1
|
Hu S, Cucinotta FA. Computational studies on full-length Ku70 with DNA duplexes: base interactions and a helical path. J Mol Model 2011; 18:1935-49. [DOI: 10.1007/s00894-011-1220-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/09/2011] [Indexed: 11/30/2022]
|
2
|
Zhang X, Brann TW, Zhou M, Yang J, Oguariri RM, Lidie KB, Imamichi H, Huang DW, Lempicki RA, Baseler MW, Veenstra TD, Young HA, Lane HC, Imamichi T. Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4541-5. [PMID: 21398614 PMCID: PMC3720676 DOI: 10.4049/jimmunol.1003389] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytosolic foreign DNA is detected by pattern recognition receptors and mainly induces type I IFN production. We found that transfection of different types of DNA into various untreated cells induces type III IFN (IFN-λ1) rather than type I IFN, indicating the presence of uncharacterized DNA sensor(s). A pull-down assay using cytosolic proteins identified that Ku70 and Ku80 are the DNA-binding proteins. The knockdown studies and the reporter assay revealed that Ku70 is a novel DNA sensor inducing the IFN-lambda1 activation. The functional analysis of IFNL1 promoter revealed that positive-regulatory domain I and IFN-stimulated response element sites are predominantly involved in the DNA-mediated IFNL1 activation. A pull-down assay using nuclear proteins demonstrated that the IFN-λ1 induction is associated with the activation of IFN regulatory factor-1 and -7. Thus, to our knowledge, we show for the first time that Ku70 mediates type III IFN induction by DNA.
Collapse
Affiliation(s)
- Xing Zhang
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Terrence W. Brann
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Ming Zhou
- Advanced Technology Program Directorate, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Jun Yang
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Raphael M. Oguariri
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Kristy B. Lidie
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Da-Wei Huang
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Richard A. Lempicki
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Michael W. Baseler
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| | - Timothy D. Veenstra
- Advanced Technology Program Directorate, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA
| | - Howard A. Young
- Laboratory of Experimental Immunology, Center for Cancer Research, NCI-Frederick, Frederick, Maryland, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tomozumi Imamichi
- Applied and Developmental Research Directorate, Science Applications International Corporation (SAIC)-Frederick, Inc., National Cancer Institute at Frederick (NCI-Frederick), Frederick, Maryland, USA
| |
Collapse
|
3
|
Cheli Y, Williams SA, Ballotti R, Nugent DJ, Kunicki TJ. Enhanced binding of poly(ADP-ribose)polymerase-1 and Ku80/70 to the ITGA2 promoter via an extended cytosine-adenosine repeat. PLoS One 2010; 5:e8743. [PMID: 20090957 PMCID: PMC2806922 DOI: 10.1371/journal.pone.0008743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/21/2009] [Indexed: 11/18/2022] Open
Abstract
Background We have identified a cytosine-adenosine (CA) repeat length polymorphism in the 5′-regulatory region of the human integrin α2 gene ITGA2 that begins at −605. Our objective was to establish the contribution of this polymorphism to the regulation of integrin α2β1 expression, which is known to vary several-fold among normal individuals, and to investigate the underlying mechanism(s). Methodology/Principal Findings In combination with the SNP C-52T, previously identified by us as a binding site for the transcription factor Sp1, four ITGA2 haplotypes can be distinguished, in the order in which they enhance ITGA2 transcription: (CA)12/-52C>(CA)11/-52C>(CA)11/-52T>(CA)10/-52T. By DNA affinity chromatography and chromatin immunoprecipitation (ChIP) assays, we show that poly (ADP-ribose)polymerase-1 (PARP-1) and Ku80/70 bind specifically and with enhanced affinity to the longer (CA)12 repeat alleles. Conclusions/Significance The increased binding of PARP-1 and Ku80/70, known components of transcription co-activator complexes, to the longer (CA)12 alleles of ITGA2 coincides with enhanced α2β1 expression. The most likely explanation for these findings is that PARP-1 and Ku80/70 contribute to the transcriptional regulation of ITGA2. These observations provide new insight into the mechanisms(s) underlying haplotype-dependent variability in integrin α2β1 expression in human platelets and other cells.
Collapse
Affiliation(s)
- Yann Cheli
- The Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Institut National de la Santé et de la Recherche Médical, Unité 895, Université de Nice, Nice, France
| | - Shirley A. Williams
- Division of Hematology, The Children's Hospital of Orange County, Orange, California, United States of America
| | - Robert Ballotti
- Institut National de la Santé et de la Recherche Médical, Unité 895, Université de Nice, Nice, France
| | - Diane J. Nugent
- Division of Hematology, The Children's Hospital of Orange County, Orange, California, United States of America
| | - Thomas J. Kunicki
- The Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Liiv I, Rebane A, Org T, Saare M, Maslovskaja J, Kisand K, Juronen E, Valmu L, Bottomley MJ, Kalkkinen N, Peterson P. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:74-83. [PMID: 17997173 PMCID: PMC2225445 DOI: 10.1016/j.bbamcr.2007.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/29/2007] [Accepted: 09/21/2007] [Indexed: 01/29/2023]
Abstract
The autoimmune regulator (AIRE) protein is a key mediator of the central tolerance for tissue specific antigens and is involved in transcriptional control of many antigens in thymic medullary epithelial cells (mTEC). Mutations in the AIRE gene cause a rare disease named autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Here we report using GST pull-down assay, mass-spectrometry and co-immunoprecipitation that a heterotrimeric complex of DNA-Dependent Protein Kinase (DNA-PK), consisting of Ku70, Ku80 and DNA-PK catalytic subunit (DNA-PKcs), is a novel interaction partner for AIRE. In vitro phosphorylation assays show that the residues Thr68 and Ser156 are DNA-PK phosphorylation sites in AIRE. In addition, we demonstrate that DNA-PKcs is expressed in AIRE positive mTEC cell population and that introduction of mutations into the AIRE phosphorylation sites decrease the capacity of AIRE to activate transcription from reporter promoters. In conclusion, our results suggest that phosphorylation of the AIRE protein at Thr68 and Ser156 by DNA-PK influences AIRE transactivation ability and might have impact on other aspects of the functional regulation of the AIRE protein.
Collapse
Affiliation(s)
- Ingrid Liiv
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Ana Rebane
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Tõnis Org
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Mario Saare
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | | | - Kai Kisand
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
| | - Erkki Juronen
- Human Biology and Genetics, University of Tartu, Tartu 50411, Estonia
| | - Leena Valmu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Matthew James Bottomley
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Via Pontina Km. 30.600, 00040 Pomezia (Rome), Italy
| | - Nisse Kalkkinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pärt Peterson
- Molecular Pathology, University of Tartu, Tartu 50411, Estonia
- Institute of Medical Technology, University of Tampere, Tampere 33014, Finland
| |
Collapse
|
5
|
Giampuzzi M, Oleggini R, Albanese C, Pestell R, Di Donato A. beta-catenin signaling and regulation of cyclin D1 promoter in NRK-49F cells transformed by down-regulation of the tumor suppressor lysyl oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1745:370-81. [PMID: 15946752 DOI: 10.1016/j.bbamcr.2005.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 11/28/2022]
Abstract
Lysyl oxidase is the enzyme that is essential for collagen and elastin cross-linking. Previous investigations showed that lysyl oxidase is down-regulated in many human tumors and ras-transformed cells. Recently, we proved that antisense down-regulation of lysyl oxidase in NRK-49F cells induced phenotypic changes and oncogenic transformation, characterized by p21(ras) activation and beta-catenin/cyclin D1 up-regulation. In the present paper, we examined beta-catenin intracellular distribution and its association with E-cadherin. We observed an increased association between E-cadherin and beta-catenin in the lysyl-oxidase down-regulated cells during serum starvation. Moreover, we found that beta-catenin cytoplasmic and nuclear levels were increased, suggesting a failure of its down-regulation by the APC-GSK-3beta system, in particular the GSK-3beta phosphorylation of ser-33/37 and thr-41 of beta-catenin. Finally, we investigated the mechanisms leading to the observed cyclin D1 up-regulation. We showed that in the antisense lysyl oxidase cells the cyclin D1 promoter was activated through the LEF and the ATF/CRE sites in the proximal promoter. While the promoter activation through LEF is compatible with beta-catenin signaling, we investigated the possibility that the CRE-dependent activation might be linked to the down-regulation of lysyl oxidase. In fact, up-regulation of lysyl oxidase in a COS-7 cell model showed a significant diminution of the CREB protein binding to the cyclin D1 promoter, leading to a dramatic inhibition of its activity and a significant down-regulation of cyclin D1 protein level in vivo. Finally, our study describes some major anomalies occurring in lysyl oxidase down-regulated fibroblasts, related to beta-catenin signaling and cyclin D1 expression.
Collapse
Affiliation(s)
- Monia Giampuzzi
- Laboratorio di Nefrologia, Istituto G. Gaslini, Largo G. Gaslini, 5, 16147 Genova, Italy
| | | | | | | | | |
Collapse
|
6
|
Zhu P, Zhang D, Chowdhury D, Martinvalet D, Keefe D, Shi L, Lieberman J. Granzyme A, which causes single-stranded DNA damage, targets the double-strand break repair protein Ku70. EMBO Rep 2006; 7:431-7. [PMID: 16440001 PMCID: PMC1456912 DOI: 10.1038/sj.embor.7400622] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 12/01/2005] [Accepted: 12/05/2005] [Indexed: 11/08/2022] Open
Abstract
Granzyme A (GzmA) induces caspase-independent cell death with morphological features of apoptosis. Here, we show that GzmA at nanomolar concentrations cleaves Ku70, a key double-strand break repair (DSBR) protein, in target cells. Ku70 is cut after Arg(301), disrupting Ku complex binding to DNA. Cleaving Ku70 facilitates GzmA-mediated cell death, as silencing Ku70 by RNA interference increases DNA damage and cell death by GzmB cluster-deficient cytotoxic T lymphocytes or by GzmA and perforin, whereas Ku70 overexpression has the opposite effect. Ku70 has two known antiapoptotic effects-facilitating DSBR and sequestering bax to prevent its translocation to mitochondria. However, GzmA triggers single-stranded, not double-stranded, DNA damage, and GzmA-induced cell death does not involve bax. Therefore, Ku70 has other antiapoptotic functions in GzmA-induced cell death, which are blocked when GzmA proteolyses Ku70.
Collapse
Affiliation(s)
- Pengcheng Zhu
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Dong Zhang
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Dipanjan Chowdhury
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Denis Martinvalet
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis Keefe
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Lianfa Shi
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Judy Lieberman
- The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Tel: +1 617 278 3106; Fax: +1 617 278 3134; E-mail:
| |
Collapse
|
7
|
Yan KH, Liu PF, Tzeng HT, Chang WC, Chou WG, Pan RL. Characterization of DNA end-binding activities in higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:617-622. [PMID: 15331090 DOI: 10.1016/j.plaphy.2004.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2003] [Accepted: 06/04/2004] [Indexed: 05/24/2023]
Abstract
DNA double-strand-breaks (DSB) are the most severe lesion in cells exposing to ionizing radiation and many other stress environments. Repair of DNA DSB is therefore critical to cellular survival. In this work, we observed the double-stranded DNA end-binding (DEB) like activities in rice (Oryza sativa L. cv. TN5) suspension cells and hypocotyls from etiolated mung bean (Vigna radiata L. TN5) seedlings. Higher plant DEB-like protein binds primarily to linearized double-stranded DNA ends. Competition of unlabeled probe was examined in double-stranded DEB assay of cell extracts from rice and mung bean. DEB-like activities of higher plants did not depend on sequence and types of double-stranded DNA ends. Distinct electrophoretic mobility shift patterns and binding features further indicate that DEB-like factors from various sources might not share identical structure and function, and probably belong to different types of DEB proteins from higher plants. Our evidence suggests that DEB proteins are certainly ubiquitous in all organisms probably for repairing and processing double-stranded DNA breaks from formidable lethal lesion.
Collapse
Affiliation(s)
- Kun H Yan
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsin Chu, Taiwan 30043, Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Zhang S, Schlott B, Görlach M, Grosse F. DNA-dependent protein kinase (DNA-PK) phosphorylates nuclear DNA helicase II/RNA helicase A and hnRNP proteins in an RNA-dependent manner. Nucleic Acids Res 2004; 32:1-10. [PMID: 14704337 PMCID: PMC373260 DOI: 10.1093/nar/gkg933] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An RNA-dependent association of Ku antigen with nuclear DNA helicase II (NDH II), alternatively named RNA helicase A (RHA), was found in nuclear extracts of HeLa cells by immunoprecipitation and by gel filtration chromatography. Both Ku antigen and NDH II were associated with hnRNP complexes. Two-dimensional gel electrophoresis showed that Ku antigen was most abundantly associated with hnRNP C, K, J, H and F, but apparently not with others, such as hnRNP A1. Unexpectedly, DNA-dependent protein kinase (DNA-PK), which comprises Ku antigen as the DNA binding subunit, phosphorylated hnRNP proteins in an RNA-dependent manner. DNA-PK also phosphorylated recombinant NDH II in the presence of RNA. RNA binding assays displayed a preference of DNA-PK for poly(rG), but not for poly(rA), poly(rC) or poly(rU). This RNA binding affinity of DNA-PK can be ascribed to its Ku86 subunit. Consistently, poly(rG) most strongly stimulated the DNA-PK-catalyzed phosphorylation of NDH II. RNA interference studies revealed that a suppressed expression of NDH II altered the nuclear distribution of hnRNP C, while silencing DNA-PK changed the subnuclear distribution of NDH II and hnRNP C. These results support the view that DNA-PK can also function as an RNA-dependent protein kinase to regulate some aspects of RNA metabolism, such as RNA processing and transport.
Collapse
Affiliation(s)
- Suisheng Zhang
- Department of Biochemistry, Institute of Molecular Biotechnology, Postfach 100 813, D-07708 Jena, Germany
| | | | | | | |
Collapse
|
9
|
Schild-Poulter C, Matheos D, Novac O, Cui B, Giffin W, Ruiz MT, Price GB, Zannis-Hadjopoulos M, Haché RJG. Differential DNA binding of Ku antigen determines its involvement in DNA replication. DNA Cell Biol 2003; 22:65-78. [PMID: 12713733 DOI: 10.1089/104454903321515887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ku antigen (Ku70/Ku80) is a regulatory subunit of DNA-dependent protein kinase, which participates in the regulation of DNA replication and gene transcription through specific DNA sequences. In this study, we have compared the mechanism of action of Ku from A3/4, a DNA sequence that appears in mammalian origins of DNA replication, and NRE1, a transcriptional regulatory element in the long terminal repeat of mouse mammary tumor virus through which Ku antigen and its associated kinase, DNA-dependent protein kinase (DNA-PK(cs)), act to repress steroid-induced transcription. Our results indicate that replication from a minimal replication origin of ors8 is independent of DNA-PK(cs) and that Ku interacts with A3/4-like sequences and NRE1 in fundamentally different ways. UV crosslinking experiments revealed differential interactions of the Ku subunits with A3/4, NRE1, and two other proposed Ku transcriptional regulatory elements. In vitro footprinting experiments showed direct contact of Ku on A3/4 and over the region of ors8 homologous to A3/4. In vitro replication assays using ors8 templates bearing mutations in the A3/4-like sequence suggested that Ku binding to this element was necessary for replication. By contrast, in vitro replication experiments revealed that NRE1 was not involved in DNA replication. Our results establish A3/4 as a new class of Ku DNA binding site. Classification of Ku DNA binding into eight categories of interaction based on recognition and DNA crosslinking experiments is discussed.
Collapse
Affiliation(s)
- Caroline Schild-Poulter
- Department of Medicine, The Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bertinato J, Tomlinson JJ, Schild-Poulter C, Haché RJG. Evidence implicating Ku antigen as a structural factor in RNA polymerase II-mediated transcription. Gene 2003; 302:53-64. [PMID: 12527196 DOI: 10.1016/s0378111902010892] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ku antigen is an abundant nuclear protein with multiple functions that depend mainly on Ku's prolific and highly verstatile interactions with DNA. We have shown previously that the direct binding of Ku in vitro to negative regulatory element 1 (NRE1), a transcriptional regulatory element in the long terminal repeat of mouse mammary tumour virus, correlates with the regulation of viral transcription by Ku. In this study, we have sought to explore the interaction of Ku with NRE1 in vivo in yeast one-hybrid experiments. Unexpectedly, we observed that human Ku70 carrying a transcriptional activation domain from the yeast Gal4 protein induced transcription of yeast reporter genes pleiotrophically, independent of NRE1, promoter, reporter gene and chromosomal location. Ku80 with the same activation domain had no effect on transcription when expressed alone, but reconstituted activation when co-expressed with native human Ku70. The requirements for transcriptional activation by Ku-Gal4 activation domain proteins correlated with previous descriptions of the requirements for DNA sequence-independent DNA binding by Ku, but were distinct from determinants for DNA-end binding by a truncated Ku heterodimer determined recently by crystallography. These results suggest a preferential targeting of Ku to transcriptionally active chromatin that indicate a possible function for Ku within the RNA polymerase II holoenzyme.
Collapse
Affiliation(s)
- Jesse Bertinato
- Graduate Program in Biochemistry, University of Ottawa, The Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, Ont. K1Y 4E9, Canada
| | | | | | | |
Collapse
|
11
|
Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M. Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:59-72. [PMID: 12393188 DOI: 10.1016/s0167-4781(02)00497-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ors binding activity (OBA) represents a HeLa cell protein activity that binds in a sequence-specific manner to A3/4, a 36-bp mammalian replication origin sequence. OBA's DNA binding domain is identical to the 80-kDa subunit of Ku antigen. Ku antigen associates with mammalian origins of DNA replication in vivo, with maximum binding at the G1/S phase. Addition of an A3/4 double-stranded oligonucleotide inhibited in vitro DNA replication of p186, pors12, and pX24, plasmids containing the monkey replication origins of ors8, ors12, and the Chinese hamster DHFR oribeta, respectively. In contrast, in vitro SV40 DNA replication remained unaffected. The inhibitory effect of A3/4 oligonucleotide was fully reversed upon addition of affinity-purified Ku. Furthermore, depletion of Ku by inclusion of an antibody recognizing the Ku heterodimer, Ku70/Ku80, decreased mammalian replication to basal levels. By co-immunoprecipitation analyses, Ku was found to interact with DNA polymerases alpha, delta and epsilon, PCNA, topoisomerase II, RF-C, RP-A, DNA-PKcs, ORC-2, and Oct-1. These interactions were not inhibited by the presence of ethidium bromide in the immunoprecipitation reaction, suggesting DNA-independent protein associations. The data suggest an involvement of Ku in mammalian DNA replication as an origin-specific-binding protein with DNA helicase activity. Ku acts at the initiation step of replication and requires an A3/4-homologous sequence for origin binding. The physical association of Ku with replication proteins reveals a possible mechanism by which Ku is recruited to mammalian origins.
Collapse
Affiliation(s)
- Diamanto Matheos
- McGill Cancer Centre, McGill University, 3655 Drummond Street, Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
12
|
Chan JY, Chen LK, Chang JF, Ting HM, Goy C, Chen JL, Hwang JJ, Chen FD, Chen DJ, Ngo FQ. Differential gene expression in a DNA double-strand-break repair mutant XRS-5 defective in Ku80: analysis by cDNA microarray. JOURNAL OF RADIATION RESEARCH 2001; 42:371-385. [PMID: 11951661 DOI: 10.1269/jrr.42.371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ability of cells to rejoin DNA double-strand breaks (DSBs) usually correlates with their radiosensitivity. This correlation has been demonstrated in radiosensitive cells, including the Chinese hamster ovary mutant XRS-5. XRS-5 is defective in a DNA end-binding protein, Ku80, which is a component of a DNA-dependent protein kinase complex used for joining strand breaks. However, Ku80-deficient cells are known to be retarded in cell proliferation and growth as well as other yet to be identified defects. Using custom-made 600-gene cDNA microarray filters, we found differential gene expressions between the wild-type and XRS-5 cells. Defective Ku80 apparently affects the expression of several repair genes, including topoisomerase-I and -IIA, ERCC5, MLH1, and ATM. In contrast, other DNA repair-associated genes, such as GADD45A, EGR1 MDM2 and p53, were not affected. In addition, for large numbers of growth-associated genes, such as cyclins and clks, the growth factors and cytokines were also affected. Down-regulated expression was also found in several categories of seemingly unrelated genes, including apoptosis, angiogenesis, kinase and signaling, phosphatase, stress protein, proto-oncogenes and tumor suppressors, transcription and translation factors. A RT-PCR analysis confirmed that the XRS-5 cells used were defective in Ku80 expression. The diversified groups of genes being affected could mean that Ku80, a multi-functional DNA-binding protein, not only affects DNA repair, but is also involved in transcription regulation. Our data, taken together, indicate that there are specific genes being modulated in Ku80- deficient cells, and that some of the DNA repair pathways and other biological functions are apparently linked, suggesting that a defect in one gene could have global effects on many other processes.
Collapse
Affiliation(s)
- J Y Chan
- Institute of Radiological Sciences, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Giampuzzi M, Botti G, Di Duca M, Arata L, Ghiggeri G, Gusmano R, Ravazzolo R, Di Donato A. Lysyl oxidase activates the transcription activity of human collagene III promoter. Possible involvement of Ku antigen. J Biol Chem 2000; 275:36341-9. [PMID: 10942761 DOI: 10.1074/jbc.m003362200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysyl oxidase is an extracellular enzyme that controls the maturation of collagen and elastin. Lysyl oxidase and collagen III often show similar expression patterns in fibrotic tissues. Therefore, we investigated the influence of lysyl oxidase overexpression on the promoter activity of human COL3A1 gene. Our results showed that when COS-7 cells overexpressed the mature form of lysyl oxidase, the activity of the human COL3A1 promoter was increased up to an average of 12 times when tested by luciferase reporter assay. The effect was specific, because other promoters were not affected. Moreover, lysyl oxidase effect was abolished by beta-aminopropionitrile, a specific inhibitor of its catalytic activity. Electrophoretic mobility shift assay showed a binding activity in the region from -101 to -77 that was significantly increased by lysyl oxidase overexpression. The binding was specifically competed by the cold probe, and the mutagenesis of this region abolished both the binding activity in gel retardation and lysyl oxidase stimulation of COL3A1 promoter in transfection experiments. We identified the binding activity as Ku antigen in its two components: Ku80 and Ku70. This study suggests a new coordinated mechanism by which lysyl oxidase might control the development of fibrosis.
Collapse
Affiliation(s)
- M Giampuzzi
- Department of Nephrology, Gaslini Children's Hospital, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Uliel L, Weisman-Shomer P, Oren-Jazan H, Newcomb T, Loeb LA, Fry M. Human Ku antigen tightly binds and stabilizes a tetrahelical form of the Fragile X syndrome d(CGG)n expanded sequence. J Biol Chem 2000; 275:33134-41. [PMID: 10924524 DOI: 10.1074/jbc.m005542200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hairpin and tetrahelical structures of a d(CGG)(n) sequence in the FMR1 gene have been implicated in its expansion in fragile X syndrome. The identification of tetraplex d(CGG)(n) destabilizing proteins (Fry, M., and Loeb, L. A.(1999) J. Biol. Chem. 274, 12797-12803; Weisman-Shomer, P., Naot, Y., and Fry, M. (2000) J. Biol. Chem. 275, 2231-2238) suggested that proteins might modulate d(CGG)(n) folding and aggregation. We assayed human TK-6 lymphoblastoid cell extracts for d(CGG)(8) oligomer binding proteins. The principal binding protein was identified as Ku antigen by its partial amino acid sequence and antigenicity. The purified 88/75-kDa heterodimeric Ku bound with similar affinities (K(d) approximately 1. 8-10.2 x 10(-9) mol/liter) to double-stranded d(CGG)(8).d(CCG)(8), hairpin d(CGG)(8), single-stranded d(CII)(8), or tetraplex structures of telomeric or IgG switch region sequences. However, Ku associated more tightly with bimolecular G'2 tetraplex d(CGG)(8) (K(d) approximately 0.35 x 10(-9) mol/liter). Binding to Ku protected G'2 d(CGG)(8) against nuclease digestion and impeded its unwinding by the tetraplex destabilizing protein qTBP42. Stabilization of d(CGG)(n) tetraplex domains in FMR1 by Ku or other proteins might promote d(CGG) expansion and FMR1 silencing.
Collapse
Affiliation(s)
- L Uliel
- Unit of Biochemistry, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Ku is a heterodimeric protein with high binding affinity for ends, nicks, and gaps in double-stranded DNA. Both in mammalian cells and in budding yeast, Ku plays a role in nonhomologous end joining in the double strand break repair pathway. However, Ku has a more significant role in DNA repair in mammalian cells compared with yeast, in which a homology-dependent pathway is the predominant one. Recently Ku has been shown to be a likely component of the telomeric complex in yeast, suggesting the possibility of a similar role for Ku at mammalian telomeres. However, long single-stranded G-rich overhangs are continuously present at mammalian but not at yeast telomeres. These overhangs have the potential to fold in vitro into G-G base-paired conformations, such as G-quartets, that might prevent Ku from recognizing telomeric ends and thus offer a mechanism to sequester the telomere from the prevalent double strand break repair pathway in mammals. We show here that Ku binds to mammalian telomeric DNA ends in vitro and that G-quartet conformations are unable to prevent Ku from binding with high affinity to the DNA. Our results indicate that the DNA binding characteristics of Ku are consistent with its direct interaction with telomeric DNA in mammalian cells and its proposed role as a telomere end factor.
Collapse
Affiliation(s)
- A Bianchi
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
16
|
Yoo S, Kimzey A, Dynan WS. Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J Biol Chem 1999; 274:20034-9. [PMID: 10391954 DOI: 10.1074/jbc.274.28.20034] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ku protein binds broken DNA ends, triggering a double-strand DNA break repair pathway. The spatial arrangement of the two Ku subunits in the initial Ku-DNA complex, when the Ku protein first approaches the broken DNA end, is not well defined. We have investigated the geometry of the complex using a novel set of photocross-linking probes that force Ku protein to be constrained in position and orientation, relative to a single free DNA end. Results suggest that this complex is roughly symmetric and that both Ku subunits make contact with an approximately equal area of the DNA. The complex has a strongly preferred orientation, with Ku70-DNA backbone contacts located proximal and Ku80-DNA backbone contacts located distal to the free end. Ku70 also contacts functional groups in the major groove proximal to the free end. Ku80 apparently does not make major groove contacts. Results are consistent with a model where the Ku70 and Ku80 subunits contact the major and minor grooves of DNA, respectively.
Collapse
Affiliation(s)
- S Yoo
- Gene Regulation Program, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
17
|
Giffin W, Gong W, Schild-Poulter C, Haché RJ. Ku antigen-DNA conformation determines the activation of DNA-dependent protein kinase and DNA sequence-directed repression of mouse mammary tumor virus transcription. Mol Cell Biol 1999; 19:4065-78. [PMID: 10330147 PMCID: PMC104366 DOI: 10.1128/mcb.19.6.4065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) transcription is repressed by DNA-dependent protein kinase (DNA-PK) through a DNA sequence element, NRE1, in the viral long terminal repeat that is a sequence-specific DNA binding site for the Ku antigen subunit of the kinase. While Ku is an essential component of the active kinase, how the catalytic subunit of DNA-PK (DNA-PKcs) is regulated through its association with Ku is only beginning to be understood. We report that activation of DNA-PKcs and the repression of MMTV transcription from NRE1 are dependent upon Ku conformation, the manipulation of DNA structure by Ku, and the contact of Ku80 with DNA. Truncation of one copy of the overlapping direct repeat that comprises NRE1 abrogated the repression of MMTV transcription by Ku-DNA-PKcs. Remarkably, the truncated element was recognized by Ku-DNA-PKcs with affinity similar to that of the full-length element but was unable to promote the activation of DNA-PKcs. Analysis of Ku-DNA-PKcs interactions with DNA ends, double- and single-stranded forms of NRE1, and the truncated NRE1 element revealed striking differences in Ku conformation that differentially affected the recruitment of DNA-PKcs and the activation of kinase activity.
Collapse
Affiliation(s)
- W Giffin
- Departments of Medicine, Microbiology and Immunology, The Loeb Health Research Institute at the Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Ruiz MT, Matheos D, Price GB, Zannis-Hadjopoulos M. OBA/Ku86: DNA binding specificity and involvement in mammalian DNA replication. Mol Biol Cell 1999; 10:567-80. [PMID: 10069804 PMCID: PMC25188 DOI: 10.1091/mbc.10.3.567] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1998] [Accepted: 12/29/1998] [Indexed: 12/21/2022] Open
Abstract
Ors-binding activity (OBA) was previously semipurified from HeLa cells through its ability to interact specifically with the 186-basepair (bp) minimal replication origin of ors8 and support ors8 replication in vitro. Here, through competition band-shift analyses, using as competitors various subfragments of the 186-bp minimal ori, we identified an internal region of 59 bp that competed for OBA binding as efficiently as the full 186-bp fragment. The 59-bp fragment has homology to a 36-bp sequence (A3/4) generated by comparing various mammalian replication origins, including the ors. A3/4 is, by itself, capable of competing most efficiently for OBA binding to the 186-bp fragment. Band-shift elution of the A3/4-OBA complex, followed by Southwestern analysis using the A3/4 sequence as probe, revealed a major band of approximately 92 kDa involved in the DNA binding activity of OBA. Microsequencing analysis revealed that the 92-kDa polypeptide is identical to the 86-kDa subunit of human Ku antigen. The affinity-purified OBA fraction obtained using an A3/4 affinity column also contained the 70-kDa subunit of Ku and the DNA-dependent protein kinase catalytic subunit. In vitro DNA replication experiments in the presence of A3/4 oligonucleotide or anti-Ku70 and anti-Ku86 antibodies implicate Ku in mammalian DNA replication.
Collapse
Affiliation(s)
- M T Ruiz
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|