1
|
Feng Y, Ni Q, Wu N, Xie T, Yun F, Zhang X, Gao L, Gai Y, Li E, Yi X, Xie J, Zhang Q, Yang Z, Sai B, Kuang Y, Zhu Y. Molecular mechanisms of MAZ targeting up-regulation of NDUFS3 expression to promote malignant progression in melanoma. Commun Biol 2024; 7:1491. [PMID: 39532991 PMCID: PMC11557950 DOI: 10.1038/s42003-024-07209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Myc-associated Zinc-finger Protein (MAZ) has been implicated in the malignant progression of various tumors. However, its expression and functional relationship of MAZ in melanoma have not been previously investigated. This study confirms elevated expression of MAZ in melanoma, correlating with poor patient prognosis. Furthermore, our findings demonstrate that MAZ enhances melanoma progression by promoting proliferation, migration and invasion. It is worth noting that we found that MAZ can target and regulate the transcription of NADH dehydrogenase [ubiquinone] iron-sulfur protein 3 (NDUFS3), a core subunit of mitochondrial complex I, to enhance mitochondrial metabolism and thus promote malignant progression of melanoma. Predictive modeling indicates that the co-expression of MAZ and NDUFS3 could serve as a potential prognostic marker for melanoma patients.
Collapse
Affiliation(s)
- Yu Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Qinxuan Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Na Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Taiyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Fang Yun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Xuedan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Lingnan Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Yanlong Gai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Enjiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Xiaojia Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Junlin Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Cong W, Sun J, Hao Z, Gong M, Liu J. PLOD1 promote proliferation and migration with glycolysis via the Wnt/β-catenin pathway in THCA. Genomics 2024; 116:110943. [PMID: 39424162 DOI: 10.1016/j.ygeno.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
THCA (Thyroid carcinoma) is the most common endocrine malignancy in the world. The PLOD1 is highly expressed in THCA, but the mechanism is still unclear. It is found that the cell proliferation and migration were inhibited in si-PLOD1 group, and promoted with PLOD1 overexpression. MAZ is the transcription factor of PLOD1. The cell activities induced MAZ were reversed by si-PLOD1. The Glucose uptake, lactate production and ATP/ADP ratio were decreased with si-PLOD1. The glycolysis related proteins GLUT1, HK2, PFKP, PKM2, LDHA and Wnt/β-catenin pathway proteins WNT5A, cyclin D1, β-catenin were inhibited, GSK-3β is increased in si-PLOD1 group. BML-284 could reversed the si-PLOD1 effects on cell activities and Wnt/β-catenin pathway. The tumor xenografts were inhibited in si-PLOD1 group. As a potential therapeutic target, PLOD1 is regulated by MAZ in THCA. PLOD1 depletion could inhibit THCA cell proliferation and metastasis by glycolysis, which is inhibited by Wnt/β-catenin pathway in THCA.
Collapse
Affiliation(s)
- Wei Cong
- Department of Thyroid Surgery, The Second Hospital of Shandong University, Shandong University, Shandong Province, PR China.
| | - Jingfu Sun
- Department of Thyroid Surgery, The Second Hospital of Shandong University, Shandong University, Shandong Province, PR China
| | - Zhanyu Hao
- Department of Thyroid Surgery, The Second Hospital of Shandong University, Shandong University, Shandong Province, PR China
| | - Maosong Gong
- Department of Thyroid Surgery, The Second Hospital of Shandong University, Shandong University, Shandong Province, PR China
| | - Jianing Liu
- Department of Thyroid Surgery, The Second Hospital of Shandong University, Shandong University, Shandong Province, PR China.
| |
Collapse
|
3
|
Zhang ZH, Yuan CY, Xu M, Wang MF, Feng T, Wang Y, Zheng SF, Zhang HL, Shi GH, Cao DL, Wang ZL, Ye DW. Calycosin inhibits the proliferation and metastasis of renal cell carcinoma through the MAZ/HAS2 signaling pathway. Phytother Res 2024; 38:4774-4791. [PMID: 39120474 DOI: 10.1002/ptr.8295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/03/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
Calycosin (Caly), a flavonoid compound, demonstrates a variety of beneficial properties. However, the specific mechanisms behind Caly's anticancer effects remain largely unexplored. Network pharmacology was used to explore the potential targets of Caly in renal cancer. Additionally, RNA-seq sequencing was used to detect changes in genes in renal cancer cells after Caly treatment. Validation was carried out through quantitative reverse transcription-PCR and Western blot analysis. The luciferase reporter assay was applied to pinpoint the interaction site between MAZ and HAS2. Furthermore, the immunoprecipitation assay was utilized to examine the ubiquitination and degradation of MAZ. In vivo experiments using cell line-derived xenograft mouse models were performed to assess Calycosin's impact on cancer growth. Network pharmacology research suggests Caly plays a role in promoting apoptosis and inhibiting cell adhesion in renal cancer. In vitro, Caly has been observed to suppress proliferation, colony formation, and metastasis of renal cancer cells while also triggering apoptosis. Additionally, it appears to diminish hyaluronic acid synthesis by downregulating HAS2 expression. MAZ is identified as a transcriptional regulator of HAS2 expression. Calycosin further facilitates the degradation of MAZ via the ubiquitin-proteasome pathway. Notably, Caly demonstrates efficacy in reducing the growth of renal cell carcinoma xenograft tumors in vivo. Our findings indicate that Caly suppresses the proliferation, metastasis, and progression of renal cell carcinoma through its action on the MAZ/HAS2 signaling pathway. Thus, Caly represents a promising therapeutic candidate for the treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Zi-Hao Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Urology, School of Life Medicine, Fudan University Shanghai Cancer Center, Qingdao Institute, Fudan University, Qingdao, China
| | - Cheng-Yue Yuan
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xu
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Fei Wang
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Feng
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Urology, School of Life Medicine, Fudan University Shanghai Cancer Center, Qingdao Institute, Fudan University, Qingdao, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sheng-Feng Zheng
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Urology, School of Life Medicine, Fudan University Shanghai Cancer Center, Qingdao Institute, Fudan University, Qingdao, China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-Liang Wang
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Urology, School of Life Medicine, Fudan University Shanghai Cancer Center, Qingdao Institute, Fudan University, Qingdao, China
| |
Collapse
|
4
|
Song Z, Xue Z, Wang Y, Imran M, Assiri M, Fahad S. Insights into the roles of non-coding RNAs and angiogenesis in glioblastoma: An overview of current research and future perspectives. Biochim Biophys Acta Gen Subj 2024; 1868:130567. [PMID: 38242182 DOI: 10.1016/j.bbagen.2024.130567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive type of primary brain cancer with a poor prognosis, and despite intensive research, survival rates have not significantly improved. Non-coding RNAs (ncRNAs) are emerging as critical regulators of GBM pathogenesis, including angiogenesis, which is essential for tumor growth and invasion. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) have been identified as regulators of angiogenesis in GBM. miRNAs such as miR-21, miR-10b, and miR-26a promote angiogenesis by targeting anti-angiogenic factors, while lncRNAs such as H19 and MALAT1 inhibit angiogenesis by regulating pro-angiogenic factors. CircRNAs, such as circSMARCA5 and circBACH2, also regulate angiogenesis through various mechanisms. Similarly, signaling pathways such as the vascular endothelial growth factor (VEGF) pathway play critical roles in angiogenesis and have been targeted for GBM therapy. However, resistance to anti-angiogenic therapies is a significant obstacle in clinical practice. Developing novel therapeutic strategies targeting ncRNAs and angiogenesis is a promising approach for GBM. Potential targets include miRNAs, lncRNAs, circRNAs, and downstream signaling pathways that regulate angiogenesis. This review highlights the critical roles of ncRNAs and angiogenesis in GBM pathogenesis and the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- Zhengfei Song
- Department of Neurosurgery, SIR Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoliang Xue
- Department of Neurosurgery, SIR Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirong Wang
- Department of Neurosurgery, SIR Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
5
|
Bedard MC, Chihanga T, Carlile A, Jackson R, Brusadelli MG, Lee D, VonHandorf A, Rochman M, Dexheimer PJ, Chalmers J, Nuovo G, Lehn M, Williams DEJ, Kulkarni A, Carey M, Jackson A, Billingsley C, Tang A, Zender C, Patil Y, Wise-Draper TM, Herzog TJ, Ferris RL, Kendler A, Aronow BJ, Kofron M, Rothenberg ME, Weirauch MT, Van Doorslaer K, Wikenheiser-Brokamp KA, Lambert PF, Adam M, Steven Potter S, Wells SI. Single cell transcriptomic analysis of HPV16-infected epithelium identifies a keratinocyte subpopulation implicated in cancer. Nat Commun 2023; 14:1975. [PMID: 37031202 PMCID: PMC10082832 DOI: 10.1038/s41467-023-37377-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/15/2023] [Indexed: 04/10/2023] Open
Abstract
Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.
Collapse
Affiliation(s)
- Mary C Bedard
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Adrean Carlile
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert Jackson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Denis Lee
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Phillip J Dexheimer
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeffrey Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| | - Gerard Nuovo
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Maria Lehn
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - David E J Williams
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- Medical Scientist Training M.D.-Ph.D. Program (MSTP), College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA
| | - Aditi Kulkarni
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Molly Carey
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Amanda Jackson
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Caroline Billingsley
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Alice Tang
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Chad Zender
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yash Patil
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Trisha M Wise-Draper
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Thomas J Herzog
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Ady Kendler
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Divisions of Human Genetics, Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- The BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85721, USA
- UA Cancer Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Pathology & Laboratory Medicine and The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
6
|
El Hage K, Ribaudo G, Lagardère L, Ongaro A, Kahn PH, Demange L, Piquemal JP, Zagotto G, Gresh N. Targeting the Major Groove of the Palindromic d(GGCGCC) 2 Sequence by Oligopeptide Derivatives of Anthraquinone Intercalators. J Chem Inf Model 2022; 62:6649-6666. [PMID: 35895094 DOI: 10.1021/acs.jcim.2c00337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
GC-rich sequences are recurring motifs in oncogenes and retroviruses and could be targeted by noncovalent major-groove therapeutic ligands. We considered the palindromic sequence d(G1G2C3G4C5C6)2, and designed several oligopeptide derivatives of the anticancer intercalator mitoxantrone. The stability of their complexes with an 18-mer oligonucleotide encompassing this sequence in its center was validated using polarizable molecular dynamics. We report the most salient structural features of two novel compounds, having a dialkylammonium group as a side chain on both arms. The anthraquinone ring is intercalated in the central d(CpG)2 sequence with its long axis perpendicular to that of the two base pairs. On each strand, this enables each ammonium group to bind in-register to O6/N7 of the two facing G bases upstream. We subsequently designed tris-intercalating derivatives, each dialkylammonium substituted with a connector to an N9-aminoacridine intercalator extending our target range from a six- to a ten-base-pair palindromic sequence, d(C1G2G3G4C5G6C7C8C9G10)2. The structural features of the complex of the most promising derivative are reported. The present design strategy paves the way for designing intercalator-oligopeptide derivatives with even higher selectivity, targeting an increased number of DNA bases, going beyond ten.
Collapse
Affiliation(s)
- Krystel El Hage
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91000 Evry, France
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Universita degli Studi di Brescia, 25123 Brescia, Italy
| | - Louis Lagardère
- LCT, UMR7616 CNRS, Sorbonne Université Paris, 75005 Paris, France
| | - Alberto Ongaro
- Dipartimento di Medicina Molecolare e Traslazionale, Universita degli Studi di Brescia, 25123 Brescia, Italy
| | | | - Luc Demange
- Université Paris Cité, CiTCoM, UMR 8038 CNRS, 75006 Paris, France
| | - Jean-Philip Piquemal
- LCT, UMR7616 CNRS, Sorbonne Université Paris, 75005 Paris, France.,The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas 78705, United States
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo, 35131 Padova, Italy
| | - Nohad Gresh
- LCT, UMR7616 CNRS, Sorbonne Université Paris, 75005 Paris, France
| |
Collapse
|
7
|
Zheng C, Wu H, Jin S, Li D, Tan S, Zhu X. Roles of Myc-associated zinc finger protein in malignant tumors. Asia Pac J Clin Oncol 2022; 18:506-514. [PMID: 35098656 DOI: 10.1111/ajco.13748] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
As an important transcription factor that is widely expressed in most tissues of the human body, Myc-associated zinc finger protein (MAZ) has been reported highly expressed in many malignant tumors and thought to be a promising therapeutic target for cancer treatment. In this review, we aim to offer a comprehensive understanding of MAZ regulation in malignant tumors. The carboxy terminal of MAZ protein contains six C2H2 zinc fingers, and its regulation of transcription is based on the interaction between the GC-rich DNA binding sites of target genes and its carboxy-terminal zinc finger motifs. MAZ protein has been found to activate or inhibit the transcriptional initiation process of many target genes, as well as play an important role in the transcriptional termination process of some target genes, so MAZ poses dual regulatory functions in the initiation and termination process of gene transcription. Through the transcriptional regulation of c-myc and Ras gene family, MAZ poses an important role in the occurrence and development of breast cancer, pancreatic cancer, prostate cancer, glioblastoma, neuroblastoma, and other malignant tumors. Our review shows a vital role of MAZ in many malignant tumors and provides novel insight for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chuanjun Zheng
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Hongmei Wu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Song Jin
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Di Li
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Shengkui Tan
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| | - Xiaonian Zhu
- Department of Epidemiology and Statistics, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
8
|
He J, Wang J, Li T, Chen K, Li S, Zhang S. SIPL1, Regulated by MAZ, Promotes Tumor Progression and Predicts Poor Survival in Human Triple-Negative Breast Cancer. Front Oncol 2022; 11:766790. [PMID: 34976812 PMCID: PMC8718759 DOI: 10.3389/fonc.2021.766790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer owing to a lack of effective targeted therapy and acquired chemoresistance. Here, we explored the function and mechanism of shank-interacting protein-like 1 (SIPL1) in TNBC progression. METHODS SIPL1 expression was examined in human TNBC tissues and cell lines by quantitative reverse transcription PCR, western blot, and immunohistochemistry. SIPL1 overexpression and silenced cell lines were established in BT-549 and MDA-MB-231 cells. The biological functions of SIPL1 in TNBC were studied in vitro using the CCK-8 assay, CellTiter-Glo Luminescent Cell Viability assay, caspase-3/8/9 assay, wound healing assay, and transwell assay and in vivo using a nude mouse model. The potential mechanisms underlying the effects of SIPL1 on TNBC progression were explored using bioinformatics analysis, luciferase reporter assays, and chromatin immunoprecipitation followed by qPCR. RESULTS SIPL1 expression was higher in human TNBC tissues and cell lines than in adjacent normal tissues and a breast epithelial cell line (MCF10A). High expression of SIPL1 was positively correlated with poor overall and disease-free survival in patients with TNBC. SIPL1 overexpression elevated and SIPL1 silencing repressed the malignant phenotypes of TNBC cells in vitro. SIPL1 overexpression promoted xenograft tumor growth in vivo. Myc-associated zinc-finger protein (MAZ) transcriptionally activated SIPL1. Finally, we found that SIPL1 promoted TNBC malignant phenotypes via activation of the AKT/NF-κB signaling pathways. CONCLUSIONS These results indicate that the MAZ/SIPL1/AKT/NF-κB axis plays a crucial role in promoting the malignant phenotypes of TNBC cells.
Collapse
Affiliation(s)
- Juanjuan He
- Department of Breast Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Breast Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Teng Li
- Department of Urology Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Songchao Li
- Department of Urology Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shaojin Zhang
- Department of Urology Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Balandeh E, Mohammadshafie K, Mahmoudi Y, Hossein Pourhanifeh M, Rajabi A, Bahabadi ZR, Mohammadi AH, Rahimian N, Hamblin MR, Mirzaei H. Roles of Non-coding RNAs and Angiogenesis in Glioblastoma. Front Cell Dev Biol 2021; 9:716462. [PMID: 34646821 PMCID: PMC8502969 DOI: 10.3389/fcell.2021.716462] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
One of the significant hallmarks of cancer is angiogenesis. It has a crucial function in tumor development and metastasis. Thus, angiogenesis has become one of the most exciting targets for drug development in cancer treatment. Here we discuss the regulatory effects on angiogenesis in glioblastoma (GBM) of non-coding RNAs (ncRNAs), including long ncRNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA). These ncRNAs may function in trans or cis forms and modify gene transcription by various mechanisms, including epigenetics. NcRNAs may also serve as crucial regulators of angiogenesis-inducing molecules. These molecules include, metalloproteinases, cytokines, several growth factors (platelet-derived growth factor, vascular endothelial growth factor, fibroblast growth factor, hypoxia-inducible factor-1, and epidermal growth factor), phosphoinositide 3-kinase, mitogen-activated protein kinase, and transforming growth factor signaling pathways.
Collapse
Affiliation(s)
- Ebrahim Balandeh
- Department of Clinical Psychology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Yaser Mahmoudi
- Department of Anatomical Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Ali Rajabi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Yaşar P, Kars G, Yavuz K, Ayaz G, Oğuztüzün Ç, Bilgen E, Suvacı Z, Çetinkol ÖP, Can T, Muyan M. A CpG island promoter drives the CXXC5 gene expression. Sci Rep 2021; 11:15655. [PMID: 34341443 PMCID: PMC8329181 DOI: 10.1038/s41598-021-95165-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
CXXC5 is a member of the zinc-finger CXXC family that binds to unmethylated CpG dinucleotides. CXXC5 modulates gene expressions resulting in diverse cellular events mediated by distinct signaling pathways. However, the mechanism responsible for CXXC5 expression remains largely unknown. We found here that of the 14 annotated CXXC5 transcripts with distinct 5' untranslated regions encoding the same protein, transcript variant 2 with the highest expression level among variants represents the main transcript in cell models. The DNA segment in and at the immediate 5'-sequences of the first exon of variant 2 contains a core promoter within which multiple transcription start sites are present. Residing in a region with high G-C nucleotide content and CpG repeats, the core promoter is unmethylated, deficient in nucleosomes, and associated with active RNA polymerase-II. These findings suggest that a CpG island promoter drives CXXC5 expression. Promoter pull-down revealed the association of various transcription factors (TFs) and transcription co-regulatory proteins, as well as proteins involved in histone/chromatin, DNA, and RNA processing with the core promoter. Of the TFs, we verified that ELF1 and MAZ contribute to CXXC5 expression. Moreover, the first exon of variant 2 may contain a G-quadruplex forming region that could modulate CXXC5 expression.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Kerim Yavuz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Çerağ Oğuztüzün
- Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Ecenaz Bilgen
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Zeynep Suvacı
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | | | - Tolga Can
- Department of Computer Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
11
|
Zhao X, Ye N, Feng X, Ju H, Liu R, Lu W. MicroRNA-29b-3p Inhibits the Migration and Invasion of Gastric Cancer Cells by Regulating the Autophagy-Associated Protein MAZ. Onco Targets Ther 2021; 14:3239-3249. [PMID: 34040389 PMCID: PMC8140921 DOI: 10.2147/ott.s274215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to investigate the relationship between microRNA-29b-3p (miR-29b-3p) and myc-associated zinc finger protein (MAZ) expression and the effects of this interaction on the proliferation, migration, and invasion of gastric cancer cells. Methods qPCR and Western blots were used to detect the expression of miR-29b-3p and MAZ. The dual luciferase reporter gene system was used to explore whether MAZ is the target of miR-29b-3p. Cell function experiments and a mouse tumorigenesis model were used to determine the effects of miR-29b-3p overexpression and MAZ depletion on proliferation, migration, and invasion in gastric cancer cell lines and on tumor growth. Results The expression level of miR-29b-3p was low and the expression level of MAZ was high in gastric cancer cells compared with normal human gastric mucosal epithelial cells. MAZ was the target gene of miR-29b-3p. The upregulation of miR-29b-3p reduces the expression of MAZ. Overexpression of miR-29b-3p and downregulation of MAZ inhibited the proliferation and migration of cancer cells and induced apoptosis by controlling the expression of autophagy-related proteins. MiR-29b-3p mimics inhibit tumor growth in mice. Conclusion MiR-29b-3p inhibits the migration and invasion of gastric cancer cells by regulating the autophagy-related protein MAZ.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Nan Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Xueke Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Ruixia Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, the People's Republic of China.,Key Laboratory of System Bioengineering, Tianjin University, Tianjin, the People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, the People's Republic of China
| |
Collapse
|
12
|
Yang Q, Lang C, Wu Z, Dai Y, He S, Guo W, Huang S, Du H, Ren D, Peng X. MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:391. [PMID: 31488180 PMCID: PMC6729064 DOI: 10.1186/s13046-019-1374-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023]
Abstract
Background Clinically, prostate cancer (PCa) exhibits a high avidity to metastasize to bone. Myc-associated zinc-finger protein (MAZ) is a well-documented oncogene involved in the progression and metastasis of multiple cancer types, even in PCa. However, the clinical significance and biological roles of MAZ in bone metastasis of PCa remain unclear. Methods MAZ expression was examined in PCa tissues with bone metastasis, PCa tissues without bone metastasis and metastatic bone tissues by real-time PCR and immunohistochemistry (IHC), respectively. Statistical analysis was performed to evaluate the clinical correlation between MAZ expression and clinicopathological features and bone metastasis-free survival in PCa patients. Biological roles of MAZ in bone metastasis of PCa were investigated both in vitro by transwell assay, and in vivo by a mouse model of left cardiac ventricle inoculation. The bioinformatics analysis, western blot, pull-down assays, chromatin immunoprecipitation (ChIP) and luciferase reporter assays were applied to demonstrate and examine the relationship between MAZ and its potential downstream signalling pathway. TaqMan copy number assay was performed to identify the underlying mechanism responsible for MAZ overexpression in PCa tissues. Results MAZ expression is elevated in PCa tissues with bone metastasis compared with that in PCa tissues without bone metastasis, and is further increased in metastatic bone tissues. High expression of MAZ positively correlates with poor overall and bone metastasis-free survival in PCa patients. Upregulating MAZ elevates, while silencing MAZ represses the invasion and migration abilities of PCa cells in vitro and bone metastasis ability in vivo. Our results further reveal that MAZ promotes bone metastasis of PCa dependent on KRas signalling, although MAZ transcriptionally upregulates KRas and HRas expression, where the Ral guanine nucleotide exchange factor (RalGEF) signaling is responsible for the different roles of KRas and HRas in mediating the pro-bone metastasis of MAZ in PCa. Finally, our results indicate that recurrent gains contribute to MAZ overexpression in a small portion of PCa tissues. Conclusion These results indicate that the MAZ/Kras/ RalGEF signalling axis plays a crucial role in promoting PCa cell bone metastasis, suggesting a potential therapeutic utility of MAZ in bone metastasis of PCa. Electronic supplementary material The online version of this article (10.1186/s13046-019-1374-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong Province, China
| | - Chuandong Lang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong Province, China
| | - Zhengquan Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong Province, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong Province, China
| | - Shaofu He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong Province, China
| | - Wei Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong Province, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hong Du
- Department of Pathology, The First People's Hospital of Guangzhou City, Guangzhou, 510180, Guangdong, China
| | - Dong Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong Province, China.
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
13
|
Maity G, Haque I, Ghosh A, Dhar G, Gupta V, Sarkar S, Azeem I, McGregor D, Choudhary A, Campbell DR, Kambhampati S, Banerjee SK, Banerjee S. The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF-ERK signaling. J Biol Chem 2018; 293:4334-4349. [PMID: 29414775 PMCID: PMC5868262 DOI: 10.1074/jbc.ra117.000333] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/01/2018] [Indexed: 01/18/2023] Open
Abstract
Myc-associated zinc-finger protein (MAZ) is a transcription factor with dual roles in transcription initiation and termination. Deregulation of MAZ expression is associated with the progression of pancreatic ductal adenocarcinoma (PDAC). However, the mechanism of action of MAZ in PDAC progression is largely unknown. Here, we present evidence that MAZ mRNA expression and protein levels are increased in human PDAC cell lines, tissue samples, a subcutaneous tumor xenograft in a nude mouse model, and spontaneous cancer in the genetically engineered PDAC mouse model. We also found that MAZ is predominantly expressed in pancreatic cancer stem cells. Functional analysis indicated that MAZ depletion in PDAC cells inhibits invasive phenotypes such as the epithelial-to-mesenchymal transition, migration, invasion, and the sphere-forming ability of PDAC cells. Mechanistically, we detected no direct effects of MAZ on the expression of K-Ras mutants, but MAZ increased the activity of CRAF-ERK signaling, a downstream signaling target of K-Ras. The MAZ-induced activation of CRAF-ERK signaling was mediated via p21-activated protein kinase (PAK) and protein kinase B (AKT/PKB) signaling cascades and promoted PDAC cell invasiveness. Moreover, we found that the matricellular oncoprotein cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) regulates MAZ expression via Notch-1-sonic hedgehog signaling in PDAC cells. We propose that Cyr61/CCN1-induced expression of MAZ promotes invasive phenotypes of PDAC cells not through direct K-Ras activation but instead through the activation of CRAF-ERK signaling. Collectively, these results highlight key molecular players in PDAC invasiveness and may help inform therapeutic strategies to improve clinical management and outcomes of PDAC.
Collapse
Affiliation(s)
- Gargi Maity
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Inamul Haque
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Arnab Ghosh
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Gopal Dhar
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | | | - Sandipto Sarkar
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Imaan Azeem
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | - Douglas McGregor
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
- the Pathology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Abhishek Choudhary
- the Gastroenterology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Donald R Campbell
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the University of Missouri Kansas City and Saint Luke's Hospital of Kansas City, Kansas City, Missouri, and
| | - Suman Kambhampati
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, Missouri 64131
| | - Sushanta K Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
14
|
Álvaro-Blanco J, Urso K, Chiodo Y, Martín-Cortázar C, Kourani O, Arco PGD, Rodríguez-Martínez M, Calonge E, Alcamí J, Redondo JM, Iglesias T, Campanero MR. MAZ induces MYB expression during the exit from quiescence via the E2F site in the MYB promoter. Nucleic Acids Res 2017; 45:9960-9975. [PMID: 28973440 PMCID: PMC5622404 DOI: 10.1093/nar/gkx641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/13/2017] [Indexed: 12/27/2022] Open
Abstract
Most E2F-binding sites repress transcription through the recruitment of Retinoblastoma (RB) family members until the end of the G1 cell-cycle phase. Although the MYB promoter contains an E2F-binding site, its transcription is activated shortly after the exit from quiescence, before RB family members inactivation, by unknown mechanisms. We had previously uncovered a nuclear factor distinct from E2F, Myb-sp, whose DNA-binding site overlapped the E2F element and had hypothesized that this factor might overcome the transcriptional repression of MYB by E2F-RB family members. We have purified Myb-sp and discovered that Myc-associated zinc finger proteins (MAZ) are major components. We show that various MAZ isoforms are present in Myb-sp and activate transcription via the MYB-E2F element. Moreover, while forced RB or p130 expression repressed the activity of a luciferase reporter driven by the MYB-E2F element, co-expression of MAZ proteins not only reverted repression, but also activated transcription. Finally, we show that MAZ binds the MYB promoter in vivo, that its binding site is critical for MYB transactivation, and that MAZ knockdown inhibits MYB expression during the exit from quiescence. Together, these data indicate that MAZ is essential to bypass MYB promoter repression by RB family members and to induce MYB expression.
Collapse
Affiliation(s)
- Josué Álvaro-Blanco
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Katia Urso
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Yuri Chiodo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Carla Martín-Cortázar
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Omar Kourani
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Pablo Gómez-Del Arco
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid, Centro de Biología Molecular, Cantoblanco, Madrid 28049, Spain.,CIBERCV, Spain
| | - María Rodríguez-Martínez
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain
| | - Esther Calonge
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - José Alcamí
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Majadahonda 28220, Spain
| | - Juan Miguel Redondo
- Gene regulation in cardiovascular remodeling and inflammation group, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain.,CIBERCV, Spain
| | - Teresa Iglesias
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain
| | - Miguel R Campanero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid 28029, Spain.,CIBERCV, Spain
| |
Collapse
|
15
|
Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription. Cancer Lett 2016; 375:9-19. [DOI: 10.1016/j.canlet.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 11/21/2022]
|
16
|
Potentially Functional Polymorphisms in POU5F1 Gene Are Associated with the Risk of Lung Cancer in Han Chinese. BIOMED RESEARCH INTERNATIONAL 2015; 2015:851320. [PMID: 26824036 PMCID: PMC4707383 DOI: 10.1155/2015/851320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/28/2015] [Accepted: 12/06/2015] [Indexed: 01/06/2023]
Abstract
POU5F1 is a key regulator of self-renewal and differentiation in embryonic stem cells and may be associated with initiation, promotion, and progression in cancer. We hypothesized that functional polymorphisms in POU5F1 may play an important role in modifying the lung cancer risk. To test this hypothesis, we conducted a case-control study to explore the association between 17 potentially functional SNPs in POU5F1 gene and the lung cancer risk in 1,341 incident lung cancer cases and 1,982 healthy controls in a Chinese population. We found that variant alleles of rs887468 and rs3130457 were significantly associated with increased risk of lung cancer after multiple comparison (OR = 1.29, 95% CI: 1.11-1.51, P fdr = 0.017 for rs887468; OR = 1.29, 95% CI: 1.10-1.51, P fdr = 0.034 for rs3130457, resp.). In addition, we detected a significant interaction between rs887468 genotypes and smoking status on lung cancer risk (P = 0.017). Combined analysis of these 2 SNPs showed a significant allele-dosage association between the number of risk alleles and increased risk of lung cancer (P trend < 0.001). These findings indicate that potentially functional polymorphisms in POU5F1 gene may contribute to lung cancer susceptibility in a Chinese population.
Collapse
|
17
|
Zhao L, Wang P, Liu Y, Ma J, Xue Y. miR-34c regulates the permeability of blood-tumor barrier via MAZ-mediated expression changes of ZO-1, occludin, and claudin-5. J Cell Physiol 2015; 230:716-31. [PMID: 25201524 DOI: 10.1002/jcp.24799] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 09/05/2014] [Indexed: 11/11/2022]
Abstract
The purposes of this study were to investigate the potential roles of miR-34c in regulating blood-tumor barrier (BTB) functions and its possible molecular mechanisms. The over-expression of miR-34c significantly impaired the integrity and increased the permeability of BTB, which were detected in an in vitro BTB model by transendothelial electric resistance and horseradish peroxidase flux assays, respectively. Meanwhile, real-time quantitative PCR (qRT-PCR), Western blot and immunofluorescence assays successively demonstrated downregulation of ZO-1, occludin, and claudin-5 and miR-34c silencing uncovered the opposite results. Dual-luciferase reporter assays results revealed myc-associated zinc-finger protein (MAZ) is a target gene of miR-34c. Besides, mRNA and protein expressions of MAZ were reversely regulated by miR-34c. The down-expression of MAZ significantly impaired the integrity and increased the permeability of BTB as well as downregulated the expressions of ZO-1, occludin, and claudin-5. And chromatin immunoprecipitation verified that MAZ interacted with "GGGCGGG," "CCCTCCC," and "GGGAGGG" DNA sequence of ZO-1, occludin, and claudin-5 promoter, respectively. The over-expression or silencing of either miR-34c or MAZ was performed simultaneously to further explore their functional relations, and results elucidated that miR-34c and MAZ displayed reverse regulatory effects on the integrity and permeability of BTB as well as the expressions of ZO-1, occludin, and claudin-5. In conclusion, our present study indicated that miR-34c regulated the permeability of BTB via MAZ-mediated expression changes of ZO-1, occludin, and claudin-5.
Collapse
Affiliation(s)
- Lini Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Yao Y, Ma J, Xue Y, Wang P, Li Z, Li Z, Hu Y, Shang X, Liu Y. MiR-449a exerts tumor-suppressive functions in human glioblastoma by targeting Myc-associated zinc-finger protein. Mol Oncol 2014; 9:640-56. [PMID: 25487955 DOI: 10.1016/j.molonc.2014.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most common and aggressive primary brain tumors in adults. Deregulated expression of microRNAs (miRNAs) has been associated with GBM progression through alterations in either oncogenic or tumor suppressor targets. Here, we elucidated the function and the possible molecular mechanisms of miR-449a in human GBM cell lines and tumor specimens-derived glioblastoma stem cells (GSCs). Quantitative real-time PCR demonstrated that miR-449a was down-regulated in human GBM cell lines and GSCs. Functionally, miR-449a acted as a tumor suppressor by reducing cell proliferation, migration and invasion as well as inducing apoptosis in human GBM cell lines and GSCs. Myc-associated zinc-finger protein (MAZ) was identified as a direct target of miR-449a, mediating these tumor-suppressive effects, demonstrated by Western blot assay and luciferase assays. Moreover, over-expression of miR-449a inhibited the expression of Podoplanin (PDPN) by down-regulating MAZ which could positively control the promoter activities via binding to the promoter of PDPN, demonstrated by luciferase assays and chromatin immunoprecipitation assays. Further, the PI3K/AKT pathway was blocked when MAZ was down-regulated by miR-449a. This process was coincided with the up-regulation of apoptotic proteins and the down-regulation of anti-apoptotic proteins, MMP2 and MMP9. Furthermore, nude mice carrying over-expressed miR-449a combined with knockdown MAZ tumors produced the smallest tumors and the highest survival. These results elucidated a novel molecular mechanism of GBM progression, and may thus suggest a promising application for GBM treatment.
Collapse
Affiliation(s)
- Yilong Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, People's Republic of China
| | - Yi Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
19
|
The prostate cancer-up-regulated Myc-associated zinc-finger protein (MAZ) modulates proliferation and metastasis through reciprocal regulation of androgen receptor. Med Oncol 2013; 30:570. [PMID: 23609189 DOI: 10.1007/s12032-013-0570-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies in men and the second leading cause of male cancer mortality. MAZ (Myc-associated zinc-finger protein) is a transcription factor that regulates the transcription of oncogenes, and the deregulated MAZ expression is closely related to the development and progression of a variety of cancers. In the present study, the role of MAZ in PCa tumorigenesis and its interaction with androgen receptor (AR), which is essential to PCa development in humans, were investigated. MAZ expression was found to be higher in clinical PCa specimens than in benign prostatic hyperplasia (BPH) and adjacent normal tissues, and MAZ expression was positively correlated with AR expression, which was also observed in PCa cell lines. After knockdown of MAZ by siRNA, cell proliferation was notably inhibited, colony formation declined, the cell cycle was arrested at G0/G1 phase, and the number of cells in S phase decreased (p < 0.05). MAZ knockdown resulted in a significant decline in the migration and invasion capacity of the LNCaP-AD cell line. siRNA knockdown of AR significantly decreased MAZ expression, and knockdown of MAZ significantly increased the expression of AR and DHT-induced androgen response element (ARE). These results suggest that MAZ and AR are interrelated and that MAZ plays an important role in PCa pathogenesis, which could be a potential therapeutic target.
Collapse
|
20
|
Cogoi S, Zorzet S, Rapozzi V, Géci I, Pedersen EB, Xodo LE. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res 2013; 41:4049-64. [PMID: 23471001 PMCID: PMC3627599 DOI: 10.1093/nar/gkt127] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
KRAS mutations are primary genetic lesions leading to pancreatic cancer. The promoter of human KRAS contains a nuclease-hypersensitive element (NHE) that can fold in G4-DNA structures binding to nuclear proteins, including MAZ (myc-associated zinc-finger). Here, we report that MAZ activates KRAS transcription. To knockdown oncogenic KRAS in pancreatic cancer cells, we designed oligonucleotides that mimic one of the G-quadruplexes formed by NHE (G4-decoys). To increase their nuclease resistance, two locked nucleic acid (LNA) modifications were introduced at the 3'-end, whereas to enhance the folding and stability, two polycyclic aromatic hydrocarbon units (TINA or AMANY) were inserted internally, to cap the quadruplex. The most active G4-decoy (2998), which had two para-TINAs, strongly suppressed KRAS expression in Panc-1 cells. It also repressed their metabolic activity (IC50 = 520 nM), and it inhibited cell growth and colony formation by activating apoptosis. We finally injected 2998 and control oligonucleotides 5153, 5154 (2 nmol/mouse) intratumorally in SCID mice bearing a Panc-1 xenograft. After three treatments, 2998 reduced tumor xenograft growth by 64% compared with control and increased the Kaplan-Meier median survival time by 70%. Together, our data show that MAZ-specific G4-decoys mimicking a KRAS quadruplex are promising for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Susanna Cogoi
- Department of Medical and Biological Sciences, School of Medicine, P.le Kolbe 4, 33100 Udine, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Smits M, Wurdinger T, van het Hof B, Drexhage JAR, Geerts D, Wesseling P, Noske DP, Vandertop WP, de Vries HE, Reijerkerk A. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. FASEB J 2012; 26:2639-47. [PMID: 22415301 DOI: 10.1096/fj.11-202820] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In patients with glioblastomas, vascular endothelial growth factor (VEGF) is a key mediator of tumor-associated angiogenesis. Glioblastomas are notorious for their capacity to induce neovascularization, driving continued tumor growth. Here we report that miR-125b is down-regulated in glioblastoma-associated endothelial cells, resulting in increased expression of its target, myc-associated zinc finger protein (MAZ), a transcription factor that regulates VEGF. The down-regulation of miR-125b was also observed on exposure of endothelial cells to glioblastoma-conditioned medium or VEGF, resulting in increased MAZ expression. Further analysis revealed that inhibition of MAZ accumulation by miR-125b, or by MAZ-specific shRNAs, attenuated primary human brain endothelial cell migration and tubule formation in vitro, phenomena considered to mimick angiogenic processes in vitro. Moreover, MAZ expression was elevated in brain blood vessels of glioblastoma patients. Altogether these results demonstrate a functional feed-forward loop in glioblastoma-related angiogenesis, in which VEGF inhibits the expression of miR-125b, resulting in increased expression of MAZ, which in its turn causes transcriptional activation of VEGF. This loop is functionally impeded by the VEGF receptor inhibitor vandetanib, and our results may contribute to the further development of inhibitors of tumor-angiogenesis.
Collapse
Affiliation(s)
- Michiel Smits
- Neuro-oncology Research Group, Department of Neurosurgery, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Regulation of the human catalytic subunit of telomerase (hTERT). Gene 2012; 498:135-46. [PMID: 22381618 DOI: 10.1016/j.gene.2012.01.095] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/12/2022]
Abstract
Over the past decade, there has been much interest in the regulation of telomerase, the enzyme responsible for maintaining the integrity of chromosomal ends, and its crucial role in cellular immortalization, tumorigenesis, and the progression of cancer. Telomerase activity is characterized by the expression of the telomerase reverse transcriptase (TERT) gene, suggesting that TERT serves as the major limiting agent for telomerase activity. Recent discoveries have led to characterization of various interactants that aid in the regulation of human TERT (hTERT), including numerous transcription factors; further supporting the pivotal role that transcription plays in both the expression and repression of telomerase. Several studies have suggested that epigenetic modulation of the hTERT core promoter region may provide an additional level of regulation. Although these studies have provided essential information on the regulation of hTERT, there has been ambiguity of the role of methylation within the core promoter region and the subsequent binding of various activating and repressive agents. As a result, we found it necessary to consolidate and summarize these recent developments and elucidate these discrepancies. In this review, we focus on the co-regulation of hTERT via transcriptional regulation, the presence or absence of various activators and repressors, as well as the epigenetic pathways of DNA methylation and histone modifications.
Collapse
|
23
|
Di Fulvio M, Frondorf K, Henkels KM, Grunwald WC, Cool D, Gomez-Cambronero J. Phospholipase D2 (PLD2) shortens the time required for myeloid leukemic cell differentiation: mechanism of action. J Biol Chem 2011; 287:393-407. [PMID: 22094461 DOI: 10.1074/jbc.m111.259465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell differentiation is compromised in acute leukemias. We report that mammalian target of rapamycin (mTOR) and S6 kinase (S6K) are highly expressed in the undifferentiated promyelomonocytic leukemic HL-60 cell line, whereas PLD2 expression is minimal. The expression ratio of PLD2 to mTOR (or to S6K) is gradually inverted upon in vitro induction of differentiation toward the neutrophilic phenotype. We present three ways that profoundly affect the kinetics of differentiation as follows: (i) simultaneous overexpression of mTOR (or S6K), (ii) silencing of mTOR via dsRNA-mediated interference or inhibition with rapamycin, and (iii) PLD2 overexpression. The last two methods shortened the time required for differentiation. By determining how PLD2 participates in cell differentiation, we found that PLD2 interacts with and activates the oncogene Fes/Fps, a protein-tyrosine kinase known to be involved in myeloid cell development. Fes activity is elevated with PLD2 overexpression, phosphatidic acid or phosphatidylinositol bisphosphate. Co-immunoprecipitation indicates a close PLD2-Fes physical interaction that is negated by a Fes-R483K mutant that incapacitates its Src homology 2 domain. All these suggest for the first time the following mechanism: mTOR/S6K down-regulation→PLD2 overexpression→PLD2/Fes association→phosphatidic acid-led activation of Fes kinase→granulocytic differentiation. Differentiation shortening could have a clinical impact on reducing the time of return to normalcy of the white cell counts after chemotherapy in patients with acute promyelocytic leukemia.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, Ohio, 45435
| | - Kathleen Frondorf
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, Ohio, 45435
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, Ohio, 45435
| | - William C Grunwald
- Department of Pharmacology and Toxicology, Wright State University School Medicine, Dayton, Ohio 45435
| | - David Cool
- Department of Pharmacology and Toxicology, Wright State University School Medicine, Dayton, Ohio 45435
| | - Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, Ohio, 45435.
| |
Collapse
|
24
|
Alvarez A, Woolf PJ. RegNetB: predicting relevant regulator-gene relationships in localized prostate tumor samples. BMC Bioinformatics 2011; 12:243. [PMID: 21682879 PMCID: PMC3128037 DOI: 10.1186/1471-2105-12-243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 06/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background A central question in cancer biology is what changes cause a healthy cell to form a tumor. Gene expression data could provide insight into this question, but it is difficult to distinguish between a gene that causes a change in gene expression from a gene that is affected by this change. Furthermore, the proteins that regulate gene expression are often themselves not regulated at the transcriptional level. Here we propose a Bayesian modeling framework we term RegNetB that uses mechanistic information about the gene regulatory network to distinguish between factors that cause a change in expression and genes that are affected by the change. We test this framework using human gene expression data describing localized prostate cancer progression. Results The top regulatory relationships identified by RegNetB include the regulation of RLN1, RLN2, by PAX4, the regulation of ACPP (PAP) by JUN, BACH1 and BACH2, and the co-regulation of PGC and GDF15 by MAZ and TAF8. These target genes are known to participate in tumor progression, but the suggested regulatory roles of PAX4, BACH1, BACH2, MAZ and TAF8 in the process is new. Conclusion Integrating gene expression data and regulatory topologies can aid in identifying potentially causal mechanisms for observed changes in gene expression.
Collapse
Affiliation(s)
- Angel Alvarez
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
25
|
Cogoi S, Paramasivam M, Membrino A, Yokoyama KK, Xodo LE. The KRAS promoter responds to Myc-associated zinc finger and poly(ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element. J Biol Chem 2010; 285:22003-16. [PMID: 20457603 DOI: 10.1074/jbc.m110.101923] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The murine KRAS promoter contains a G-rich nuclease hypersensitive element (GA-element) upstream of the transcription start site that is essential for transcription. Pulldown and chromatin immunoprecipitation assays demonstrate that this GA-element is bound by the Myc-associated zinc finger (MAZ) and poly(ADP-ribose) polymerase 1 (PARP-1) proteins. These proteins are crucial for transcription, because when they are knocked down by short hairpin RNA, transcription is down-regulated. This is also the case when the poly(ADP-ribosyl)ation activity of PARP-1 is inhibited by 3,4-dihydro-5-[4-(1-piperidinyl) butoxyl]-1(2H) isoquinolinone. We found that MAZ specifically binds to the duplex and quadruplex conformations of the GA-element, whereas PARP-1 shows specificity only for the G-quadruplex. On the basis of fluorescence resonance energy transfer melting and polymerase stop assays we saw that MAZ stabilizes the KRAS quadruplex. When the capacity of folding in the GA-element is abrogated by specific G --> T or G --> A point mutations, KRAS transcription is down-regulated. Conversely, guanidine-modified phthalocyanines, which specifically interact with and stabilize the KRAS G-quadruplex, push the promoter activity up to more than double. Collectively, our data support a transcription mechanism for murine KRAS that involves MAZ, PARP-1 and duplex-quadruplex conformational changes in the promoter GA-element.
Collapse
Affiliation(s)
- Susanna Cogoi
- Department of Biomedical Science and Technology, University of Udine, School of Medicine, Piazzale Kolbe 4, 33100 Udine, Italy
| | | | | | | | | |
Collapse
|
26
|
Involvement of ubiquitous and tale transcription factors, as well as liganded RXRα, in the regulation of human SOX2 gene expression in the NT2/D1 embryonal carcinoma cell line. ARCH BIOL SCI 2010. [DOI: 10.2298/abs1002199m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
SOX2 is a key transcription factor in embryonic development representing a universal marker of pluripotent stem cells. Based on the functional redundancy and overlapping expression patterns of SOXB1 subgroup members during development, the goal of this study has been to analyze if some aspects of regulation of expression are preserved between human SOX2 and SOX3 genes. Thus, we have tested several transcription factors previously demonstrated to play roles in controlling SOX3 gene activity for potential participation in the regulation of SOX2 gene expression in NT2/D1 cells. Here we report on the activation of SOX2 expression by ubiquitous transcription factors (NF-Y, Sp1 and MAZ), TALE family members (Pbx1 and Meis1), as well as liganded RXR?. Elucidating components involved in the regulation of SOX gene expression represent a valuable contribution in unraveling the regulatory networks operating in pluripotent embryonic cells.
Collapse
|
27
|
Kim SH, Yang EM, Lee HN, Cho BY, Ye YM, Park HS. Combined effect of IL-10 and TGF-beta1 promoter polymorphisms as a risk factor for aspirin-intolerant asthma and rhinosinusitis. Allergy 2009; 64:1221-5. [PMID: 19222424 DOI: 10.1111/j.1398-9995.2009.01989.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND It has been known that interleukin (IL)-10 promoter polymorphisms at -1082A/G, -819T/C and -592A/C, may influence IL-10 expression and associate with asthma. Interleukin-10 facilitates the regulatory function of transforming growth factor (TGF)-beta. The goal of this study was to investigate a gene-gene interaction between IL-10 and TGF-beta1 polymorphisms in Korean asthmatics with aspirin hypersensitivity. METHODS Single-nucleotide polymorphism genotyping of IL-10 and TGF-beta1 genes was performed and the functional effect of the IL-10 polymorphisms was analysed applying a luciferase reporter assay and an electrophoretic mobility shift assay. RESULTS Among the patients with asthma, polymorphism at -1082A/G was significantly associated with the phenotype of aspirin-intolerant asthma, AIA (P = 0.007, P(c) = 0.021). Moreover, a synergistic effect between the TGF-beta1-509C/T and IL-10-1082A/G polymorphisms on the phenotype of AIA was noted; when stratified by the presence of rhinosinusitis, the frequency of rare alleles (the CT or TT genotype of TGF-beta1-509C/T and AG or GG genotype of IL-10-1082A/G) was significantly higher in the patients with AIA (15.2%) when compared with those with ATA (6.3%, P = 0.031; odds ratio 4.111; 95% confidence interval 1.504-11.235). In an in vitro functional assay, the -1082G reporter plasmid exhibited significantly greater promoter activity when compared with the -1082A construct in Jurkat T cells (P = 0.011). Moreover, we found that the transcription factor Myc-associated zinc-finger protein preferentially bound the -1082G allele. CONCLUSION Our results suggest that IL-10 promoter polymorphisms contribute to the development of AIA and that rhinosinusitis may interact genetically with TGF-beta1.
Collapse
Affiliation(s)
- S-H Kim
- Department of Allergy and Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Ray A, Dhar S, Shakya A, Ray P, Okada Y, Ray BK. SAF-3, a novel splice variant of the SAF-1/MAZ/Pur-1 family, is expressed during inflammation. FEBS J 2009; 276:4276-86. [PMID: 19583771 DOI: 10.1111/j.1742-4658.2009.07136.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Cys2His2-type zinc finger transcription factor serum amyloid A activating factor 1 [SAF-1, also known as MAZ (myc-associated zinc finger protein) or Pur-1 (purine binding factor-1)] plays an important role in regulation of a variety of inflammation-responsive genes. An SAF-2 splice variant acting as a negative regulator of SAF-1 was identified previously, and the present study reports the identification of a novel SAF-3 splice variant that is expressed during inflammation. SAF-3 mRNA, isolated from a cDNA library produced from IL-1beta-induced cells, originates from a previously unknown first coding exon, and thereby contains a unique N-terminal domain but shares the same six zinc finger DNA-binding domains as present in SAF-1. In addition, a negatively functioning domain present at the N-terminus of SAF-1 and SAF-2 is spliced out in SAF-3. The expression of SAF-3 is very low in normal tissues and in cells grown under normal conditions. However, RT-PCR analysis of mRNAs from cytokine and growth factor-induced cells as well of mRNAs isolated from several diseased tissues revealed abundant expression of SAF-3. The transactivation potential of SAF-3 is much greater than that of the predominantly expressed splice variant SAF-1. These findings show that transcriptional regulation of downstream inflammation-responsive genes by SAF/MAZ/Pur-1 is likely to be more complex than previously assumed. In addition, we show that SAF-3 expression initiates from an upstream novel promoter. This is the first report of the existence of multiple promoters regulating expression of the SAF/MAZ/Pur-1 family of proteins.
Collapse
Affiliation(s)
- Alpana Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Zaytseva YY, Wang X, Southard RC, Wallis NK, Kilgore MW. Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in MCF-7 breast cancer cells. Mol Cancer 2008; 7:90. [PMID: 19061500 PMCID: PMC2614423 DOI: 10.1186/1476-4598-7-90] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 12/05/2008] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear hormone receptor superfamily and is highly expressed in many human tumors including breast cancer. PPARgamma has been identified as a potential target for breast cancer therapy based on the fact that its activation by synthetic ligands affects the differentiation, proliferation, and apoptosis of cancer cells. However, the controversial nature of current studies and disappointing results from clinical trials raise questions about the contribution of PPARgamma signaling in breast cancer development in the absence of stimulation by exogenous ligands. Recent reports from both in vitro and in vivo studies are inconsistent and suggest that endogenous activation of PPARgamma plays a much more complex role in initiation and progression of cancer than previously thought. RESULTS We have previously demonstrated that an increase in expression of PPARgamma1 in MCF-7 breast cancer cells is driven by a tumor-specific promoter. Myc-associated zinc finger protein (MAZ) was identified as a transcriptional mediator of PPARgamma1 expression in these cells. In this study, using RNA interference (RNAi) to inhibit PPARgamma1 expression directly or via down-regulation of MAZ, we report for the first time that a decrease in PPARgamma1 expression results in reduced cellular proliferation in MCF-7 breast cancer cells. Furthermore, we demonstrate that these changes in proliferation are associated with a significant decrease in cell transition from G1 to the S phase. Using a dominant-negative mutant of PPARgamma1, Delta462, we confirmed that PPARgamma1 acts as a pro-survival factor and showed that this phenomenon is not limited to MCF-7 cells. Finally, we demonstrate that down-regulation of PPARgamma1 expression leads to an induction of apoptosis in MCF-7 cells, confirmed by analyzing Bcl-2 expression and PARP-1 cleavage. CONCLUSION Thus, these findings suggest that an increase in PPARgamma1 signaling observed in breast cancer contributes to an imbalance between proliferation and apoptosis, and may be an important hallmark of breast tumorigenesis. The results presented here also warrant further investigation regarding the use of PPARgamma ligands in patients who are predisposed or already diagnosed with breast cancer.
Collapse
Affiliation(s)
- Yekaterina Y Zaytseva
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA.
| | | | | | | | | |
Collapse
|
30
|
Himeda CL, Ranish JA, Hauschka SD. Quantitative proteomic identification of MAZ as a transcriptional regulator of muscle-specific genes in skeletal and cardiac myocytes. Mol Cell Biol 2008; 28:6521-35. [PMID: 18710939 PMCID: PMC2577440 DOI: 10.1128/mcb.00306-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/23/2008] [Accepted: 08/09/2008] [Indexed: 11/20/2022] Open
Abstract
We identified a conserved sequence within the Muscle creatine kinase (MCK) promoter that is critical for high-level activity in skeletal and cardiac myocytes (MCK Promoter Element X [MPEX]). After selectively enriching for MPEX-binding factor(s) (MPEX-BFs), ICAT-based quantitative proteomics was used to identify MPEX-BF candidates, one of which was MAZ (Myc-associated zinc finger protein). MAZ transactivates the MCK promoter and binds the MPEX site in vitro, and chromatin immunoprecipitation analysis demonstrates enrichment of MAZ at the endogenous MCK promoter and other muscle gene promoters (Skeletal alpha-actin, Desmin, and alpha-Myosin heavy chain) in skeletal and cardiac myocytes. Consistent with its role in muscle gene transcription, MAZ transcripts and DNA-binding activity are upregulated during skeletal myocyte differentiation. Furthermore, MAZ was shown to bind numerous sequences (e.g., CTCCTCCC and CTCCACCC) that diverge from the GA box binding motif. Alternate motifs were identified in many muscle promoters, including Myogenin and MEF2C, and one motif was shown to be critical for Six4 promoter activity in both skeletal and cardiac myocytes. Interestingly, MAZ occupies and is able to transactivate the Six4 promoter in skeletal but not cardiac myocytes. Taken together, these findings are consistent with a previously unrecognized role for MAZ in muscle gene regulation.
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
31
|
Palumbo SL, Memmott RM, Uribe DJ, Krotova-Khan Y, Hurley LH, Ebbinghaus SW. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res 2008; 36:1755-69. [PMID: 18252774 PMCID: PMC2330228 DOI: 10.1093/nar/gkm1069] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-myb promoter contains multiple GGA repeats beginning 17 bp downstream of the transcription initiation site. GGA repeats have been previously shown to form unusual DNA structures in solution. Results from chemical footprinting, circular dichroism and RNA and DNA polymerase arrest assays on oligonucleotides representing the GGA repeat region of the c-myb promoter demonstrate that the element is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) G-quadruplex structures by stacking two tetrad:heptad G-quadruplexes formed by two of the three (GGA)(4) repeats. Deletion of one or two (GGA)(4) motifs destabilizes this secondary structure and increases c-myb promoter activity, indicating that the G-quadruplexes formed in the c-myb GGA repeat region may act as a negative regulator of the c-myb promoter. Complete deletion of the c-myb GGA repeat region abolishes c-myb promoter activity, indicating dual roles of the c-myb GGA repeat element as both a transcriptional repressor and an activator. Furthermore, we demonstrated that Myc-associated zinc finger protein (MAZ) represses c-myb promoter activity and binds to the c-myb T:H:H:T G-quadruplexes. Our findings show that the T:H:H:T G-quadruplex-forming region in the c-myb promoter is a critical cis-acting element and may repress c-myb promoter activity through MAZ interaction with G-quadruplexes in the c-myb promoter.
Collapse
Affiliation(s)
- SunMi L Palumbo
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724-5024, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kovacevic-Grujicic N, Yokoyama K, Stevanovic M. Trans-activation of the human SOX3 promoter by MAZ in NT2/D1 cells. ARCH BIOL SCI 2008. [DOI: 10.2298/abs0803379k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we examine the role of three highly conserved putative binding sites for Myc-associated zinc finger protein (MAZ) in regulation of the human SOX3 gene expression. Electrophoretic mobility shift and supershift assays indicate that complexes formed at two out of three MAZ sites of the human SOX3 promoter involve ubiquitously expressed MAZ protein. Furthermore, in cotransfection experiments we demonstrate that MAZ acts as a positive regulator of SOX3 gene transcription in both undifferentiated and RA-differentiated NT2/D1 cells. Although MAZ increased both basal and RA-induced promoter activity, our results suggest that MAZ does not contribute to RA inducibility of the SOX3 promoter during neuronal differentiation of NT2/D1 cells.
Collapse
Affiliation(s)
| | - Kazunari Yokoyama
- Gene Engineering Division, RIKEN BioResource Center Koyadai, Tsukuba Ibaraki, Japan
| | | |
Collapse
|
33
|
Su JM, Lai XM, Lan KH, Li CP, Chao Y, Yen SH, Chang FY, Lee SD, Lee WP. X protein of hepatitis B virus functions as a transcriptional corepressor on the human telomerase promoter. Hepatology 2007; 46:402-13. [PMID: 17559154 DOI: 10.1002/hep.21675] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED The X protein of hepatitis B virus (HBx) is essential for transactivation of hepatitis B viral and host cellular genes. It has been specifically implicated in the development of hepatocellular carcinoma; however, the molecular mechanism remains unknown. Telomeres, the DNA-protein complexes at the ends of eukaryotic chromosomes, protect chromosomes from degradation at the terminal regions, fusion with a broken DNA end, and inappropriate recombination. The shortening of telomeres that occurs during hepatocellular carcinogenesis has been well studied. In the present study, we isolated an HBx isoform that resulted in telomere shortening in hepatoma cell lines. We found that this HBx isoform down-regulated the expression of human telomerase by transcriptionally repressing its promoter. To further determine the molecular mechanism, we examined human telomerase promoter and identified myc-associated zinc finger protein (MAZ) as a transcriptional repressor of the promoter. We found that the HBx isoform achieved transcriptional suppression of human telomerase by enhancing MAZ binding to its consensus sequence in the promoter through physical association with MAZ. CONCLUSION The data suggest that HBx can induce telomere shortening by acting as a transcriptional corepressor of MAZ on the human telomerase promoter.
Collapse
Affiliation(s)
- Jiun-Ming Su
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bae JS, Kim SH, Ye YM, Yoon HJ, Suh CH, Nahm DH, Park HS. Significant association of FcepsilonRIalpha promoter polymorphisms with aspirin-intolerant chronic urticaria. J Allergy Clin Immunol 2006; 119:449-56. [PMID: 17125826 DOI: 10.1016/j.jaci.2006.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 09/27/2006] [Accepted: 10/03/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although the mechanism that underlies aspirin hypersensitivity is not completely understood, an IgE-mediated response was reported for a patient with aspirin-intolerant chronic urticaria (AICU). OBJECTIVE We investigated whether genetic polymorphisms on the alpha-chain of the high-affinity IgE receptor (FcepsilonRIalpha) gene were associated with the AICU phenotype. METHODS We genotyped 2 promoter polymorphisms (-344C>T and -95T>C) of FcepsilonRIalpha gene in the Korean population, and the functional effect of the -344C>T polymorphism was analyzed by using a luciferase reporter assay and an electrophoretic mobility shift assay. RESULTS The rare allele frequency of the -344C>T polymorphism was significantly higher in the patients with AICU compared with the other subjects (P= .008 for AICU vs aspirin-tolerant chronic urticaria; P= .03 for AICU vs controls). This polymorphism was also significantly associated with total serum IgE concentrations and a higher rate of atopy in the patients with AICU (P= .01 and .05, respectively). The reporter plasmid that carried the -344T allele exhibited significantly higher promoter activity in a rat mast cell line (RBL-2H3) compared with the promoter activity of the -344C allele (P< .001). We found that transcription factor Myc-associated zinc finger protein preferentially bound the -344C promoter. Moreover, patients with AICU with the heterozygous CT genotype of the -344C>T polymorphism exhibited greater anti-IgE-mediated histamine release compared with those with the homozygous CC genotype. CONCLUSION These results suggest that the -344C>T polymorphism of the FcepsilonRIalpha promoter may be associated with increased expression of FcepsilonRIalpha on mast cells and enhanced release of histamine. CLINICAL IMPLICATIONS The FcepsilonRIalpha -344C>T polymorphism may contribute to the development of AICU.
Collapse
Affiliation(s)
- Jin-Sik Bae
- Department of Allergy and Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Lee PW, Wu S, Lee YM. Differential Expression of μ-Opioid Receptor Gene in CXBK and B6 Mice by Sp1. Mol Pharmacol 2004. [DOI: 10.1124/mol.66.6.1580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
36
|
Tsui KH, Wu L, Chang PL, Hsieh ML, Juang HH. IDENTIFYING THE COMBINATION OF THE TRANSCRIPTIONAL REGULATORY SEQUENCES ON PROSTATE SPECIFIC ANTIGEN AND HUMAN GLANDULAR KALLIKREIN GENES. J Urol 2004; 172:2029-34. [PMID: 15540783 DOI: 10.1097/01.ju.0000141147.96640.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The combination of prostate specific antigen (PSA) and human glandular kallikrein (KLK2) promoters and/or enhancers was used to establish a new model to determine the feasibility of tissue specific expression for prostate cancer. MATERIALS AND METHODS In vitro studies used the construction of PSA and KLK2 promoters/enhancers vectors to elucidate the link between the promoter/enhancer of PSA and KLK2. Reverse transcriptase-polymerase chain reaction assays were used to determine cell specific expression. Therefore, an attractive tissue specific expression vector for PSA and KLK2 gene was identified. RESULTS The reporter vectors driven by KLK2 promoter had much lower luciferase activities than those of the reporter vectors driven by PSA promoter in LNCaP cells. Furthermore, the most efficient and cell specific reporter activity after 5alpha-androstan-17beta-ol-3-one treatment among the reporter vectors constructed in this study was that of pKLK2EPSABHE, which was driven by KLK2 enhancer and PSA promoter/enhancer. The pKLK2EPSABHE reporter vector could induce 800-fold higher than the KLK2 basic promoter and its reporter activity was 16 times that of the enhancer/promoter element of KLK2 following induction by androgen. CONCLUSIONS The results verify that the PSA promoter/enhancer must be combined with KLK2 to ensure the full activity and cell specificity of the gene. These expressions coupled with mechanic target validation yield valuable clues regarding the model of action of complex mixtures. This model is a potentially useful tool in gene therapy for metastatic prostate cancer.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
37
|
Wu CX, Zhao WP, Kishi H, Dokan J, Jin ZX, Wei XC, Yokoyama KK, Muraguchi A. Activation of mouse RAG-2 promoter by Myc-associated zinc finger protein. Biochem Biophys Res Commun 2004; 317:1096-102. [PMID: 15094381 DOI: 10.1016/j.bbrc.2004.03.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Indexed: 11/24/2022]
Abstract
Recombination activating gene-1 (RAG-1) and RAG-2 are expressed specifically in lymphocytes undergoing the antigen receptor gene rearrangement during the lymphocyte development. Our previous study showed that the -41 to -17 nucleotides (nt) 5' -upstream region of mouse RAG-2 were pre-requisite for the core promoter activity and that Pax-5/c-Myb/LEF-1 protein-protein complex was responsible for its activity in immature B cells. In this study, we show that the -65/-42 sequence, the non-conserved sequence between human and mouse RAG-2 promoter, is necessary for the full promoter activity for mouse RAG-2. Electrophoresis mobility shift assay revealed that Myc-associated zinc finger protein (MAZ) as well as SP1/3 binds a GA box in this region. Using chromatin immunoprecipitation, we show that MAZ binds the RAG-2 promoter region in pre-B cells. Furthermore, we show that MAZ synergistically activates the murine RAG-2 promoter with Pax-5/c-Myb/LEF-1 complex. These results first demonstrate that MAZ participates in activation of mouse RAG-2 promoter.
Collapse
Affiliation(s)
- Chun-Xiao Wu
- Department of Immunology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630, Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Duan HO, Simpson-Haidaris PJ. Functional analysis of interleukin 6 response elements (IL-6REs) on the human gamma-fibrinogen promoter: binding of hepatic Stat3 correlates negatively with transactivation potential of type II IL-6REs. J Biol Chem 2003; 278:41270-81. [PMID: 12900415 DOI: 10.1074/jbc.m304210200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several families of transcription factors play important roles in modulating liver-specific gene expression during an acute phase response (APR). Stat3/APR factor is the main transactivator of gene expression by the interleukin (IL)-6 family of cytokines signaling through gp130. During an APR, fibrinogen (FBG) genes are coordinately up-regulated by IL-6 and glucocorticoids. Except for rat gammaFBG, attempts to demonstrate direct binding of IL-6-activated Stat3 to FBG CTGGGAA promoter elements have not been successful. Herein we show the presence of three functional type II IL-6 response elements (IL-6REs) on the human gammaFBG promoter and that the magnitude of Stat3 binding to these elements correlates negatively with their functional activity in reporter gene assays. Stat3-specific binding to gammaFBG IL-6REs was confirmed by cross-competition with alpha2-macroglobulin IL-6RE and specific interactions with anti-Stat3 in electrophoretic mobility shift assays. All type II IL-6REs contributed to full promoter activity; however, transactivation from Site II at -306 to -301 was strongest. In contrast to a previous report, IL-6 failed to induce activation of serum amyloid A-activating factor-1/c-Myc-associated zinc finger protein (SAF-1/MAZ), and mutation of the SAF-1RE had little effect on IL-6 induction of gammaFBG promoter activity. In the absence of a functional glucocorticoid receptor response element, dexamethasone potentiated IL-6-induced gammaFBG promoter activity 2-fold, requiring promoter-proximal Site I and Site II; the promoter-distal Site III had no effect on dexamethasone potentiation of IL-6-induced promoter activity. Notably the propensity for Stat3 binding to human gammaFBG IL-6REs was low compared with Stat3 binding to the alpha2-macroglobulin IL-6RE. Together these data suggest that Stat3 transactivation via IL-6REs on FBG promoters likely involves participation of additional transcription factors and/or coactivators to achieve optimal coordinated up-regulation during an APR.
Collapse
Affiliation(s)
- Hai Ou Duan
- Department of Medicine, University of Rochester School of Medicine and Dentistry Rochester, New York 14642, USA
| | | |
Collapse
|
39
|
Ray BK, Murphy R, Ray P, Ray A. SAF-2, a splice variant of SAF-1, acts as a negative regulator of transcription. J Biol Chem 2002; 277:46822-30. [PMID: 12270922 DOI: 10.1074/jbc.m206299200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A-activating factor-1 (SAF-1), a Cys(2)His(2)-type zinc finger transcription factor, regulates inflammation-induced expression of serum amyloid A protein that is linked to the pathogenesis of reactive amyloidosis, rheumatoid arthritis, and atherosclerosis. Here we report the identification of a novel splice variant, SAF-2, of the SAF family bearing strong sequence similarity to SAF-1. The N-terminal 426 amino acids of both SAF-1 and SAF-2 are identical containing two polyalanine tracts, one proline-rich domain, and six zinc fingers. However, the C terminus of SAF-2 containing two additional zinc fingers is different from SAF-1, which indicates the capability of different biochemical function. We show that SAF-2 interacts more avidly with the SAF-binding element, but its transactivation potential is much lower than SAF-1. Furthermore, co-expression of SAF-2 markedly suppresses SAF-1-regulated promoter function. Finally, we show that the level of SAF-2 protein is reduced during many inflammatory conditions, whereas the SAF-1 protein level remains unchanged. Together, these data suggest that the relative abundance of SAF-2 plays a critical role in the fine tuned regulation of inflammation-responsive genes that are controlled by SAF-1.
Collapse
Affiliation(s)
- Bimal K Ray
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211.
| | | | | | | |
Collapse
|
40
|
Kishikawa S, Murata T, Kimura H, Shiota K, Yokoyama KK. Regulation of transcription of the Dnmt1 gene by Sp1 and Sp3 zinc finger proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2961-70. [PMID: 12071960 DOI: 10.1046/j.1432-1033.2002.02972.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Sp family is a family of transcription factors that bind to cis-elements in the promoter regions of various genes. Regulation of transcription by Sp proteins is based on interactions between a GC-rich binding site (GGGCGG) in DNA and C-terminal zinc finger motifs in the proteins. In this study, we characterized the GC-rich promoter of the gene for the DNA methyltransferase (Dnmt1) that is responsible for methylation of cytosine residues in mammals and plays a role in gene silencing. We found that a cis-element (nucleotides -161 to -147) was essential for the expression of the mouse gene for Dnmt1. DNA-binding assays indicated that transcription factors Sp1 and Sp3 bound to the same cis-element in this region in a dose-dependent manner. In Drosophila SL2 cells, which lack the Sp family of transcription factors, forced expression of Sp1 or Sp3 enhanced transcription from the Dnmt1 promoter. Stimulation by Sp1 and Sp3 were independent phenomena. Furthermore, cotransfection reporter assays with a p300-expression plasmid revealed the activation of the promoter of the Dnmt1 gene in the presence of Sp3. The transcriptional coactivator p300 interacted with Sp3 in vivo and in vitro. Our results indicate that expression of the Dnmt1 gene is controled by Sp1 and Sp3 and that p300 is involved in the activation by Sp3.
Collapse
Affiliation(s)
- Shotaro Kishikawa
- Gene Engineering Division, Department of Biological Systems, BioResource Center, RIKEN (The Institute of Physical & Chemical Research), Japan
| | | | | | | | | |
Collapse
|
41
|
Hu HM, Arcinas M, Boxer LM. A Myc-associated zinc finger protein-related factor binding site is required for the deregulation of c-myc expression by the immunoglobulin heavy chain gene enhancers in Burkitt's lymphoma. J Biol Chem 2002; 277:9819-24. [PMID: 11777933 DOI: 10.1074/jbc.m111426200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The deregulation of expression of the c-myc gene in Burkitt's lymphoma results from the translocation that links one c-myc allele to one of the immunoglobulin genes. This physical linkage promotes interactions between c-myc and immunoglobulin gene regulatory elements that affect c-myc transcription initiation and elongation. We have located a region in the c-myc promoter that is required for the complete activation by the immunoglobulin heavy chain gene enhancer. This regulatory element contains a core sequence, GGGAGG, similar to the GA box recognized by the transcription factor Myc-associated zinc finger protein (MAZ). UV cross-link analysis indicated that the mass of this protein did not correspond to that of MAZ, suggesting that a protein related to but distinct from MAZ bound to this site. Mutation of this regulatory element resulted in a loss of promoter activity induced by the immunoglobulin heavy chain gene enhancer. This site was also required for the c-myc promoter shift from P2 to P1. In vivo footprinting revealed that this site was occupied on the translocated c-myc allele but not on the untranslocated allele. Taken together, these findings suggest that this regulatory element is required for the full activation of c-myc promoter activity by the immunoglobulin heavy chain gene enhancer.
Collapse
Affiliation(s)
- Hsien-Ming Hu
- Center for Molecular Biology in Medicine, Veterans Affairs Palo Alto Health Care System, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
42
|
Takahashi S, Harigae H, Yokoyama H, Kaku M, Sasaki T. Genomic structure and regulation of a novel human gene, Klp1. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:207-11. [PMID: 11779635 DOI: 10.1016/s0167-4781(01)00349-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Klp1 (K562 cells-derived leucine zipper-like protein 1) is a transcription factor which binds to the coproporphyrinogen oxidase promoter regulatory element (GGACTACAG). In order to clarify the function of Klp1, we determined the complete human Klp1 genomic structure and regulatory element in the promoter region. The gene spans about 2.4 kb and has three exons. Its promoter region has multiple GC boxes, E2F binding site, one cAMP response element (CRE), and no TATA box with multiple transcription initiation sites, which is characteristic of housekeeping and growth regulating genes. Promoter analysis showed that the promoter was more active in K562 cells entered into the cell cycle by serum stimulation than quiescent cells. Further promoter analysis revealed that CRE at -42 is essential for full promoter activity, and c-Jun and activation transcription factor 1/cAMP response element binding protein 1 proteins bind to this element. These structural characteristics and the promoter function suggest that Klp1 may play a role in cell cycle regulation.
Collapse
Affiliation(s)
- S Takahashi
- Department of Rheumatology and Hematology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
43
|
Ugai H, Li HO, Komatsu M, Tsutsui H, Song J, Shiga T, Fearon E, Murata T, Yokoyama KK. Interaction of Myc-associated zinc finger protein with DCC, the product of a tumor-suppressor gene, during the neural differentiation of P19 EC cells. Biochem Biophys Res Commun 2001; 286:1087-97. [PMID: 11527412 DOI: 10.1006/bbrc.2001.5469] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Expression of the DCC (deleted in colorectal cancer) protein is strongly induced during the neural differentiation of mouse P19 embryonal carcinoma (EC) cells that occurs when these cells are treated with retinoic acid (RA). Myc-associated zinc finger protein (MAZ) is a DNA-binding protein that is widely expressed and functions in human, mouse and hamster cells as an activator, an initiator or a terminator of transcription. However, the biological functions of MAZ remain elusive. We report here that MAZ associates with the cytoplasmic domain of the DCC protein in vivo and in vitro. Yeast two-hybrid assays confirmed this association. An immunofluorescence study demonstrated that DCC protein is expressed at elevated levels in neuron-like P19 EC cells, in particular in axons, in which the MAZ protein is also expressed. We found that MAZ was translocated from the nucleus to the cytoplasm during the RA-induced terminal differentiation of P19 EC cells with resultant loss of the ability of MAZ to bind to the ME1a1 site of the c-myc promoter. Taken together, our observations imply that the DCC protein might play a critical role as a signaling molecule in the regulation of the transcriptional activity of MAZ during the neural differentiation of P19 EC cells.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Sequence
- Animals
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cell Adhesion Molecules/metabolism
- Cell Differentiation
- Cell Line
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- DCC Receptor
- DNA-Binding Proteins
- Genes, myc/genetics
- Humans
- Immunohistochemistry
- Microscopy, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Neurons/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, Cell Surface
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Tretinoin/metabolism
- Tumor Suppressor Proteins
- Two-Hybrid System Techniques
- Xenopus
- Zinc Fingers
Collapse
Affiliation(s)
- H Ugai
- Gene Engineering Division, Bioresource Center, Tsukuba Institute, RIKEN (The Institute of Physical and Chemical Research), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Song J, Ugai H, Ogawa K, Wang Y, Sarai A, Obata Y, Kanazawa I, Sun K, Itakura K, Yokoyama KK. Two consecutive zinc fingers in Sp1 and in MAZ are essential for interactions with cis-elements. J Biol Chem 2001; 276:30429-34. [PMID: 11395515 DOI: 10.1074/jbc.m103968200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zinc finger proteins Sp1 and Myc-associated zinc finger protein (MAZ) are transcription factors that control the expression of various genes. Regulation of transcription by these factors is based on interactions between GC-rich DNA-binding sites (GGGCGG for Sp1 and GGGAGGG for MAZ) and the carboxyl-terminal zinc finger motifs of the two proteins. Sp1 and MAZ have three and six zinc fingers, respectively, and the details of their interactions with cis-elements remain to be clarified. We demonstrate here that Sp1 and MAZ interact with the same GC-rich DNA-binding sites, apparently sharing DNA-binding sites with each other. We found that the DNA binding activities of Sp1 and MAZ depended mainly on consecutive zinc fingers, namely the second and third zinc fingers in Sp1 and the third and fourth zinc fingers in MAZ. Furthermore, the interactions of the zinc finger proteins with the same cis-elements appear to play a critical role in the regulation of gene expression. It seems plausible that two consecutive zinc finger motifs in a zinc finger protein might be essential for interaction of the protein with DNA.
Collapse
Affiliation(s)
- J Song
- RIKEN (The Institute of Physical and Chemical Research), Tsukuba Institute, Bioresource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Song J, Ugai H, Kanazawa I, Sun K, Yokoyama KK. Independent repression of a GC-rich housekeeping gene by Sp1 and MAZ involves the same cis-elements. J Biol Chem 2001; 276:19897-904. [PMID: 11259406 DOI: 10.1074/jbc.m010658200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factors Sp1 and MAZ (Myc-associated zinc finger protein) contain several zinc finger motifs, and each functions as both a positive and a negative regulator of gene expression. In this study, we characterized the extremely GC-rich promoter of the human gene for MAZ, which is known as a housekeeping gene. Unique symmetrical motifs in the promoter region (nucleotides -383 to -334) were essential for the expression of the gene for MAZ, whereas an upstream silencer element (nucleotides -784 to -612) was found to act in a position-dependent but orientation-independent manner. Sp1 and MAZ bound to the same cis-elements in the GC-rich promoter, apparently sharing DNA-binding sites. The relative extent of binding of Sp1 and MAZ to these cis-elements corresponded to the extent of negative regulation of the expression of the gene for MAZ in various lines of cells. Furthermore, novel repressive domains in both Sp1 (amino acids 622-788) and MAZ (amino acids 127-292) were identified. Suppression by Sp1 and suppression by MAZ were independent phenomena; histone deacetylases were involved in the autorepression by MAZ itself, whereas DNA methyltransferase 1 was associated with suppression by Sp1. Our results indicate that both deacetylation and methylation might be involved in the regulation of expression of a single gene via the actions of different zinc finger proteins that bind to the same cis-elements.
Collapse
Affiliation(s)
- J Song
- RIKEN (The Insitute of Physical & Chemical Research), Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | |
Collapse
|
46
|
Dong H, Lin W, Zhang CK, Xiong H, Fu G, Jin WR, Chen R, Chen Z, Qi ZT, Huang GM. Genomic sequence and expression analyses of human chromatin assembly factor 1 p150 gene. Gene 2001; 264:187-96. [PMID: 11250073 DOI: 10.1016/s0378-1119(01)00335-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chromatin assembly factor-1 (CAF-1) plays essential roles in eukaryotic chromatin assembly during DNA replication (Smith and Stillman, 1989. Cell 58, 15-25), (Krude, 1999. Eur. J. Biochem. 263, 1-5). Its p150 subunit, involved in interaction with histone H3 and H4, is critical to the CAF-1 nucleosome assembly activity. In this study, we sequenced a 96-kb genomic DNA region that includes a 42.8-kb CAF-1 p150 subunit gene (CHAF1A), and a 41.1-kb EEN gene. A scripted bioinformatics analysis pipeline (research agent) has been set up to annotate the BAC sequence with a set of integrated algorithms. The CAF-1 p150 subunit gene contains 15 exons and 14 introns. The promoter region is characterized by deletional analyses, revealing a potential repressor. Tissue-correlated alternative splicing forms of the transcript was initially identified by EST clustering analysis, then confirmed by RT-PCR which resulted more splicing forms than computational prediction.
Collapse
Affiliation(s)
- H Dong
- Chinese National Human Genome Center at Shanghai, 351 Guo Shou Jing Road, Zhangjiang High Tech Park, Shanghai 201203, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Song J, Mangold M, Suske G, Geltinger C, Kanazawa I, Sun K, Yokoyama KK. Characterization and promoter analysis of the mouse gene for transcription factor Sp4. Gene 2001; 264:19-27. [PMID: 11245974 DOI: 10.1016/s0378-1119(01)00328-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transcription factor Sp4 is a member of the Sp1 family. It functions differently from other members of this family, such as Sp1 and Sp3, and the gene for Sp4 is transcribed in a tissue-specific manner. Recent studies in mice suggest that Sp4 might play an important role in growth, viability, and male fertility. We report here the isolation and characterization of the gene for Sp4 from a mouse genomic library. The mouse gene for Sp4 was about 80 kb in length and it consisted of six exons and five introns. The promoter was found in a CpG island and had a high G+C content. The proximal promoter contained multiple putative binding sites for the transcription factors Sp1 and MAZ but lacked a consensus TATA box. Multiple sites for the initiation of transcription were mapped in a GC-rich region from 286 bp to 211 bp upstream of the ATG triplet at the site of initiation of translation, and all of the sites were either C or G. Transfection experiments and deletion analysis allowed us to localize the promoter to a region that was no more than 93 bp upstream from the first site of initiation of transcription. We also found that ectopic expression of Sp1 and of MAZ, but not of Sp3, suppressed expression of the Sp4 promoter in a dose-dependent manner.
Collapse
Affiliation(s)
- J Song
- RIKEN (The Institute of Physical and Chemical Research), Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, 305-0074, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Choi DS, Handa M, Young H, Gordon AS, Diamond I, Messing RO. Genomic organization and expression of the mouse equilibrative, nitrobenzylthioinosine-sensitive nucleoside transporter 1 (ENT1) gene. Biochem Biophys Res Commun 2000; 277:200-8. [PMID: 11027664 DOI: 10.1006/bbrc.2000.3665] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned and characterized the genomic structure of the mouse gene for the NBMPR-sensitive equilibrative nucleoside transporter (mENT1), which is located on chromosome 17C. About 12-kb of genomic DNA was sequenced including the promoter region, 12 exons, 11 introns, and the 3'-untranslated region. All exon-intron junction sequences conform to the GT/AG rule. Primer extension analysis demonstrated a transcription initiation site located 252 bp upstream of the translation start site. Analysis of the 2.5-kb 5'-flanking sequence shows putative binding sites for several transcription factors, including GATA-1, IRF-2, Pit-1, myogenin, CREB, Sp-1, Ap-2, MAZ, and GR. We demonstrated that mouse ENT1 mRNA was highly expressed in heart, spleen, lung, liver, and testis. Lower levels of expression were detected in brain and kidney. Functional analysis of the 5'-flanking region showed that the nucleotide sequence from -652 to -111 contains cis-regulatory elements that promote gene expression. We found two Sp-1 binding sites (-296/-303, -307/-313) and two MAZ binding sites (-353/-359, -522/-528) in this region. Luciferase assay results suggest that MAZ and Sp-1 transcription factors are important positive regulators of transcription for the ENT1 gene in NG108-15 cells.
Collapse
Affiliation(s)
- D S Choi
- Ernest Gallo Clinic and Research Center, Department of Neurology, Graduate Program in Neuroscience, University of California, San Francisco, 5858 Horton Street, Suite 200, Emeryville, California, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Tsutsui H, Geltinger C, Murata T, Itakura K, Wada T, Handa H, Yokoyama KK. The DNA-binding and transcriptional activities of MAZ, a myc-associated zinc finger protein, are regulated by casein kinase II. Biochem Biophys Res Commun 1999; 262:198-205. [PMID: 10448092 DOI: 10.1006/bbrc.1999.1130] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myc-associated zinc finger protein (MAZ) is a transcription factor that contains proline-rich, alanine repeats and six C(2)H(2)-type zinc finger motifs, as well as five putative sites of phosphorylation by casein kinase II (CKII). Site-specific mutagenesis of MAZ revealed that the serine residue at position 480 was the major site of phosphorylation by CKII both in vitro and in vivo. Phosphorylation of MAZ by CKII at this serine residue was required for maximum binding of MAZ to the pyrimidine-rich DNA of the nuclease-hypersensitive element (NHE) in the 5'-end promoter region of the c-myc gene. Mutation of serine at position 480 to alanine eliminated the DNA-binding activity of MAZ to this element. Moreover, the mutated MAZ was unable to enhance the expression of luciferase encoded by a c-myc promoter/luciferase reporter gene in HeLa cells in the presence of CKII. These results suggest that phosphorylation of the serine residue at position 480 of MAZ by CKII can control the function of MAZ by altering its DNA-binding activity.
Collapse
Affiliation(s)
- H Tsutsui
- Tsukuba Life Science Center, RIKEN (The Institute of Physical and Chemical Research), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Song J, Geltinger C, Sun K, Kanazawa I, Yokoyama KK. Direct lysis method for the rapid preparation of plasmid DNA. Anal Biochem 1999; 271:89-91. [PMID: 10361009 DOI: 10.1006/abio.1999.4106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J Song
- RIKEN (The Institute of Physical and Chemical Research), 3-1-1 Koyadai, Ibaraki, Tsukuba, 305-0074, Japan
| | | | | | | | | |
Collapse
|