1
|
Nussdorfer P, Petrovič D, Alibegović A, Cilenšek I, Petrovič D. The KDR Gene rs2071559 and the VEGF Gene rs6921438 May Be Associated with Diabetic Nephropathy in Caucasians with Type 2 Diabetes Mellitus. Int J Mol Sci 2024; 25:9439. [PMID: 39273385 PMCID: PMC11395611 DOI: 10.3390/ijms25179439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
The aim of our study was to investigate an association between polymorphisms of either the VEGF (vascular endothelial growth factor) gene (rs6921438) or the KDR (kinase insert domain receptor) gene (rs2071559, rs2305948) and DN (diabetic nephropathy) in Caucasians with T2DM (type 2 diabetes mellitus). The second aim was to investigate the effect of either the VEGF gene (rs6921438) or the KDR gene (rs2071559, rs2305948) on the immune expression of either VEGF or KDR in the renal tissues of T2DM subjects (to test the functional significance of tested polymorphisms). The study included 897 Caucasians with T2DM for at least ten years (344 patients with DN and 553 patients without DN). Each subject was genotyped and analyzed for KDR (rs1617640, rs2305948) and VEGF (rs6921438) polymorphisms. Kidney tissue samples taken from 15 subjects with T2DM (autopsy material) were immunohistochemically stained for the expression of VEGF and KDR. We found that the rs2071559 KDR gene was associated with an increased risk of DN. In addition, the GG genotype of the rs6921438 VEGF gene had a protective effect. We found a significantly higher numerical area density of VEGF-positive cells in T2DM subjects with the A allele of the rs6921438-VEGF compared to the homozygotes for wild type G allele (7.0 ± 2.4/0.1 mm2 vs. 1.24 ± 0.5/0.1 mm2, respectively; p < 0.001). Moreover, a significantly higher numerical area density of KDR-positive cells was found in T2DM subjects with the C allele of rs2071559 (CC + CT genotypes) compared to the homozygotes for wild type T allele (9.7± 3.2/0.1 mm2 vs. 1.14 ± 0.5/0.1 mm2, respectively; p < 0.001) To conclude, our study showed that the presence of the C allele of the rs2071559 KDR gene was associated with a higher risk of DN, while the G allele of the rs6921438-VEGF conferred protection against DN in Slovenian T2DM subjects.
Collapse
Affiliation(s)
- Petra Nussdorfer
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - David Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Armin Alibegović
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Ines Cilenšek
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Torres-Soria AK, Romero Y, Balderas-Martínez YI, Velázquez-Cruz R, Torres-Espíndola LM, Camarena A, Flores-Soto E, Solís-Chagoyán H, Ruiz V, Carlos-Reyes Á, Salinas-Lara C, Luis-García ER, Chávez J, Castillejos-López M, Aquino-Gálvez A. Functional Repercussions of Hypoxia-Inducible Factor-2α in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11192938. [PMID: 36230900 PMCID: PMC9562026 DOI: 10.3390/cells11192938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia and hypoxia-inducible factors (HIFs) are essential in regulating several cellular processes, such as survival, differentiation, and the cell cycle; this adaptation is orchestrated in a complex way. In this review, we focused on the impact of hypoxia in the physiopathology of idiopathic pulmonary fibrosis (IPF) related to lung development, regeneration, and repair. There is robust evidence that the responses of HIF-1α and -2α differ; HIF-1α participates mainly in the acute phase of the response to hypoxia, and HIF-2α in the chronic phase. The analysis of their structure and of different studies showed a high specificity according to the tissue and the process involved. We propose that hypoxia-inducible transcription factor 2a (HIF-2α) is part of the persistent aberrant regeneration associated with developing IPF.
Collapse
Affiliation(s)
- Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico
| | - Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma México, Mexico City 04510, Mexico
| | - Yalbi I. Balderas-Martínez
- Laboratorio de Biología Computacional, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | | | - Angel Camarena
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 04530, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Solís-Chagoyán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Víctor Ruiz
- Departamento de Fibrosis Pulmonar, Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Citlaltepetl Salinas-Lara
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala Universidad Nacional Autónoma de México, Mexico City 54090, Mexico
| | - Erika Rubí Luis-García
- Departamento de Fibrosis Pulmonar, Laboratorio de Biología Celular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Jaime Chávez
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades, Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Manuel Castillejos-López
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades, Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (M.C.-L.); (A.A.-G.)
| | - Arnoldo Aquino-Gálvez
- Departamento de Fibrosis Pulmonar, Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (M.C.-L.); (A.A.-G.)
| |
Collapse
|
3
|
Li S, Li S, Wang L, Quan H, Yu W, Li T, Li W. The Effect of Blood Flow Restriction Exercise on Angiogenesis-Related Factors in Skeletal Muscle Among Healthy Adults: A Systematic Review and Meta-Analysis. Front Physiol 2022; 13:814965. [PMID: 35250618 PMCID: PMC8892188 DOI: 10.3389/fphys.2022.814965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
BackgroundBlood flow restriction (BFR) exercise may be a potential exercise program to promote angiogenesis. This review aims to compare the effects of exercise with and without BFR on angiogenesis-related factors in skeletal muscle among healthy adults.MethodologySearches were made in Web of Science, Scopus, PubMed, and EBSCO databases from January 2001 to June 2021. Studies were screened, quality was evaluated, and data were extracted. The review protocol was registered at PROSPERO (PROSPERO registration number: CRD42021261367). Standardized mean differences (SMD) of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR-2), hypoxia inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptorγcoactivator-1α (PGC-1α) and endothelial nitric oxide synthase (eNOS) were analyzed using Revman 5.4 software with a 95% confidence interval (95% CI).ResultsTen studies fulfilled the inclusion criteria with a total of 75 participants for BFR group and 77 for CON group. BFR exercise elicits greater expression of VEGF (heterogeneity test, P = 0.09, I2 = 44%; SMD, 0.93 [0.38, 1.48], P < 0.05), VEGFR-2 (heterogeneity test, P = 0.81, I2 = 0%; SMD, 0.64 [0.08, 1.21], P < 0.05), HIF-1α (heterogeneity test, P = 0.67, I2 = 0%; SMD, 0.43 [0.03, 0.82], P < 0.05), PGC-1α (heterogeneity test, P = 0.02, I2 = 54%; SMD, 0.74 [0.21, 1.28], P < 0.05) and eNOS (heterogeneity test, P = 0.88, I2 = 0%; SMD, 0.60 [0.04, 1.17], P < 0.05) mRNA than non-BFR exercise. In the sub-group analysis, resistance exercise with BFR elicits greater expression of VEGF (heterogeneity test, P = 0.36, I2 = 6%; SMD, 1.66 [0.97, 2.35], P < 0.05) and HIF-1α (heterogeneity test, P = 0.56, I2 = 0%; SMD, 0.51 [0.01, 1.02], P < 0.05) mRNA than aerobic exercise with BFR.ConclusionExercise with BFR elicited more angiogenesis-related factors mRNA expression than exercise without BFR, but not VEGF and PGC-1α protein expression. Therefore, BFR training may be a potential training program to improve vascular function.Systematic Review Registration[https://www.crd.york.ac.uk/prospero/], identifier [CRD42021261367].
Collapse
Affiliation(s)
- Shuoqi Li
- School of Health Science, Universiti Sains Malaysia, Kelantan, Malaysia
- Institute of Sports Human Science, Ocean University of China, Shandong, China
| | - Shiming Li
- Institute of Sports Human Science, Ocean University of China, Shandong, China
| | - Lifeng Wang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Zhejiang, China
| | - Helong Quan
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Zhejiang, China
| | - Wenbing Yu
- Institute of Sports Human Science, Ocean University of China, Shandong, China
| | - Ting Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Zhejiang, China
- Ting Li,
| | - Wei Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Zhejiang, China
- *Correspondence: Wei Li,
| |
Collapse
|
4
|
Wang X, Bove AM, Simone G, Ma B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front Cell Dev Biol 2020; 8:599281. [PMID: 33304904 PMCID: PMC7701214 DOI: 10.3389/fcell.2020.599281] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
The vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) play crucial roles in vasculogenesis and angiogenesis. Angiogenesis is an important mechanism in many physiological and pathological processes, and is involved in endothelial cell proliferation, migration, and survival, then leads to further tubulogenesis, and finally promotes formation of vessels. This series of signaling cascade pathways are precisely mediated by VEGF/VEGFR-2 system. The VEGF binding to the IgD2 and IgD3 of VEGFR-2 induces the dimerization of the receptor, subsequently the activation and trans-autophosphorylation of the tyrosine kinase, and then the initiation of the intracellular signaling cascades. Finally the VEGF-activated VEGFR-2 stimulates and mediates variety of signaling transduction, biological responses, and pathological processes in angiogenesis. Several crucial phosphorylated sites Tyr801, Try951, Try1175, and Try1214 in the VEGFR-2 intracellular domains mediate several key signaling processes including PLCγ-PKC, TSAd-Src-PI3K-Akt, SHB-FAK-paxillin, SHB-PI3K-Akt, and NCK-p38-MAPKAPK2/3 pathways. Based on the molecular structure and signaling pathways of VEGFR-2, the strategy of the VEGFR-2-targeted therapy should be considered to employ in the treatment of the VEGF/VEGFR-2-associated diseases by blocking the VEGF/VEGFR-2 signaling pathway, inhibiting VEGF and VEGFR-2 gene expression, blocking the binding of VEGF and VEGFR-2, and preventing the proliferation, migration, and survival of vascular endothelial cells expressing VEGFR-2.
Collapse
Affiliation(s)
- Xinrong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | | | | | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Fibronectin Adsorption on Electrospun Synthetic Vascular Grafts Attracts Endothelial Progenitor Cells and Promotes Endothelialization in Dynamic In Vitro Culture. Cells 2020; 9:cells9030778. [PMID: 32210018 PMCID: PMC7140838 DOI: 10.3390/cells9030778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022] Open
Abstract
Appropriate mechanical properties and fast endothelialization of synthetic grafts are key to ensure long-term functionality of implants. We used a newly developed biostable polyurethane elastomer (TPCU) to engineer electrospun vascular scaffolds with promising mechanical properties (E-modulus: 4.8 ± 0.6 MPa, burst pressure: 3326 ± 78 mmHg), which were biofunctionalized with fibronectin (FN) and decorin (DCN). Neither uncoated nor biofunctionalized TPCU scaffolds induced major adverse immune responses except for minor signs of polymorph nuclear cell activation. The in vivo endothelial progenitor cell homing potential of the biofunctionalized scaffolds was simulated in vitro by attracting endothelial colony-forming cells (ECFCs). Although DCN coating did attract ECFCs in combination with FN (FN + DCN), DCN-coated TPCU scaffolds showed a cell-repellent effect in the absence of FN. In a tissue-engineering approach, the electrospun and biofunctionalized tubular grafts were cultured with primary-isolated vascular endothelial cells in a custom-made bioreactor under dynamic conditions with the aim to engineer an advanced therapy medicinal product. Both FN and FN + DCN functionalization supported the formation of a confluent and functional endothelial layer.
Collapse
|
6
|
Simulated Microgravity Influences VEGF, MAPK, and PAM Signaling in Prostate Cancer Cells. Int J Mol Sci 2020; 21:ijms21041263. [PMID: 32070055 PMCID: PMC7072928 DOI: 10.3390/ijms21041263] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is one of the leading causes of cancer mortality in men worldwide. An unusual but unique environment for studying tumor cell processes is provided by microgravity, either in space or simulated by ground-based devices like a random positioning machine (RPM). In this study, prostate adenocarcinoma-derived PC-3 cells were cultivated on an RPM for time periods of 3 and 5 days. We investigated the genes associated with the cytoskeleton, focal adhesions, extracellular matrix, growth, survival, angiogenesis, and metastasis. The gene expression of signaling factors of the vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK), and PI3K/AKT/mTOR (PAM) pathways was investigated using qPCR. We performed immunofluorescence to study the cytoskeleton, histological staining to examine the morphology, and a time-resolved immunofluorometric assay to analyze the cell culture supernatants. When PC-3 cells were exposed to simulated microgravity (s-µg), some cells remained growing as adherent cells (AD), while most cells detached from the cell culture flask bottom and formed multicellular spheroids (MCS). After 3-day RPM exposure, PC-3 cells revealed significant downregulation of the VEGF, SRC1, AKT, MTOR, and COL1A1 gene expression in MCS, whereas FLT1, RAF1, MEK1, ERK1, FAK1, RICTOR, ACTB, TUBB, and TLN1 mRNAs were not significantly changed. ERK2 and TLN1 were elevated in AD, and FLK1, LAMA3, COL4A5, FN1, VCL, CDH1, and NGAL mRNAs were significantly upregulated in AD and MCS after 3 days. After a 5-day culture in s-µg, the PC-3 cells showed significant downregulations of VEGF mRNA in AD and MCS, and FN1, CDH1, and LAMA3 in AD and SCR1 in MCS. In addition, we measured significant upregulations in FLT1, AKT, ERK1, ERK2, LCN2, COL1A1, TUBB, and VCL mRNAs in AD and MCS, and increases in FLK1, FN1, and COL4A5 in MCS as well as LAMB2, CDH1, RAF1, MEK1, SRC1, and MTOR mRNAs in AD. FAK1 and RICTOR were not altered by s-µg. In parallel, the secretion rate of VEGFA and NGAL proteins decreased. Cytoskeletal alterations (F-actin) were visible, as well as a deposition of collagen in the MCS. In conclusion, RPM-exposure of PC-3 cells induced changes in their morphology, cytoskeleton, and extracellular matrix protein synthesis, as well as in their focal adhesion complex and growth behavior. The significant upregulation of genes belonging to the PAM pathway indicated their involvement in the cellular changes occurring in microgravity.
Collapse
|
7
|
Wang Y, Hoeppner LH, Angom RS, Wang E, Dutta S, Doeppler HR, Wang F, Shen T, Scarisbrick IA, Guha S, Storz P, Bhattacharya R, Mukhopadhyay D. Protein kinase D up-regulates transcription of VEGF receptor-2 in endothelial cells by suppressing nuclear localization of the transcription factor AP2β. J Biol Chem 2019; 294:15759-15767. [PMID: 31492751 PMCID: PMC6816101 DOI: 10.1074/jbc.ra119.010152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Indexed: 01/29/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGF receptor-2 (VEGFR-2) to control vasculogenesis and angiogenesis, key physiological processes in cardiovascular disease and cancer. In human umbilical vein endothelial cells (HUVECs), knockdown of protein kinase D-1 (PKD1) or PKD2 down-regulates VEGFR-2 expression and inhibits VEGF-induced cell proliferation and migration. However, how PKD regulates VEGF signaling is unclear. Previous bioinformatics analyses have identified binding sites for the transcription factor activating enhancer-binding protein 2 (AP2) in the VEGFR-2 promoter. Using ChIP analyses, here we found that PKD knockdown in HUVECs increases binding of AP2β to the VEGFR-2 promoter. Luciferase reporter assays with serial deletions of AP2-binding sites within the VEGFR-2 promoter revealed that its transcriptional activity negatively correlates with the number of these sites. Next we demonstrated that AP2β up-regulation decreases VEGFR-2 expression and that loss of AP2β enhances VEGFR-2 expression in HUVECs. In vivo experiments confirmed increased VEGFR-2 immunostaining in the spinal cord of AP2β knockout mouse embryos. Mechanistically, we observed that PKD phosphorylates AP2β at Ser258 and Ser277 and suppresses its nuclear accumulation. Inhibition of PKD activity with a pan-PKD inhibitor increased AP2β nuclear localization, and overexpression of both WT and constitutively active PKD1 or PKD2 reduced AP2β nuclear localization through a Ser258- and Ser277-dependent mechanism. Furthermore, substitution of Ser277 in AP2β increased its binding to the VEGFR-2 promoter. Our findings uncover evidence of a molecular pathway that regulates VEGFR-2 expression, insights that may shed light on the etiology of diseases associated with aberrant VEGF/VEGFR signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Luke H Hoeppner
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Heike R Doeppler
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Fei Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Tao Shen
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming 650221, China
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Sushovan Guha
- University of Arizona College of Medicine, Phoenix, Arizona 85004
| | - Peter Storz
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Resham Bhattacharya
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| |
Collapse
|
8
|
Ettensohn CA, Adomako-Ankomah A. The evolution of a new cell type was associated with competition for a signaling ligand. PLoS Biol 2019; 17:e3000460. [PMID: 31532765 PMCID: PMC6768484 DOI: 10.1371/journal.pbio.3000460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/30/2019] [Accepted: 09/05/2019] [Indexed: 11/29/2022] Open
Abstract
There is presently a very limited understanding of the mechanisms that underlie the evolution of new cell types. The skeleton-forming primary mesenchyme cells (PMCs) of euechinoid sea urchins, derived from the micromeres of the 16-cell embryo, are an example of a recently evolved cell type. All adult echinoderms have a calcite-based endoskeleton, a synapomorphy of the Ambulacraria. Only euechinoids have a micromere-PMC lineage, however, which evolved through the co-option of the adult skeletogenic program into the embryo. During normal development, PMCs alone secrete the embryonic skeleton. Other mesoderm cells, known as blastocoelar cells (BCs), have the potential to produce a skeleton, but a PMC-derived signal ordinarily prevents these cells from expressing a skeletogenic fate and directs them into an alternative developmental pathway. Recently, it was shown that vascular endothelial growth factor (VEGF) signaling plays an important role in PMC differentiation and is part of a conserved program of skeletogenesis among echinoderms. Here, we report that VEGF signaling, acting through ectoderm-derived VEGF3 and its cognate receptor, VEGF receptor (VEGFR)-10-Ig, is also essential for the deployment of the skeletogenic program in BCs. This VEGF-dependent program includes the activation of aristaless-like homeobox 1 (alx1), a conserved transcriptional regulator of skeletogenic specification across echinoderms and an example of a “terminal selector” gene that controls cell identity. We show that PMCs control BC fate by sequestering VEGF3, thereby preventing activation of alx1 and the downstream skeletogenic network in BCs. Our findings provide an example of the regulation of early embryonic cell fates by direct competition for a secreted signaling ligand, a developmental mechanism that has not been widely recognized. Moreover, they reveal that a novel cell type evolved by outcompeting other embryonic cell lineages for an essential signaling ligand that regulates the expression of a gene controlling cell identity. How do new cell types evolve? This study shows that mesoderm cells in sea urchin embryos diversified, at least in part, through a heterochronic shift in the expression of a key transcription factor, which led to competition for a signaling ligand and subsequent gene regulatory independence of the two cell types.
Collapse
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Ashrifia Adomako-Ankomah
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Ferguson RA, Hunt JEA, Lewis MP, Martin NRW, Player DJ, Stangier C, Taylor CW, Turner MC. The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction. Eur J Sport Sci 2018; 18:397-406. [DOI: 10.1080/17461391.2017.1422281] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Richard A. Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Julie E. A. Hunt
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Faculty of Health and Medical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford, UK
| | - Mark P. Lewis
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Neil R. W. Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Darren J. Player
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Carolin Stangier
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Conor W. Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark C. Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
10
|
Song L, Ding S, Ge Z, Zhu X, Qiu C, Wang Y, Lai E, Yang W, Sun Y, Chow SA, Yu L. Nucleoside/nucleotide reverse transcriptase inhibitors attenuate angiogenesis and lymphangiogenesis by impairing receptor tyrosine kinases signalling in endothelial cells. Br J Pharmacol 2017; 175:1241-1259. [PMID: 28910489 DOI: 10.1111/bph.14036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/04/2017] [Accepted: 09/03/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Cardiovascular disease associated with antiretroviral therapy (ART) has become a major clinical challenge for HIV-positive patients. However, the role of ART in blood vessel growth is largely unknown. Here, we examined an integral component of ART, nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) and investigated their effects on key microvascular functions, including angiogenesis and lymphangiogenesis. EXPERIMENTAL APPROACH The angiogenesis/lymphangiogenesis capability of endothelial cells (ECs) was evaluated using migration, proliferation and tube formation assays in vitro, and mouse ear and Matrigel plug assays in vivo. Expressions of signalling molecules and mitochondrial antioxidant catalases were determined using Western blotting. Receptor tyrosine kinase (RTK) internalization and endocytosis were examined using flow cytometry and confocal immunofluorescence microscopy respectively. Mitochondrial DNA copy number and ROS were determined using quantitative real-time PCR and MitoSOX staining respectively. KEY RESULTS Pharmaceutical doses of NRTIs [azidothymidine (AZT), tenofovir disoproxil fumarate (TDF) and lamivudine (3TC)] inhibited angiogenesis and lymphangiogenesis both in vivo and in vitro by affecting the proliferation and migration of ECs. Correspondingly, NRTIs selectively attenuated the activation and transduction of endothelial RTK signals, VEGFR2 and FGFR1 pathways, in vascular ECs and the VEGFR3 pathway in lymphatic ECs. Both TDF and 3TC restrained RTKs' endocytosis into early endosomes but not internalization, while AZT blocked the protein maturation of RTKs. Excessive ROS levels were detected in NRTI-treated ECs, and the MnSOD mimic MnTMPyP alleviated the angiogenic/lymphangiogenic defects induced by NRTIs. CONCLUSIONS AND IMPLICATIONS NRTIs negatively regulate angiogenesis and lymphangiogenesis by inducing mitochondrial oxidative stress and subsequently impairing RTK signalling in ECs. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Lin Song
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Sha Ding
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhen Ge
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Xiaolong Zhu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Cong Qiu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuewen Wang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Enyin Lai
- Department of Physiology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weijun Yang
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Sun
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Samson A Chow
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Luyang Yu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Cheung CY. Vascular Endothelial Growth Factor Activation of Intramembranous Absorption: A Critical Pathway for Amniotic Fluid Volume Regulation. ACTA ACUST UNITED AC 2016; 11:63-74. [PMID: 14980307 DOI: 10.1016/j.jsgi.2003.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this review is to propose a critical role for vascular endothelial growth factor (VEGF) in mediating the transfer of amniotic fluid from the amniotic compartment through the fetal membranes and fetal surface of the placenta into fetal blood. METHODS Experimental findings in humans and animal models on the action of VEGF in mediating fluid transfer are reviewed and interpreted in order to postulate a proposed mechanism for VEGF regulation of amniotic fluid absorption through the fetal membranes and placenta. RESULTS Recent scientific advances suggest that up-regulation of VEGF gene expression in the amnion and chorion is associated with increased transfer of amniotic fluid into fetal blood. The possible mechanisms of action for VEGF appear to involve regulation of intramembranous blood vessel proliferation and membrane transport via passive permeation as well as nonpassive transcytotic vesicular movement of fluid. CONCLUSION Currently evolving concepts suggest that amniotic fluid volume is regulated through modulation of the rate of intramembranous absorption of amniotic fluid by both passive and nonpassive mechanisms. The permeability factor VEGF appears to be a critical regulator of amniotic fluid transport in the fetal membranes.
Collapse
Affiliation(s)
- Cecilia Y Cheung
- Division of Perinatal Medicine, Department of Reproductive Medicine, University of California at San Diego, La Jolla, California 92093-0802, USA.
| |
Collapse
|
12
|
Lee HT, Xue J, Chou PC, Zhou A, Yang P, Conrad CA, Aldape KD, Priebe W, Patterson C, Sawaya R, Xie K, Huang S. Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells. Oncotarget 2016; 6:10016-29. [PMID: 25881542 PMCID: PMC4496337 DOI: 10.18632/oncotarget.3540] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 01/19/2023] Open
Abstract
Brain metastasis is a major cause of morbidity and mortality in patients with breast cancer. Our previous studies indicated that Stat3 plays an important role in brain metastasis. Here, we present evidence that Stat3 functions at the level of the microenvironment of brain metastases. Stat3 controlled constitutive and inducible VEGFR2 expression in tumor-associated brain endothelial cells. Furthermore, inhibition of Stat3 by WP1066 decreased the incidence of brain metastases and increased survival in a preclinical model of breast cancer brain metastasis. WP1066 inhibited Stat3 activation in tumor-associated endothelial cells, reducing their infiltration and angiogenesis. WP1066 also inhibited breast cancer cell invasion. Our results indicate that WP1066 can inhibit tumor angiogenesis and brain metastasis mediated by Stat3 in endothelial and tumor cells.
Collapse
Affiliation(s)
- Hsueh-Te Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Jianfei Xue
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping-Chieh Chou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phillip Yang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charles A Conrad
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth D Aldape
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cam Patterson
- Division of Cardiology and McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keping Xie
- Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
13
|
Scotti L, Abramovich D, Pascuali N, Irusta G, Meresman G, Tesone M, Parborell F. Local VEGF inhibition prevents ovarian alterations associated with ovarian hyperstimulation syndrome. J Steroid Biochem Mol Biol 2014; 144 Pt B:392-401. [PMID: 25151950 DOI: 10.1016/j.jsbmb.2014.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 01/09/2023]
Abstract
The relationship between human chorionic gonadotropin and ovarian hyperstimulation syndrome (OHSS) is partially mediated by vascular endothelial growth factor A (VEGF). The aim of this study was to investigate the effects of VEGF inhibition on the development of corpora lutea (CL) and cystic structures, steroidogenesis, apoptosis, cell proliferation, endothelial cell area, VEGF receptors (KDR and Flt-1), claudin-5 and occludin levels in ovaries from an OHSS rat model. The VEGF inhibitor used (VEGF receptor-1 (FLT-1)/Fc chimera, TRAP) decreased the concentrations of progesterone and estradiol as well as the percentage of CL and cystic structures in OHSS rats, and increased apoptosis in CL. Endothelial cell area in CL and KDR expression and its phosphorylation were increased, whereas claudin-5 and occludin levels were decreased in the OHSS compared to the control TRAP reversed these parameters. Our findings indicate that VEGF inhibition prevents the early onset of OHSS and decreases its severity in rats.
Collapse
Affiliation(s)
- Leopoldina Scotti
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Griselda Irusta
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Gabriela Meresman
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina
| | - Marta Tesone
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IByME) - CONICET, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Zhao H, Iwasaki M, Yang J, Savage S, Ma D. Hypoxia-inducible factor-1: A possible link between inhalational anesthetics and tumor progression? ACTA ACUST UNITED AC 2014; 52:70-6. [DOI: 10.1016/j.aat.2014.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/07/2014] [Indexed: 01/10/2023]
|
15
|
Alahakoon TI, Zhang W, Trudinger BJ, Lee VW. Discordant clinical presentations of preeclampsia and intrauterine fetal growth restriction with similar pro- and anti-angiogenic profiles. J Matern Fetal Neonatal Med 2014; 27:1854-9. [PMID: 24397483 DOI: 10.3109/14767058.2014.880882] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate the plasma levels of angiogenic factors in preeclampsia (PE) and intrauterine fetal growth restriction (IUGR) and their potential as biomarkers to distinguish normal from pathologic pregnancies. METHODS Case control study included singleton pregnancies in four categories: (i) normal (n = 29), (ii) PE (n = 15), (iii) PE and IUGR (n = 16) and (iv) IUGR (n = 24). The classification of IUGR included umbilical artery Doppler resistance. Maternal plasma placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), soluble kinase domain receptor (sKDR) and soluble endoglin (sEng) as well as fetal umbilical artery sFlt-1 levels were determined. Each individual marker and their ratios were assessed for their potential to distinguish normal pregnancy from pregnancies affected by PE and/or IUGR. RESULTS We found (i) elevated plasma sFlt-1, sEng and reduced PlGF, sKDR in PE and IUGR; (ii) similar angiogenic profiles in PE and IUGR and (iii) sEng and sFlt-1*sEng/PlGF performed best as biomarkers in identifying pathologic pregnancies. CONCLUSIONS PE and IUGR have similar angiogenic profiles, suggesting that angiogenic marker profiles lack specificity in identifying PE and that other factors are required for the development of PE instead of IUGR. sEng should be included in a biomarker profile for predicting PE or IUGR.
Collapse
|
16
|
Zangi L, Lui KO, von Gise A, Ma Q, Ebina W, Ptaszek LM, Später D, Xu H, Tabebordbar M, Gorbatov R, Sena B, Nahrendorf M, Briscoe DM, Li RA, Wagers AJ, Rossi DJ, Pu WT, Chien KR. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 2013; 31:898-907. [PMID: 24013197 DOI: 10.1038/nbt.2682] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/06/2013] [Indexed: 12/15/2022]
Abstract
In a cell-free approach to regenerative therapeutics, transient application of paracrine factors in vivo could be used to alter the behavior and fate of progenitor cells to achieve sustained clinical benefits. Here we show that intramyocardial injection of synthetic modified RNA (modRNA) encoding human vascular endothelial growth factor-A (VEGF-A) results in the expansion and directed differentiation of endogenous heart progenitors in a mouse myocardial infarction model. VEGF-A modRNA markedly improved heart function and enhanced long-term survival of recipients. This improvement was in part due to mobilization of epicardial progenitor cells and redirection of their differentiation toward cardiovascular cell types. Direct in vivo comparison with DNA vectors and temporal control with VEGF inhibitors revealed the greatly increased efficacy of pulse-like delivery of VEGF-A. Our results suggest that modRNA is a versatile approach for expressing paracrine factors as cell fate switches to control progenitor cell fate and thereby enhance long-term organ repair.
Collapse
Affiliation(s)
- Lior Zangi
- 1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Department of Cardiology, Children's Hospital Boston, Boston, Massachusetts, USA. [4] Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts, USA. [5] Boston and Harvard Stem Cell Institute, Cambridge, Massachusetts, USA. [6]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Coiled-coil-mediated grafting of bioactive vascular endothelial growth factor. Acta Biomater 2013; 9:6806-13. [PMID: 23485856 DOI: 10.1016/j.actbio.2013.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 11/20/2022]
Abstract
Chimeric growth factors may represent a powerful alternative to their natural counterparts for the functionalization of tissue-engineered scaffolds and applications in regenerative medicine. Their rational design should provide a simple, readily scalable production strategy while improving retention at the site of action. In that endeavor, we here report the synthesis of a chimeric protein corresponding to human vascular endothelial growth factor 165 being N-terminally fused to an E5 peptide tag (E5-VEGF). E5-VEGF was successfully expressed as a homodimer in mammalian cells. Following affinity purification, in vitro surface plasmon resonance biosensing and cell survival assays confirmed diffusible E5-VEGF ability to bind to its receptor ectodomains, while observed morphological phenotypes confirmed its anti-apoptotic features. Additional surface plasmon resonance assays highlighted that E5-VEGF could be specifically captured with high stability when interacting with covalently immobilized K5 peptide (a synthetic peptide designed to bind to the E5 moiety of chimeric hVEGF). This immobilization strategy was applied to glass substrates and chimeric hVEGF was shown to be maintained in a functionally active state following capture. Altogether, our data demonstrated that stable hVEGF capture can be performed via coiled-coil interactions without impacting hVEGF bioactivity, thus opening up the way to future applications in the field of tissue engineering and regenerative medicine.
Collapse
|
18
|
Liu H, Zhang W, Xu Z, Caldwell RW, Caldwell RB, Brooks SE. Hyperoxia causes regression of vitreous neovascularization by downregulating VEGF/VEGFR2 pathway. Invest Ophthalmol Vis Sci 2013; 54:918-31. [PMID: 23307955 DOI: 10.1167/iovs.12-11291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Neovascularization (NV) is a sight-threatening complication of retinal ischemia in diabetes, retinal vein occlusion, and retinopathy of prematurity. Current treatment modalities, including laser photocoagulation and repeated intraocular injection of VEGF antagonists, are invasive and not always effective, and may carry side effects. We studied the use of hyperoxia as an alternative therapeutic strategy for regressing established vitreous NV in a mouse model of oxygen-induced ischemic retinopathy. METHODS Hyperoxia treatment (HT, 75% oxygen) was initiated on postnatal day (P)17 after the onset of vitreous NV. Immunohistochemistry and quantitative PCR were used to assess retinal vascular changes in relation to apoptosis, and expression of VEGFR2 and inflammatory molecules. Effects of intravitreal injections of VEGF-A, VEGF-E, PlGF-1, and VEGF trap were also studied. RESULTS HT selectively reduced NV by 70% within 24 hours. It robustly increased the level of cleaved caspase-3 in the vitreous NV between 6 and 18 hours and promoted infiltration of macrophage/microglial cells. The HT-induced apoptosis was preceded by a significant reduction in VEGFR2 expression within the NV and an increase in VEGFR2 within the surrounding neural tissue. Intravitreal VEGF-A and VEGF-E (VEGFR2 agonist) but not PlGF-1 (VEGFR1 agonist) prevented HT-induced apoptosis and regression of NV. In contrast, VEGF trap and VEGFR2 blockers mimicked the effect of HT. However, intravitreal VEGF trap induced increases in inflammatory molecules while HT did not have such unwanted effect. CONCLUSIONS HT may be clinically useful to specifically treat proliferative NV in ischemic retinopathy.
Collapse
Affiliation(s)
- Hua Liu
- Vascular Biology Center, Georgia Health Sciences University, Augusta, USA
| | | | | | | | | | | |
Collapse
|
19
|
Heiske A, Roettger Y, Bacher M. Cytomegalovirus upregulates vascular endothelial growth factor and its second cellular kinase domain receptor in human fibroblasts. Viral Immunol 2012; 25:360-7. [PMID: 22985288 DOI: 10.1089/vim.2012.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) activation and elevated levels of vascular endothelial growth factor (VEGF) have been found to be associated with transplant rejection. However, information is lacking about whether elevated levels of this multifunctional factor are directly due to viral activation, or if they derive from impurities within the culture supernatant of infected cell cultures. We used purified as well as unpurified viral stocks to infect human fibroblasts in vitro and applied PCR, Western blot, ELISA, and immunofluorescence staining to investigate the expression of VEGF and its receptors. Our data suggest that HCMV infection triggers an early and sustained induction of VEGF and kinase insert domain receptor (KDR) mRNAs, whereas transcript levels of FLT-1 remain unchanged by viral infection. Analysis of the extracellular VEGF and cellular KDR protein expression after infection with purified and unpurified HCMV strains AD169 and TOLEDO showed, in clear contrast to UV-inactivated virus preparations, an increased release of VEGF and KDR proteins. In addition, immunofluorescence revealed that HCMV infection was also accompanied by a profound increase in intracellular VEGF and KDR levels. These results confirm that active HCMV infection is required to induce VEGF and the most important VEGF receptor KDR, and that the upregulation of VEGF and KDR are a direct viral effect and not a secondary effect mediated by inflammatory cytokines within the supernatant. The HCMV-dependent upregulation of VEGF and KDR contributes to the theory that viral-induced immune mediators play a key role in transplant rejection.
Collapse
Affiliation(s)
- Andreas Heiske
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | | | | |
Collapse
|
20
|
Finetti F, Basile A, Capasso D, Di Gaetano S, Di Stasi R, Pascale M, Turco CM, Ziche M, Morbidelli L, D'Andrea LD. Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis. Biochem Pharmacol 2012; 84:303-11. [PMID: 22554565 DOI: 10.1016/j.bcp.2012.04.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 12/26/2022]
Abstract
Vascular endothelial growth factor (VEGF) is the main regulator of physiological and pathological angiogenesis. Low molecular weight molecules able to stimulate angiogenesis have interesting medical application for example in regenerative medicine, but at present none has reached the clinic. We reported that a VEGF mimetic helical peptide, QK, designed on the VEGF helix sequence 17-25, is able to bind and activate the VEGF receptors, producing angiogenesis. In this study we evaluate the pharmacological properties of peptide QK with the aim to propose it as a VEGF-mimetic drug to be employed in reparative angiogenesis. We show that the peptide QK is able to recapitulate all the biological activities of VEGF in vivo and on endothelial cells. In experiments evaluating sprouting from aortic ring and vessel formation in an in vivo angiogenesis model, the peptide QK showed biological effects comparable with VEGF. At endothelial level, the peptide up-regulates VEGF receptor expression, activates intracellular pathways depending on VEGFR2, and consistently it induces endothelial cell proliferation, survival and migration. When added to angiogenic factors (VEGF and/or FGF-2), QK produces an improved biological action, which resulted in reduced apoptosis and accelerated in vitro wound healing. The VEGF-like activity of the short peptide QK, characterized by lower cost of production and easier handling compared to the native glycoprotein, suggests that it is an attractive candidate to be further developed for application in therapeutic angiogenesis.
Collapse
Affiliation(s)
- Federica Finetti
- Sezione di Farmacologia, Dipartimento di Biotecnologie, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Andraweera PH, Dekker GA, Roberts CT. The vascular endothelial growth factor family in adverse pregnancy outcomes. Hum Reprod Update 2012; 18:436-57. [PMID: 22495259 DOI: 10.1093/humupd/dms011] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pre-eclampsia, small-for-gestational-age infants, preterm birth and recurrent miscarriage complicate a significant number of pregnancies. The vascular endothelial growth factor (VEGF) family of angiogenic growth factors is implicated in the pathophysiology of these complications. We aimed to elucidate the role of these angiogenic factors in placentation and to evaluate the predictive value of their protein concentrations and genetic variations in pregnancy complications. METHODS We performed a systematic search of PubMed, and retrieved original articles. The search included a combination of terms such as VEGF-A, placental growth factor (PlGF), kinase insert domain receptor, fms-like-tyrosine-kinase receptor 1, soluble fms-like-tyrosine-kinase receptor 1, pre-eclampsia, small-for-gestational-age infants, preterm birth, recurrent miscarriage, placenta, prediction and polymorphisms. RESULTS This review summarizes the current knowledge of the roles of the VEGF family in early placentation and of the abnormalities in maternal plasma and placental expression of angiogenic proteins in adverse pregnancy outcomes compared with normal pregnancy. PlGF and sFLT-1 in combination with other clinical and biochemical markers in late first or second trimester appear to predict early-onset pre-eclampsia with a high sensitivity and specificity. However, VEGF family proteins do not have sufficient power to accurately predict late-onset pre-eclampsia, small-for-gestational age pregnancies or preterm birth. Functional polymorphisms in these angiogenic genes are implicated in pregnancy complications, but their contribution appears to be minor. CONCLUSIONS Although the VEGF family has important roles in normal and complicated pregnancy, the current predictive value of the VEGF family as biomarkers appears to be limited to early-onset pre-eclampsia.
Collapse
Affiliation(s)
- P H Andraweera
- Discipline of Obstetrics and Gynaecology, Robinson Institute, University of Adelaide, Adelaide 5005, Australia
| | | | | |
Collapse
|
22
|
E G, Cao Y, Bhattacharya S, Dutta S, Wang E, Mukhopadhyay D. Endogenous vascular endothelial growth factor-A (VEGF-A) maintains endothelial cell homeostasis by regulating VEGF receptor-2 transcription. J Biol Chem 2011; 287:3029-41. [PMID: 22167188 DOI: 10.1074/jbc.m111.293985] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is one of the most important factors controlling angiogenesis. Although the functions of exogenous VEGF-A have been widely studied, the roles of endogenous VEGF-A remain unclear. Here we focused on the mechanistic functions of endogenous VEGF-A in endothelial cells. We found that it is complexed with VEGF receptor 2 (VEGFR-2) and maintains a basal expression level for VEGFR-2 and its downstream signaling activation. Endogenous VEGF-A also controls expression of key endothelial specific genes including VEGFR-2, Tie-2, and vascular endothelial cadherin. Of importance, endogenous VEGF-A differs from exogenous VEGF-A by regulating VEGFR-2 transcription through mediation of FoxC2 binding to the FOX:ETS motif, and the complex formed by endogenous VEGF-A with VEGFR-2 is localized within the EEA1 (early endosome antigen 1) endosomal compartment. Taken together, our results emphasize the importance of endogenous VEGF-A in endothelial cells by regulating key vascular proteins and maintaining the endothelial homeostasis.
Collapse
Affiliation(s)
- Guangqi E
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
23
|
Domingues I, Rino J, Demmers JAA, de Lanerolle P, Santos SCR. VEGFR2 translocates to the nucleus to regulate its own transcription. PLoS One 2011; 6:e25668. [PMID: 21980525 PMCID: PMC3182252 DOI: 10.1371/journal.pone.0025668] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023] Open
Abstract
Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) is the major mediator of the angiogenic effects of VEGF. In addition to its well known role as a membrane receptor that activates multiple signaling pathways, VEGFR2 also has a nuclear localization. However, what VEGFR2 does in the nucleus is still unknown. In the present report we show that, in endothelial cells, nuclear VEGFR2 interacts with several nuclear proteins, including the Sp1, a transcription factor that has been implicated in the regulation of genes needed for angiogenesis. By in vivo chromatin immunoprecipitation (ChIP) assays, we found that VEGFR2 binds to the Sp1-responsive region of the VEGFR2 proximal promoter. These results were confirmed by EMSA assays, using the same region of the VEGFR2 promoter. Importantly, we show that the VEGFR2 DNA binding is directly linked to the transcriptional activation of the VEGFR2 promoter. By reporter assays, we found that the region between -300/-116 relative to the transcription start site is essential to confer VEGFR2-dependent transcriptional activity. It was previously described that nuclear translocation of the VEGFR2 is dependent on its activation by VEGF. In agreement, we observed that the binding of VEGFR2 to DNA requires VEGF activation, being blocked by Bevacizumab and Sunitinib, two anti-angiogenic agents that inhibit VEGFR2 activation. Our findings demonstrate a new mechanism by which VEGFR2 activates its own promoter that could be involved in amplifying the angiogenic response.
Collapse
Affiliation(s)
- Inês Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Jeroen A. A. Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | |
Collapse
|
24
|
Xiao-Yun X, Zhao-Hui M, Ke C, Hong-Hui H, Yan-Hong X. Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation. Med Sci Monit 2011; 17:BR35-41. [PMID: 21278683 PMCID: PMC3524715 DOI: 10.12659/msm.881383] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Glucagon-like peptide-1(GLP-1), released from enteroendocrine cells of the intestine, exerted cardiovascular protective effect. Circulating endothelial progenitor cells (EPCs) play an important role in maintaining endothelial integrity regulating neovascularization and reendothelialization after endothelial injury. Vascular endothelial growth factor (VEGF) is an important cytokine in the process of EPCs vascular differentiation and proliferation. Material/Methods This study was designed to investigate the association between VEGF changes and the proliferation/differentiation function of EPCs in the presence of GLP-1. Results We demonstrated that GLP-1 markedly enhanced the EPCs proliferation and expression of EC-specific markers, and simultaneously upregulated VEGF secretion in EPCs. Exogenous VEGF augmented EPCs proliferation/differentiation abilities in a dose-dependent manner. However, all of the beneficial effects of GLP-1 were suppressed by anti-VEGFmAb or the KDR-specific tyrosine kinase inhibitor SU1498. Conclusions These findings suggest that GLP-1 improves VEGF generation, which contributed to improvement of EPCs biological function, partly by tyrosine kinase KDR. VEGF is a necessary intermediate, mediating the effects of GLP-1 on EPCs. These changes offer a novel explanation that upregulation EPCs bioactivities may be one of the mechanisms of GLP-1 cardiovascular protective effect.
Collapse
Affiliation(s)
- Xie Xiao-Yun
- Department of Endocrinology, 3rd Xiangya Hospital, Central South University, Hunan Province, Changsha, China
| | | | | | | | | |
Collapse
|
25
|
Abstract
BACKGROUND Thoracic insufficiency syndrome represents a novel form of postnatal restrictive respiratory disease occurring in children with early-onset scoliosis and chest wall anomalies. Expansion thoracoplasty improves lung volumes in children with thoracic insufficiency syndrome; however, how it affects lung development is unknown. QUESTIONS/PURPOSES Using a rabbit model of thoracic insufficiency syndrome, we evaluated the effect of expansion thoracoplasty on the response of biologic mechanisms in the alveolar microstructure. METHODS Using archived material from a previous experiment, 10 4-week-old New Zealand rabbits were divided into three groups: normal (n = 3), disease (n = 3), and treated (n = 4). Left ribs four to eight were tethered in seven rabbits at age 5 weeks to induce hypoplasia of the left hemithorax (disease). At age 10 weeks, four of these rabbits were treated by expansion thoracoplasty (treated). At age 24 weeks, lungs were excised and processed. Alveolar density and parenchymal airspace were measured on histologic sections. Immunohistochemistry was performed for vascular endothelial growth factor receptor 2 (angiogenesis), KI-67 (cell proliferation), and RAM-11 (macrophages). RESULTS Alveolar walls were poorly perfused and airspace fraction was larger (emphysematous) in disease rabbits than normal or treated rabbits. Immunohistochemistry provided inconclusive evidence to support the concept that pulmonary hypoplasia is induced by thoracic insufficiency syndrome and controlled by expansion thoracoplasty. CONCLUSIONS Treatment of thoracic insufficiency syndrome by expansion thoracoplasty may prevent emphysematous changes in the alveolar microstructure, thereby enhancing gas exchange.
Collapse
|
26
|
|
27
|
Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence. Blood 2011; 117:4142-53. [PMID: 21307392 DOI: 10.1182/blood-2010-09-307538] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neovascularization is a crucial component of tumor growth and ischemia. Although prior work primarily used disease models, delineation of neovascularization in the absence of disease can reveal intrinsic mechanisms of microvessel regulation amenable to manipulation in illness. We created a conditional model of epithelial HIF-1 induction in adult mice (TetON-HIF-1 mice). Longitudinal photoacoustic microscopy (L-PAM) was coincidentally developed for noninvasive, label-free serial imaging of red blood cell-perfused vasculature in the same mouse for weeks to months. TetON-HIF-1 mice evidenced 3 stages of neovascularization: development, maintenance, and transgene-dependent regression. Regression occurred despite extensive and tight pericyte coverage. L-PAM mapped microvascular architecture and quantified volumetric changes in neocapillary morphogenesis, arteriovenous remodeling, and microvessel regression. Developmental stage endothelial proliferation down-regulation was associated with a DNA damage checkpoint consisting of p53, p21, and endothelial γ-H2AX induction. The neovasculature was temporally responsive to VEGFR2 immuno-blockade, with the developmental stage sensitive, and the maintenance stage resistant, to DC101 treatment. L-PAM analysis also pinpointed microvessels ablated or resistant to VEGFR2 immuno-blockade. HIF-1-recruited myeloid cells did not mediate VEGFR2 inhibitor resistance. Thus, HIF-1 neovascularization in the absence of disease is self-regulated via cell autonomous endothelial checkpoints, and resistant to angiogenesis inhibitors independent of myeloid cells.
Collapse
|
28
|
Isolation of a novel neutralizing antibody fragment against human vascular endothelial growth factor from a phage-displayed human antibody repertoire using an epitope disturbing strategy. J Biotechnol 2011; 151:166-74. [DOI: 10.1016/j.jbiotec.2010.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/22/2010] [Accepted: 12/03/2010] [Indexed: 11/21/2022]
|
29
|
Behr B, Leucht P, Longaker MT, Quarto N. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci U S A 2010; 107:11853-8. [PMID: 20547837 PMCID: PMC2900703 DOI: 10.1073/pnas.1003317107] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bone healing requires a complex interaction of growth factors that establishes an environment for efficient bone regeneration. Among these, FGFs have been considered important for intrinsic bone-healing capacity. In this study, we analyzed the role of Fgf-9 in long bone repair. One-millimeter unicortical defects were created in tibias of Fgf-9(+/-) and wild-type mice. Histomorphometry revealed that half-dose gene of Fgf-9 markedly reduced bone regeneration as compared with wild-type. Both immunohistochemistry and RT-PCR analysis revealed markedly decreased levels of proliferating cell nuclear antigen (PCNA), Runt-related transcription factor 2 (Runx2), osteocalcin, Vega-a, and platelet endothelial cell adhesion molecule 1 (PECAM-1) in Fgf-9(+/-) defects. muCT angiography indicated dramatic impairment of neovascularization in Fgf-9(+/-) mice as compared with controls. Treatment with FGF-9 protein promoted angiogenesis and successfully rescued the healing capacity of Fgf-9(+/-) mice. Importantly, although other pro-osteogenic factors [Fgf-2, Fgf-18, and bone morphogenic protein 2 (Bmp-2)] still were present in Fgf-9(+/-) mice, they could not compensate for the haploinsufficiency of the Fgf-9 gene. Therefore, endogenous Fgf-9 seems to play an important role in long bone repair. Taken together our data suggest a unique role for Fgf-9 in bone healing, presumably by initiating angiogenesis through Vegf-a. Moreover, this study further supports the embryonic phenotype previously observed in the developing limb, thus promoting the concept that healing processes in adult organisms may recapitulate embryonic skeletal development.
Collapse
Affiliation(s)
- Björn Behr
- Children's Surgical Research Program, Department of Surgery and
- BG-Unfallklinik Ludwigshafen, Department of Plastic and Hand Surgery, University of Heidelberg, Heidelberg 39120, Germany; and
| | - Philipp Leucht
- Children's Surgical Research Program, Department of Surgery and
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Natalina Quarto
- Children's Surgical Research Program, Department of Surgery and
- Department of Structural and Functional Biology, University of Naples Federico II, Complesso M. S. Angelo, Naples 80125, Italy
| |
Collapse
|
30
|
Samuel SM, Akita Y, Paul D, Thirunavukkarasu M, Zhan L, Sudhakaran PR, Li C, Maulik N. Coadministration of adenoviral vascular endothelial growth factor and angiopoietin-1 enhances vascularization and reduces ventricular remodeling in the infarcted myocardium of type 1 diabetic rats. Diabetes 2010; 59:51-60. [PMID: 19794062 PMCID: PMC2797944 DOI: 10.2337/db09-0336] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hyperglycemia impairs angiogenesis in response to ischemia, leading to ventricular remodeling. Although the effects of overexpressing angiogenic growth factors have been studied in inducing angiogenesis, the formation of functional vessels remains a challenge. The present study evaluates the reversal of diabetes-mediated impairment of angiogenesis in the infarcted diabetic rat myocardium by proangiogenic gene therapy. RESEARCH DESIGN AND METHODS Ad*VEGF and Ad*Ang1 were intramyocardially administered in combination immediately after myocardial infarction to nondiabetic and diabetic rats. Ad*LacZ was similarly administered to the respective control groups. The hearts were excised for molecular and immunohistochemical analysis at predetermined time points. The myocardial function was measured by echocardiography 30 days after the intervention. RESULTS We observed reduced fibrosis and increased capillary/arteriolar density along with reduced ventricular remodeling, as assessed by echocardiography in the treated diabetic animals compared with the nontreated diabetic controls. We also observed increased phosphorylated mitogen-activated protein kinase-activated protein kinase-2, 2 days after the treatment and increased expression of vascular endothelial growth factor (VEGF), Flk-1, angiopoietin-1 (Ang-1), Tie-2, and survivin, 4 days after treatment in the diabetic animals. Gel shift analysis revealed that the combination gene therapy stimulated the DNA binding activity of nuclear factor-kappaB in the diabetic animals. CONCLUSIONS Our preclinical data demonstrate the efficacy of coadministration of adenoviral VEGF and Ang-1 in increasing angiogenesis and reducing ventricular remodeling in the infarcted diabetic myocardium. These unique results call for the initiation of a clinical trial to assess the efficacy of this therapeutic strategy in the treatment of diabetes-related human heart failure.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
- Department of Biochemistry, University of Kerala, Trivandrum, Kerala, India
| | - Yuzo Akita
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Debayon Paul
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Lijun Zhan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | | | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, Tennessee
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
- Corresponding author: Nilanjana Maulik,
| |
Collapse
|
31
|
Daugherty AL, Mrsny RJ. Local tissue distribution and cellular fate of vascular endothelial growth factor (VEGF) following intramuscular injection. J Drug Target 2009; 18:27-35. [DOI: 10.3109/10611860903134317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J 2009; 29:424-41. [PMID: 20010698 DOI: 10.1038/emboj.2009.361] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 11/02/2009] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and beta-catenin both act broadly in embryogenesis and adulthood, including in the skeletal and vascular systems. Increased or deregulated activity of these molecules has been linked to cancer and bone-related pathologies. By using novel mouse models to locally increase VEGF levels in the skeleton, we found that embryonic VEGF over-expression in osteo-chondroprogenitors and their progeny largely pheno-copied constitutive beta-catenin activation. Adult induction of VEGF in these cell populations dramatically increased bone mass, associated with aberrant vascularization, bone marrow fibrosis and haematological anomalies. Genetic and pharmacological interventions showed that VEGF increased bone mass through a VEGF receptor 2- and phosphatidyl inositol 3-kinase-mediated pathway inducing beta-catenin transcriptional activity in endothelial and osteoblastic cells, likely through modulation of glycogen synthase kinase 3-beta phosphorylation. These insights into the actions of VEGF in the bone and marrow environment underscore its power as pleiotropic bone anabolic agent but also warn for caution in its therapeutic use. Moreover, the finding that VEGF can modulate beta-catenin activity may have widespread physiological and clinical ramifications.
Collapse
|
33
|
Bonnesen B, Pappot H, Holmstav J, Skov BG. Vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 expression in non-small cell lung cancer patients: Relation to prognosis. Lung Cancer 2009; 66:314-8. [PMID: 19324448 DOI: 10.1016/j.lungcan.2009.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 01/26/2009] [Accepted: 02/16/2009] [Indexed: 11/25/2022]
|
34
|
Tripathi R, Rath G, Ralhan R, Saxena S, Salhan S. Soluble and membranous vascular endothelial growth factor receptor-2 in pregnancies complicated by pre-eclampsia. Yonsei Med J 2009; 50:656-66. [PMID: 19881969 PMCID: PMC2768240 DOI: 10.3349/ymj.2009.50.5.656] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/02/2008] [Accepted: 12/08/2008] [Indexed: 12/27/2022] Open
Abstract
PURPOSE There is a paucity of information on the serum soluble vascular endothelial growth factor receptor-2 (sVEGFR-2) concentrations, membranous VEGFR-2 expression and the mechanism involved in their modulations during the clinical onset of pre-eclampsia. This cross-sectional study was conducted to evaluate the concentration of sVEGFR-2 in serum and to investigate the expression of membranous VEGFR-2 in placentae of pre-eclampsia group. MATERIALS AND METHODS The serum levels of sVEGFR-2 (n = 120) and the expression of membranous VEGFR-2 in placentae (n = 100) were analysed at third trimester of pregnancy by enzyme linked immunosorbent assay (ELISA) and immunohistochemistry respectively. The diagnostic parameters of sensitivity, specificity and association of soluble and membranous VEGFR-2 in these patients were evaluated. RESULTS The serum levels of sVEGFR-2 in pre-eclampsia patients were found to be significantly reduced (p = 0.01, p = 0.001) in early and late pre-eclamptic sub-groups as compared to their respective third trimester control sub-groups. Also, the receiver operating characteristic (ROC) curve analysis showed a cut-off value of 7350.4 pg/mL, higher sensitivity (76%) and specificity (76%) for sVEGFR-2 in late onset (> 34 weeks) pre-eclamptic group. Significant down-regulation of membranous VEGFR-2 immunoreactivity was observed in all the placental cells (p = 0.0001) at > 34 weeks preeclamptic group. CONCLUSION The reduced serum levels of soluble VEGFR-2 and the down-regulated expression of membranous VEGFR-2 in the study group denoted abnormality in VEGF mediated placental function in all placental cells and thus VEGFR-2 may be a key factor, intimately associated with pre-eclampsia. This study shows the clinical utility of soluble and membranous VEGFR-2 in pre-eclampsia patients.
Collapse
Affiliation(s)
- Richa Tripathi
- Department of Anatomy, VMMC & Safdarjang Hospital, New Delhi, India.
| | | | | | | | | |
Collapse
|
35
|
Choi DY, Baek YH, Huh JE, Ko JM, Woo H, Lee JD, Park DS. Stimulatory effect of Cinnamomum cassia and cinnamic acid on angiogenesis through up-regulation of VEGF and Flk-1/KDR expression. Int Immunopharmacol 2009; 9:959-67. [DOI: 10.1016/j.intimp.2009.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 11/15/2022]
|
36
|
Medford AR, Ibrahim NB, Millar AB. Vascular endothelial growth factor receptor and coreceptor expression in human acute respiratory distress syndrome. J Crit Care 2009; 24:236-42. [PMID: 19327291 PMCID: PMC2698064 DOI: 10.1016/j.jcrc.2008.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 04/03/2008] [Accepted: 04/15/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is characterized by the development of noncardiogenic pulmonary edema, which has been related to the bioactivity of vascular endothelial growth factor (VEGF). Vascular endothelial growth factor receptors and coreceptors regulate this bioactivity. We hypothesized VEGF receptors 1 and 2 (VEGFR1, VEGFR2) and coreceptor neuropilin-1 (NRP-1) would be expressed in human lung tissue with a significant change in expression in ARDS lung. METHODS Archival "normal" (no lung pathology and non-ARDS), "early" (within 48 hours), and "later" (after day 7) ARDS lung-tissue sections (n = 5) were immunostained for VEGFR1, VEGFR2, and NRP-1 from human subjects (n = 4). Staining was assessed densitometrically using Histometrix software. RESULTS VEGFR1, VEGFR2, and NRP-1 were expressed on both sides of the alveolar-capillary membrane in both normal and ARDS human lung tissue. In later ARDS, there was a significant up-regulation of VEGFR1 and VEGFR2 versus normal and early ARDS (P < .0001). Neuropilin-1 was down-regulated in early ARDS versus normal lung (P < .05), with normalization in later ARDS (P < .001). CONCLUSION Differential temporal VEGFR1, VEGFR2, and NRP-1 up-regulation occurs in human ARDS, providing evidence of further functional regulation of VEGF bioactivity via VEGFR2 consistent with a protective role for VEGF in lung injury recovery. The mechanisms behind these observations remain to be clarified.
Collapse
Affiliation(s)
- Andrew R.L. Medford
- Lung Research Group, Department of Clinical Science at North Bristol, University of Bristol, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, United Kingdom
| | - Nassif B.N. Ibrahim
- Department of Pathology, Frenchay Hospital, Frenchay, Bristol BS16 1LE, United Kingdom
| | - Ann B. Millar
- Lung Research Group, Department of Clinical Science at North Bristol, University of Bristol, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5NB, United Kingdom
- Corresponding author. Tel.: +44 117 9595348; fax: +44 117 9595018.
| |
Collapse
|
37
|
Han KY, Kim CW, Lee TH, Son Y, Kim J. CCL23 up-regulates expression of KDR/Flk-1 and potentiates VEGF-induced proliferation and migration of human endothelial cells. Biochem Biophys Res Commun 2009; 382:124-8. [PMID: 19265684 DOI: 10.1016/j.bbrc.2009.02.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 02/27/2009] [Indexed: 11/28/2022]
Abstract
CCL23 is a CC chemokine and exerts its biological activities on endothelial cells as well as on immune cells through CCR1. We investigated the potential effect of CCL23 on expression of KDR/Flk-1 receptor in endothelial cells. PCR, confocal microscope and Western blot analysis revealed that CCL23 up-regulated KDR/Flk-1 mRNA and protein levels in endothelial cells. A reporter assay indicated that CCL23-induced KDR/Flk-1 expression primarily occurred at the transcriptional level. In addition, CCL23 stimulated phosphorylation of SAPK/JNK, and an inhibitor of SAPK/JNK blocks the CCL23-induced KDR/Flk-1 expression. Furthermore, VEGF-induced ERK phosphorylation was stimulated by CCL23. Finally, CCL23 promoted VEGF-induced endothelial proliferation and migration, which were correlated with the maximal stimulation of KDR/Flk-1 expression by CCL23. Taken together, these findings suggest that CCL23 results in up-regulation of KDR/flk-1 receptor gene transcription and protein expression and that KDR/Flk-1 up-regulation induced by CCL23 may contribute to potentiation of VEGF action in angiogenesis.
Collapse
Affiliation(s)
- Kyu Yeon Han
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1 Seocheon-Ri Giheung-Eup, Yongin 446-701, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Testa U, Pannitteri G, Condorelli GL. Vascular endothelial growth factors in cardiovascular medicine. J Cardiovasc Med (Hagerstown) 2009; 9:1190-221. [PMID: 19001927 DOI: 10.2459/jcm.0b013e3283117d37] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of vascular endothelial growth factors (VEGFs) and their receptors has considerably improved the understanding of the development and function of endothelial cells. Each member of the VEGF family appears to have a specific function: VEGF-A induces angiogenesis (i.e. growth of new blood vessels from preexisting ones), placental growth factor mediates both angiogenesis and arteriogenesis (i.e. the formation of collateral arteries from preexisting arterioles), VEGF-C and VEGF-D act mainly as lymphangiogenic factors. The study of the biology of these endothelial growth factors has allowed a major progress in the comprehension of the genesis of the vascular system and its abnormalities observed in various pathologic conditions (atherosclerosis and coronary artery disease). The role of VEGF in the atherogenic process is still unclear, but actual evidence suggests both detrimental (development of a neoangiogenetic process within the atherosclerotic plaque) and beneficial (promotion of collateral vessel formation) effects. VEGF and other angiogenic growth factors (fibroblast growth factor), although initially promising in experimental studies and in initial phase I/II clinical trials in patients with ischemic heart disease or peripheral arterial occlusive disease, have subsequently failed to show significant therapeutic improvements in controlled clinical studies. Challenges still remain about the type or the combination of angiogenic factors to be administered, the form (protein vs. gene), the route, and the duration of administration.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Italy.
| | | | | |
Collapse
|
39
|
Morera Y, Bequet-Romero M, Ayala M, Lamdán H, Agger EM, Andersen P, Gavilondo JV. Anti-tumoral effect of active immunotherapy in C57BL/6 mice using a recombinant human VEGF protein as antigen and three chemically unrelated adjuvants. Angiogenesis 2008; 11:381-93. [PMID: 19034678 DOI: 10.1007/s10456-008-9121-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/01/2008] [Indexed: 11/30/2022]
Abstract
Following the clinical success of Bevacizumab, a humanized monoclonal antibody that affects the interaction between vascular endothelial growth factor (VEGF) and its receptors, blocking tumor-induced angiogenesis has become one of the most important targets for the development of new cancer therapeutic drugs and procedures. Among the latter, therapeutic vaccination using VEGF as antigen presents itself as very attractive, with the potential of generating not only a growth factor blocking antibody response but also a cellular response against tumor cells and stromal elements, which appear to be a major source of tumor VEGF. In this paper, we report the development of a protein vaccine candidate, based on a human modified VEGF antigen that is expressed at high levels in E. coli. With respect to controls, immunization experiments in C57BL/6 mice using weekly doses of this antigen and three adjuvants of different chemical natures show that time for tumor development after subcutaneous injection of Melanoma B16-F10 cells increases, tumors that develop grow slower, and overall animal survival is higher. Immunization also prevents tumor development in some mice, making them resistant to second tumor challenges. Vaccination of mice with the human modified VEGF recombinant antigen produces antibodies against the human antigen and the homologous mouse VEGF molecule. We also show that sera from immunized mice block human VEGF-induced HUVEC proliferation. Finally, a possible contribution of T cell cytotoxicity to the overall anti-tumor effect is suggested from the results of vaccination experiments where CD8+ lymphocytes were impaired using neutralizing rat antibodies.
Collapse
Affiliation(s)
- Yanelys Morera
- Recombinant Antibody Group, Cancer Research Department, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Ave 31 and 190 Cubanacán, 10600, Playa, Havana, Cuba
| | | | | | | | | | | | | |
Collapse
|
40
|
Ardura JA, Berruguete R, Rámila D, Alvarez-Arroyo MV, Esbrit P. Parathyroid hormone-related protein interacts with vascular endothelial growth factor to promote fibrogenesis in the obstructed mouse kidney. Am J Physiol Renal Physiol 2008; 295:F415-25. [PMID: 18550647 DOI: 10.1152/ajprenal.00018.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) interacts with vascular endothelial growth factor (VEGF) in osteoblasts. Since both PTHrP and VEGF have both proinflammatory and profibrogenic features, we assessed here whether these factors might act in concert to promote fibrogenesis in the obstructed kidney. VEGF receptor (VEGFR)-1 was upregulated, while VEGFR-2 was downregulated (at both mRNA and protein levels) in the mouse kidney within 2-6 days after ureteral obstruction. VEGF protein levels also increased in the obstructed kidney at the latter time. Moreover, this VEGF and VEGFR-1 upregulation was higher in mice overexpressing PTHrP in the proximal tubule than in control littermates. These changes were associated with higher fibronectin mRNA expression and alpha-smooth muscle actin (alpha-SMA) and integrin-linked kinase (ILK) immunostaining and lower apoptotic tubulointerstitial cells in the mouse obstructed kidney than in control littermates. Pretreatment with a neutralizing anti-VEGF antibody reversed these responses in the obstructed kidney of both types of mice. In vitro, PTHrP-(1-36) increased (maximal 2-fold vs. basal, at 100 nM) alpha-SMA and ILK protein expression and decreased E-cadherin protein levels in renal tubuloepithelial mouse cortical tubule and normal rat kidney (NRK) 52E cells. PTHrP-(1-36) also decreased cyclosporine A- and/or osmotic stress-induced apoptosis in these cells and in renal fibroblastic NRK 49F cells. These effects elicited by PTHrP-(1-36) were associated with both VEGF and VEGFR-1 upregulation, and abolished by the anti-VEGF antibody. Collectively, these findings strongly suggest that VEGF acts as an important mediator of PTHrP to promote fibrogenesis in the obstructed kidney.
Collapse
Affiliation(s)
- Juan A Ardura
- Bone and Mineral Metabolism Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | |
Collapse
|
41
|
Lee DJ, Lyshchik A, Huamani J, Hallahan DE, Fleischer AC. Relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent and the level of VEGFR2 expression in an in vivo breast cancer model. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2008; 27:855-866. [PMID: 18499845 DOI: 10.7863/jum.2008.27.6.855] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE The aim of this study was to characterize the relationship between retention of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeted ultrasonographic contrast agent (UCA) and VEGFR2 expression in tumor vasculature of breast cancer. METHODS 67NR breast cancer tumors implanted in mice were evaluated in vivo with both VEGFR2-targeted and nontargeted UCAs, and a high-frequency ultrasound system. A bolus of the UCA was injected and allowed to circulate for 4 minutes to allow binding of targeted microbubbles. After that, 2 sets of images before and after a high-power ultrasonic destruction sequence were acquired. The average video intensity of predestruction and postdestruction images was measured and used as a relative measure of retention of the UCA in the tumor. Levels of VEGFR2 expression and tumor vascular density were quantified by immunohistochemical staining and compared with retention of the VEGFR2-targeted UCA. RESULTS Retention of VEGFR2-targeted microbubbles in tumors was significantly higher than retention of nontargeted microbubbles (mean +/- SD, 47.75+/-9.85 versus 18.5+/-5.46 dB; P< .001). Retention of the VEGFR2-targeted UCA was found to correlate with the level of VEGFR2 expression in the studied tumors (r(2)=0.41). In contrast, retention of the nontargeted UCA was not correlated with the level of VEGFR2 expression (r(2)=0.08). Furthermore, retention of the VEGFR2-targeted UCA was not correlated with the level of tumor vascularity. CONCLUSIONS The magnitude of the molecular ultrasonographic signal from a VEGFR2-targeted UCA retained by tissue correlates with VEGFR2 expression. These results validate the use of molecular ultrasonography for in vivo detection and quantification of VEGFR2 expression in this breast cancer model.
Collapse
Affiliation(s)
- Debbie J Lee
- Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
42
|
Chaiworapongsa T, Romero R, Gotsch F, Espinoza J, Nien JK, Goncalves L, Edwin S, Kim YM, Erez O, Kusanovic JP, Pineles BL, Papp Z, Hassan S. Low maternal concentrations of soluble vascular endothelial growth factor receptor-2 in preeclampsia and small for gestational age. J Matern Fetal Neonatal Med 2008; 21:41-52. [PMID: 18175243 DOI: 10.1080/14767050701831397] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Preeclampsia is considered an anti-angiogenic state. A role for the anti-angiogenic factors soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) and soluble endoglin in preeclampsia has been proposed. Soluble vascular endothelial growth factor receptor-2 (sVEGFR-2) has been detected in human plasma, and the recombinant form of this protein has anti-angiogenic activity. There is a paucity of information about maternal plasma sVEGFR-2 concentrations in patients with preeclampsia and those without preeclampsia with small for gestational age (SGA) fetuses. This study was conducted to determine whether: (1) plasma sVEGFR-2 concentration changes throughout pregnancy; and (2) preeclampsia and SGA are associated with abnormalities in the maternal plasma concentration of sVEGFR-2. STUDY DESIGN This cross-sectional study included non-pregnant women (n = 40), women with normal pregnancies (n = 135), women with an SGA fetus (n = 53), and women with preeclampsia (n = 112). SGA was defined as an ultrasound-estimated fetal weight below the 10(th) percentile for gestational age that was confirmed by neonatal birth weight. Plasma concentrations of sVEGFR-2 were determined by ELISA. RESULTS (1) There was no significant difference in the mean plasma concentration of sVEGFR-2 between non-pregnant women and those with normal pregnancies (p = 0.8); (2) patients with preeclampsia and those without preeclampsia with SGA fetuses had a lower mean plasma concentration of sVEGFR-2 than that of women with normal pregnancies (p < 0.001 for both); and (3) there was no significant difference in the mean plasma concentration of sVEGFR-2 between patients with preeclampsia and those without preeclampsia with SGA (p = 0.9). CONCLUSIONS Preeclampsia and SGA are associated with low plasma concentrations of sVEGFR-2. One interpretation of the findings is that plasma sVEGFR-2 concentration could reflect endothelial cell function.
Collapse
Affiliation(s)
- Tinnakorn Chaiworapongsa
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xie B, Shen J, Dong A, Swaim M, Hackett SF, Wyder L, Worpenberg S, Barbieri S, Campochiaro PA. An Adam15 amplification loop promotes vascular endothelial growth factor-induced ocular neovascularization. FASEB J 2008; 22:2775-83. [PMID: 18381816 DOI: 10.1096/fj.07-099283] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins with a disintegrin and a metalloproteinase domain (ADAMs) are a family of membrane-bound proteinases that bind integrins through their disintegrin domain. In this study, we have found modest expression of ADAM15 in pericytes in normal retina and strong up-regulation of ADAM15 in retinal vascular endothelial cells in ischemic retina. Increased expression of vascular endothelial growth factor (VEGF) in the retina in the absence of ischemia also increased ADAM15 levels, and knockdown of Vegf mRNA in ischemic retina reduced Adam15 mRNA. Mice deficient in ADAM15 showed a significant reduction in ischemia-induced retinal neovascularization, choroidal neovascularization at rupture sites in Bruch's membrane, and VEGF-induced subretinal neovascularization. ADAM15-deficient mice also showed reduced levels of VEGF(164), VEGF receptor 1, and VEGF receptor 2 in ischemic retina. These data suggest that ADAM15 and VEGF participate in an amplification loop; VEGF increases expression of ADAM15, which in turn increases expression of VEGF and its receptors. Perturbation of the loop by elimination of ADAM15 suppresses ocular neovascularization in 3 different model systems, and thus ADAM15 provides a new therapeutic target for diseases complicated by neovascularization.
Collapse
Affiliation(s)
- Bing Xie
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stowe AM, Plautz EJ, Nguyen P, Frost SB, Eisner-Janowicz I, Barbay S, Dancause N, Sensarma A, Taylor MD, Zoubina EV, Nudo RJ. Neuronal HIF-1 alpha protein and VEGFR-2 immunoreactivity in functionally related motor areas following a focal M1 infarct. J Cereb Blood Flow Metab 2008; 28:612-20. [PMID: 17895908 PMCID: PMC3232012 DOI: 10.1038/sj.jcbfm.9600560] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical and experimental data support a role for the intact cortex in recovery of function after stroke, particularly ipsilesional areas interconnected to the infarct. There is, however, little understanding of molecular events in the intact cortex, as most studies focus on the infarct and peri-infarct regions. This study investigated neuronal immunoreactivity for hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) in remote cortical areas 3 days after a focal ischemic infarct, as both HIF-1alpha and VEGFR-2 have been implicated in peri-infarct neuroprotection. For this study, intracortical microstimulation techniques defined primary motor (M1) and premotor areas in squirrel monkeys (genus Saimiri). An infarct was induced in the M1 hand representation, and immunohistochemical techniques identified neurons, HIF-1alpha and VEGFR-2. Stereologic techniques quantified the total neuronal populations and the neurons immunoreactive for HIF-1alpha or VEGFR-2. The results indicate that HIF-1alpha upregulation is confined to the infarct and peri-infarct regions. Increases in VEGFR-2 immunoreactivity occurred; however, in two remote regions: the ventral premotor hand representation and the M1 hindlimb representation. Neurons in these representations were previously shown to undergo significant increases in VEGF protein immunoreactivity, and comparison of the two data sets showed a significant correlation between levels of VEGF and VEGFR-2 immunoreactivity. Thus, while remote areas undergo a molecular response to the infarct, we hypothesize that there is a delay in the initiation of the response, which ultimately may increase the 'window of opportunity' for neuroprotective interventions in the intact cortex.
Collapse
Affiliation(s)
- Ann M Stowe
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xue J, Bi X, Wu G, Meng D, Fang J. Fludarabine reduces survivability of HepG2 cells through VEGF under hypoxia. Arch Biochem Biophys 2007; 468:100-6. [DOI: 10.1016/j.abb.2007.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/24/2007] [Accepted: 09/18/2007] [Indexed: 11/29/2022]
|
46
|
Koutsimpelas D, Brieger J, Kim DW, Stenzel M, Hast J, Mann WJ. Proangiogenic effects of ionizing irradiation on squamous cell carcinoma of the hypopharynx. Auris Nasus Larynx 2007; 35:369-75. [PMID: 17980533 DOI: 10.1016/j.anl.2007.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Revised: 07/11/2007] [Accepted: 09/06/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVE There is experimental evidence that ionizing irradiation affects a proangiogenic response. However, the relevance of this effect on tumour growth in vivo is not in detail investigated yet. The present objectives were to examine the influence of ionizing radiation on the expression of the vascular endothelial growth factor (VEGF) and its receptors (flt-1 and flk-1), the microvessel density and the tumour proliferation, in head and neck squamous cell carcinoma (HNSCC). METHODS We used a HNSCC-cell line, derived from a hypopharyngeal tumour, for subcutaneous injection in 16 athymic nude mice. After reaching an average diameter of 12-14 mm the xenografts were randomised and 8 out of the 16 animals (therapy group) were irradiated with a single fraction of 6 Gy while the control group remained without any intervention. The irradiated and the respective control tumours were prepared after 7 (T7) and 70 days (T70) for immunohistochemical analysis. The expression of VEGF, its receptors flk-1 and flt-1, the vessel density (CD31) and the proliferation rate (Ki67) were quantified. RESULTS At the point of time T7 we observed a reduction of the tumour growth rate, of the proliferative activity and of the VEGF- as well as of the VEGF-R-expression. At the point of time T70 we found increased values for proliferation, microvessel density, VEGF- and flk-1 expression in the therapy group compared to the therapy group at T7 as well as to the control group at T70. CONCLUSION These changes might suggest a long-term proangiogenic effect of irradiation, which might result in growth promotion of the remaining tumour after the end of therapy.
Collapse
Affiliation(s)
- D Koutsimpelas
- Department of Otorhinolaryngology, University Hospital of Mainz, Langenbeckstr. 1, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Papa PC, Moura CEB, Artoni LP, Fátima LA, Campos DB, Marques JEB, Baruselli PS, Binelli M, Pfarrer C, Leiser R. VEGF system expression in different stages of estrous cycle in the corpus luteum of non-treated and superovulated water buffalo. Domest Anim Endocrinol 2007; 33:379-89. [PMID: 17014980 DOI: 10.1016/j.domaniend.2006.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 07/10/2006] [Accepted: 07/31/2006] [Indexed: 01/14/2023]
Abstract
Water buffaloes are easily adaptable animals, whose raising and economical exploitation have been growing in the last three decades all over the world. Hyperstimulation of ovarian function in this species is a common technique aiming to improve reproductive performance. Superovulatory treatment affects corpus luteum (CL) function, which is highly correlated to angiogenic process. The aim of this study was therefore to assess the temporal protein and mRNA expression of VEGF and its receptors in the CL of non-treated and superovulated buffaloes. For that purpose blood samples and CL from 36 healthy (30 untreated, groups 1-5, and 6 superovulated, group 6) non-pregnant buffaloes were collected and the samples were divided into 6 groups according to the age of CL. Plasma samples were submitted to RIA to measure progesterone concentration and CL were subjected to immunohistochemistry and real time PCR for VEGF (vascular endothelial growth factor), Flt-1 (fms-like tyrosine kinase receptor 1) and KDR (kinase insert domain containing region). The VEGF system protein and mRNA expression during CL life span of untreated animals showed a specific time-dependent profile, although protein did not always reflect mRNA concentrations. VEGF expression in luteal cells was high correlated to plasma progesterone levels. Superovulated CL showed a significant increase of the VEGF-system protein and a significant decrease of mRNA expression compared to untreated animals in the same stage of the oestrous cycle. We conclude that VEGF, Flt-1 and KDR protein and mRNA expression in buffalo CL is dependent of estrous cycle stage and superovulatory treatment is able to increase the translation rate of this system.
Collapse
Affiliation(s)
- P C Papa
- Department of Surgery, Sector of Anatomy, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gavin TP, Drew JL, Kubik CJ, Pofahl WE, Hickner RC. Acute resistance exercise increases skeletal muscle angiogenic growth factor expression. Acta Physiol (Oxf) 2007; 191:139-46. [PMID: 17565567 DOI: 10.1111/j.1748-1716.2007.01723.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Both aerobic and resistance exercise training promote skeletal muscle angiogenesis. Acute aerobic exercise increases several pro-angiogenic pathways, the best characterized being increases in vascular endothelial growth factor (VEGF). We hypothesized that acute resistance exercise also increases skeletal muscle angiogenic growth factor [VEGF and angiopoietin (Ang)] expression. METHODS Seven young, sedentary individuals had vastus lateralis muscle biopsies and blood drawn prior to and at 0, 2 and 4 h post-resistance exercise for the measurement of VEGF; VEGF receptor [KDR, Flt-1 and neuropilin 1 (Nrp1)]; Ang1 and Ang2; and the angiopoietin receptor--Tie2 expression. Resistance exercise consisted of progressive knee extensor (KE) exercise to determine one repetition maximum (1-RM) followed by three sets of 10 repetitions (3 x 10) of KE exercise at 60-80% of 1-RM. RESULTS Resistance exercise significantly increased skeletal muscle VEGF mRNA and protein and plasma VEGF protein at 2 and 4 h. Resistance exercise increased KDR mRNA and Tie2 mRNA at 4 h and Nrp1 mRNA at 2 and 4 h. Skeletal muscle Flt-1, Ang1, Ang2 and Ang2/Ang1 ratio mRNA were not altered by resistance exercise. CONCLUSIONS These findings suggest that acute resistance exercise increases skeletal muscle VEGF, VEGF receptor and angiopoietin receptor expression. The increases in muscle angiogenic growth factor expression in response to acute resistance exercise are similar in timing and magnitude with responses to acute aerobic exercise and are consistent with resistance exercise promoting muscle angiogenesis.
Collapse
MESH Headings
- Adult
- Analysis of Variance
- Angiopoietin-1/genetics
- Angiopoietin-1/metabolism
- Angiopoietin-2/genetics
- Angiopoietin-2/metabolism
- Capillaries
- Gene Expression
- Humans
- Leg/blood supply
- Male
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Neovascularization, Physiologic
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Physical Exertion/physiology
- Receptor, TIE-2/analysis
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Receptors, Vascular Endothelial Growth Factor/analysis
- Receptors, Vascular Endothelial Growth Factor/genetics
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
Collapse
Affiliation(s)
- T P Gavin
- Department of Exercise and Sport Science, Department of Pysiology, and Human Performance Laboratory, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | |
Collapse
|
49
|
Yamamoto Y, Shiraishi I, Dai P, Hamaoka K, Takamatsu T. Regulation of embryonic lung vascular development by vascular endothelial growth factor receptors, Flk-1 and Flt-1. Anat Rec (Hoboken) 2007; 290:958-73. [PMID: 17654674 DOI: 10.1002/ar.20564] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The biological effects of vascular endothelial growth factor A (VEGF-A) are mediated by fetal liver kinase-1 (Flk-1) and fms-like tyrosine kinase-1 (Flt-1). In lung tissue, VEGF-A is diffusely expressed throughout the embryonic stages, whereas the development of vascular endothelial cells is not uniform. Noting the signaling properties of the two receptors, we hypothesized that Flk-1 and Flt-1 regulate the embryonic development of lung vasculature. We herein show the spatiotemporal expression and experimental inhibition of Flk-1 and Flt-1 of embryonic mouse lung tissue. When Flk-1 was predominantly expressed (embryonic day [E] 9.5-E13.5), then vascular endothelial cells actively proliferated. When Flt-1 was enhanced (E14.5-E16.5), these cells less actively proliferated, thereby constituting organized networks. The treatment of cultured lung buds (E11.5) with antisense oligonucleotides complementary to Flk-1 inhibited branching of capillaries and proliferation of endothelial cells. In contrast, the inhibition of Flt-1 promoted the branching of capillaries and enhanced proliferation of endothelial cells. Of interest, inhibition of Flt-1 promoted Flk-1 expression. These results suggest that the two VEGF-A receptors regulate pulmonary vascular development by modulating the VEGF-A signaling.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Endothelium, Vascular/physiology
- Ephrin-B2/genetics
- Ephrin-B2/physiology
- Female
- Gene Expression Regulation, Developmental/drug effects
- Lung/blood supply
- Lung/cytology
- Lung/embryology
- Mice
- Mice, Inbred ICR
- Morphogenesis/drug effects
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/physiology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Pregnancy
- RNA, Messenger/genetics
- RNA, Messenger/physiology
- Signal Transduction/physiology
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/physiology
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/physiology
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/physiology
Collapse
Affiliation(s)
- Yasutoshi Yamamoto
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | | | | | | | | |
Collapse
|
50
|
Band M, Shams I, Joel A, Avivi A. Cloning and in vivo expression of vascular endothelial growth factor receptor 2 (Flk1) in the naturally hypoxia-tolerant subterranean mole rat. FASEB J 2007; 22:105-12. [PMID: 17726089 DOI: 10.1096/fj.07-8892com] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelial growth factor receptor (VEGF) plays a critical role in blood vessel formation and affects nerve growth and survival. VEGF receptor 2 (Flk1) functions as the major signal transducer of angiogenesis, mediating VEGF induction of endothelial tubulogenesis. We have cloned and analyzed expression of Flk1 in the blind subterranean mole rat Spalax ehrenbergi. Spalax experience abrupt and sharp changes in oxygen supply in their sealed underground niche and, hence, are genetically adapted to hypoxia and serve as a unique, natural mammalian model organism for hypoxia tolerance. Spalax Flk1 is relatively conserved at the nucleic acid and amino acid level compared to human, mouse, and rat orthologs. Reverse transcription-quantitative polymerase chain reaction was used to analyze Flk1 expression in muscle and brain of animals exposed to ambient or variant hypoxic oxygen levels at multiple stages of development. Transcript levels were compared with those obtained from Rattus, a primary model for human physiology. Our findings demonstrate that under normoxic conditions Flk1 patterns of expression correlate well with our previous investigations of VEGF expression. Exposure to hypoxic conditions resulted in divergent patterns of Flk1 expression between Spalax and Rattus and between muscle and brain. It appears that the regulatory mechanisms differentiating expression between the species and between tissues are most likely unique, suggesting that Flk1 expression may be regulated by multiple processes, including both angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Mark Band
- W. M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, Illinois, USA
| | | | | | | |
Collapse
|