1
|
Gardner PR. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:45-96. [PMID: 36520413 DOI: 10.1007/5584_2022_751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.
Collapse
|
2
|
Shandilya M, Kumar G, Gomkale R, Singh S, Khan MA, Kateriya S, Kundu S. Multiple putative methemoglobin reductases in C. reinhardtii may support enzymatic functions for its multiple hemoglobins. Int J Biol Macromol 2021; 171:465-479. [PMID: 33428952 DOI: 10.1016/j.ijbiomac.2021.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The ubiquitous nature of hemoglobins, their presence in multiple forms and low cellular expression in organisms suggests alternative physiological functions of hemoglobins in addition to oxygen transport and storage. Previous research has proposed enzymatic function of hemoglobins such as nitric oxide dioxygenase, nitrite reductase and hydroxylamine reductase. In all these enzymatic functions, active ferrous form of hemoglobin is converted to ferric form and reconversion of ferric to ferrous through reduction partners is under active investigation. The model alga C. reinhardtii contains multiple globins and is thus expected to have multiple putative methemoglobin reductases to augment the physiological functions of the novel hemoglobins. In this regard, three putative methemoglobin reductases and three algal hemoglobins were characterized. Our results signify that the identified putative methemoglobin reductases can reduce algal methemoglobins in a nonspecific manner under in vitro conditions. Enzyme kinetics of two putative methemoglobin reductases with methemoglobins as substrates and in silico analysis support interaction between the hemoglobins and the two reduction partners as also observed in vitro. Our investigation on algal methemoglobin reductases underpins the valuable chemistry of nitric oxide with the newly discovered hemoglobins to ensure their physiological relevance, with multiple hemoglobins probably necessitating the presence of multiple reductases.
Collapse
Affiliation(s)
- Manish Shandilya
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India; Amity School of Applied Sciences, Amity University Haryana, Gurugram 122413, India
| | - Gaurav Kumar
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Ridhima Gomkale
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Swati Singh
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Mohd Asim Khan
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
3
|
Lou HW, Zhao Y, Chen BX, Yu YH, Tang HB, Ye ZW, Lin JF, Guo LQ. Cmfhp Gene Mediates Fruiting Body Development and Carotenoid Production in Cordyceps militaris. Biomolecules 2020; 10:biom10030410. [PMID: 32155914 PMCID: PMC7175373 DOI: 10.3390/biom10030410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Cordyceps militaris fruiting bodies contain a variety of bioactive components that are beneficial to the human body. However, the low yield of fruiting bodies and the low carotenoid content in C. militaris have seriously hindered the development of the C. militaris industry. To elucidate the developmental mechanism of the fruiting bodies of C. militaris and the biosynthesis mechanism of carotenoids, the function of the flavohemoprotein-like Cmfhp gene of C. militaris was identified for the first time. The Cmfhp gene was knocked out by the split-marker method, and the targeted gene deletion mutant ΔCmfhp was obtained. An increased nitric oxide (NO) content, no fruiting body production, decreased carotenoid content, and reduced conidial production were found in the mutant ΔCmfhp. These characteristics were restored when the Cmfhp gene expression cassette was complemented into the ΔCmfhp strain by the Agrobacterium tumefaciens-mediated transformation method. Nonetheless, the Cmfhp gene had no significant effect on the mycelial growth rate of C. militaris. These results indicated that the Cmfhp gene regulated the biosynthesis of NO and carotenoids, the development of fruiting bodies, and the formation of conidia. These findings potentially pave the way to reveal the developmental mechanism of fruiting bodies and the biosynthesis mechanism of carotenoids in C. militaris.
Collapse
Affiliation(s)
- Hai-Wei Lou
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China;
| | - Yu Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China;
| | - Bai-Xiong Chen
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
| | - Ying-Hao Yu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
| | - Hong-Biao Tang
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
| | - Zhi-Wei Ye
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
- Correspondence: (J.-F.L.); (L.-Q.G.)
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; (H.-W.L.); (B.-X.C.); (Y.-H.Y.); (Z.-W.Y.)
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
- Correspondence: (J.-F.L.); (L.-Q.G.)
| |
Collapse
|
4
|
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron-sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
Collapse
|
5
|
Ichimura K, Shimizu T, Matsumoto A, Hirai S, Yokoyama E, Takeuchi H, Yahiro K, Noda M. Nitric oxide-enhanced Shiga toxin production was regulated by Fur and RecA in enterohemorrhagic Escherichia coli O157. Microbiologyopen 2017; 6. [PMID: 28294553 PMCID: PMC5552940 DOI: 10.1002/mbo3.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 12/27/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Nitric oxide (NO), which acts as an antimicrobial defense molecule, was found to enhance the production of Stx1 and Stx2 in EHEC under anaerobic conditions. Although EHEC O157 has two types of anaerobic NO reductase genes, an intact norV and a deleted norV, in the deleted norV‐type EHEC, a high concentration of NO (12–29 μmol/L, maximum steady‐state concentration) is required for enhanced Stx1 production and a low concentration of NO (~12 μmol/L, maximum steady‐state concentration) is sufficient for enhanced Stx2 production under anaerobic conditions. These results suggested that different concentration thresholds of NO elicit a discrete set of Stx1 and Stx2 production pathways. Moreover, the enhancement of Shiga toxin production in the intact norV‐type EHEC required treatment with a higher concentration of NO than was required for enhancement of Shiga toxin production in the deleted norV‐type EHEC, suggesting that the specific NorV type plays an important role in the level of enhancement of Shiga toxin production in response to NO. Finally, Fur derepression and RecA activation in EHEC were shown to participate in the NO‐enhanced Stx1 and Stx2 production, respectively.
Collapse
Affiliation(s)
- Kimitoshi Ichimura
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Shimizu
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akio Matsumoto
- Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Hirai
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, Chiba, Japan
| | - Hiroki Takeuchi
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kinnosuke Yahiro
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masatoshi Noda
- Departments of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Mo Q, Zhang H, Liu Q, Tang X, Zhao L, Zan X, Song Y. Enhancing nosiheptide production in Streptomyces actuosus
by heterologous expression of haemoprotein from Sinorhizobium meliloti. Lett Appl Microbiol 2016; 62:480-7. [DOI: 10.1111/lam.12575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Q. Mo
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - H. Zhang
- Colin Ratledge Center for Microbial Lipids; School of Agricultural Engineering and Food Science; Shandong University of Technology; Zibo China
| | - Q. Liu
- Colin Ratledge Center for Microbial Lipids; School of Agricultural Engineering and Food Science; Shandong University of Technology; Zibo China
| | - X. Tang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - L. Zhao
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - X. Zan
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Y. Song
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Wuxi China
- Colin Ratledge Center for Microbial Lipids; School of Agricultural Engineering and Food Science; Shandong University of Technology; Zibo China
| |
Collapse
|
7
|
Marcos AT, Ramos MS, Marcos JF, Carmona L, Strauss J, Cánovas D. Nitric oxide synthesis by nitrate reductase is regulated during development in Aspergillus. Mol Microbiol 2015; 99:15-33. [PMID: 26353949 PMCID: PMC4982101 DOI: 10.1111/mmi.13211] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a signalling molecule involved in many biological processes in bacteria, plants and mammals. However, little is known about the role and biosynthesis of NO in fungi. Here we show that NO production is increased at the early stages of the transition from vegetative growth to development in Aspergillus nidulans. Full NO production requires a functional nitrate reductase (NR) gene (niaD) that is upregulated upon induction of conidiation, even under N‐repressing conditions in the presence of ammonium. At this stage, NO homeostasis is achieved by balancing biosynthesis (NR) and catabolism (flavohaemoglobins). niaD and flavohaemoglobin fhbA are transiently upregulated upon induction of conidiation, and both regulators AreA and NirA are necessary for this transcriptional response. The second flavohaemoglobin gene fhbB shows a different expression profile being moderately expressed during the early stages of the transition phase from vegetative growth to conidiation, but it is strongly induced 24 h later. NO levels influence the balance between conidiation and sexual reproduction because artificial strong elevation of NO levels reduced conidiation and induced the formation of cleistothecia. The nitrate‐independent and nitrogen metabolite repression‐insensitive transcriptional upregulation of niaD during conidiation suggests a novel role for NR in linking metabolism and development.
Collapse
Affiliation(s)
- Ana T Marcos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - María S Ramos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Jose F Marcos
- Department of Food Science, Institute of Agrochemistry and Food Technology (IATA), Valencia, Spain
| | - Lourdes Carmona
- Department of Food Science, Institute of Agrochemistry and Food Technology (IATA), Valencia, Spain
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU) Vienna, Vienna, Austria.,Department of Health and Environment, Bioresources, Austrian Institute of Technology (AIT), Vienna, Austria
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
8
|
Park YM, Lee HJ, Jeong JH, Kook JK, Choy HE, Hahn TW, Bang IS. Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions. Arch Microbiol 2015; 197:1117-27. [PMID: 26374245 DOI: 10.1007/s00203-015-1151-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/03/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) inactivates iron-sulfur enzymes in bacterial amino acid biosynthetic pathways, causing amino acid auxotrophy. We demonstrate that exogenous supplementation with branched-chain amino acids (BCAA) can restore the NO resistance of hmp mutant Salmonella Typhimurium lacking principal NO-metabolizing enzyme flavohemoglobin, and of mutants further lacking iron-sulfur enzymes dihydroxy-acid dehydratase (IlvD) and isopropylmalate isomerase (LeuCD) that are essential for BCAA biosynthesis, in an oxygen-dependent manner. BCAA supplementation did not affect the NO consumption rate of S. Typhimurium, suggesting the BCAA-promoted NO resistance independent of NO metabolism. BCAA supplementation also induced intracellular survival of ilvD and leuCD mutants at wild-type levels inside RAW 264.7 macrophages that produce constant amounts of NO regardless of varied supplemental BCAA concentrations. Our results suggest that the NO-induced BCAA auxotrophy of Salmonella, due to inactivation of iron-sulfur enzymes for BCAA biosynthesis, could be rescued by bacterial taking up exogenous BCAA available in oxic environments.
Collapse
Affiliation(s)
- Yoon Mee Park
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju, 501-759, Republic of Korea
| | - Hwa Jeong Lee
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju, 501-759, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 501-746, Republic of Korea
| | - Joong-Ki Kook
- Department of Oral Biochemistry, Chosun University School of Dentistry, Gwangju, 501-759, Republic of Korea
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 501-746, Republic of Korea
| | - Tae-Wook Hahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Iel Soo Bang
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
9
|
Tinajero-Trejo M, Denby KJ, Sedelnikova SE, Hassoubah SA, Mann BE, Poole RK. Carbon monoxide-releasing molecule-3 (CORM-3; Ru(CO)3Cl(glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial flavohemoglobin Hmp: applications and pitfalls. J Biol Chem 2014; 289:29471-82. [PMID: 25193663 PMCID: PMC4207967 DOI: 10.1074/jbc.m114.573444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/01/2014] [Indexed: 11/06/2022] Open
Abstract
CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3(-)). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)(3)Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo.
Collapse
Affiliation(s)
| | - Katie J Denby
- From the Departments of Molecular Biology & Biotechnology and
| | | | | | - Brian E Mann
- Chemistry, The University of Sheffield, S10 2TN United Kingdom
| | - Robert K Poole
- From the Departments of Molecular Biology & Biotechnology and
| |
Collapse
|
10
|
Vinogradov SN, Tinajero-Trejo M, Poole RK, Hoogewijs D. Bacterial and archaeal globins — A revised perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1789-800. [DOI: 10.1016/j.bbapap.2013.03.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/12/2013] [Accepted: 03/16/2013] [Indexed: 12/17/2022]
|
11
|
Nitric oxide reactivities of the two globins of the foodborne pathogen Campylobacter jejuni: roles in protection from nitrosative stress and analysis of potential reductants. Nitric Oxide 2013; 34:65-75. [PMID: 23764490 DOI: 10.1016/j.niox.2013.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND During infection and pathogenesis, Campylobacter, the leading cause of gastroenteritis, encounters NO and reactive nitrogen species (RNS) derived from the host. To combat these species, Campylobacter jejuni expresses two haemoglobins: the single domain haemoglobin (Cgb) detoxifies NO but the role of the truncated globin (Ctb) is unclear. Confirmation of Cgb activity and more extensive exploration of Ctb function(s) in vivo are restricted due to difficulties in expressing proteins in Campylobacter and our lack of understanding of how the globin haems are re-reduced after ligand reactions. METHODS The cgb and ctb genes were cloned under the control of arabinose-inducible promoters and the globins expressed in an Escherichia coli mutant lacking the main NO detoxification mechanisms (Hmp and the Nor system comprising the transcription regulator NorR, the flavorubredoxin and its reductase (NorVW)); cellular responses under oxidative and nitrosative stress conditions were assessed. Spectroscopic changes of the Cgb and Ctb haems in soluble fractions after oxidation by NO were evaluated. Construction of E. coli nor mutants and a ubiquinone-defective strain allowed the exploration of the flavorubredoxin reductase and the aerobic respiratory chain as candidates for Cgb electron donors in E. coli mutants. RESULTS Cgb, but not Ctb, complements the NO- and RNS-sensitive phenotype of an E. coli hmp mutant in aerobic conditions; however, Cgb fails to protect an hmp norR mutant in the absence of oxygen. Reduction of Cgb and Ctb in E. coli and C. jejuni soluble extracts and turnover after NO oxidation is demonstrated. Finally, we report a minor role for NorW as a Cgb reductase partner in E. coli but no role for respiratory electron flux in globin redox cycling. CONCLUSIONS The NO detoxification capacity of Cgb is confirmed by heterologous expression in E. coli. The reducibility of Cgb and Ctb in E. coli and C. jejuni extracts and the lack of dependence of reduction upon flavorubredoxin reductase and the respiratory chain in E. coli argue in favor of a non-specific reductase system. GENERAL SIGNIFICANCE We present the most persuasive evidence to date that Cgb, but not Ctb, confers tolerance to NO and RNS by reaction with NO. Since certain hypotheses for the mechanism of haem re-reduction in E. coli following the reaction with NO are not proven, the mechanisms of reduction in C. jejuni now require challenging experimental evaluation.
Collapse
|
12
|
Abstract
Campylobacter jejuni is a zoonotic Gram-negative bacterial pathogen that is exposed to reactive nitrogen species, such as nitric oxide, from a variety of sources. To combat the toxic effects of this nitrosative stress, C. jejuni upregulates a small regulon under the control of the transcriptional activator NssR, which positively regulates the expression of a single-domain globin protein (Cgb) and a truncated globin protein (Ctb). Cgb has previously been shown to detoxify nitric oxide, but the role of Ctb remains contentious. As C. jejuni is amenable to genetic manipulation, and its globin proteins are easily expressed and purified, a combination of mutagenesis, complementation, transcriptomics, spectroscopic characterisation and structural analyses has been used to probe the regulation, function and structure of Cgb and Ctb. This ability to study Cgb and Ctb with such a multi-pronged approach is a valuable asset, especially since only a small fraction of known globin proteins have been functionally characterised.
Collapse
|
13
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
14
|
Comparative analysis of mycobacterial truncated hemoglobin promoters and the groEL2 promoter in free-living and intracellular mycobacteria. Appl Environ Microbiol 2012; 78:6499-506. [PMID: 22773641 DOI: 10.1128/aem.01984-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The success of Mycobacterium tuberculosis depends on its ability to withstand and survive the hazardous environment inside the macrophages that are created by reactive oxygen intermediates, reactive nitrogen intermediates, severe hypoxia, low pH, and high CO(2) levels. Therefore, an effective detoxification system is required for the pathogen to persist in vivo. The genome of M. tuberculosis contains a new family of hemoproteins named truncated hemoglobin O (trHbO) and truncated hemoglobin N (trHbN), encoded by the glbO and glbN genes, respectively, important in the survival of M. tuberculosis in macrophages. Mycobacterial heat shock proteins are known to undergo rapid upregulation under stress conditions. The expression profiles of the promoters of these genes were studied by constructing transcriptional fusions with green fluorescent protein and monitoring the promoter activity in both free-living and intracellular milieus at different time points. Whereas glbN showed an early response to the oxidative and nitrosative stresses tested, glbO gave a lasting response to lower concentrations of both stresses. At all time points and under all stress conditions tested, groEL2 showed higher expression than both trHb promoters and expression of both promoters showed an increase while inside the macrophages. Real-time PCR analysis of trHb and groEL2 mRNAs showed an initial upregulation at 24 h postinfection. The presence of the glbO protein imparted an increased survival to M. smegmatis in THP-1 differentiated macrophages compared to that imparted by the glbN and hsp65 proteins. The comparative upregulation shown by both trHb promoters while grown inside macrophages indicates the importance of these promoters for the survival of M. tuberculosis in the hostile environment of the host.
Collapse
|
15
|
Forrester MT, Foster MW. Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic Biol Med 2012; 52:1620-33. [PMID: 22343413 DOI: 10.1016/j.freeradbiomed.2012.01.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/22/2012] [Accepted: 01/27/2012] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) is an inevitable product of life in an oxygen- and nitrogen-rich environment. This reactive diatomic molecule exhibits microbial cytotoxicity, in large part by facilitating nitrosative stress and inhibiting heme-containing proteins within the aerobic respiratory chain. Metabolism of NO is therefore essential for microbial life. In many bacteria, fungi, and protozoa, the evolutionarily ancient flavohemoglobin (flavoHb) converts NO and O(2) to inert nitrate (NO(3)(-)) and undergoes catalytic regeneration via flavin-dependent reduction. Since its identification, widespread efforts have characterized roles for flavoHb in microbial nitrosative stress protection. Subsequent genomic studies focused on flavoHb have elucidated the transcriptional machinery necessary for inducible NO protection, such as NsrR in Escherichia coli, as well as additional proteins that constitute a nitrosative stress protection program. As an alternative strategy, flavoHb has been heterologously employed in higher eukaryotic organisms such as plants and human tumors to probe the function(s) of endogenous NO signaling. Such an approach may also provide a therapeutic route to in vivo NO depletion. Here we focus on the molecular features of flavoHb, the hitherto characterized NO-sensitive transcriptional machinery responsible for its induction, the roles of flavoHb in resisting mammalian host defense systems, and heterologous applications of flavoHb in plant/mammalian systems (including human tumors), as well as unresolved questions surrounding this paradigmatic NO-consuming enzyme.
Collapse
Affiliation(s)
- Michael T Forrester
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
16
|
Savard PY, Daigle R, Morin S, Sebilo A, Meindre F, Lagüe P, Guertin M, Gagné SM. Structure and dynamics of Mycobacterium tuberculosis truncated hemoglobin N: insights from NMR spectroscopy and molecular dynamics simulations. Biochemistry 2011; 50:11121-30. [PMID: 21999759 DOI: 10.1021/bi201059a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potent nitric oxide dioxygenase (NOD) activity (trHbN-Fe²⁺-O₂ + (•)NO → trHbN-Fe³⁺-OH₂ + NO₃⁻) of Mycobacterium tuberculosis truncated hemoglobin N (trHbN) protects aerobic respiration from inhibition by (•)NO. The high activity of trHbN has been attributed in part to the presence of numerous short-lived hydrophobic cavities that allow partition and diffusion of the gaseous substrates (•)NO and O₂ to the active site. We investigated the relation between these cavities and the dynamics of the protein using solution NMR spectroscopy and molecular dynamics (MD). Results from both approaches indicate that the protein is mainly rigid with very limited motions of the backbone N-H bond vectors on the picoseconds-nanoseconds time scale, indicating that substrate diffusion and partition within trHbN may be controlled by side-chains movements. Model-free analysis also revealed the presence of slow motions (microseconds-milliseconds), not observed in MD simulations, for many residues located in helices B and G including the distal heme pocket Tyr33(B10). All currently known crystal structures and molecular dynamics data of truncated hemoglobins with the so-called pre-A N-terminal extension suggest a stable α-helical conformation that extends in solution. Moreover, a recent study attributed a crucial role to the pre-A helix for NOD activity. However, solution NMR data clearly show that in near-physiological conditions these residues do not adopt an α-helical conformation and are significantly disordered and that the helical conformation seen in crystal structures is likely induced by crystal contacts. Although this lack of order for the pre-A does not disagree with an important functional role for these residues, our data show that one should not assume an helical conformation for these residues in any functional interpretation. Moreover, future molecular dynamics simulations should not use an initial α-helical conformation for these residues in order to avoid a bias based on an erroneous initial structure for the N-termini residues. This work constitutes the first study of a truncated hemoglobin dynamics performed by solution heteronuclear relaxation NMR spectroscopy.
Collapse
Affiliation(s)
- Pierre-Yves Savard
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval and PROTEO, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 2011; 6:e24767. [PMID: 21957459 PMCID: PMC3177825 DOI: 10.1371/journal.pone.0024767] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/17/2011] [Indexed: 11/19/2022] Open
Abstract
The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host.
Collapse
|
18
|
Frey AD, Schmid VH, Kallio PT. Genetic engineering of the pancreatic β-cell line MIN6 to express bacterial globin proteins protects cells from nitrosative stress. Biotechnol Appl Biochem 2011. [DOI: 10.1002/bab.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Functional analysis and subcellular location of two flavohemoglobins from Aspergillus oryzae. Fungal Genet Biol 2011; 48:200-7. [DOI: 10.1016/j.fgb.2010.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/06/2010] [Accepted: 08/24/2010] [Indexed: 01/28/2023]
|
20
|
Frey AD, Shepherd M, Jokipii-Lukkari S, Häggman H, Kallio PT. The single-domain globin of Vitreoscilla: augmentation of aerobic metabolism for biotechnological applications. Adv Microb Physiol 2011; 58:81-139. [PMID: 21722792 DOI: 10.1016/b978-0-12-381043-4.00003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extensive studies have revealed that large-scale, high-cell density bioreactor cultivations have significant impact on metabolic networks of oxygen-requiring production organisms. Oxygen transfer problems associated with fluid dynamics and inefficient mixing efficiencies result in oxygen gradients, which lead to reduced performance of the bioprocess, decreased product yields, and increased production costs. These problems can be partially alleviated by improving bioreactor configuration and setting, but significant improvements have been achieved by metabolic engineering methods, especially by heterologously expressing Vitreoscilla hemoglobin (VHb). Vast numbers of studies have been accumulating during the past 20 years showing the applicability of VHb to improve growth and product yields in a variety of industrially significant prokaryotic and eukaryotic hosts. The global view on the metabolism of globin-expressing Escherichia coli cells depicts increased energy generation, higher oxygen uptake rates, and a decrease in fermentative by-product excretion. Transcriptome and metabolic flux analysis clearly demonstrate the multidimensional influence of heterologous VHb on the expression of stationary phase-specific genes and on the regulation of cellular metabolic networks. The exact biochemical mechanisms by which VHb is able to improve the oxygen-limited growth remain poorly understood. The suggested mechanisms propose either the delivery of oxygen to the respiratory chain or the detoxification of reactive nitrogen species for the protection of cytochrome activity. The expression of VHb in E. coli bioreactor cultures is likely to assist bacterial growth through providing an increase in available intracellular oxygen, although to fully understand the exact role of VHb in vivo, further analysis will be required.
Collapse
|
21
|
Reeder BJ. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxid Redox Signal 2010; 13:1087-123. [PMID: 20170402 DOI: 10.1089/ars.2009.2974] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pentacoordinate respiratory hemoproteins such as hemoglobin and myoglobin have evolved to supply cells with oxygen. However, these respiratory heme proteins are also known to function as redox enzymes, reacting with compounds such as nitric oxide and peroxides. The recent discoveries of hexacoordinate hemoglobins in vertebrates and nonsymbiotic plants suggest that the redox activity of globins is inherent to the molecule. The uncontrolled formation of radical species resulting from such redox chemistry on respiratory hemoproteins can lead to oxidative damage and cellular toxicity. In this review, we examine the functions of various globins and the mechanisms by which these globins act as redox enzymes under physiologic conditions. Evidence that redox reactions also occur under disease conditions, leading to pathologic complications, also is examined, focusing on recent discoveries showing that the ferryl oxidation state of these hemoproteins is present in these disease states in vivo. In addition, we review the latest advances in the understanding of globin redox mechanisms and how they might affect cellular signaling pathways and how they might be controlled therapeutically or, in the case of hemoglobin-based blood substitutes, through rational design.
Collapse
Affiliation(s)
- Brandon J Reeder
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, England.
| |
Collapse
|
22
|
Role of flavohemoglobin in combating nitrosative stress in uropathogenic Escherichia coli – Implications for urinary tract infection. Microb Pathog 2010; 49:59-66. [DOI: 10.1016/j.micpath.2010.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/01/2010] [Accepted: 04/09/2010] [Indexed: 11/22/2022]
|
23
|
Gardner AM, Cook MR, Gardner PR. Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. J Biol Chem 2010; 285:23850-7. [PMID: 20511233 DOI: 10.1074/jbc.m110.132340] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytoglobin (Cygb) was investigated for its capacity to function as a NO dioxygenase (NOD) in vitro and in hepatocytes. Ascorbate and cytochrome b(5) were found to support a high NOD activity. Cygb-NOD activity shows respective K(m) values for ascorbate, cytochrome b(5), NO, and O(2) of 0.25 mm, 0.3 microm, 40 nm, and approximately 20 microm and achieves a k(cat) of 0.5 s(-1). Ascorbate and cytochrome b(5) reduce the oxidized Cygb-NOD intermediate with apparent second order rate constants of 1000 m(-1) s(-1) and 3 x 10(6) m(-1) s(-1), respectively. In rat hepatocytes engineered to express human Cygb, Cygb-NOD activity shows a similar k(cat) of 1.2 s(-1), a K(m)(NO) of 40 nm, and a k(cat)/K(m)(NO) (k'(NOD)) value of 3 x 10(7) m(-1) s(-1), demonstrating the efficiency of catalysis. NO inhibits the activity at [NO]/[O(2)] ratios >1:500 and limits catalytic turnover. The activity is competitively inhibited by CO, is slowly inactivated by cyanide, and is distinct from the microsomal NOD activity. Cygb-NOD provides protection to the NO-sensitive aconitase. The results define the NOD function of Cygb and demonstrate roles for ascorbate and cytochrome b(5) as reductants.
Collapse
Affiliation(s)
- Anne M Gardner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
24
|
Manjunatha G, Lokesh V, Neelwarne B. Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 2010; 28:489-99. [PMID: 20307642 DOI: 10.1016/j.biotechadv.2010.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 02/22/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
Monitoring ethylene is crucial in regulating post-harvest life of fruits. The concept of nitric oxide (NO) involvement in antagonizing ethylene is new. NO mediated physiologies casted through regulation of plant hormones are widely reported during developmental and stress chemistry having no direct link with ripening. Research in NO biology and understanding its interplay with other signal molecules in ripening fruits suggest ways of achieving greater synergies with NO applications. Experiments focused at convincingly demonstrating the involvement of NO in altering ripening-related ethylene profile of fruits, would help develop new processes for shelf life extension. This issue being the central theme of this review, the putative mechanisms of NO intricacies with other primary and secondary signals are hypothesized. The advantage of eliciting NO endogenously may open up various biotechnological opportunities for its precise delivery into the target tissues.
Collapse
Affiliation(s)
- G Manjunatha
- Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore-570 020, India
| | | | | |
Collapse
|
25
|
Theoretical investigations of nitric oxide channeling in Mycobacterium tuberculosis truncated hemoglobin N. Biophys J 2010; 97:2967-77. [PMID: 19948126 DOI: 10.1016/j.bpj.2009.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 11/22/2022] Open
Abstract
Mycobacterium tuberculosis group I truncated hemoglobin trHbN catalyzes the oxidation of nitric oxide (NO) to nitrate with a second-order rate constant k approximately 745 microM(-1) s(-1) at 23 degrees C (nitric oxide dioxygenase reaction). It was proposed that this high efficiency is associated with the presence of hydrophobic tunnels inside trHbN structure that allow substrate diffusion to the distal heme pocket. In this work, we investigated the mechanisms of NO diffusion within trHbN tunnels in the context of the nitric oxide dioxygenase reaction using two independent approaches. Molecular dynamics simulations of trHbN were performed in the presence of explicit NO molecules. Successful NO diffusion from the bulk solvent to the distal heme pocket was observed in all simulations performed. The simulations revealed that NO interacts with trHbN at specific surface sites, composed of hydrophobic residues located at tunnel entrances. The entry and the internal diffusion of NO inside trHbN were performed using the Long, Short, and EH tunnels reported earlier. The Short tunnel was preferentially used by NO to reach the distal heme pocket. This preference is ascribed to its hydrophobic funnel-shape entrance, covering a large area extending far from the tunnel entrance. This funnel-shape entrance triggers the frequent formation of solvent-excluded cavities capable of hosting up to three NO molecules, thereby accelerating NO capture and entry. The importance of hydrophobicity of entrances for NO capture is highlighted by a comparison with a polar mutant for which residues at entrances were mutated with polar residues. A complete map of NO diffusion pathways inside trHbN matrix was calculated, and NO molecules were found to diffuse from Xe cavity to Xe cavity. This scheme was in perfect agreement with the three-dimensional free-energy distribution calculated using implicit ligand sampling. The trajectories showed that NO significantly alters the dynamics of the key amino acids of Phe(62)(E15), a residue proposed to act as a gate controlling ligand traffic inside the Long tunnel, and also of Ile(119)(H11), at the entrance of the Short tunnel. It is noteworthy that NO diffusion inside trHbN tunnels is much faster than that reported previously for myoglobin. The results presented in this work shed light on the diffusion mechanism of apolar gaseous substrates inside protein matrix.
Collapse
|
26
|
Mowat CG, Gazur B, Campbell LP, Chapman SK. Flavin-containing heme enzymes. Arch Biochem Biophys 2010; 493:37-52. [DOI: 10.1016/j.abb.2009.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/25/2022]
|
27
|
Lama A, Pawaria S, Bidon-Chanal A, Anand A, Gelpí JL, Arya S, Martí M, Estrin DA, Luque FJ, Dikshit KL. Role of Pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis. J Biol Chem 2009; 284:14457-68. [PMID: 19329431 DOI: 10.1074/jbc.m807436200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis truncated hemoglobin, HbN, is endowed with a potent nitric-oxide dioxygenase activity and has been found to relieve nitrosative stress and enhance in vivo survival of a heterologous host, Salmonella enterica Typhimurium, within the macrophages. These findings implicate involvement of HbN in the defense of M. tuberculosis against nitrosative stress. The protein carries a tunnel system composed of a short and a long tunnel branch that has been proposed to facilitate diatomic ligand migration to the heme and an unusual Pre-A motif at the N terminus, which does not contribute significantly to the structural integrity of the protein, as it protrudes out of the compact globin fold. Strikingly, deletion of Pre-A region from the M. tuberculosis HbN drastically reduces its ability to scavenge nitric oxide (NO), whereas its insertion at the N terminus of Pre-A lacking HbN of Mycobacterium smegmatis improved its nitric-oxide dioxygenase activity. Titration of the oxygenated adduct of HbN and its mutants with NO indicated that the stoichiometric oxidation of protein is severalfold slower when the Pre-A region is deleted in HbN. Molecular dynamics simulations show that the excision of Pre-A motif results in distinct changes in the protein dynamics, which cause the gate of the tunnel long branch to be trapped into a closed conformation, thus impeding migration of diatomic ligands toward the heme active site. The present study, thus, unequivocally demonstrates vital function of Pre-A region in NO scavenging and unravels its unique role by which HbN might attain its efficient NO-detoxification ability.
Collapse
Affiliation(s)
- Amrita Lama
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh 160036, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ouellet YH, Daigle R, Lagüe P, Dantsker D, Milani M, Bolognesi M, Friedman JM, Guertin M. Ligand binding to truncated hemoglobin N from Mycobacterium tuberculosis is strongly modulated by the interplay between the distal heme pocket residues and internal water. J Biol Chem 2008; 283:27270-8. [PMID: 18676995 DOI: 10.1074/jbc.m804215200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The survival of Mycobacterium tuberculosis requires detoxification of host *NO. Oxygenated Mycobacterium tuberculosis truncated hemoglobin N catalyzes the rapid oxidation of nitric oxide to innocuous nitrate with a second-order rate constant (k'(NOD) approximately 745 x 10(6) m(-1) x s(-1)), which is approximately 15-fold faster than the reaction of horse heart myoglobin. We ask what aspects of structure and/or dynamics give rise to this enhanced reactivity. A first step is to expose what controls ligand/substrate binding to the heme. We present evidence that the main barrier to ligand binding to deoxy-truncated hemoglobin N (deoxy-trHbN) is the displacement of a distal cavity water molecule, which is mainly stabilized by residue Tyr(B10) but not coordinated to the heme iron. As observed in the Tyr(B10)/Gln(E11) apolar mutants, once this kinetic barrier is lowered, CO and O(2) binding is very rapid with rates approaching 1-2 x 10(9) m(-1) x s(-1). These large values almost certainly represent the upper limit for ligand binding to a heme protein and also indicate that the iron atom in trHbN is highly reactive. Kinetic measurements on the photoproduct of the *NO derivative of met-trHbN, where both the *NO and water can be directly followed, revealed that water rebinding is quite fast (approximately 1.49 x 10(8) s(-1)) and is responsible for the low geminate yield in trHbN. Molecular dynamics simulations, performed with trHbN and its distal mutants, indicated that in the absence of a distal water molecule, ligand access to the heme iron is not hindered. They also showed that a water molecule is stabilized next to the heme iron through hydrogen-bonding with Tyr(B10) and Gln(E11).
Collapse
Affiliation(s)
- Yannick H Ouellet
- Department of Biochemistry and Microbiology, Laval University, Quebec, Canada, G1K 7P4
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
A variety of hemoglobins, including several microbial flavohemoglobins, enzymatically dioxygenate the free radical nitric oxide (*NO) to form nitrate. Many of these *NO dioxygenases have been shown to control *NO toxicity and signaling. Furthermore, *NO dioxygenation appears to be an ancient and intrinsic function for members of the hemoglobin superfamily found in Archaea, eukaryotes, and bacteria. Yet for many hemoglobins, a function remains to be elucidated. Methods for the assay and characterization of the *NO dioxygenase (EC 1.14.12.17) activity and function of flavohemoglobins are described. The methods may also be applied to the discovery and design of inhibitors for use as antibiotics or as modulators of *NO signaling.
Collapse
|
30
|
Pullan ST, Monk CE, Lee L, Poole RK. Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods. Methods Enzymol 2008; 437:499-519. [PMID: 18433644 DOI: 10.1016/s0076-6879(07)37025-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The study of bacterial responses to nitric oxide (NO), nitrosating agents, and other agents of nitrosative stress has a short history but has rapidly produced important insights into the interactions of these agents with model microbial systems as well as pathogenic species. Several methodological problems arise in attempting to define the global responses to these agents, whether in simply measuring growth or performing "omic" experiments in which the objective is to determine the genome-wide (transcriptomic) or proteome-wide responses. The first problem is the relatively long timescale over which the experiments are conducted--minutes, hours, or days in the case of slow-growing cultures. The second problem is not unique to NO and its congeners but concerns the difficulties encountered when sensitive and comprehensive analytical techniques (such as transcriptomics) are applied to cultures whose growth and physiology are perturbed by an inhibitor. In essence, the problem is "seeing the wood for the trees." This chapter reviews briefly the state of knowledge of NO responses and mechanisms in bacteria, particularly Escherichia coli and Campylobacter jejuni. Continuous culture has several advantages for investigating the consequences of NO exposure, and this approach is outlined with examples of recent results and conclusions. The major advantage of the chemostat is establishment of a reproducible quasi-steady state in growth, in which the growth rate can be controlled and maintained. Contrary to common belief, neither the concept nor the apparatus is difficult. Commercially available and homemade systems are described with practical advice. Establishing continuous cultures paves the way for other "omic" approaches, particularly proteomics and metabolomics, which are not covered here, as their application to the field of NO biology is in its infancy. A key to the literature describing methods suitable for assessing toxicity to microbes of NO and reactive nitrogen species is given.
Collapse
Affiliation(s)
- Steven T Pullan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | | | | |
Collapse
|
31
|
Transcriptional activity of Pseudomonas aeruginosa fhp promoter is dependent on two regulators in addition to FhpR. Arch Microbiol 2007; 189:385-96. [PMID: 18043907 DOI: 10.1007/s00203-007-0329-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 11/09/2007] [Indexed: 12/22/2022]
Abstract
The regulation of flavohemoglobin expression is complex and depending on its host organism requires a wide variety of different transcriptional regulators. In Pseudomonas aeruginosa, the flavohemoglobin (Fhp) and its cognate regulator FhpR form an NO-sensing and detoxifying system regulated by their common bidirectional promoter Pfhp/PfhpR. The intergenic fhp-fhpR region of P. aeruginosa PAO1 was used as a bait to isolate proteins affecting the transcription of fhp and fhpR. In addition to the FhpR, we identified two previously uncharacterized P. aeruginosa proteins, PA0779 and PA3697. Both PA0779 and PA3697 were found to be essential for NO3(-) and NO2(-) induced Pfhp activity under aerobic and low-oxygen conditions, and needed for the full function of Pfhp/PfhpR as NO responsive regulatory circuit under aerobic conditions. In addition, we show that the transcriptional activity of PfhpR is highly inducible upon addition of SNP under aerobic conditions, but not by NO3(-), NO2(-) or under low-oxygen conditions, supporting the findings that FhpR is not the only factor affecting flavohemoglobin expression in P. aeruginosa.
Collapse
|
32
|
Frey AD, Andersson CIJ, Schmid VH, Bülow L, Kallio PT. Globin-expression postpones onset of stationary phase specific gene expression in Escherichia coli. J Biotechnol 2007; 129:461-71. [PMID: 17320232 DOI: 10.1016/j.jbiotec.2007.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/04/2007] [Accepted: 01/16/2007] [Indexed: 11/25/2022]
Abstract
We have analyzed gene expression of Escherichia coli MG1655 expressing native and engineered bacterial globin proteins, in order to identify the molecular mechanisms leading to the improved phenotypical traits relative to control cells under oxygen-limited conditions. Regulated expression of hemoglobin and flavohemoglobin proteins postponed the onset of rpoS expression relative to plasmid bearing control cells. This change in expression pattern coincided with the expression pattern of stationary-phase specific genes including sigma(S)-dependent and sigma(S)-independent genes. Furthermore, several genes known to affect rpoS transcription, rpoS mRNA stability and sigma(S) turnover were regulated in such a manner as to ultimately lower the cellular level of sigma(S) in all globin-expressing strains. In a strain harboring an rpoS-lacZ fusion, lacZ expression correlated with acetate accumulation, a metabolite that is known to activate rpoS transcription, but not with growth. Therefore, we hypothesize that reduced excretion of acetate in globin expressing cells prevents induction of stationary phase specific genes. Additionally, several genes responding to carbon starvation (e.g. csrAB, cstA, sspA) were expressed at lower levels in globin-expressing cells. These findings are in good agreement with previous reports showing a more efficient energy household, i.e. also reduced glucose consumption, in hemoglobin- and flavohemoglobin-expressing cells relative to controls.
Collapse
Affiliation(s)
- Alexander D Frey
- Institute of Microbiology, ETH-Zürich, CH-8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
33
|
Gardner PR, Gardner AM, Brashear WT, Suzuki T, Hvitved AN, Setchell KDR, Olson JS. Hemoglobins dioxygenate nitric oxide with high fidelity. J Inorg Biochem 2006; 100:542-50. [PMID: 16439024 DOI: 10.1016/j.jinorgbio.2005.12.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 11/26/2005] [Indexed: 11/28/2022]
Abstract
Distantly related members of the hemoglobin (Hb) superfamily including red blood cell Hb, muscle myoglobin (Mb) and the microbial flavohemoglobin (flavoHb) dioxygenate nitric oxide (.NO). The reaction serves important roles in .NO metabolism and detoxification throughout the aerobic biosphere. Analysis of the stoichiometric product nitrate shows greater than 99% double O-atom incorporation from Hb(18)O(2), Mb(18)O(2) and flavoHb(18)O(2) demonstrating a conserved high fidelity .NO dioxygenation mechanism. Whereas, reactions of .NO with the structurally unrelated Turbo cornutus MbO(2) or free superoxide radical (-O.(2)) yield sub-stoichiometric nitrate showing low fidelity O-atom incorporation. These and other results support a .NO dioxygenation mechanism involving (1) rapid reaction of .NO with a Fe(III-)O.(2) intermediate to form Fe(III-)OONO and (2) rapid isomerization of the Fe(III-)OONO intermediate to form nitrate. A sub-microsecond isomerization event is hypothesized in which the O-O bond homolyzes to form a protein caged [Fe(IV)O .NO(2)] intermediate and ferryl oxygen attacks .NO(2) to form nitrate. Hb functions as a .NO dioxygenase by controlling O(2) binding and electrochemistry, guiding .NO diffusion and reaction, and shielding highly reactive intermediates from solvent water and biomolecules.
Collapse
Affiliation(s)
- Paul R Gardner
- Division of Critical Care Medicine, Children's Hospital Medical Center, 3333 Burnet Ave, MLC7006, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ullmann BD, Myers H, Chiranand W, Lazzell AL, Zhao Q, Vega LA, Lopez-Ribot JL, Gardner PR, Gustin MC. Inducible defense mechanism against nitric oxide in Candida albicans. EUKARYOTIC CELL 2005; 3:715-23. [PMID: 15189992 PMCID: PMC420131 DOI: 10.1128/ec.3.3.715-723.2004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast Candida albicans is an opportunistic pathogen that threatens patients with compromised immune systems. Immune cell defenses against C. albicans are complex but typically involve the production of reactive oxygen species and nitrogen radicals such as nitric oxide (NO) that damage the yeast or inhibit its growth. Whether Candida defends itself against NO and the molecules responsible for this defense have yet to be determined. The defense against NO in various bacteria and the yeast Saccharomyces cerevisiae involves an NO-scavenging flavohemoglobin. The C. albicans genome contains three genes encoding flavohemoglobin-related proteins, CaYHB1, CaYHB4, and CaYHB5. To assess their roles in NO metabolism, we constructed strains lacking each of these genes and demonstrated that just one, CaYHB1, is responsible for NO consumption and detoxification. In C. albicans, NO metabolic activity and CaYHB1 mRNA levels are rapidly induced by NO and NO-generating agents. Loss of CaYHB1 increases the sensitivity of C. albicans to NO-mediated growth inhibition. In mice, infections with Candida strains lacking CaYHB1 still resulted in lethality, but virulence was decreased compared to that in wild-type strains. Thus, C. albicans possesses a rapid, specific, and highly inducible NO defense mechanism involving one of three putative flavohemoglobin genes.
Collapse
Affiliation(s)
- Breanna D Ullmann
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hromatka BS, Noble SM, Johnson AD. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 2005; 16:4814-26. [PMID: 16030247 PMCID: PMC1237085 DOI: 10.1091/mbc.e05-05-0435] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here, we investigate how Candida albicans, the most prevalent human fungal pathogen, protects itself from nitric oxide (*NO), an antimicrobial compound produced by the innate immune system. We show that exposure of C. albicans to *NO elicits a reproducible and specific transcriptional response as determined by genome-wide microarray analysis. Many genes are transiently induced or repressed by *NO, whereas a set of nine genes remain at elevated levels during *NO exposure. The most highly induced gene in this latter category is YHB1, a flavohemoglobin that detoxifies *NO in C. albicans and other microbes. We show that C. albicans strains deleted for YHB1 have two phenotypes in vitro; they are hypersensitive to *NO and they are hyperfilamentous. In a mouse model of disseminated candidiasis, a YHB1 deleted C. albicans strain shows moderately attenuated virulence, but the virulence defect is not suppressed by deletion of the host NOS2 gene. These results suggest that *NO production is not a prime determinant of virulence in the mouse tail vein model of candidiasis and that the attenuated virulence of a yhb1delta/yhb1delta strain is attributable to a defect other than its reduced ability to detoxify *NO.
Collapse
Affiliation(s)
- Bethann S Hromatka
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
36
|
Helmick RA, Fletcher AE, Gardner AM, Gessner CR, Hvitved AN, Gustin MC, Gardner PR. Imidazole antibiotics inhibit the nitric oxide dioxygenase function of microbial flavohemoglobin. Antimicrob Agents Chemother 2005; 49:1837-43. [PMID: 15855504 PMCID: PMC1087630 DOI: 10.1128/aac.49.5.1837-1843.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Revised: 10/25/2004] [Accepted: 01/24/2005] [Indexed: 11/20/2022] Open
Abstract
Flavohemoglobins metabolize nitric oxide (NO) to nitrate and protect bacteria and fungi from NO-mediated damage, growth inhibition, and killing by NO-releasing immune cells. Antimicrobial imidazoles were tested for their ability to coordinate flavohemoglobin and inhibit its NO dioxygenase (NOD) function. Miconazole, econazole, clotrimazole, and ketoconazole inhibited the NOD activity of Escherichia coli flavohemoglobin with apparent K(i) values of 80, 550, 1,300, and 5,000 nM, respectively. Saccharomyces cerevisiae, Candida albicans, and Alcaligenes eutrophus enzymes exhibited similar sensitivities to imidazoles. Imidazoles coordinated the heme iron atom, impaired ferric heme reduction, produced uncompetitive inhibition with respect to O(2) and NO, and inhibited NO metabolism by yeasts and bacteria. Nevertheless, these imidazoles were not sufficiently selective to fully mimic the NO-dependent growth stasis seen with NOD-deficient mutants. The results demonstrate a mechanism for NOD inhibition by imidazoles and suggest a target for imidazole engineering.
Collapse
Affiliation(s)
- Ryan A Helmick
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Frey AD, Kallio PT. Nitric oxide detoxification--a new era for bacterial globins in biotechnology? Trends Biotechnol 2005; 23:69-73. [PMID: 15661342 DOI: 10.1016/j.tibtech.2004.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
For more than a decade, the expression of Vitreoscilla hemoglobin (VHb) has been used to improve the growth and/or productivity of various organisms that are important for the production of valuable metabolites and recombinant proteins by biotechnological processes. Extensive experimental data have shown that VHb enhances the energy status of the cell under oxygen-limited conditions, presumably by improving the supply of intracellular oxygen. Recently, bacterial globin proteins have gained more attention in research because of their ability to detoxify nitric oxide (NO) in vivo. These new results have increased our knowledge, encouraging us to reconsider the role of VHb in vivo. The expression of heterologous globins might improve cellular protection against nitrosative stress under oxygen-limited conditions.
Collapse
Affiliation(s)
- Alexander D Frey
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
38
|
Flatley J, Barrett J, Pullan ST, Hughes MN, Green J, Poole RK. Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J Biol Chem 2005; 280:10065-72. [PMID: 15647275 DOI: 10.1074/jbc.m410393200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide and nitrosating agents exert powerful antimicrobial effects and are central to host defense and signal transduction. Nitric oxide and S-nitrosothiols can be metabolized by bacteria, but only a few enzymes have been shown to be important in responses to such stresses. Glycerol-limited chemostat cultures in defined medium of Escherichia coli MG1655 were used to provide bacteria in defined physiological states before applying nitrosative stress by addition of S-nitrosoglutathione (GSNO). Exposure to 200 microm GSNO for 5 min was sufficient to elicit an adaptive response as judged by the development of NO-insensitive respiration. Transcriptome profiling experiments were used to investigate the transcriptional basis of the observed adaptation to the presence of GSNO. In aerobic cultures, only 17 genes were significantly up-regulated, including genes known to be involved in NO tolerance, particularly hmp (encoding the NO-consuming flavohemoglobin Hmp) and norV (encoding flavorubredoxin). Significantly, none of the up-regulated genes were members of the Fur regulon. Six genes involved in methionine biosynthesis or regulation were significantly up-regulated; metN, metI, and metR were shown to be important for GSNO tolerance, because mutants in these genes exhibited GSNO growth sensitivity. Furthermore, exogenous methionine abrogated the toxicity of GSNO supporting the hypothesis that GSNO nitrosates homocysteine, thereby withdrawing this intermediate from the methionine biosynthetic pathway. Anaerobically, 10 genes showed significant up-regulation, of which norV, hcp, metR, and metB were also up-regulated aerobically. The data presented here reveal new genes important for nitrosative stress tolerance and demonstrate that methionine biosynthesis is a casualty of nitrosative stress.
Collapse
Affiliation(s)
- Janet Flatley
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | |
Collapse
|
39
|
Hallstrom CK, Gardner AM, Gardner PR. Nitric oxide metabolism in mammalian cells: substrate and inhibitor profiles of a NADPH-cytochrome P450 oxidoreductase-coupled microsomal nitric oxide dioxygenase. Free Radic Biol Med 2004; 37:216-28. [PMID: 15203193 DOI: 10.1016/j.freeradbiomed.2004.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/20/2004] [Accepted: 04/22/2004] [Indexed: 01/13/2023]
Abstract
Human intestinal Caco-2 cells metabolize and detoxify NO via a dioxygen- and NADPH-dependent, cyanide- and CO-sensitive pathway that yields nitrate. Enzymes catalyzing NO dioxygenation fractionate with membranes and are enriched in microsomes. Microsomal NO metabolism shows apparent KM values for NO, O2, and NADPH of 0.3, 9, and 2 microM, respectively, values similar to those determined for intact or digitonin-permeabilized cells. Similar to cellular NO metabolism, microsomal NO metabolism is superoxide-independent and sensitive to heme-enzyme inhibitors including CO, cyanide, imidazoles, quercetin, and allicin-enriched garlic extract. Selective inhibitors of several cytochrome P450s and heme oxygenase fail to inhibit the activity, indicating limited roles for a subset of microsomal heme enzymes in NO metabolism. Diphenyleneiodonium and cytochrome c(III) inhibit NO metabolism, suggesting a role for the NADPH-cytochrome P450 oxidoreductase (CYPOR). Involvement of CYPOR is demonstrated by the specific inhibition of the NO metabolic activity by inhibitory anti-CYPOR IgG. In toto, the results suggest roles for a microsomal CYPOR-coupled and heme-dependent NO dioxygenase in NO metabolism, detoxification, and signal attenuation in mammalian cells.
Collapse
Affiliation(s)
- Craig K Hallstrom
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, OH 45229, USA
| | | | | |
Collapse
|
40
|
Covian R, Gutierrez-Cirlos EB, Trumpower BL. Anti-cooperative Oxidation of Ubiquinol by the Yeast Cytochrome bc1 Complex. J Biol Chem 2004; 279:15040-9. [PMID: 14761953 DOI: 10.1074/jbc.m400193200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the interaction between monomers of the dimeric yeast cytochrome bc(1) complex by analyzing the pre-steady and steady state activities of the isolated enzyme in the presence of antimycin under conditions that allow the first turnover of ubiquinol oxidation to be observable in cytochrome c(1) reduction. At pH 8.8, where the redox potential of the iron-sulfur protein is approximately 200 mV and in a bc(1) complex with a mutated iron-sulfur protein of equally low redox potential, the amount of cytochrome c(1) reduced by several equivalents of decyl-ubiquinol in the presence of antimycin corresponded to only half of that present in the bc(1) complex. Similar experiments in the presence of several equivalents of cytochrome c also showed only half of the bc(1) complex participating in quinol oxidation. The extent of cytochrome b reduced corresponded to two b(H) hemes undergoing reduction through one center P per dimer, indicating electron transfer between the two cytochrome b subunits. Antimycin stimulated the ubiquinol-cytochrome c reductase activity of the bc(1) complex at low inhibitor/enzyme ratios. This stimulation could only be fitted to a model in which half of the bc(1) dimer is inactive when both center N sites are free, becoming active upon binding of one center N inhibitor molecule per dimer, and there is electron transfer between the cytochrome b subunits of the dimer. These results are consistent with an alternating half-of-the-sites mechanism of ubiquinol oxidation in the bc(1) complex dimer.
Collapse
Affiliation(s)
- Raul Covian
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
41
|
Saraiva LM, Vicente JB, Teixeira M. The Role of the Flavodiiron Proteins in Microbial Nitric Oxide Detoxification. Adv Microb Physiol 2004; 49:77-129. [PMID: 15518829 DOI: 10.1016/s0065-2911(04)49002-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The flavodiiron proteins (first named as A-type flavoproteins) constitute a large superfamily of enzymes, widespread among anaerobic and facultative anaerobic prokaryotes, from both the Archaea and Bacteria domains. Noticeably, genes encoding for homologous enzymes are also present in the genomes of some pathogenic and anaerobic amitochondriate protozoa. The fingerprint of this enzyme family is the conservation of a two-domain structural core, built by a metallo-beta-lactamase-like domain, at the N-terminal region, harbouring a non-heme diiron site, and a flavodoxin-like domain, containing one FMN moiety. These enzymes have a significant nitric oxide reductase activity, and there is increasing evidence that they are involved in microbial resistance to nitric oxide. In this review, we will discuss available data for this novel family of enzymes, including their physicochemical properties, structural and phylogenetic analyses, enzymatic properties and the molecular genetic approaches so far used to tackle their function.
Collapse
Affiliation(s)
- Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127 Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
42
|
Frey AD, Kallio PT. Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol Rev 2003; 27:525-45. [PMID: 14550944 DOI: 10.1016/s0168-6445(03)00056-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In response to oxygen limitation or oxidative and nitrosative stress, bacteria express three kinds of hemoglobin proteins: truncated hemoglobins (tr Hbs), hemoglobins (Hbs) and flavohemoglobins (flavo Hbs). The two latter groups share a high sequence homology and structural similarity in their globin domain. Flavohemoglobin proteins contain an additional reductase domain at their C-terminus and their expression is induced in the presence of reactive nitrogen and oxygen species. Flavohemoglobins detoxify NO in an aerobic process, termed nitric oxide dioxygenase reaction, which protects the host from various noxious nitrogen compounds. Only a small number of bacteria express hemoglobin proteins and the best studied of these is from Vitreoscilla sp. Vitreoscilla hemoglobin (VHb) has been expressed in various heterologous hosts under oxygen-limited conditions and has been shown to improve growth and productivity, rendering the protein interesting for biotechnology industry. The close interaction of VHb with the terminal oxidases has been shown and this interplay has been proposed to enhance respiratory activity and energy production by delivering oxygen, the ultimate result being an improvement in growth properties.
Collapse
Affiliation(s)
- Alexander D Frey
- Institute of Biotechnology, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
43
|
Cohen MF, Yamasaki H. Involvement of nitric oxide synthase in sucrose-enhanced hydrogen peroxide tolerance of Rhodococcus sp. strain APG1, a plant-colonizing bacterium. Nitric Oxide 2003; 9:1-9. [PMID: 14559426 DOI: 10.1016/s1089-8603(03)00043-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen peroxide (H2O2) tolerance of Rhodococcus sp. strain APG1, previously isolated from the aquatic fern Azolla pinnata, was examined in relation to nitric oxide (NO) production by cells cultured on a variety of C sources. Cells inoculated onto A. pinnata fronds established a surface-sterilant resistant density of 2-4x10(7) cells g(-1) without causing disease. Compared to cultures containing glucose, fructose, mannitol, or glycerol, those provided only with sucrose displayed, on a per C basis, substantially lower (<10%) growth yields and higher resistance to H2O2. NO, a positive regulator of catalase synthesis in bacteria, was produced in larger amounts in sucrose-grown cells as evidence by eightfold greater per cell accumulations in the medium of nitrite (NO2-), a stable oxidation product of NO. Addition to cells of L-arginine, the substrate for nitric oxide synthase (NOS), stimulated production of NO, detected both by fluorometric reaction with diaminofluorescein-FM diacetate (DAF-FM DA) and by increased levels of NO2- in the culture medium. These results suggest that sucrose may enhance H2O2 tolerance of Rhodococcus APG1 by increasing cellular NO producing capacity. We propose a regulatory role for NOS in promoting tolerance of Rhodococcus APG1 to oxidative stress in the phyllosphere.
Collapse
Affiliation(s)
- Michael F Cohen
- Division of Functional Genomics, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | | |
Collapse
|
44
|
Gardner AM, Gessner CR, Gardner PR. Regulation of the nitric oxide reduction operon (norRVW) in Escherichia coli. Role of NorR and sigma54 in the nitric oxide stress response. J Biol Chem 2003; 278:10081-6. [PMID: 12529359 DOI: 10.1074/jbc.m212462200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) induces NO-detoxifying enzymes in Escherichia coli suggesting sensitive mechanisms for coordinate control of NO defense genes in response to NO stress. Exposure of E. coli to sub-micromolar NO levels under anaerobic conditions rapidly induced transcription of the NO reductase (NOR) structural genes, norV and norW, as monitored by lac gene fusions. Disruption of rpoN (sigma(54)) impaired the NO-mediated induction of norV and norW transcription and NOR expression, whereas disruption of the upstream regulatory gene, norR, completely ablated NOR induction. NOR inducibility was restored to NorR null mutants by expressing NorR in trans. Furthermore, an internal deletion of the N-terminal domain of NorR activated NOR expression independent of NO exposure. Neither NorR nor sigma(54) was essential for NO-mediated induction of the NO dioxygenase (flavohemoglobin) encoded by hmp. However, elevated NOR activity inhibited NO dioxygenase induction, and, in the presence of dioxygen, NO dioxygenase inhibited norV induction by NO. The results demonstrate the role of NorR as a sigma(54)-dependent regulator of norVW expression. A role for the NorR N-terminal domain as a transducer or sensor for NO is suggested.
Collapse
Affiliation(s)
- Anne M Gardner
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | |
Collapse
|
45
|
Park AM, Nagata K, Sato EF, Tamura T, Shimono K, Inoue M. Mechanism of strong resistance of Helicobacter pylori respiration to nitric oxide. Arch Biochem Biophys 2003; 411:129-35. [PMID: 12590931 DOI: 10.1016/s0003-9861(02)00691-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present work is to elucidate the mechanism by which the respiration of Helicobacter pylori but not of Escherichia coli shows a strong resistance to nitric oxide (NO). Nitric oxide strongly but reversibly inhibited the oxygen consumption by sonicated membranes from H. pylori and Triton X-100-treated cells. Although the sensitivity of the H. pylori respiration to cyanide was low, it also increased after the treatment with Triton X-100. Kinetic analyses revealed that NO was rapidly degraded by E. coli and the Triton X-100-treated H. pylori, but not by the intact H. pylori. Thus, the low sensitivity to NO might reflect the low affinity of the cytochrome c oxidase for this radical within the membrane/lipid bilayers of H. pylori. Such properties of the oxidase in H. pylori membranes may, at least in part, underlie the mechanism by which this bacterium thrives in NO-enriched gastric juice.
Collapse
Affiliation(s)
- Ah-Mee Park
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno, 545-8585, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Poljakovic M, Persson K. Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide. Am J Physiol Renal Physiol 2003; 284:F22-31. [PMID: 12494944 DOI: 10.1152/ajprenal.00101.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS)-deficient mice were used to examine the role of iNOS in Escherichia coli-induced urinary tract infection (UTI). The toxicity of nitric oxide (NO)/peroxynitrite to bacteria and host was also investigated. The nitrite levels in urine of iNOS+/+ but not iNOS/ mice increased after infection. No differences in bacterial clearance or persistence were noted between the genotypes. In vitro, the uropathogenic E. coli 1177 was sensitive to 3-morpholinosydnonimine, whereas the avirulent E. coli HB101 was sensitive to both NO and 3-morpholinosydnonimine. E. coli HB101 was statistically (P < 0.05) more sensitive to peroxynitrite than E. coli 1177. Nitrotyrosine immunoreactivity was observed in infected bladders of both genotypes and in infected kidneys of iNOS+/+ mice. Myeloperoxidase, neuronal (n)NOS, and endothelial (e)NOS immunoreactivity was observed in inflammatory cells of both genotypes. Our results indicate that iNOS/ and iNOS+/+ mice are equally susceptible to E. coli-induced UTI and that the toxicity of NO to E. coli depends on bacterial virulence. Furthermore, myeloperoxidase and nNOS/eNOS may contribute to nitrotyrosine formation in the absence of iNOS.
Collapse
|
47
|
Abstract
Globins are an ancient and diverse superfamily of proteins. The globins of microorganisms were relatively ignored for many decades after their discovery by Warburg in the 1930s and rediscovery by Keilin in the 1950s. The relatively recent focus on them has been fuelled by recognition of their structural diversity and fine-tuning to fulfill (probably) discrete functions but particularly by the finding that a major role of certain globins is in protection from the stresses caused by exposure to nitric oxide (NO)--itself a molecule that has attracted intense curiosity recently. At least three classes of microbial globin are recognised, all having features of the classical globin protein fold. The first class is typified by the myoglobin-like haemprotein Vgb from the bacterium Vitreoscilla, which has attracted considerable attention because of its ability to improve growth and metabolism for biotechnological gain in a variety of host cells, even though its physiological function is not fully understood. The truncated globins are widely distributed in bacteria, microbial eukaryotes as well as plants and are characterised by being 20-40 residues shorter than Vgb. The polypeptide is folded into a two-over-two helical structure while retaining the essential features of the globin superfamily. Roles in oxygen and NO metabolism have been proposed. The third and best understood class comprises the flavohaemoglobins, which were first discovered and partly characterised in yeast. These are distinguished by the presence of an additional domain with binding sites for FAD and NAD(P)H. Widely distributed in bacteria, these proteins undoubtedly confer protection from NO and nitrosative stresses, probably by direct consumption of NO. However, a bewildering array of enzymatic capabilities and the presence of an active site in the haem pocket reminiscent of peroxidases hint at other functions. A full understanding of microbial globins promises advances in controlling the interactions of pathogenic bacteria with their animal and plant hosts, and manipulations of microbial oxygen transfer with biotechnological applications.
Collapse
Affiliation(s)
- Guanghui Wu
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, England, UK
| | | | | |
Collapse
|
48
|
Pathania R, Navani NK, Gardner AM, Gardner PR, Dikshit KL. Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli. Mol Microbiol 2002; 45:1303-14. [PMID: 12207698 DOI: 10.1046/j.1365-2958.2002.03095.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO), generated in large amounts within the macrophages, controls and restricts the growth of internalized human pathogen, Mycobacterium tuberculosis H37Rv. The molecular mechanism by which tubercle bacilli survive within macrophages is currently of intense interest. In this work, we have demonstrated that dimeric haemoglobin, HbN, from M. tuberculosis exhibits distinct nitric oxide dioxygenase (NOD) activity and protects growth and cellular respiration of heterologous hosts, Escherichia coli and Mycobacterium smegmatis, from the toxic effect of exogenous NO and the NO-releasing compounds. A flavohaemoglobin (HMP)-deficient mutant of E. coli, unable to metabolize NO, acquired an oxygen-dependent NO consumption activity in the presence of HbN. On the basis of cellular haem content, the specific NOD activity of HbN was nearly 35-fold higher than the single-domain Vitreoscilla haemoglobin (VHb) but was sevenfold lower than the two-domain flavohaemoglobin. HbN-dependent NO consumption was sustained with repeated addition of NO, demonstrating that HbN is catalytically reduced within E. coli. Aerobic growth and respiration of a flavohaemoglobin (HMP) mutant of E. coli was inhibited in the presence of exogenous NO but remained insensitive to NO inhibition when these cells produced HbN, VHb or flavohaemoglobin. M. smegmatis, carrying a native HbN very similar to M. tuberculosis HbN, exhibited a 7.5-fold increase in NO uptake when exposed to gaseous NO, suggesting NO-induced NOD activity in these cells. In addition, expression of plasmid-encoded HbN of M. tuberculosis in M. smegmatis resulted in 100-fold higher NO consumption activity than the isogenic control cells. These results provide strong experimental evidence in support of NO scavenging and detoxification function for the M. tuberculosis HbN. The catalytic NO scavenging by HbN may be highly advantageous for the survival of tubercle bacilli during infection and pathogenesis.
Collapse
Affiliation(s)
- Ranjana Pathania
- Institute of Microbial Technology, Sector 39A, Chandigarh, 160-036 India
| | | | | | | | | |
Collapse
|
49
|
Zhang B, Cao GL, Cross A, Domachowske JB, Rosen GM. Differential antibacterial activity of nitric oxide from the immunological isozyme of nitric oxide synthase transduced into endothelial cells. Nitric Oxide 2002; 7:42-9. [PMID: 12175819 DOI: 10.1016/s1089-8603(02)00001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Primary cultures of endothelial cells, grown on the three-dimensional matrix Gelfoam where they take on the morphology of these cells in vivo, were found to phagocytose Staphylococcus aureus and two strains of Escherichia coli. The phagocytosis was independent of opsonization, although once opsonized, these bacteria were phagocytosed by endothelial cells. As cytochalsin D inhibited the internationalization of S. aureus and E. coli, the phagocytosis by endothelial cells appears to be actin-dependent. Transducing the gene for nitric oxide synthase (NOS) II into endothelial cells allowed us to determine the importance of NO(*) in host immunity against these bacteria. While the growth of S. aureus was impeded by NOS II endothelial cells, two strains of E. coli were killed by an NO(*)-dependent pathway. We conclude that endothelial cells have microbicidal mechanisms that are selective for the type of pathogen encountered.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 725 W. Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
50
|
Dou Y, Maillett DH, Eich RF, Olson JS. Myoglobin as a model system for designing heme protein based blood substitutes. Biophys Chem 2002; 98:127-48. [PMID: 12128195 DOI: 10.1016/s0301-4622(02)00090-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ligand binding properties and resistances to denaturation of >300 different site-directed mutants of sperm whale, pig, and human myoglobin have been examined over the past 15 years. This library of recombinant proteins has been used to derive chemical mechanisms for ligand binding and to examine the factors governing holo- and apoglobin stability. We have also examined the effects of mutagenesis on the dioxygenation of NO by MbO(2) to form NO(3)(-) and metMb. This reaction rapidly detoxifies NO and is a key physiological function of both myoglobins and hemoglobins. The mechanisms derived for O(2) binding and NO dioxygenation have been used to design safer, more efficient, and more stable heme protein-prototypes for use as O(2) delivery pharmaceuticals in transfusion therapy (i.e. blood substitutes). An interactive database is being developed (http://olsonnt1.bioc.rice.edu/web/myoglobinhome.asp) to allow rapid access to the ligand binding parameters, stability properties, and crystal structures of the entire set of recombinant myoglobins. The long-range goal is to use this library for developing general protein engineering principles and for designing individual heme proteins for specific pharmacological and industrial uses.
Collapse
Affiliation(s)
- Yi Dou
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | | | |
Collapse
|