1
|
Pidugu LS, Servius HW, Espinosa KB, Cook ME, Varney KM, Drohat AC. Sumoylation of thymine DNA glycosylase impairs productive binding to substrate sites in DNA. J Biol Chem 2024; 300:107902. [PMID: 39426728 DOI: 10.1016/j.jbc.2024.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
The base excision repair enzyme thymine DNA glycosylase (TDG) protects against mutations by removing thymine or uracil from guanine mispairs and functions in active DNA demethylation by excising 5-formylcytosine (fC) and 5-carboxylcytosine (caC). Post-translational modification of TDG by SUMO (small ubiquitin-like modifier) reduces its glycosylase activity but the mechanism remains unclear. We investigated this problem using biochemical and biophysical approaches and a TDG construct comprising residues 82 to 340 (of 410) that includes the SUMOylation site and the motif for non-covalent SUMO binding. Single turnover kinetics experiments were collected at multiple enzyme concentrations ([E]) and the hyperbolic dependence of activity (kobs) on [E] yielded the maximal glycosylase activity (kmax), the enzyme concentration giving half-maximal activity (K0.5), and the catalytic efficiency (kmax/K0.5). Sumoylation of TDG (or TDG82-340) causes large reductions in catalytic efficiency for G·T, G·U, G·fC, and G·caC DNA substrates, due largely to weakened substrate affinity (increased K0.5). 19F NMR experiments show that sumoylation of TDG82-340 reduces productive binding to G·U mispairs and dramatically impairs binding to G·T mispairs. A mutation in the TDG SUMO-interacting motif (SIM), E310Q, shown previously to perturb the noncovalent binding of SUMO to unmodified TDG, rescues the glycosylase activity of sumoylated TDG82-340. Similarly, NMR studies show the mutation restores the productive binding of sumoylated TDG82-340 to G·U and G·T pairs. Together, the results indicate that intramolecular SUMO-SIM interactions mediate the adverse effect of sumoylation on TDG activity and suggest a model whereby the disruption of SUMO-SIM interactions enables productive binding of sumoylated TDG to substrate sites in DNA.
Collapse
Affiliation(s)
- Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hardler W Servius
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kurt B Espinosa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary E Cook
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Molecular and Structural Biology Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Molecular and Structural Biology Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Tao J, Zhang H, Weinfeld M, Le XC. Detection of Uracil-Excising DNA Glycosylases in Cancer Cell Samples Using a Three-Dimensional DNAzyme Walker. ACS MEASUREMENT SCIENCE AU 2024; 4:459-466. [PMID: 39184356 PMCID: PMC11342458 DOI: 10.1021/acsmeasuresciau.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 08/27/2024]
Abstract
DNA glycosylase dysregulation is implicated in carcinogenesis and therapeutic resistance of cancers. Thus, various DNA-based detection platforms have been developed by leveraging the base excision activity of DNA glycosylases. However, the efficacy of DNA-based methods is hampered due to nonspecific degradation by nucleases commonly present in cancer cells and during preparations of cell lysates. In this report, we describe a fluorescence-based assay using a specific and nuclease-resistant three-dimensional DNAzyme walker to investigate the activity of DNA glycosylases from cancer cell lysates. We focus on DNA glycosylases that excise uracil from deoxyuridine (dU) lesions, namely, uracil DNA glycosylase (UDG) and single-stranded monofunctional uracil DNA glycosylase (SMUG1). The limits of detection for detecting UDG and SMUG1 in the buffer were 3.2 and 3.0 pM, respectively. The DNAzyme walker detected uracil excision activity in diluted cancer cell lysate from as few as 48 A549 cells. The results of the UDG inhibitor experiments demonstrate that UDG is the predominant uracil-excising glycosylase in A549 cells. Approximately 500 nM of UDG is present in each A549 cell on average. No fluorescence was generated in the samples lacking DNAzyme activation, indicating that there was no nonspecific nuclease interference. The ability of the DNAzyme walker to respond to glycosylase activity illustrates the potential use of DNAzyme walker technology to monitor and study biochemical processes involving glycosylases.
Collapse
Affiliation(s)
- Jeffrey Tao
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Michael Weinfeld
- Division
of Experimental Oncology, Department of Oncology, Faculty of Medicine
and Dentistry, University of Alberta, Cross
Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - X. Chris Le
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
3
|
Tao Y, Giese TJ, York DM. Electronic and Nuclear Quantum Effects on Proton Transfer Reactions of Guanine-Thymine (G-T) Mispairs Using Combined Quantum Mechanical/Molecular Mechanical and Machine Learning Potentials. Molecules 2024; 29:2703. [PMID: 38893576 PMCID: PMC11173453 DOI: 10.3390/molecules29112703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Rare tautomeric forms of nucleobases can lead to Watson-Crick-like (WC-like) mispairs in DNA, but the process of proton transfer is fast and difficult to detect experimentally. NMR studies show evidence for the existence of short-time WC-like guanine-thymine (G-T) mispairs; however, the mechanism of proton transfer and the degree to which nuclear quantum effects play a role are unclear. We use a B-DNA helix exhibiting a wGT mispair as a model system to study tautomerization reactions. We perform ab initio (PBE0/6-31G*) quantum mechanical/molecular mechanical (QM/MM) simulations to examine the free energy surface for tautomerization. We demonstrate that while the ab initio QM/MM simulations are accurate, considerable sampling is required to achieve high precision in the free energy barriers. To address this problem, we develop a QM/MM machine learning potential correction (QM/MM-ΔMLP) that is able to improve the computational efficiency, greatly extend the accessible time scales of the simulations, and enable practical application of path integral molecular dynamics to examine nuclear quantum effects. We find that the inclusion of nuclear quantum effects has only a modest effect on the mechanistic pathway but leads to a considerable lowering of the free energy barrier for the GT*⇌G*T equilibrium. Our results enable a rationalization of observed experimental data and the prediction of populations of rare tautomeric forms of nucleobases and rates of their interconversion in B-DNA.
Collapse
|
4
|
Westwood MN, Pilarski A, Johnson C, Mamoud S, Meints GA. Backbone Conformational Equilibrium in Mismatched DNA Correlates with Enzyme Activity. Biochemistry 2023; 62:2816-2827. [PMID: 37699121 PMCID: PMC10552547 DOI: 10.1021/acs.biochem.3c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023]
Abstract
T:G mismatches in mammals arise primarily from the deamination of methylated CpG sites or the incorporation of improper nucleotides. The process by which repair enzymes such as thymine DNA glycosylase (TDG) identify a canonical DNA base in the incorrect pairing context remains a mystery. However, the abundant contacts of the repair enzymes with the DNA backbone suggest a role for protein-phosphate interaction in the recognition and repair processes, where conformational properties may facilitate the proper interactions. We have previously used 31P NMR to investigate the energetics of DNA backbone BI-BII interconversion and the effect of a mismatch or lesion compared to canonical DNA and found stepwise differences in ΔG of 1-2 kcal/mol greater than equivalent steps in unmodified DNA. We have currently compared our results to substrate dependence for TDG, MBD4, M. HhaI, and CEBPβ, testing for correlations to sequence and base-pair dependence. We found strong correlations of our DNA phosphate backbone equilibrium (Keq) to different enzyme kinetics or binding parameters of these varied enzymes, suggesting that the backbone equilibrium may play an important role in mismatch recognition and/or conformational rearrangement and energetics during nucleotide flipping or other aspects of enzyme interrogation of the DNA substrate.
Collapse
Affiliation(s)
- M. N. Westwood
- Biophysics
Program, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - A. Pilarski
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| | - C. Johnson
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| | - S. Mamoud
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| | - G. A. Meints
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 S. National Ave., Springfield, Missouri 65897, United States
| |
Collapse
|
5
|
Servius HW, Pidugu LS, Sherman ME, Drohat AC. Rapid excision of oxidized adenine by human thymine DNA glycosylase. J Biol Chem 2022; 299:102756. [PMID: 36460098 PMCID: PMC9800633 DOI: 10.1016/j.jbc.2022.102756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Oxidation of DNA bases generates mutagenic and cytotoxic lesions that are implicated in cancer and other diseases. Oxidative base lesions, including 7,8-dihydro-8-oxoguanine, are typically removed through base excision repair. In addition, oxidized deoxynucleotides such as 8-oxo-dGTP are depleted by sanitizing enzymes to preclude DNA incorporation. While pathways that counter threats posed by 7,8-dihydro-8-oxoguanine are well characterized, mechanisms protecting against the major adenine oxidation product, 7,8-dihydro-8-oxoadenine (oxoA), are poorly understood. Human DNA polymerases incorporate dGTP or dCTP opposite oxoA, producing mispairs that can cause A→C or A→G mutations. oxoA also perturbs the activity of enzymes acting on DNA and causes interstrand crosslinks. To inform mechanisms for oxoA repair, we characterized oxoA excision by human thymine DNA glycosylase (TDG), an enzyme known to remove modified pyrimidines, including deaminated and oxidized forms of cytosine and 5-methylcystosine. Strikingly, TDG excises oxoA from G⋅oxoA, A⋅oxoA, or C⋅oxoA pairs much more rapidly than it acts on the established pyrimidine substrates, whereas it exhibits comparable activity for T⋅oxoA and pyrimidine substrates. The oxoA activity depends strongly on base pairing and is 370-fold higher for G⋅oxoA versus T⋅oxoA pairs. The intrinsically disordered regions of TDG contribute minimally to oxoA excision, whereas two conserved residues (N140 and N191) are catalytically essential. Escherichia coli mismatch-specific uracil DNA-glycosylase lacks significant oxoA activity, exhibiting excision rates 4 to 5 orders of magnitude below that of its ortholog, TDG. Our results reveal oxoA as an unexpectedly efficient purine substrate for TDG and underscore the large evolutionary divergence of TDG and mismatch-specific uracil DNA-glycosylase.
Collapse
|
6
|
Hsu CW, Conrad JW, Sowers ML, Baljinnyam T, Herring JL, Hackfeld LC, Hatch SS, Sowers LC. A combinatorial system to examine the enzymatic repair of multiply damaged DNA substrates. Nucleic Acids Res 2022; 50:7406-7419. [PMID: 35776119 PMCID: PMC9303388 DOI: 10.1093/nar/gkac530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
DNA damage drives genetic mutations that underlie the development of cancer in humans. Multiple pathways have been described in mammalian cells which can repair this damage. However, most work to date has focused upon single lesions in DNA. We present here a combinatorial system which allows assembly of duplexes containing single or multiple types of damage by ligating together six oligonucleotides containing damaged or modified bases. The combinatorial system has dual fluorescent labels allowing examination of both strands simultaneously, in order to study interactions or competition between different DNA repair pathways. Using this system, we demonstrate how repair of oxidative damage in one DNA strand can convert a mispaired T:G deamination intermediate into a T:A mutation. We also demonstrate that slow repair of a T:G mispair, relative to a U:G mispair, by the human methyl-binding domain 4 DNA glycosylase provides a competitive advantage to competing repair pathways, and could explain why CpG dinucleotides are hotspots for C to T mutations in human tumors. Data is also presented that suggests repair of closely spaced lesions in opposing strands can be repaired by a combination of short and long-patch base excision repair and simultaneous repair of multiply damage sites can potentially lead to lethal double strand breaks.
Collapse
Affiliation(s)
- Chia Wei Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - James W Conrad
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Mark L Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,MD-PhD Combined Degree Program, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Jason L Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Linda C Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sandra S Hatch
- Department of Radiation Oncology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Sarkies P. Encyclopaedia of eukaryotic DNA methylation: from patterns to mechanisms and functions. Biochem Soc Trans 2022; 50:1179-1190. [PMID: 35521905 PMCID: PMC9246332 DOI: 10.1042/bst20210725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022]
Abstract
DNA methylation is an epigenetic modification with a very long evolutionary history. However, DNA methylation evolves surprisingly rapidly across eukaryotes. The genome-wide distribution of methylation diversifies rapidly in different lineages, and DNA methylation is lost altogether surprisingly frequently. The growing availability of genomic and epigenomic sequencing across organisms highlights this diversity but also illuminates potential factors that could explain why both the DNA methylation machinery and its genome-wide distribution evolve so rapidly. Key to this are new discoveries about the fitness costs associated with DNA methylation, and new theories about how the fundamental biochemical mechanisms of DNA methylation introduction and maintenance could explain how new genome-wide patterns of methylation evolve.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, U.K
- MRC London Institute of Molecular Biology, London, U.K
- Institute of Clinical Sciences, Imperial College London, London, U.K
| |
Collapse
|
8
|
Tarantino ME, Delaney S. Kinetic Analysis of the Effect of N-Terminal Acetylation on Thymine DNA Glycosylase. Biochemistry 2022; 61:895-908. [PMID: 35436101 PMCID: PMC9117521 DOI: 10.1021/acs.biochem.1c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thymine DNA glycosylase (TDG) is tasked with initiating DNA base excision repair by recognizing and removing T, U, the chemotherapeutic 5-fluorouracil (5-FU), and many other oxidized and halogenated pyrimidine bases. TDG contains a long, unstructured N-terminus that contains four known sites of acetylation: lysine (K) residues 59, 83, 84, and 87. Here, K to glutamine (Q) mutants are used as acetyl-lysine (AcK) analogues to probe the effect of N-terminal acetylation on the kinetics of TDG. We find that mimicking acetylation affects neither the maximal single-turnover rate kmax nor the turnover rate kTO, indicating that the steps after initial binding, through chemistry and product release, are not affected. Under subsaturating conditions, however, acetylation changes the processing of U substrates. Subtle differences among AcK analogues are revealed with 5-FU in single-stranded DNA. We propose that the subtleties observed among the AcK analogues may be amplified on the genomic scale, leading to regulation of TDG activity. N-terminal acetylation, though, may also play a structural, rather than kinetic role in vivo.
Collapse
Affiliation(s)
- Mary E. Tarantino
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, United States
| |
Collapse
|
9
|
Westwood MN, Johnson CC, Oyler NA, Meints GA. Kinetics and thermodynamics of BI-BII interconversion altered by T:G mismatches in DNA. Biophys J 2022; 121:1691-1703. [PMID: 35367235 PMCID: PMC9117933 DOI: 10.1016/j.bpj.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
T:G mismatches in DNA result in humans primarily from deamination of methylated CpG sites. They are repaired by redundant systems, such as thymine DNA glycosylase (TDG) and methyl-binding domain enzyme (MBD4), and maintenance of these sites has been implicated in epigenetic processes. The process by which these enzymes identify a canonical DNA base in the incorrect basepairing context remains a mystery. However, the conserved contacts of the repair enzymes with the DNA backbone suggests a role for protein-phosphate interaction in the recognition and repair processes. We have used 31P NMR to investigate the energetics of DNA backbone BI-BII interconversion, and for this work have focused on alterations to the activation barriers to interconversion and the effect of a mismatch compared with canonical DNA. We have found that alterations to the ΔG of interconversion for T:G basepairs are remarkably similar to U:G basepairs in the form of stepwise differences in ΔG of 1-2 kcal/mol greater than equivalent steps in unmodified DNA, suggesting a universality of this result for TDG substrates. Likewise, we see perturbations to the free energy (∼1 kcal/mol) and enthalpy (2-5 kcal/mol) of activation for the BI-BII interconversion localized to the phosphates flanking the mismatch. Overall our results strongly suggest that the perturbed backbone energetics in T:G basepairs play a significant role in the recognition process of DNA repair enzymes.
Collapse
Affiliation(s)
- M N Westwood
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri
| | - C C Johnson
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri
| | - Nathan A Oyler
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri
| | - Gary A Meints
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri.
| |
Collapse
|
10
|
Hsu CW, Sowers ML, Baljinnyam T, Herring JL, Hackfeld LC, Tang H, Zhang K, Sowers LC. Measurement of deaminated cytosine adducts in DNA using a novel hybrid thymine DNA glycosylase. J Biol Chem 2022; 298:101638. [PMID: 35085553 PMCID: PMC8861164 DOI: 10.1016/j.jbc.2022.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/16/2023] Open
Abstract
The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oligonucleotides and DNA followed by GC-MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the formation, persistence, and repair of a biologically important class of deaminated cytosine adducts.
Collapse
Affiliation(s)
- Chia Wei Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA; MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Mark L Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA; MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jason L Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Linda C Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hui Tang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
11
|
The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Int J Mol Sci 2022; 23:ijms23042390. [PMID: 35216513 PMCID: PMC8877055 DOI: 10.3390/ijms23042390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase β (Polβ) is considered the main repair DNA polymerase involved in the base excision repair (BER) pathway, which plays an important part in the repair of damaged DNA bases usually resulting from alkylation or oxidation. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that protein-protein interactions of Polβ with enzymes from the BER pathway increase the efficiency of damaged base repair in DNA. However natural single-nucleotide polymorphisms can lead to a substitution of functionally significant amino acid residues and therefore affect the catalytic activity of the enzyme and the accuracy of Polβ action. Up-to-date databases contain information about more than 8000 SNPs in the gene of Polβ. This review summarizes data on the in silico prediction of the effects of Polβ SNPs on DNA repair efficacy; available data on cancers associated with SNPs of Polβ; and experimentally tested variants of Polβ. Analysis of the literature indicates that amino acid substitutions could be important for the maintenance of the native structure of Polβ and contacts with DNA; others affect the catalytic activity of the enzyme or play a part in the precise and correct attachment of the required nucleotide triphosphate. Moreover, the amino acid substitutions in Polβ can disturb interactions with enzymes involved in BER, while the enzymatic activity of the polymorphic variant may not differ significantly from that of the wild-type enzyme. Therefore, investigation regarding the effect of Polβ natural variants occurring in the human population on enzymatic activity and protein-protein interactions is an urgent scientific task.
Collapse
|
12
|
Pidugu LS, Bright H, Lin WJ, Majumdar C, Van Ostrand RP, David SS, Pozharski E, Drohat AC. Structural Insights into the Mechanism of Base Excision by MBD4. J Mol Biol 2021; 433:167097. [PMID: 34107280 PMCID: PMC8286355 DOI: 10.1016/j.jmb.2021.167097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2'-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.
Collapse
Affiliation(s)
- Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hilary Bright
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wen-Jen Lin
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Chandrima Majumdar
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | | | - Sheila S David
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA.
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
13
|
Liu X, Xu B, Yang J, He L, Zhang Z, Cheng X, Yu H, Liu X, Jin T, Peng Y, Huang Y, Xia L, Wang Y, Wu J, Wu X, Liu S, Shan L, Yang X, Sun L, Liang J, Zhang Y, Shang Y. UHRF2 commissions the completion of DNA demethylation through allosteric activation by 5hmC and K33-linked ubiquitination of XRCC1. Mol Cell 2021; 81:2960-2974.e7. [PMID: 34111398 DOI: 10.1016/j.molcel.2021.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/12/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
The transition of oxidized 5-methylcytosine (5mC) intermediates into the base excision repair (BER) pipeline to complete DNA demethylation remains enigmatic. We report here that UHRF2, the only paralog of UHRF1 in mammals that fails to rescue Uhrf1-/- phenotype, is physically and functionally associated with BER complex. We show that UHRF2 is allosterically activated by 5-hydroxymethylcytosine (5hmC) and acts as a ubiquitin E3 ligase to catalyze K33-linked polyubiquitination of XRCC1. This nonproteolytic action stimulates XRCC1's interaction with the ubiquitin binding domain-bearing RAD23B, leading to the incorporation of TDG into BER complex. Integrative epigenomic analysis in mouse embryonic stem cells reveals that Uhrf2-fostered TDG-RAD23B-BER complex is functionally linked to the completion of DNA demethylation at active promoters and that Uhrf2 ablation impedes DNA demethylation on latent enhancers that undergo poised-to-active transition during neuronal commitment. Together, these observations highlight an essentiality of 5hmC-switched UHRF2 E3 ligase activity in commissioning the accomplishment of active DNA demethylation.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Bosen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Zihan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Huajing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xujun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Tong Jin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yunchao Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Tran A, Zheng S, White DS, Curry AM, Cen Y. Retracted Article: Divergent synthesis of 5-substituted pyrimidine 2'-deoxynucleosides and their incorporation into oligodeoxynucleotides for the survey of uracil DNA glycosylases. Chem Sci 2020; 11:11818-11826. [PMID: 34123208 PMCID: PMC8162711 DOI: 10.1039/d0sc04161k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Recent studies have indicated that 5-methylcytosine (5mC) residues in DNA can be oxidized and potentially deaminated to the corresponding thymine analogs. Some of these oxidative DNA damages have been implicated as new epigenetic markers that could have profound influences on chromatin function as well as disease pathology. In response to oxidative damage, the cells have a complex network of repair systems that recognize, remove and rebuild the lesions. However, how the modified nucleobases are detected and repaired remains elusive, largely due to the limited availability of synthetic oligodeoxynucleotides (ODNs) containing these novel DNA modifications. A concise and divergent synthetic strategy to 5mC derivatives has been developed. These derivatives were further elaborated to the corresponding phosphoramidites to enable the site-specific incorporation of modified nucleobases into ODNs using standard solid-phase DNA synthesis. The synthetic methodology, along with the panel of ODNs, is of great value to investigate the biological functions of epigenetically important nucleobases, and to elucidate the diversity in chemical lesion repair.
Collapse
Affiliation(s)
- Ai Tran
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences Colchester VT 05446 USA
| | - Song Zheng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences Colchester VT 05446 USA
| | - Dawanna S White
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
15
|
Oliveira LM, Long AS, Brown T, Fox KR, Weber G. Melting temperature measurement and mesoscopic evaluation of single, double and triple DNA mismatches. Chem Sci 2020; 11:8273-8287. [PMID: 34094181 PMCID: PMC8163305 DOI: 10.1039/d0sc01700k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Unlike the canonical base pairs AT and GC, the molecular properties of mismatches such as hydrogen bonding and stacking interactions are strongly dependent on the identity of the neighbouring base pairs. As a result, due to the sheer number of possible combinations of mismatches and flanking base pairs, only a fraction of these have been studied in varying experiments or theoretical models. Here, we report on the melting temperature measurement and mesoscopic analysis of contiguous DNA mismatches in nearest-neighbours and next-nearest neighbour contexts. A total of 4032 different mismatch combinations, including single, double and triple mismatches were covered. These were compared with 64 sequences containing all combinations of canonical base pairs in the same location under the same conditions. For a substantial number of single mismatch configurations, 15%, the measured melting temperatures were higher than the least stable AT base pair. The mesoscopic calculation, using the Peyrard-Bishop model, was performed on the set of 4096 sequences, and resulted in estimates of on-site and nearest-neighbour interactions that can be correlated to hydrogen bonding and base stacking. Our results confirm many of the known properties of mismatches, including the peculiar sheared stacking of tandem GA mismatches. More intriguingly, it also reveals that a number of mismatches present strong hydrogen bonding when flanked on both sites by other mismatches. To highlight the applicability of our results, we discuss a number of practical situations such as enzyme binding affinities, thymine DNA glycosylase repair activity, and trinucleotide repeat expansions.
Collapse
Affiliation(s)
- Luciana M Oliveira
- Departamento de Física, Universidade Federal de Minas Gerais 31270-901 Belo Horizonte MG Brazil +55 31 3409 5600 +55 31 3409 6616
| | - Adam S Long
- School of Biological Sciences, University of Southampton Life Sciences Building 85 Southampton SO17 1BJ UK
| | - Tom Brown
- Department of Chemistry, University of Oxford Oxford UK
| | - Keith R Fox
- School of Biological Sciences, University of Southampton Life Sciences Building 85 Southampton SO17 1BJ UK
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais 31270-901 Belo Horizonte MG Brazil +55 31 3409 5600 +55 31 3409 6616
| |
Collapse
|
16
|
Li S, Da LT. Key structural motifs in Thymine DNA glycosylase responsible for recognizing certain DNA bent conformation revealed by atomic simulations. Biochem Biophys Res Commun 2020; 526:953-959. [PMID: 32291075 DOI: 10.1016/j.bbrc.2020.03.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Knowledge of how DNA bending facilitates the target-base searching by Thymine DNA glycosylase (TDG) is of major importance for unraveling the recognition mechanism between DNA and TDG in DNA repair process. An atomic-level understanding of the initial encounter between TDG and DNA before base-flipping, however, is still elusive. Here, we employ all-atom molecular dynamics (MD) simulations with an integrated simulation time of ∼3 μs to investigate how TDG responses to different DNA bending conformations. By constructing several TDG-DNA complexes with varied DNA bend angles (ranging from ∼0° to 60°), we pinpoint the key TDG motifs responsible for recognizing certain DNA bending conformations. Particularly, several positively charged residues, i.e., Lys232, Lys240, and Lys246, are critical for the tight binding with DNA backbones. Importantly, the roll-angle patterns, rather than the tilt and twist angles, are found to be strongly correlated with the extent of DNA bending, which in turn, governs the TDG recognition. Further comparisons between the naked and TDG-bound DNA conformations reveal that the TDG binding can impose a substantial DNA deformation, resulting in profound roll-angle alterations. Our studies warrant further experimental validations and provide deep structural insights into the recognition mechanism between TDG and DNA during their initial encounter.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
17
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Reading Targeted DNA Damage in the Active Demethylation Pathway: Role of Accessory Domains of Eukaryotic AP Endonucleases and Thymine-DNA Glycosylases. J Mol Biol 2020:S0022-2836(19)30720-X. [DOI: 10.1016/j.jmb.2019.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
|
19
|
Molecular Basis of Substrate Recognition of Endonuclease Q from the Euryarchaeon Pyrococcus furiosus. J Bacteriol 2020; 202:JB.00542-19. [PMID: 31685534 DOI: 10.1128/jb.00542-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Endonuclease Q (EndoQ), a DNA repair endonuclease, was originally identified in the hyperthermophilic euryarchaeon Pyrococcus furiosus in 2015. EndoQ initiates DNA repair by generating a nick on DNA strands containing deaminated bases and an abasic site. Although EndoQ is thought to be important for maintaining genome integrity in certain bacteria and archaea, the underlying mechanism catalyzed by EndoQ remains unclear. Here, we provide insights into the molecular basis of substrate recognition by EndoQ from P. furiosus (PfuEndoQ) using biochemical approaches. Our results of the substrate specificity range and the kinetic properties of PfuEndoQ demonstrate that PfuEndoQ prefers the imide structure in nucleobases along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. The combined results for EndoQ substrate binding and cleavage activity analyses indicated that PfuEndoQ flips the target base from the DNA duplex, and the cleavage activity is highly dependent on spontaneous base flipping of the target base. Furthermore, we find that PfuEndoQ has a relatively relaxed substrate specificity; therefore, the role of EndoQ in restriction modification systems was explored. The activity of the EndoQ homolog from Bacillus subtilis was found not to be inhibited by the uracil glycosylase inhibitor from B. subtilis bacteriophage PBS1, whose genome is completely replaced by uracil instead of thymine. Our findings suggest that EndoQ not only has additional functions in DNA repair but also could act as an antiviral enzyme in organisms with EndoQ.IMPORTANCE Endonuclease Q (EndoQ) is a lesion-specific DNA repair enzyme present in certain bacteria and archaea. To date, it remains unclear how EndoQ recognizes damaged bases. Understanding the mechanism of substrate recognition by EndoQ is important to grasp genome maintenance systems in organisms with EndoQ. Here, we find that EndoQ from the euryarchaeon Pyrococcus furiosus recognizes the imide structure in nucleobases by base flipping, and the cleavage activity is enhanced by the base pair instability of the target base, along with the discovery of its cleavage activity toward 5,6-dihydrouracil, 5-hydroxyuracil, 5-hydroxycytosine, and uridine in DNA. Furthermore, a potential role of EndoQ in Bacillus subtilis as an antiviral enzyme by digesting viral genome is demonstrated.
Collapse
|
20
|
Pidugu LS, Dai Q, Malik SS, Pozharski E, Drohat AC. Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase. J Am Chem Soc 2019; 141:18851-18861. [PMID: 31693361 DOI: 10.1021/jacs.9b10376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
5-Methylcytosine (mC) is an epigenetic mark that is written by methyltransferases, erased through passive and active mechanisms, and impacts transcription, development, diseases including cancer, and aging. Active DNA demethylation involves TET-mediated stepwise oxidation of mC to 5-hydroxymethylcytosine, 5-formylcytosine (fC), or 5-carboxylcytosine (caC), excision of fC or caC by thymine DNA glycosylase (TDG), and subsequent base excision repair. Many elements of this essential process are poorly defined, including TDG excision of caC. To address this problem, we solved high-resolution structures of human TDG bound to DNA with cadC (5-carboxyl-2'-deoxycytidine) flipped into its active site. The structures unveil detailed enzyme-substrate interactions that mediate recognition and removal of caC, many involving water molecules. Importantly, two water molecules contact a carboxylate oxygen of caC and are poised to facilitate acid-catalyzed caC excision. Moreover, a substrate-dependent conformational change in TDG modulates the hydrogen bond interactions for one of these waters, enabling productive interaction with caC. An Asn residue (N191) that is critical for caC excision is found to contact N3 and N4 of caC, suggesting a mechanism for acid-catalyzed base excision that features an N3-protonated form of caC but would be ineffective for C, mC, or hmC. We also investigated another Asn residue (N140) that is catalytically essential and strictly conserved in the TDG-MUG enzyme family. A structure of N140A-TDG bound to cadC DNA provides the first high-resolution insight into how enzyme-substrate interactions, including water molecules, are impacted by depleting the conserved Asn, informing its role in binding and addition of the nucleophilic water molecule.
Collapse
Affiliation(s)
- Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Qing Dai
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Shuja S Malik
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States.,Center for Biomolecular Therapeutics , Institute for Bioscience and Biotechnology Research , Rockville , Maryland 20850 , United States
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| |
Collapse
|
21
|
Sannai M, Doneddu V, Giri V, Seeholzer S, Nicolas E, Yip SC, Bassi MR, Mancuso P, Cortellino S, Cigliano A, Lurie R, Ding H, Chernoff J, Sobol RW, Yen TJ, Bagella L, Bellacosa A. Modification of the base excision repair enzyme MBD4 by the small ubiquitin-like molecule SUMO1. DNA Repair (Amst) 2019; 82:102687. [PMID: 31476572 PMCID: PMC6785017 DOI: 10.1016/j.dnarep.2019.102687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/21/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
The base excision repair DNA N-glycosylase MBD4 (also known as MED1), an interactor of the DNA mismatch repair protein MLH1, plays a central role in the maintenance of genomic stability of CpG sites by removing thymine and uracil from G:T and G:U mismatches, respectively. MBD4 is also involved in DNA damage response and transcriptional regulation. The interaction with other proteins is likely critical for understanding MBD4 functions. To identify novel proteins that interact with MBD4, we used tandem affinity purification (TAP) from HEK-293 cells. The MBD4-TAP fusion and its co-associated proteins were purified sequentially on IgG and calmodulin affinity columns; the final eluate was shown to contain MLH1 by western blotting, and MBD4-associated proteins were identified by mass spectrometry. Bands with molecular weight higher than that expected for MBD4 (˜66 kD) yielded peptides corresponding to MBD4 itself and the small ubiquitin-like molecule-1 (SUMO1), suggesting that MBD4 is sumoylated in vivo. MBD4 sumoylation was validated by co-immunoprecipitation in HEK-293 and MCF7 cells, and by an in vitrosumoylation assay. Sequence and mutation analysis identified three main sumoylation sites: MBD4 is sumoylated preferentially on K137, with additional sumoylation at K215 and K377. Patterns of MBD4 sumoylation were altered, in a DNA damage-specific way, by the anti-metabolite 5-fluorouracil, the alkylating agent N-Methyl-N-nitrosourea and the crosslinking agent cisplatin. MCF7 extract expressing sumoylated MBD4 displays higher thymine glycosylase activity than the unmodified species. Of the 67 MBD4 missense mutations reported in The Cancer Genome Atlas, 14 (20.9%) map near sumoylation sites. These results indicate that MBD4 is sumoylated in vivo in a DNA damage-specific manner, and suggest that sumoylation serves to regulate its repair activity and could be compromised in cancer. This study expands the role played by sumoylation in fine-tuning DNA damage response and repair.
Collapse
Affiliation(s)
- Mara Sannai
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Valentina Doneddu
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Veda Giri
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Steven Seeholzer
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia PA, 19104, USA
| | - Emmanuelle Nicolas
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Shu-Chin Yip
- Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Maria Rosaria Bassi
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Pietro Mancuso
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Salvatore Cortellino
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Antonio Cigliano
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Rebecca Lurie
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Hua Ding
- Proteomics Core, The Children's Hospital of Philadelphia, Philadelphia PA, 19104, USA
| | - Jonathan Chernoff
- Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Robert W Sobol
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Timothy J Yen
- Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
22
|
Coey CT, Drohat AC. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase. Nucleic Acids Res 2019; 46:5159-5170. [PMID: 29660017 PMCID: PMC6007377 DOI: 10.1093/nar/gky278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 01/22/2023] Open
Abstract
Thymine DNA glycosylase (TDG) excises thymine from mutagenic G·T mispairs generated by deamination of 5-methylcytosine (mC) and it removes two mC derivatives, 5−formylcytosine (fC) and 5−carboxylcytosine (caC), in a multistep pathway for DNA demethylation. TDG is modified by small ubiquitin-like modifier (SUMO) proteins, but the impact of sumoylation on TDG activity is poorly defined and the functions of TDG sumoylation remain unclear. We determined the effect of TDG sumoylation, by SUMO-1 or SUMO-2, on substrate binding and catalytic parameters. Single turnover experiments reveal that sumoylation dramatically impairs TDG base-excision activity, such that G·T activity is reduced by ≥45-fold and fC and caC are excised slowly, with a reaction half-life of ≥9 min (37°C). Fluorescence anisotropy studies reveal that unmodified TDG binds tightly to G·fC and G·caC substrates, with dissociation constants in the low nanomolar range. While sumoylation of TDG weakens substrate binding, the residual affinity is substantial and is comparable to that of biochemically-characterized readers of fC and caC. Our findings raise the possibility that sumoylation enables TDG to function, at least transiently, as reader of fC and caC. Notably, sumoylation could potentially facilitate TDG recruitment of other proteins, including transcription factors or epigenetic regulators, to these sites in DNA.
Collapse
Affiliation(s)
- Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Molecular and Structural Biology Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Sarre A, Stelter M, Rollo F, De Bonis S, Seck A, Hognon C, Ravanat JL, Monari A, Dehez F, Moe E, Timmins J. The three Endonuclease III variants of Deinococcus radiodurans possess distinct and complementary DNA repair activities. DNA Repair (Amst) 2019; 78:45-59. [DOI: 10.1016/j.dnarep.2019.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
|
24
|
Dow BJ, Malik SS, Drohat AC. Defining the Role of Nucleotide Flipping in Enzyme Specificity Using 19F NMR. J Am Chem Soc 2019; 141:4952-4962. [PMID: 30841696 DOI: 10.1021/jacs.9b00146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A broad range of proteins employ nucleotide flipping to recognize specific sites in nucleic acids, including DNA glycosylases, which remove modified nucleobases to initiate base excision repair. Deamination, a pervasive mode of damage, typically generates lesions that are recognized by glycosylases as being foreign to DNA. However, deamination of 5-methylcytosine (mC) generates thymine, a canonical DNA base, presenting a challenge for damage recognition. Nevertheless, repair of mC deamination is important because the resulting G·T mispairs cause C → T transition mutations, and mC is abundant in all three domains of life. Countering this threat are three types of glycosylases that excise thymine from G·T mispairs, including thymine DNA glycosylase (TDG). These enzymes must minimize excision of thymine that is not generated by mC deamination, in A·T pairs and in polymerase-generated G·T mispairs. TDG preferentially removes thymine from DNA contexts in which cytosine methylation is prevalent, including CG and one non-CG site. This remarkable context specificity could be attained through modulation of nucleotide flipping, a reversible step that precedes base excision. We tested this idea using fluorine NMR and DNA containing 2'-fluoro-substituted nucleotides. We find that dT nucleotide flipping depends on DNA context and is efficient only in contexts known to feature cytosine methylation. We also show that a conserved Ala residue limits thymine excision by hindering nucleotide flipping. A linear free energy correlation reveals that TDG attains context specificity for thymine excision through modulation of nucleotide flipping. Our results provide a framework for characterizing nucleotide flipping in nucleic acids using 19F NMR.
Collapse
Affiliation(s)
- Blaine J Dow
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Shuja S Malik
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| |
Collapse
|
25
|
Endutkin AV, Yudkina AV, Sidorenko VS, Zharkov DO. Transient protein-protein complexes in base excision repair. J Biomol Struct Dyn 2018; 37:4407-4418. [PMID: 30488779 DOI: 10.1080/07391102.2018.1553741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient protein-protein complexes are of great importance for organizing multiple enzymatic reactions into productive reaction pathways. Base excision repair (BER), a process of critical importance for maintaining genome stability against a plethora of DNA-damaging factors, involves several enzymes, including DNA glycosylases, AP endonucleases, DNA polymerases, DNA ligases and accessory proteins acting sequentially on the same damaged site in DNA. Rather than being assembled into one stable multisubunit complex, these enzymes pass the repair intermediates between them in a highly coordinated manner. In this review, we discuss the nature and the role of transient complexes arising during BER as deduced from structural and kinetic data. Almost all of the transient complexes are DNA-mediated, although some may also exist in solution and strengthen under specific conditions. The best-studied example, the interactions between DNA glycosylases and AP endonucleases, is discussed in more detail to provide a framework for distinguishing between stable and transient complexes based on the kinetic data. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia.,Novosibirsk State University , Novosibirsk , Russia.,Podalirius Ltd. , Novosibirsk , Russia
| | - Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia.,Novosibirsk State University , Novosibirsk , Russia
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University , Stony Brook , NY , USA
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia.,Novosibirsk State University , Novosibirsk , Russia
| |
Collapse
|
26
|
Steinacher R, Barekati Z, Botev P, Kuśnierczyk A, Slupphaug G, Schär P. SUMOylation coordinates BERosome assembly in active DNA demethylation during cell differentiation. EMBO J 2018; 38:embj.201899242. [PMID: 30523148 DOI: 10.15252/embj.201899242] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
During active DNA demethylation, 5-methylcytosine (5mC) is oxidized by TET proteins to 5-formyl-/5-carboxylcytosine (5fC/5caC) for replacement by unmethylated C by TDG-initiated DNA base excision repair (BER). Base excision generates fragile abasic sites (AP-sites) in DNA and has to be coordinated with subsequent repair steps to limit accumulation of genome destabilizing secondary DNA lesions. Here, we show that 5fC/5caC is generated at a high rate in genomes of differentiating mouse embryonic stem cells and that SUMOylation and the BER protein XRCC1 play critical roles in orchestrating TDG-initiated BER of these lesions. SUMOylation of XRCC1 facilitates physical interaction with TDG and promotes the assembly of a TDG-BER core complex. Within this TDG-BERosome, SUMO is transferred from XRCC1 and coupled to the SUMO acceptor lysine in TDG, promoting its dissociation while assuring the engagement of the BER machinery to complete demethylation. Although well-studied, the biological importance of TDG SUMOylation has remained obscure. Here, we demonstrate that SUMOylation of TDG suppresses DNA strand-break accumulation and toxicity to PARP inhibition in differentiating mESCs and is essential for neural lineage commitment.
Collapse
Affiliation(s)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Petar Botev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Kuśnierczyk
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Proteomics and Metabolomics Core Facility, PROMEC, Norwegian University of Science and Technology, Trondheim, Norway
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Kladova OA, Bazlekowa-Karaban M, Baconnais S, Piétrement O, Ishchenko AA, Matkarimov BT, Iakovlev DA, Vasenko A, Fedorova OS, Le Cam E, Tudek B, Kuznetsov NA, Saparbaev M. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation. DNA Repair (Amst) 2018; 64:10-25. [PMID: 29475157 DOI: 10.1016/j.dnarep.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
The base excision repair (BER) pathway consists of sequential action of DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease necessary to remove a damaged base and generate a single-strand break in duplex DNA. Human multifunctional AP endonuclease 1 (APE1, a.k.a. APEX1, HAP-1, or Ref-1) plays essential roles in BER by acting downstream of DNA glycosylases to incise a DNA duplex at AP sites and remove 3'-blocking sugar moieties at DNA strand breaks. Human 8-oxoguanine-DNA glycosylase (OGG1), methyl-CpG-binding domain 4 (MBD4, a.k.a. MED1), and alkyl-N-purine-DNA glycosylase (ANPG, a.k.a. Aag or MPG) excise a variety of damaged bases from DNA. Here we demonstrated that the redox-deficient truncated APE1 protein lacking the first N-terminal 61 amino acid residues (APE1-NΔ61) cannot stimulate DNA glycosylase activities of OGG1, MBD4, and ANPG on duplex DNA substrates. Electron microscopy imaging of APE1-DNA complexes revealed oligomerization of APE1 along the DNA duplex and APE1-mediated DNA bridging followed by DNA aggregation. APE1 polymerizes on both undamaged and damaged DNA in cooperative mode. Association of APE1 with undamaged DNA may enable scanning for damage; however, this event reduces effective concentration of the enzyme and subsequently decreases APE1-catalyzed cleavage rates on long DNA substrates. We propose that APE1 oligomers on DNA induce helix distortions thereby enhancing molecular recognition of DNA lesions by DNA glycosylases via a conformational proofreading/selection mechanism. Thus, APE1-mediated structural deformations of the DNA helix stabilize the enzyme-substrate complex and promote dissociation of human DNA glycosylases from the AP site with a subsequent increase in their turnover rate. SIGNIFICANCE STATEMENT The major human apurinic/apyrimidinic (AP) endonuclease, APE1, stimulates DNA glycosylases by increasing their turnover rate on duplex DNA substrates. At present, the mechanism of the stimulation remains unclear. We report that the redox domain of APE1 is necessary for the active mode of stimulation of DNA glycosylases. Electron microscopy revealed that full-length APE1 oligomerizes on DNA possibly via cooperative binding to DNA. Consequently, APE1 shows DNA length dependence with preferential repair of short DNA duplexes. We propose that APE1-catalyzed oligomerization along DNA induces helix distortions, which in turn enable conformational selection and stimulation of DNA glycosylases. This new biochemical property of APE1 sheds light on the mechanism of redox function and its role in DNA repair.
Collapse
Affiliation(s)
- Olga A Kladova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Milena Bazlekowa-Karaban
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Sonia Baconnais
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Olivier Piétrement
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Danila A Iakovlev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Andrey Vasenko
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Olga S Fedorova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Eric Le Cam
- CNRS UMR8126, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Nikita A Kuznetsov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia.
| | - Murat Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
28
|
Pannunzio NR, Lieber MR. AID and Reactive Oxygen Species Can Induce DNA Breaks within Human Chromosomal Translocation Fragile Zones. Mol Cell 2017; 68:901-912.e3. [PMID: 29220655 DOI: 10.1016/j.molcel.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/02/2017] [Accepted: 11/10/2017] [Indexed: 01/07/2023]
Abstract
DNA double-strand breaks (DSBs) occurring within fragile zones of less than 200 base pairs account for the formation of the most common human chromosomal translocations in lymphoid malignancies, yet the mechanism of how breaks occur remains unknown. Here, we have transferred human fragile zones into S. cerevisiae in the context of a genetic assay to understand the mechanism leading to DSBs at these sites. Our findings indicate that a combination of factors is required to sensitize these regions. Foremost, DNA strand separation by transcription or increased torsional stress can expose these DNA regions to damage from either the expression of human AID or increased oxidative stress. This damage causes DNA lesions that, if not repaired quickly, are prone to nuclease cleavage, resulting in DSBs. Our results provide mechanistic insight into why human neoplastic translocation fragile DNA sequences are more prone to enzymes or agents that cause longer-lived DNA lesions.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Rm. 5428, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Rm. 5428, Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Ho JJ, Cattoglio C, McSwiggen DT, Tjian R, Fong YW. Regulation of DNA demethylation by the XPC DNA repair complex in somatic and pluripotent stem cells. Genes Dev 2017; 31:830-844. [PMID: 28512237 PMCID: PMC5435894 DOI: 10.1101/gad.295741.116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022]
Abstract
In this study, Ho et al. research the mechanism by which TDG-dependent DNA demethylation occurs in a rapid and site-specific manner. Their findings demonstrate two distinct but complementary mechanisms by which XPC influences gene regulation by coordinating efficient TDG-mediated DNA demethylation along with active transcription during somatic cell reprogramming. Faithful resetting of the epigenetic memory of a somatic cell to a pluripotent state during cellular reprogramming requires DNA methylation to silence somatic gene expression and dynamic DNA demethylation to activate pluripotency gene transcription. The removal of methylated cytosines requires the base excision repair enzyme TDG, but the mechanism by which TDG-dependent DNA demethylation occurs in a rapid and site-specific manner remains unclear. Here we show that the XPC DNA repair complex is a potent accelerator of global and locus-specific DNA demethylation in somatic and pluripotent stem cells. XPC cooperates with TDG genome-wide to stimulate the turnover of essential intermediates by overcoming slow TDG–abasic product dissociation during active DNA demethylation. We further establish that DNA demethylation induced by XPC expression in somatic cells overcomes an early epigenetic barrier in cellular reprogramming and facilitates the generation of more robust induced pluripotent stem cells, characterized by enhanced pluripotency-associated gene expression and self-renewal capacity. Taken together with our previous studies establishing the XPC complex as a transcriptional coactivator, our findings underscore two distinct but complementary mechanisms by which XPC influences gene regulation by coordinating efficient TDG-mediated DNA demethylation along with active transcription during somatic cell reprogramming.
Collapse
Affiliation(s)
- Jaclyn J Ho
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California 94720, USA.,Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California 94720, USA.,Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - David T McSwiggen
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California 94720, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine Center of Excellence, University of California at Berkeley, Berkeley, California 94720, USA.,Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Yick W Fong
- Brigham Regenerative Medicine Center, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
30
|
Seifermann M, Epe B. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark? Free Radic Biol Med 2017; 107:258-265. [PMID: 27871818 DOI: 10.1016/j.freeradbiomed.2016.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 02/03/2023]
Abstract
The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mutagenic DNA modification generated by endogenous or exogenous reactive oxygen species (ROS), has distinct roles in the regulation of both transcription and signal transduction. Thus, the activation of transcription by the estrogen receptor, NF-κB, MYC and other transcription factors was shown to depend on the presence of 8-oxoG in the promoter regions and its recognition by the DNA repair glycosylase OGG1. The lysine-specific histone demethylase LSD1, which produces H2O2 as a by-product, was indentified as a local generator of 8-oxoG in some of these cases. In addition, a complex of OGG1 with the excised free substrate base was demonstrated to act as a guanine nucleotide exchange factor (GEF) for small GTPases such as Ras, Rac and Rho, thus stimulating signal transduction. The various findings and intriguing novel mechanisms suggested will be described and compared in this review.
Collapse
Affiliation(s)
- Marco Seifermann
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| |
Collapse
|
31
|
Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:235-263. [PMID: 28485537 PMCID: PMC5474181 DOI: 10.1002/em.22087] [Citation(s) in RCA: 1051] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 05/08/2023]
Abstract
Living organisms are continuously exposed to a myriad of DNA damaging agents that can impact health and modulate disease-states. However, robust DNA repair and damage-bypass mechanisms faithfully protect the DNA by either removing or tolerating the damage to ensure an overall survival. Deviations in this fine-tuning are known to destabilize cellular metabolic homeostasis, as exemplified in diverse cancers where disruption or deregulation of DNA repair pathways results in genome instability. Because routinely used biological, physical and chemical agents impact human health, testing their genotoxicity and regulating their use have become important. In this introductory review, we will delineate mechanisms of DNA damage and the counteracting repair/tolerance pathways to provide insights into the molecular basis of genotoxicity in cells that lays the foundation for subsequent articles in this issue. Environ. Mol. Mutagen. 58:235-263, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
32
|
Nakamura T, Murakami K, Tada H, Uehara Y, Nogami J, Maehara K, Ohkawa Y, Saitoh H, Nishitani H, Ono T, Nishi R, Yokoi M, Sakai W, Sugasawa K. Thymine DNA glycosylase modulates DNA damage response and gene expression by base excision repair-dependent and independent mechanisms. Genes Cells 2017; 22:392-405. [PMID: 28318075 DOI: 10.1111/gtc.12481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/01/2017] [Indexed: 02/04/2023]
Abstract
Thymine DNA glycosylase (TDG) is a base excision repair (BER) enzyme, which is implicated in correction of deamination-induced DNA mismatches, the DNA demethylation process and regulation of gene expression. Because of these pivotal roles associated, it is crucial to elucidate how the TDG functions are appropriately regulated in vivo. Here, we present evidence that the TDG protein undergoes degradation upon various types of DNA damage, including ultraviolet light (UV). The UV-induced degradation of TDG was dependent on proficiency in nucleotide excision repair and on CRL4CDT2 -mediated ubiquitination that requires a physical interaction between TDG and DNA polymerase clamp PCNA. Using the Tdg-deficient mouse embryonic fibroblasts, we found that ectopic expression of TDG compromised cellular survival after UV irradiation and repair of UV-induced DNA lesions. These negative effects on cellular UV responses were alleviated by introducing mutations in TDG that impaired its BER function. The expression of TDG induced a large-scale alteration in the gene expression profile independently of its DNA glycosylase activity, whereas a subset of genes was affected by the catalytic activity of TDG. Our results indicate the presence of BER-dependent and BER-independent functions of TDG, which are involved in regulation of cellular DNA damage responses and gene expression patterns.
Collapse
Affiliation(s)
- Tomohumi Nakamura
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Kouichi Murakami
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Haruto Tada
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yoshihiko Uehara
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Jumpei Nogami
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Kazumitsu Maehara
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Hisato Saitoh
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Hideo Nishitani
- Graduate School of Life Science, University of Hyogo, Kamigori, 678-1297, Japan
| | - Tetsuya Ono
- Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ryotaro Nishi
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Masayuki Yokoi
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Wataru Sakai
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
33
|
Yang L, Jian Y, Setlow P, Li L. Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme-The spore photoproduct lyase. DNA Repair (Amst) 2017; 53:31-42. [PMID: 28320593 DOI: 10.1016/j.dnarep.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 11/15/2016] [Indexed: 12/15/2022]
Abstract
DNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01-0.2min-1. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3-0.4min-1, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Yajun Jian
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, United States
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
34
|
Coey CT, Malik SS, Pidugu LS, Varney KM, Pozharski E, Drohat AC. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues. Nucleic Acids Res 2016; 44:10248-10258. [PMID: 27580719 PMCID: PMC5137436 DOI: 10.1093/nar/gkw768] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
Thymine DNA Glycosylase (TDG) is a base excision repair enzyme functioning in DNA repair and epigenetic regulation. TDG removes thymine from mutagenic G·T mispairs arising from deamination of 5-methylcytosine (mC), and it processes other deamination-derived lesions including uracil (U). Essential for DNA demethylation, TDG excises 5-formylcytosine and 5-carboxylcytosine, derivatives of mC generated by Tet (ten-eleven translocation) enzymes. Here, we report structural and functional studies of TDG82-308, a new construct containing 29 more N-terminal residues than TDG111-308, the construct used for previous structures of DNA-bound TDG. Crystal structures and NMR experiments demonstrate that most of these N-terminal residues are disordered, for substrate- or product-bound TDG82-308 Nevertheless, G·T substrate affinity and glycosylase activity of TDG82-308 greatly exceeds that of TDG111-308 and is equivalent to full-length TDG. We report the first high-resolution structures of TDG in an enzyme-substrate complex, for G·U bound to TDG82-308 (1.54 Å) and TDG111-308 (1.71 Å), revealing new enzyme-substrate contacts, direct and water-mediated. We also report a structure of the TDG82-308 product complex (1.70 Å). TDG82-308 forms unique enzyme-DNA interactions, supporting its value for structure-function studies. The results advance understanding of how TDG recognizes and removes modified bases from DNA, particularly those resulting from deamination.
Collapse
Affiliation(s)
- Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shuja S Malik
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lakshmi S Pidugu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA.,Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA.,Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
35
|
Malik SS, Coey CT, Varney KM, Pozharski E, Drohat AC. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Nucleic Acids Res 2015; 43:9541-52. [PMID: 26358812 PMCID: PMC4627079 DOI: 10.1093/nar/gkv890] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023] Open
Abstract
Thymine DNA Glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation. Initiating base excision repair, TDG removes thymine from mutagenic G·T mispairs caused by 5-methylcytosine (mC) deamination and other lesions including uracil (U) and 5-hydroxymethyluracil (hmU). In DNA demethylation, TDG excises 5-formylcytosine (fC) and 5-carboxylcytosine (caC), which are generated from mC by Tet (ten–eleven translocation) enzymes. Using improved crystallization conditions, we solved high-resolution (up to 1.45 Å) structures of TDG enzyme–product complexes generated from substrates including G·U, G·T, G·hmU, G·fC and G·caC. The structures reveal many new features, including key water-mediated enzyme–substrate interactions. Together with nuclear magnetic resonance experiments, the structures demonstrate that TDG releases the excised base from its tight product complex with abasic DNA, contrary to previous reports. Moreover, DNA-free TDG exhibits no significant binding to free nucleobases (U, T, hmU), indicating a Kd >> 10 mM. The structures reveal a solvent-filled channel to the active site, which might facilitate dissociation of the excised base and enable caC excision, which involves solvent-mediated acid catalysis. Dissociation of the excised base allows TDG to bind the beta rather than the alpha anomer of the abasic sugar, which might stabilize the enzyme–product complex.
Collapse
Affiliation(s)
- Shuja S Malik
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA Center for Biomolecular Therapeutics, Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
36
|
Abstract
Scaffold proteins play a central role in DNA repair by recruiting and organizing sets of enzymes required to perform multi-step repair processes. X-ray cross complementing group 1 protein (XRCC1) forms enzyme complexes optimized for single-strand break repair, but participates in other repair pathways as well. Available structural data for XRCC1 interactions is summarized and evaluated in terms of its proposed roles in DNA repair. Mutational approaches related to the abrogation of specific XRCC1 interactions are also discussed. Although substantial progress has been made in elucidating the structural basis for XRCC1 function, the molecular mechanisms of XRCC1 recruitment related to several proposed roles of the XRCC1 DNA repair complex remain undetermined.
Collapse
Affiliation(s)
- Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
37
|
Shin J, Ming GL, Song H. DNA modifications in the mammalian brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0512. [PMID: 25135973 DOI: 10.1098/rstb.2013.0512] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function.
Collapse
Affiliation(s)
- Jaehoon Shin
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Bellacosa A, Drohat AC. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. DNA Repair (Amst) 2015; 32:33-42. [PMID: 26021671 DOI: 10.1016/j.dnarep.2015.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G · T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.
Collapse
Affiliation(s)
- Alfonso Bellacosa
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, United States.
| | - Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, United States.
| |
Collapse
|
39
|
Admiraal SJ, O'Brien PJ. Base excision repair enzymes protect abasic sites in duplex DNA from interstrand cross-links. Biochemistry 2015; 54:1849-57. [PMID: 25679877 DOI: 10.1021/bi501491z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrolysis of the N-glycosyl bond between a nucleobase and deoxyribose leaves an abasic site within duplex DNA. The abasic site can react with exocyclic amines of nucleobases on the complementary strand to form interstrand DNA-DNA cross-links (ICLs). We find that several enzymes from the base excision repair (BER) pathway protect an abasic site on one strand of a DNA duplex from cross-linking with an amine on the opposing strand. Human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) accomplish this by binding tightly to the abasic site and sequestering it. AAG protects an abasic site opposite T, the product of its canonical glycosylase reaction, by a factor of ∼10-fold, as estimated from its inhibition of the reaction of an exogenous amine with the damaged DNA. Human apurinic/apyrimidinic site endonuclease 1 and E. coli endonuclease III both decrease the amount of ICL at equilibrium by generating a single-strand DNA nick at the abasic position as it is liberated from the cross-link. The reversibility of the reaction between amines and abasic sites allows BER enzymes to counter the potentially disruptive effects of this type of cross-link on DNA transactions.
Collapse
Affiliation(s)
- Suzanne J Admiraal
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-5606, United States
| | | |
Collapse
|
40
|
Chen M, Lee JK. Computational Studies of the Gas-Phase Thermochemical Properties of Modified Nucleobases. J Org Chem 2014; 79:11295-300. [DOI: 10.1021/jo502058w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mu Chen
- Department of Chemistry and
Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Jeehiun K. Lee
- Department of Chemistry and
Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
41
|
Ma JY, Zhao K, OuYang YC, Wang ZB, Luo YB, Hou Y, Schatten H, Shen W, Sun QY. Exogenous thymine DNA glycosylase regulates epigenetic modifications and meiotic cell cycle progression of mouse oocytes. ACTA ACUST UNITED AC 2014; 21:186-94. [DOI: 10.1093/molehr/gau094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Lühnsdorf B, Epe B, Khobta A. Excision of uracil from transcribed DNA negatively affects gene expression. J Biol Chem 2014; 289:22008-18. [PMID: 24951587 DOI: 10.1074/jbc.m113.521807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Uracil is an unavoidable aberrant base in DNA, the repair of which takes place by a highly efficient base excision repair mechanism. The removal of uracil from the genome requires a succession of intermediate products, including an abasic site and a single strand break, before the original DNA structure can be reconstituted. These repair intermediates are harmful for DNA replication and also interfere with transcription under cell-free conditions. However, their relevance for cellular transcription has not been proved. Here we investigated the influence of uracil incorporated into a reporter vector on gene expression in human cells. The expression constructs contained a single uracil opposite an adenine (to mimic dUTP misincorporation during DNA synthesis) or a guanine (imitating a product of spontaneous cytosine deamination). We found no evidence for a direct transcription arrest by uracil in either of the two settings because the vectors containing the base modification exhibited unaltered levels of enhanced GFP reporter gene expression at early times after delivery to cells. However, the gene expression showed a progressive decline during subsequent hours. In the case of U:A pairs, this effect was retarded significantly by knockdown of UNG1/2 but not by knockdown of SMUG1 or thymine-DNA glycosylase uracil-DNA glycosylases, proving that it is base excision by UNG1/2 that perturbs transcription of the affected gene. By contrast, the decline of expression of the U:G constructs was not influenced by either UNG1/2, SMUG1, or thymine-DNA glycosylase knockdown, strongly suggesting that there are substantial mechanistic or kinetic differences between the processing of U:A and U:G lesions in cells.
Collapse
Affiliation(s)
- Bork Lühnsdorf
- From the Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Bernd Epe
- From the Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Andriy Khobta
- From the Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
43
|
Talhaoui I, Couve S, Gros L, Ishchenko AA, Matkarimov B, Saparbaev MK. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands. Nucleic Acids Res 2014; 42:6300-13. [PMID: 24692658 PMCID: PMC4041421 DOI: 10.1093/nar/gku246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/09/2014] [Accepted: 03/13/2014] [Indexed: 12/13/2022] Open
Abstract
The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duplex. TDG targets the non-damaged DNA strand and efficiently excises T opposite of hypoxanthine (Hx), 1,N(6)-ethenoadenine, 7,8-dihydro-8-oxoadenine and abasic site in TpG/CpX context, where X is a modified residue. In vitro reconstitution of BER with duplex DNA containing Hx•T pair and TDG results in incorporation of cytosine across Hx. Furthermore, analysis of the mutation spectra inferred from single nucleotide polymorphisms in human population revealed a highly biased mutation pattern within CpG islands (CGIs), with enhanced mutation rate at CpA and TpG sites. These findings demonstrate that under experimental conditions used TDG catalyzes sequence context-dependent aberrant removal of thymine, which results in TpG, CpA→CpG mutations, thus providing a plausible mechanism for the putative evolutionary origin of the CGIs in mammalian genomes.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Sophie Couve
- Laboratoire de Génétique Oncologique EPHE, INSERM U753, Gustave Roussy, F-94805 Villejuif, France
| | - Laurent Gros
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
- AB Science SA, 75008 Paris, France
| | - Alexander A. Ishchenko
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Bakhyt Matkarimov
- Nazarbayev University Research and Innovation System, Astana 010000, Kazakhstan
| | - Murat K. Saparbaev
- Groupe Réparation de l’ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France
| |
Collapse
|
44
|
Coey CT, Fitzgerald ME, Maiti A, Reiter KH, Guzzo CM, Matunis MJ, Drohat AC. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex. J Biol Chem 2014; 289:15810-9. [PMID: 24753249 DOI: 10.1074/jbc.m114.572081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymine DNA glycosylase (TDG) initiates the repair of G·T mismatches that arise by deamination of 5-methylcytosine (mC), and it excises 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC. TDG functions in active DNA demethylation and is essential for embryonic development. TDG forms a tight enzyme-product complex with abasic DNA, which severely impedes enzymatic turnover. Modification of TDG by small ubiquitin-like modifier (SUMO) proteins weakens its binding to abasic DNA. It was proposed that sumoylation of product-bound TDG regulates product release, with SUMO conjugation and deconjugation needed for each catalytic cycle, but this model remains unsubstantiated. We examined the efficiency and specificity of TDG sumoylation using in vitro assays with purified E1 and E2 enzymes, finding that TDG is modified efficiently by SUMO-1 and SUMO-2. Remarkably, we observed similar modification rates for free TDG and TDG bound to abasic or undamaged DNA. To examine the conjugation step directly, we determined modification rates (kobs) using preformed E2∼SUMO-1 thioester. The hyperbolic dependence of kobs on TDG concentration gives kmax = 1.6 min(-1) and K1/2 = 0.55 μM, suggesting that E2∼SUMO-1 has higher affinity for TDG than for the SUMO targets RanGAP1 and p53 (peptide). Whereas sumoylation substantially weakens TDG binding to DNA, TDG∼SUMO-1 still binds relatively tightly to AP-DNA (Kd ∼50 nM). Although E2∼SUMO-1 exhibits no specificity for product-bound TDG, the relatively high conjugation efficiency raises the possibility that E2-mediated sumoylation could stimulate product release in vivo. This and other implications for the biological role and mechanism of TDG sumoylation are discussed.
Collapse
Affiliation(s)
- Christopher T Coey
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Megan E Fitzgerald
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Atanu Maiti
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| | - Katherine H Reiter
- the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Catherine M Guzzo
- the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Michael J Matunis
- the Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Alexander C Drohat
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
45
|
Sassa A, Çağlayan M, Dyrkheeva NS, Beard WA, Wilson SH. Base excision repair of tandem modifications in a methylated CpG dinucleotide. J Biol Chem 2014; 289:13996-4008. [PMID: 24695738 DOI: 10.1074/jbc.m114.557769] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation and demethylation in tracks of CpG dinucleotides is an epigenetic mechanism for control of gene expression. The initial step in the demethylation process can be deamination of 5-methylcytosine producing the TpG alteration and T:G mispair, and this step is followed by thymine DNA glycosylase (TDG) initiated base excision repair (BER). A further consideration is that guanine in the CpG dinucleotide may become oxidized to 7,8-dihydro-8-oxoguanine (8-oxoG), and this could affect the demethylation process involving TDG-initiated BER. However, little is known about the enzymology of BER of altered in-tandem CpG dinucleotides; e.g. Tp8-oxoG. Here, we investigated interactions between this altered dinucleotide and purified BER enzymes, the DNA glycosylases TDG and 8-oxoG DNA glycosylase 1 (OGG1), apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase β, and DNA ligases. The overall TDG-initiated BER of the Tp8-oxoG dinucleotide is significantly reduced. Specifically, TDG and DNA ligase activities are reduced by a 3'-flanking 8-oxoG. In contrast, the OGG1-initiated BER pathway is blocked due to the 5'-flanking T:G mispair; this reduces OGG1, AP endonuclease 1, and DNA polymerase β activities. Furthermore, in TDG-initiated BER, TDG remains bound to its product AP site blocking OGG1 access to the adjacent 8-oxoG. These results reveal BER enzyme specificities enabling suppression of OGG1-initiated BER and coordination of TDG-initiated BER at this tandem alteration in the CpG dinucleotide.
Collapse
Affiliation(s)
- Akira Sassa
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Melike Çağlayan
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Nadezhda S Dyrkheeva
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - William A Beard
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Samuel H Wilson
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| |
Collapse
|
46
|
Sassa A, Beard WA, Shock DD, Wilson SH. Steady-state, pre-steady-state, and single-turnover kinetic measurement for DNA glycosylase activity. J Vis Exp 2013:e50695. [PMID: 23995844 DOI: 10.3791/50695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Human 8-oxoguanine DNA glycosylase (OGG1) excises the mutagenic oxidative DNA lesion 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Kinetic characterization of OGG1 is undertaken to measure the rates of 8-oxoG excision and product release. When the OGG1 concentration is lower than substrate DNA, time courses of product formation are biphasic; a rapid exponential phase (i.e. burst) of product formation is followed by a linear steady-state phase. The initial burst of product formation corresponds to the concentration of enzyme properly engaged on the substrate, and the burst amplitude depends on the concentration of enzyme. The first-order rate constant of the burst corresponds to the intrinsic rate of 8-oxoG excision and the slower steady-state rate measures the rate of product release (product DNA dissociation rate constant, k(off)). Here, we describe steady-state, pre-steady-state, and single-turnover approaches to isolate and measure specific steps during OGG1 catalytic cycling. A fluorescent labeled lesion-containing oligonucleotide and purified OGG1 are used to facilitate precise kinetic measurements. Since low enzyme concentrations are used to make steady-state measurements, manual mixing of reagents and quenching of the reaction can be performed to ascertain the steady-state rate (k(off)). Additionally, extrapolation of the steady-state rate to a point on the ordinate at zero time indicates that a burst of product formation occurred during the first turnover (i.e. y-intercept is positive). The first-order rate constant of the exponential burst phase can be measured using a rapid mixing and quenching technique that examines the amount of product formed at short time intervals (<1 sec) before the steady-state phase and corresponds to the rate of 8-oxoG excision (i.e. chemistry). The chemical step can also be measured using a single-turnover approach where catalytic cycling is prevented by saturating substrate DNA with enzyme (E>S). These approaches can measure elementary rate constants that influence the efficiency of removal of a DNA lesion.
Collapse
Affiliation(s)
- Akira Sassa
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
47
|
Admiraal SJ, O'Brien PJ. DNA-N-glycosylases process novel O-glycosidic sites in DNA. Biochemistry 2013; 52:4066-74. [PMID: 23688261 DOI: 10.1021/bi400218j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
After the hydrolysis of the N-glycosyl bond between a damaged base and C1' of a deoxyribosyl moiety of DNA, human alkyladenine DNA glycosylase (AAG) and Escherichia coli 3-methyladenine DNA glycosylase II (AlkA) bind tightly to their abasic DNA products, potentially protecting these reactive species. Here we show that both AAG and AlkA catalyze reactions between bound abasic DNA and small, primary alcohols to form novel DNA-O-glycosides. The synthesis reactions are reversible, as the DNA-O-glycosides are converted back into abasic DNA upon being incubated with AAG or AlkA in the absence of alcohol. AAG and AlkA are therefore able to hydrolyze O-glycosidic bonds in addition to N-glycosyl bonds. The newly discovered DNA-O-glycosidase activities of both enzymes compare favorably with their known DNA-N-glycosylase activities: AAG removes both methanol and 1,N(6)-ethenoadenine (εA) from DNA with single-turnover rate constants that are 2.9 × 10(5)-fold greater than the corresponding uncatalyzed rates, whereas the rate enhancement of 3.7 × 10(7) for removal of methanol from DNA by AlkA is 300-fold greater than its rate enhancement for removal of εA from DNA. Although the biological significance of the DNA-O-glycosidase reactions is not known, the evolution of new DNA repair pathways may be aided by enzymes that practice catalytic promiscuity, such as these two unrelated DNA glycosylases.
Collapse
Affiliation(s)
- Suzanne J Admiraal
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | | |
Collapse
|
48
|
Talhaoui I, Couvé S, Ishchenko AA, Kunz C, Schär P, Saparbaev M. 7,8-Dihydro-8-oxoadenine, a highly mutagenic adduct, is repaired by Escherichia coli and human mismatch-specific uracil/thymine-DNA glycosylases. Nucleic Acids Res 2012. [PMID: 23209024 PMCID: PMC3553953 DOI: 10.1093/nar/gks1149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hydroxyl radicals predominantly react with the C8 of purines forming 7,8-dihydro-8-oxoguanine (8oxoG) and 7,8-dihydro-8-oxoadenine (8oxoA) adducts, which are highly mutagenic in mammalian cells. The majority of oxidized DNA bases are removed by DNA glycosylases in the base excision repair pathway. Here, we report for the first time that human thymine-DNA glycosylase (hTDG) and Escherichia coli mismatch-specific uracil-DNA glycosylase (MUG) can remove 8oxoA from 8oxoA•T, 8oxoA•G and 8oxoA•C pairs. Comparison of the kinetic parameters of the reaction indicates that full-length hTDG excises 8oxoA, 3,N4-ethenocytosine (εC) and T with similar efficiency (kmax = 0.35, 0.36 and 0.16 min−1, respectively) and is more proficient as compared with its bacterial homologue MUG. The N-terminal domain of the hTDG protein is essential for 8oxoA–DNA glycosylase activity, but not for εC repair. Interestingly, the TDG status had little or no effect on the proliferation rate of mouse embryonic fibroblasts after exposure to γ-irradiation. Nevertheless, using whole cell-free extracts from the DNA glycosylase-deficient murine embryonic fibroblasts and E. coli, we demonstrate that the excision of 8oxoA from 8oxoA•T and 8oxoA•G has an absolute requirement for TDG and MUG, respectively. The data establish that MUG and TDG can counteract the genotoxic effects of 8oxoA residues in vivo.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Groupe Réparation de l'ADN, Université Paris Sud, Laboratoire Stabilité Génétique et Oncogenèse CNRS, UMR 8200, Institut de Cancérologie Gustave Roussy, F-94805 Villejuif Cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
da Costa NM, Hautefeuille A, Cros MP, Melendez ME, Waters T, Swann P, Hainaut P, Pinto LFR. Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53. Cell Cycle 2012; 11:4570-8. [PMID: 23165212 DOI: 10.4161/cc.22843] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thymine DNA glycosylase (TDG) belongs to the superfamily of uracil DNA glycosylases (UDG) and is the first enzyme in the base-excision repair pathway (BER) that removes thymine from G:T mismatches at CpG sites. This glycosylase activity has also been found to be critical for active demethylation of genes involved in embryonic development. Here we show that wild-type p53 transcriptionally regulates TDG expression. Chromatin immunoprecipitation (ChIP) and luciferase assays indicate that wild-type p53 binds to a domain of TDG promoter containing two p53 consensus response elements (p53RE) and activates its transcription. Next, we have used a panel of cell lines with different p53 status to demonstrate that TDG mRNA and protein expression levels are induced in a p53-dependent manner under different conditions. This panel includes isogenic breast and colorectal cancer cell lines with wild-type or inactive p53, esophageal squamous cell carcinoma cell lines lacking p53 or expressing a temperature-sensitive p53 mutant and normal human bronchial epithelial cells. Induction of TDG mRNA expression is accompanied by accumulation of TDG protein in both nucleus and cytoplasm, with nuclear re-localization occurring upon DNA damage in p53-competent, but not -incompetent, cells. These observations suggest a role for p53 activity in TDG nuclear translocation. Overall, our results show that TDG expression is directly regulated by p53, suggesting that loss of p53 function may affect processes mediated by TDG, thus negatively impacting on genetic and epigenetic stability.
Collapse
|
50
|
Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Recent advances in the structural mechanisms of DNA glycosylases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:247-71. [PMID: 23076011 DOI: 10.1016/j.bbapap.2012.10.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.
Collapse
Affiliation(s)
- Sonja C Brooks
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|