKL), which corresponds with the PTS1 consensus sequence, may function as an internal PTS1. Analysis of the binding of Cat1 to PTS1 receptor (Pex5p) by the yeast two-hybrid system revealed that Cat1 can bind with the PTS1 receptor (Pex5p), indicating that Cat1 is imported into peroxisomes by the PTS1 system.
Collapse
Affiliation(s)
- Akane Kamigaki
- Faculty of Applied Biological Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Parkes JA, Langer S, Hartig A, Baker A. PTS1-independent targeting of isocitrate lyase to peroxisomes requires the PTS1 receptor Pex5p. Mol Membr Biol 2003; 20:61-9. [PMID: 12745927 DOI: 10.1080/0968768031000047859] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The targeting of castor bean isocitrate lyase to peroxisomes was studied by expression in the heterologous host Saccharomyces cerevisae from which the endogenous ICL1 gene had been removed by gene disruption. Peroxisomal import of ICL was dependent upon the PTS1 receptor Pex5p and was lost by deletion of the last three amino acids, Ala-Arg-Met. However, removal of an additional 16 amino acids restored the ability of this truncated ICL to be targeted to peroxisomes and this import activity, like that of the full-length protein, was dependent upon Pex5p. The ability of peptides corresponding to the carboxyl terminal ends of wild-type and Delta 3 and Delta 19 mutants of ICL to interact with the PTS1-binding portion of Pex5p from humans, plants and yeast was determined using the yeast two-hybrid system. The peptide corresponding to wild-type ICL interacted with all three Pex5p proteins to differing extents, but neither mutant could interact with Pex5p from any species. Thus, ICL can be targeted to peroxisomes in a Pex5p-dependent but PTS1-independent fashion. These results help to clarify the contradictory published data about the requirement of the PTS1 signal for ICL targeting.
Collapse
Affiliation(s)
- John A Parkes
- Centre for Plant Sciences University of Leeds LS2 9JT Leeds, UK
| | | | | | | |
Collapse
|
29
|
Aoki K, Kragler F, Xoconostle-Cazares B, Lucas WJ. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci U S A 2002; 99:16342-7. [PMID: 12456884 PMCID: PMC138613 DOI: 10.1073/pnas.252427999] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Indexed: 11/18/2022] Open
Abstract
Plasmodesmata establish a pathway for the trafficking of non-cell-autonomously acting proteins and ribonucleoprotein complexes. Plasmodesmal enriched cell fractions and the contents of enucleate sieve elements, in the form of phloem sap, were used to isolate and characterize heat shock cognate 70 (Hsc70) chaperones associated with this cell-to-cell transport pathway. Three Cucurbita maxima Hsc70 chaperones were cloned and functional and sequence analysis led to the identification of a previously uncharacterized subclass of non-cell-autonomous chaperones. The highly conserved nature of the heat shock protein 70 (Hsp70) family, in conjunction with mutant analysis, permitted the characterization of a motif that allows these Hsc70 chaperones to engage the plasmodesmal non-cell-autonomous translocation machinery. Proof of concept that this motif is necessary for Hsp70 gain-of-movement function was obtained through the engineering of a human Hsp70 that acquired the capacity to traffic through plasmodesmata. These results are discussed in terms of the roles likely played by this subclass of Hsc70 chaperones in the trafficking of non-cell-autonomous proteins.
Collapse
Affiliation(s)
- Koh Aoki
- Section of Plant Biology, Division of Biological Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
30
|
Igamberdiev AU, Lea PJ. The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. PHYTOCHEMISTRY 2002; 60:651-674. [PMID: 12127583 DOI: 10.1016/s0031-9422(02)00179-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The peroxisome is a metabolic compartment serving for the rapid oxidation of substrates, a process that is not coupled to energy conservation. In plants and algae, peroxisomes connect biosynthetic and oxidative metabolic routes and compartmentalize potentially lethal steps of metabolism such as the formation of reactive oxygen species and glyoxylate, thus preventing poisoning of the cell and futile recycling. Peroxisomes exhibit properties resembling inside-out vesicles and possess special systems for the import of specific proteins, which form multi-enzyme complexes (metabolons) linking numerous reactions to flavin-dependent oxidation, coupled to the decomposition of hydrogen peroxide by catalase. Hydrogen peroxide and superoxide originating in peroxisomes are important mediators in signal transduction pathways, particularly those involving salicylic acid. By contributing to the synthesis of oxalate, formate and other organic acids, peroxisomes regulate major fluxes of primary and secondary metabolism. The evolutionary diversity of algae has led to the presence of a wide range of enzymes in the peroxisomes that are only similar to higher plants in their direct predecessors, the Charophyceae. The appearance of seed plants was connected to the acquirement by storage tissues, of a peroxisomal fatty acid oxidation function linked to the glyoxylate cycle, which is induced during seed germination and maturation. Rearrangement of the peroxisomal photorespiratory function between different tissues of higher plants led to the appearance of different types of photosynthetic metabolism. The peroxisome may therefore have played a key role in the evolutionary formation of metabolic networks, via establishing interconnections between different metabolic compartments.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Plant Research Department, Risø National Laboratory, 4000, Roskilde, Denmark.
| | | |
Collapse
|
31
|
Abstract
A unique aspect of protein translocation across the peroxisomal membrane is that folded and oligomeric proteins get across this membrane (Purdue and Lazarow, 2001). The generality of this rule, its specific features, and its mechanism are not fully understood. A paper in this issue addresses, in a very thorough fashion, the assembly, cofactor binding, and import of an oligomeric protein, acyl-CoA oxidase (Aox), into the peroxisome matrix (Titorenko et al., 2002, this issue).
Collapse
Affiliation(s)
- Suresh Subramani
- Section of Molecular Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Stewart MQ, van Dijk R, Veenhuis M, Goodman JM. Monomeric alcohol oxidase is preferentially digested by a novel protease from Candida boidinii. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1542:160-72. [PMID: 11853889 DOI: 10.1016/s0167-4889(01)00176-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A protease activity has been partially purified from peroxisomal matrix fractions of the methylotrophic yeast Candida boidinii. The enzyme migrates as a single peak on a sucrose velocity gradient with an apparent native molecular mass of approximately 80-90 kDa. Activity can be recovered from nonreducing sodium dodecyl sulfate gels as a approximately 20 kDa species, suggesting it is an oligomer. The protein exhibits chymotrypsin-like activity and cleaves the model compound suc-L-L-V-Y-AMC. Additionally, monomers of alcohol oxidase (AO), an abundant protein of C. boidinii peroxisomes, generated in vitro or in pulse-radiolabeled cells, are preferentially sensitive to degradation by the protease. Sensitivity is lost over time in vivo as AO folds and matures into octamers, suggesting that the protease may be involved in these processes.
Collapse
Affiliation(s)
- Mary Q Stewart
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Fifteen years ago, we had a model of peroxisome biogenesis that involved growth and division of preexisting peroxisomes. Today, thanks to genetically tractable model organisms and Chinese hamster ovary cells, 23 PEX genes have been cloned that encode the machinery ("peroxins") required to assemble the organelle. Membrane assembly and maintenance requires three of these (peroxins 3, 16, and 19) and may occur without the import of the matrix (lumen) enzymes. Matrix protein import follows a branched pathway of soluble recycling receptors, with one branch for each class of peroxisome targeting sequence (two are well characterized), and a common trunk for all. At least one of these receptors, Pex5p, enters and exits peroxisomes as it functions. Proliferation of the organelle is regulated by Pex11p. Peroxisome biogenesis is remarkably conserved among eukaryotes. A group of fatal, inherited neuropathologies are recognized as peroxisome biogenesis diseases; the responsible genes are orthologs of yeast or Chinese hamster ovary peroxins. Future studies must address the mechanism by which folded, oligomeric enzymes enter the organelle, how the peroxisome divides, and how it segregates at cell division. Most pex mutants contain largely empty membrane "ghosts" of peroxisomes; a few mutants apparently lacking peroxisomes entirely have led some to propose the de novo formation of the organelle. However, there is evidence for residual peroxisome membrane vesicles ("protoperoxisomes") in some of these, and the preponderance of data supports the continuity of the peroxisome compartment in space and time and between generations of cells.
Collapse
Affiliation(s)
- P E Purdue
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | |
Collapse
|
34
|
Abstract
Cellular membranes act as semipermeable barriers to ions and macromolecules. Specialized mechanisms of transport of proteins across membranes have been developed during evolution. There are common mechanistic themes among protein translocation systems in bacteria and in eukaryotic cells. Here we review current understanding of mechanisms of protein transport across the bacterial plasma membrane as well as across several organelle membranes of yeast and mammalian cells. We consider a variety of organelles including the endoplasmic reticulum, outer and inner membranes of mitochondria, outer, inner, and thylakoid membranes of chloroplasts, peroxisomes, and lysosomes. Several common principles are evident: (a) multiple pathways of protein translocation across membranes exist, (b) molecular chaperones are required in the cytosol, inside the organelle, and often within the organelle membrane, (c) ATP and/or GTP hydrolysis is required, (d) a proton-motive force across the membrane is often required, and (e) protein translocation occurs through gated, aqueous channels. There are exceptions to each of these common principles indicating that our knowledge of how proteins translocate across membranes is not yet complete.
Collapse
Affiliation(s)
- F A Agarraberes
- Department of Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
35
|
Harano T, Nose S, Uezu R, Shimizu N, Fujiki Y. Hsp70 regulates the interaction between the peroxisome targeting signal type 1 (PTS1)-receptor Pex5p and PTS1. Biochem J 2001; 357:157-65. [PMID: 11415446 PMCID: PMC1221938 DOI: 10.1042/0264-6021:3570157] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The peroxisome targeting signal type 1 (PTS1) receptor, Pex5p, of the tetratricopeptide repeat (TPR) motif family is located mostly in the cytosol and mediates the translocation of PTS1 proteins to peroxisomes. As a step towards understanding the mechanisms of protein import into peroxisomes, we investigated the molecular mechanisms involved in PTS1 recognition by Pex5p with regard to requirement of energy and cytosolic factors, using cell-free synthesized acyl-CoA oxidase (AOx) as a PTS1 cargo protein, together with Pex5p and heat-shock protein (Hsp)70 from rat liver. Pex5p was partly associated with peroxisomes of rat liver, was resistant to washing with a high concentration of salt and to alkaline extraction and was inaccessible to protease added externally. Pex5p bound to AOx in an ATP-dependent manner. AOx synthesized in a cell-free translating system from rabbit reticulocyte lysate was imported into peroxisomes without being supplemented with Pex5p and Hsp70, implying that peroxisome-associated Pex5p was released from the membranes and functional in this in vitro import assay. Antibodies against Pex5p and Hsp70 inhibited AOx import. In contrast, AOx synthesized in a wheat-germ lysate required the external addition of Pex5p for import, in which Hsp70 augmented the AOx import. The TPR domain of Pex5p was revealed to bind to the N-terminal part in an Hsp70-independent manner, whereas mutual interaction of the TPR region was noted in the presence of Hsp70. Hsp70 interacted with the TPR domain of Pex5p. Moreover, Hsp70 and ATP synergistically enhanced the binding of Pex5p to the C-terminal PTS1-containing part of AOx, implying that Pex5p recognizes its cargo PTS1 protein by chaperone-assisted as well as energy-dependent mechanisms in vivo.
Collapse
Affiliation(s)
- T Harano
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
36
|
Mullen RT, Flynn CR, Trelease RN. How are peroxisomes formed? The role of the endoplasmic reticulum and peroxins. TRENDS IN PLANT SCIENCE 2001; 6:256-261. [PMID: 11378467 DOI: 10.1016/s1360-1385(01)01951-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent data from studies of peroxisome assembly and the subcellular sorting of peroxisomal matrix and membrane proteins have led to an expansion of the 'growth and division' and 'endoplasmic reticulum-vesiculation' models of peroxisome biogenesis into a more flexible, unified model. Within this context, we discuss the proposed role for the endoplasmic reticulum in the formation of preperoxisomes and the potential for 15 Arabidopsis peroxin homologs to function in the biogenesis of peroxisomes in plant cells.
Collapse
Affiliation(s)
- R T Mullen
- Dept Botany, University of Guelph, N1G 2W1., Guelph, Ontario, Canada.
| | | | | |
Collapse
|
37
|
Abstract
Peroxisomes are highly adaptable organelles that carry out oxidative reactions. Distinct cellular machineries act together to coordinate peroxisome formation, growth, division, inheritance, turnover, movement and function. Soluble and membrane-associated components of these machineries form complex networks of physical and functional interactions that provide supramolecular control of the precise dynamics of peroxisome biogenesis.
Collapse
Affiliation(s)
- V I Titorenko
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | | |
Collapse
|
38
|
Abstract
Peroxisome targeting signal (PTS)2 directs proteins from their site of synthesis in the cytosol to the lumen of the peroxisome. Unlike PTS1 which is present in the great majority of peroxisomal matrix proteins and whose import mechanics have been dissected in considerable detail, PTS2 is a relatively rare topogenic signal whose import mechanisms are far less well understood. However, as is the case for PTS1 proteins, an inability to import PTS2 proteins leads to human disease. In this report, we describe the biochemical characterization of mammalian PTS2 protein import using a semi-permeabilized cell system. We show that a PTS2-containing reporter molecule is taken up by peroxisomes in a reaction that is time-, temperature-, ATP-, and cytosol-dependent. Furthermore, the import process is specific, saturable, and requires action of the chaperone Hsc70, the cochaperone Hsp40, and the peroxins Pex5p and Pex14p. We also demonstrate peroxisomal translocation of PTS2 reporter/antibody complexes confirming the import competence of higher order structures. Importantly, cultured fibroblasts from patients with the rhizomelic form of chondrodysplasia punctata (RCDP) which are deficient for the PTS2 receptor protein, Pex7p, are unable to import the PTS2 reporter in this assay. The ability to monitor PTS2 import in vitro will permit, for the first time, a detailed comparison of the biochemical properties of PTS1 and PTS2 protein import.
Collapse
Affiliation(s)
- J E Legakis
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | |
Collapse
|
39
|
Peng Z, Staub JM, Serino G, Kwok SF, Kurepa J, Bruce BD, Vierstra RD, Wei N, Deng XW. The cellular level of PR500, a protein complex related to the 19S regulatory particle of the proteasome, is regulated in response to stresses in plants. Mol Biol Cell 2001; 12:383-92. [PMID: 11179422 PMCID: PMC30950 DOI: 10.1091/mbc.12.2.383] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2000] [Revised: 11/29/2000] [Accepted: 12/19/2000] [Indexed: 11/11/2022] Open
Abstract
In Arabidopsis seedlings and cauliflower florets, Rpn6 (a proteasome non-ATPase regulatory subunit) was found in two distinct protein complexes of approximately 800 and 500 kDa, respectively. The large complex likely represents the proteasome 19S regulator particle (RP) because it displays the expected subunit composition and all characteristics. The small complex, designated PR500, shares at least three subunits with the "lid" subcomplex of 19S RP and is loosely associated with an hsp70 protein. In Arabidopsis COP9 signalosome mutants, PR500 was specifically absent or reduced to an extent that correlates with the severity of the mutations. Furthermore, PR500 was also diminished in response to potential protein-misfolding stresses caused by the heat shock and canavanine treatment. Immunofluorescence studies suggest that PR500 has a distinct localization pattern and is enriched in specific nuclear foci. We propose that PR500 may be evolved in higher plants to cope with the frequently encountered environmental stresses.
Collapse
Affiliation(s)
- Z Peng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Terlecky SR, Legakis JE, Hueni SE, Subramani S. Quantitative analysis of peroxisomal protein import in vitro. Exp Cell Res 2001; 263:98-106. [PMID: 11161709 DOI: 10.1006/excr.2000.5111] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein import into the peroxisome matrix is mediated by peroxisome-targeting signals (PTSs). We have developed a novel, quantitative, in vitro assay for measuring peroxisomal import of PTS1-containing proteins. This enzyme-linked immunosorbent assay-based system utilizes semi-intact human A431 cells or fibroblasts and a biotinylated version of the PTS1-containing import substrate, luciferase. We show that biotinylated luciferase accumulated in peroxisomes in a time- and temperature-dependent fashion, in a reaction stimulated by exogenously added ATP, cytosol, and zinc. No import was detected in fibroblasts from a human patient belonging to complementation group 2, who suffered from the fatal peroxisomal disorder Zellweger syndrome and lacked a functional PTS1 receptor, Pex5p. Also, the reaction was significantly inhibited by antibodies to the zinc-finger protein, Pex2p. Several lines of evidence demonstrate that biotinylated luciferase was imported into the lumen of bona fide peroxisomes. (a) Biochemical fractionation of cells after the import reaction showed a time-dependent accumulation of the import substrate within intracellular organelles. (b) Confocal fluorescence microscopy indicated that imported biotinylated luciferase colocalized with the peroxisomal protein PMP70. (c) Visualization of the imported biotinylated luciferase by indirect fluorescence or indirect immunofluorescence required disruption of the peroxisomal membrane, indicating true import rather than binding to the outside of the organelle.
Collapse
Affiliation(s)
- S R Terlecky
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
41
|
Pratt WB, Krishna P, Olsen LJ. Hsp90-binding immunophilins in plants: the protein movers. TRENDS IN PLANT SCIENCE 2001; 6:54-58. [PMID: 11173288 DOI: 10.1016/s1360-1385(00)01843-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies of cytoplasmic-nuclear trafficking of the glucocorticoid receptor in mammalian cells suggest that the hsp90/hsp70-based chaperone system and the hsp90-binding immunophilin FKBP52 are involved in targeted movement of the receptor along microtubule tracts. Over the past few years, plant cells have been found to possess a similar multiprotein chaperone machinery. Plant cells also contain high molecular weight FKBPs that bind to plant hsp90 via a conserved protein interaction involving tetratricopeptide repeat domains. The hsp90/hsp70-based machinery and the plant FKBPs might be used to target the trafficking of signalling proteins in plants.
Collapse
Affiliation(s)
- W B Pratt
- Dept Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
42
|
Abstract
In yeast, peroxisomes are the site of specific catabolic pathways that characteristically include hydrogen peroxide producing oxidases and catalase. During the last 10 years, much progress has been made in unravelling the molecular mechanisms involved in the biogenesis of this organelle. At present, 23 different genes (PEX genes) have been identified that are involved in different aspects of peroxisome biogenesis (e.g., proliferation, formation of the peroxisomal membrane, import of matrix proteins). The principles of peroxisome degradation are still much less understood. Recently, the first yeast mutants affected in this process have become available and used to clone corresponding genes by functional complementation. In this paper, an overview is presented of the research on yeast peroxisomes, focusing on recent achievements in the molecular aspects of peroxisome development, function, and turnover.
Collapse
Affiliation(s)
- M Veenhuis
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|
43
|
Abstract
Peroxisomes are formed by the synthesis and assembly of membrane proteins and lipids, the selective import of proteins from the cytosol, and the growth and division of resultant organelles. To date, 23 proteins, called peroxins, are known to participate in these processes. This review summarizes recent progress in peroxin characterization and examines the underlying molecular mechanisms of peroxisome biosynthesis.
Collapse
Affiliation(s)
- S R Terlecky
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | |
Collapse
|
44
|
Soellick T, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH. The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci U S A 2000; 97:2373-8. [PMID: 10688879 PMCID: PMC15808 DOI: 10.1073/pnas.030548397] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1999] [Accepted: 12/15/1999] [Indexed: 11/18/2022] Open
Abstract
The nonstructural NSm protein of tomato spotted wilt tospovirus (TSWV) represents a putative viral movement protein involved in cell-to-cell movement of nonenveloped ribonucleocapsid structures. To study the molecular basis of NSm function, we expressed the protein in Escherichia coli and investigated protein-protein and protein-RNA interactions of NSm protein in vitro. NSm specifically interacts with TSWV N protein and binds single-stranded RNA in a sequence-nonspecific manner. Using NSm as a bait in a yeast two-hybrid screen, we identified two homologous NSm-binding proteins of the DnaJ family from Nicotiana tabacum and Arabidopsis thaliana.
Collapse
Affiliation(s)
- T Soellick
- Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
Several protein-targeting fields have recently converged in their observations of what once was thought to be a rare phenomenon: the transport of folded and oligomerized proteins across membranes. Three of the newly characterized pathways that are known to accommodate folded substrates are the peroxisomal targeting machinery for matrix proteins, the twin-arginine translocation (Tat) of bacteria and the related DeltapH-dependent pathway of plant plastids, and the cytoplasm-to-vacuole targeting (Cvt) pathway in Saccharomyces cerevisiae. Current work strives to understand the molecular mechanisms that accomplish transport of folded substrates. The aim of this commentary is to highlight our knowledge of transport mechanisms, point out areas for future research and address how paradigms of classical protein translocation have shaped current views.
Collapse
Affiliation(s)
- S A Teter
- Section of Microbiology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| | | |
Collapse
|
46
|
Abstract
Peroxisomes are organelles that confine an important set of enzymes within their single membrane boundaries. In man, a wide variety of genetic disorders is caused by loss of peroxisome function. In the most severe cases, the clinical phenotype indicates that abnormalities begin to appear during embryological development. In less severe cases, the quality of life of adults is affected. Research on yeast model systems has contributed to a better understanding of peroxisome formation and maintenance. This framework of knowledge has made it possible to understand the molecular basis of most of the peroxisome biogenesis disorders. Interestingly, most peroxisome biogenesis disorders are caused by a failure to target peroxisomal proteins to the organellar matrix or membrane, which classifies them as protein targeting diseases. Here we review recent fundamental research on peroxisomal protein targeting and discuss a few burning questions in the field concerning the origin of peroxisomes.
Collapse
Affiliation(s)
- E H Hettema
- Department of Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105 AZ, Amsterdam, Netherlands
| | | | | |
Collapse
|
47
|
Flynn CR, Mullen RT, Trelease RN. Mutational analyses of a type 2 peroxisomal targeting signal that is capable of directing oligomeric protein import into tobacco BY-2 glyoxysomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:709-20. [PMID: 10069077 DOI: 10.1046/j.1365-313x.1998.00344.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study of the type 2 peroxisomal targeting signal (PTS2) pathway, we examined the apparent discontinuity and conservation of residues within the PTS2 nonapeptide and demonstrated that this topogenic signal is capable of directing heteromultimeric protein import in plant cells. Based on cumulative data showing that at least 26 unique, putative PTS2 nonapeptides occur within 12 diverse peroxisomal-destined proteins, the current (-R/K-L/V/I-X5-H/Q-L/A-) as well as the original (-R-L-X5-H/Q-L-) PTS2 motif appear to be oversimplified. To assess the functionality of residues within the motif, rat liver thiolase (rthio) and various chimeric chloramphenicol acetyltransferase (CAT) proteins were expressed transiently in suspension-cultured tobacco (Nicotiana tabaccum L.) cv Bright Yellow cells (BY-2), and their subcellular location was determined by immunofluoresence microscopy. Hemagglutinin (HA)-epitope-tagged-CAT subunits, lacking a PTS2 (CAT-HA), were 'piggybacked' into glyoxysomes by PTS2-bearing CAT subunits (rthio-CAT), whereas signal-depleted CAT-HA subunits that were modified to prevent oligomerization did not import into glyoxysomes. These results provided direct evidence that signal-depleted subunits imported into peroxisomes were targeted to the organelle as oligomers (heteromers) by a PTS2. Mutational analysis of residues within PTS2 nonapeptides revealed that a number of amino acid substitutions were capable of maintaining targeting function. Furthermore, functionality of residues within the PTS2 nonapeptide did not appear to require a context-specific environment conferred by adjacent residues. These results collectively suggest that the functional PTS2 is not solely defined as a sequence-specific motif, i.e. -R/K-X6-H/Q-A/L/F-, but defined also by its structural motif that is dependent upon the physiochemical properties of residues within the nonapeptide.
Collapse
Affiliation(s)
- C R Flynn
- Graduate Program in Molecular and Cellular Biology, Arizona State University, Tempe 85287-1601, USA
| | | | | |
Collapse
|