1
|
Shiriaeva AA, Kuznedelov K, Fedorov I, Musharova O, Khvostikov T, Tsoy Y, Kurilovich E, Smith GR, Semenova E, Severinov K. Host nucleases generate prespacers for primed adaptation in the E. coli type I-E CRISPR-Cas system. SCIENCE ADVANCES 2022; 8:eabn8650. [PMID: 36427302 PMCID: PMC9699676 DOI: 10.1126/sciadv.abn8650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
CRISPR-Cas systems provide prokaryotes with adaptive immunity against foreign nucleic acids. In Escherichia coli, immunity is acquired upon integration of 33-bp spacers into CRISPR arrays. DNA targets complementary to spacers get degraded and serve as a source of new spacers during a process called primed adaptation. Precursors of such spacers, prespacers, are ~33-bp double-stranded DNA fragments with a ~4-nt 3' overhang. The mechanism of prespacer generation is not clear. Here, we use FragSeq and biochemical approaches to determine enzymes involved in generation of defined prespacer ends. We demonstrate that RecJ is the main exonuclease trimming 5' ends of prespacer precursors, although its activity can be partially substituted by ExoVII. The RecBCD complex allows single strand-specific RecJ to process double-stranded regions flanking prespacers. Our results reveal intricate functional interactions of genome maintenance proteins with CRISPR interference and adaptation machineries during generation of prespacers capable of integration into CRISPR arrays.
Collapse
Affiliation(s)
- Anna A. Shiriaeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Konstantin Kuznedelov
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ivan Fedorov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia
| | - Olga Musharova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Moscow 123182, Russia
| | - Timofey Khvostikov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Yuliya Tsoy
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia
| | - Elena Kurilovich
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Gerald R. Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ekaterina Semenova
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Konstantin Severinov
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, Moscow 123182, Russia
| |
Collapse
|
2
|
Jameson KH, Rudolph CJ, Hawkins M. Termination of DNA replication at Tus-ter barriers results in under-replication of template DNA. J Biol Chem 2021; 297:101409. [PMID: 34780717 DOI: 10.1016/j.jbc.2021.101409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
The complete and accurate duplication of genomic information is vital to maintain genome stability in all domains of life. In Escherichia coli, replication termination, the final stage of the duplication process, is confined to the 'replication fork trap' region by multiple unidirectional fork barriers formed by the binding of Tus protein to genomic ter sites. Termination typically occurs away from Tus-ter complexes, but they become part of the fork fusion process when a delay to one replisome allows the second replisome to travel more than halfway around the chromosome. In this instance, replisome progression is blocked at the non-permissive interface of the Tus-ter complex, termination then occurs when a converging replisome meets the permissive interface. To investigate the consequences of replication fork fusion at Tus-ter complexes, we established a plasmid-based replication system where we could mimic the termination process at Tus-ter complexes in vitro. We developed a termination mapping assay to measure leading strand replication fork progression and demonstrate that the DNA template is under-replicated by 15-24 bases when replication forks fuse at Tus-ter complexes. This gap could not be closed by the addition of lagging strand processing enzymes or by the inclusion of several helicases that promote DNA replication. Our results indicate that accurate fork fusion at Tus-ter barriers requires further enzymatic processing, highlighting large gaps that still exist in our understanding of the final stages of chromosome duplication and the evolutionary advantage of having a replication fork trap.
Collapse
Affiliation(s)
- Katie H Jameson
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
3
|
Weaver GM, Mettrick KA, Corocher TA, Graham A, Grainge I. Replication fork collapse at a protein-DNA roadblock leads to fork reversal, promoted by the RecQ helicase. Mol Microbiol 2018; 111:455-472. [PMID: 30466158 DOI: 10.1111/mmi.14166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 11/27/2022]
Abstract
Proteins that bind DNA are the cause of the majority of impediments to replication fork progression and can lead to subsequent collapse of the replication fork. Failure to deal with fork collapse efficiently leads to mutation or cell death. Several models have been proposed for how a cell processes a stalled or collapsed replication fork; eukaryotes and bacteria are not dissimilar in terms of the general pathways undertaken to deal with these events. This study shows that replication fork regression, the combination of replication fork reversal leading to formation of a Holliday Junction along with exonuclease digestion, is the preferred pathway for dealing with a collapsed fork in Escherichia coli. Direct endo-nuclease activity at the replication fork was not observed. The protein that had the greatest effect on these fork processing events was the RecQ helicase, while RecG and RuvABC, which have previously been implicated in this process, were found to play a lesser role. Eukaryotic RecQ homologues, BLM and WRN, have also been implicated in processing events following replication fork collapse and may reflect a conserved mechanism. Finally, the SOS response was not induced by the protein-DNA roadblock under these conditions, so did not affect fork processing.
Collapse
Affiliation(s)
- Georgia M Weaver
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Karla A Mettrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Tayla-Ann Corocher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Adam Graham
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| |
Collapse
|
4
|
Ozer A, Tome JM, Friedman RC, Gheba D, Schroth GP, Lis JT. Quantitative assessment of RNA-protein interactions with high-throughput sequencing-RNA affinity profiling. Nat Protoc 2015; 10:1212-33. [PMID: 26182240 PMCID: PMC4714542 DOI: 10.1038/nprot.2015.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Because RNA-protein interactions have a central role in a wide array of biological processes, methods that enable a quantitative assessment of these interactions in a high-throughput manner are in great demand. Recently, we developed the high-throughput sequencing-RNA affinity profiling (HiTS-RAP) assay that couples sequencing on an Illumina GAIIx genome analyzer with the quantitative assessment of protein-RNA interactions. This assay is able to analyze interactions between one or possibly several proteins with millions of different RNAs in a single experiment. We have successfully used HiTS-RAP to analyze interactions of the EGFP and negative elongation factor subunit E (NELF-E) proteins with their corresponding canonical and mutant RNA aptamers. Here we provide a detailed protocol for HiTS-RAP that can be completed in about a month (8 d hands-on time). This includes the preparation and testing of recombinant proteins and DNA templates, clustering DNA templates on a flowcell, HiTS and protein binding with a GAIIx instrument, and finally data analysis. We also highlight aspects of HiTS-RAP that can be further improved and points of comparison between HiTS-RAP and two other recently developed methods, quantitative analysis of RNA on a massively parallel array (RNA-MaP) and RNA Bind-n-Seq (RBNS), for quantitative analysis of RNA-protein interactions.
Collapse
Affiliation(s)
- Abdullah Ozer
- Molecular Biology and Genetics Department, Cornell University, Ithaca, NY 14853, USA. Phone +1 (607) 255-2441, fax +1 (607) 255-6249
| | - Jacob M. Tome
- Molecular Biology and Genetics Department, Cornell University, Ithaca, NY 14853, USA. Phone +1 (607) 255-2441, fax +1 (607) 255-6249
| | - Robin C. Friedman
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, 75724 Paris Cedex 15, FRANCE. +33 (0) 1-4438-9437
| | - Dan Gheba
- Illumina Inc., San Diego, CA 92121, USA. +1 (267) 251-4547, +1 (510) 670-9310
| | - Gary P. Schroth
- Illumina Inc., San Diego, CA 92121, USA. +1 (267) 251-4547, +1 (510) 670-9310
| | - John T. Lis
- Molecular Biology and Genetics Department, Cornell University, Ithaca, NY 14853, USA. Phone +1 (607) 255-2441, fax +1 (607) 255-6249
| |
Collapse
|
5
|
Berghuis BA, Dulin D, Xu ZQ, van Laar T, Cross B, Janissen R, Jergic S, Dixon NE, Depken M, Dekker NH. Strand separation establishes a sustained lock at the Tus-Ter replication fork barrier. Nat Chem Biol 2015; 11:579-85. [PMID: 26147356 DOI: 10.1038/nchembio.1857] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 05/20/2015] [Indexed: 01/30/2023]
Abstract
The bidirectional replication of a circular chromosome by many bacteria necessitates proper termination to avoid the head-on collision of the opposing replisomes. In Escherichia coli, replisome progression beyond the termination site is prevented by Tus proteins bound to asymmetric Ter sites. Structural evidence indicates that strand separation on the blocking (nonpermissive) side of Tus-Ter triggers roadblock formation, but biochemical evidence also suggests roles for protein-protein interactions. Here DNA unzipping experiments demonstrate that nonpermissively oriented Tus-Ter forms a tight lock in the absence of replicative proteins, whereas permissively oriented Tus-Ter allows nearly unhindered strand separation. Quantifying the lock strength reveals the existence of several intermediate lock states that are impacted by mutations in the lock domain but not by mutations in the DNA-binding domain. Lock formation is highly specific and exceeds reported in vivo efficiencies. We postulate that protein-protein interactions may actually hinder, rather than promote, proper lock formation.
Collapse
Affiliation(s)
- Bojk A Berghuis
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - David Dulin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Zhi-Qiang Xu
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Bronwen Cross
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
6
|
Pandey M, Elshenawy MM, Jergic S, Takahashi M, Dixon NE, Hamdan SM, Patel SS. Two mechanisms coordinate replication termination by the Escherichia coli Tus-Ter complex. Nucleic Acids Res 2015; 43:5924-35. [PMID: 26007657 PMCID: PMC4499146 DOI: 10.1093/nar/gkv527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/10/2015] [Indexed: 11/28/2022] Open
Abstract
The Escherichia coli replication terminator protein (Tus) binds to Ter sequences to block replication forks approaching from one direction. Here, we used single molecule and transient state kinetics to study responses of the heterologous phage T7 replisome to the Tus–Ter complex. The T7 replisome was arrested at the non-permissive end of Tus–Ter in a manner that is explained by a composite mousetrap and dynamic clamp model. An unpaired C(6) that forms a lock by binding into the cytosine binding pocket of Tus was most effective in arresting the replisome and mutation of C(6) removed the barrier. Isolated helicase was also blocked at the non-permissive end, but unexpectedly the isolated polymerase was not, unless C(6) was unpaired. Instead, the polymerase was blocked at the permissive end. This indicates that the Tus–Ter mechanism is sensitive to the translocation polarity of the DNA motor. The polymerase tracking along the template strand traps the C(6) to prevent lock formation; the helicase tracking along the other strand traps the complementary G(6) to aid lock formation. Our results are consistent with the model where strand separation by the helicase unpairs the GC(6) base pair and triggers lock formation immediately before the polymerase can sequester the C(6) base.
Collapse
Affiliation(s)
- Manjula Pandey
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Mohamed M Elshenawy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, University of Wollongong, New South Wales 2522, Australia
| | - Masateru Takahashi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, University of Wollongong, New South Wales 2522, Australia
| | - Samir M Hamdan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers, the State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Moreau MJJ, Schaeffer PM. Differential Tus-Ter binding and lock formation: implications for DNA replication termination in Escherichia coli. MOLECULAR BIOSYSTEMS 2013; 8:2783-91. [PMID: 22859262 DOI: 10.1039/c2mb25281c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In E. coli, DNA replication termination occurs at Ter sites and is mediated by Tus. Two clusters of five Ter sites are located on each side of the terminus region and constrain replication forks in a polar manner. The polarity is due to the formation of the Tus-Ter-lock intermediate. Recently, it has been shown that DnaB helicase which unwinds DNA at the replication fork is preferentially stopped at the non-permissive face of a Tus-Ter complex without formation of the Tus-Ter-lock and that fork pausing efficiency is sequence dependent, raising two essential questions: Does the affinity of Tus for the different Ter sites correlate with fork pausing efficiency? Is formation of the Tus-Ter-lock the key factor in fork pausing? The combined use of surface plasmon resonance and GFP-Basta showed that Tus binds strongly to TerA-E and G, moderately to TerH-J and weakly to TerF. Out of these ten Ter sites only two, TerF and H, were not able to form significant Tus-Ter-locks. Finally, Tus's resistance to dissociation from Ter sites and the strength of the Tus-Ter-locks correlate with the differences in fork pausing efficiency observed for the different Ter sites by Duggin and Bell (2009).
Collapse
Affiliation(s)
- Morgane J J Moreau
- School of Pharmacy and Molecular Sciences, James Cook University, DB 21, James Cook Drive, Townsville, QLD 4811, Australia
| | | |
Collapse
|
8
|
Ton-Hoang B, Pasternak C, Siguier P, Guynet C, Hickman AB, Dyda F, Sommer S, Chandler M. Single-stranded DNA transposition is coupled to host replication. Cell 2010; 142:398-408. [PMID: 20691900 DOI: 10.1016/j.cell.2010.06.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/03/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
DNA transposition has contributed significantly to evolution of eukaryotes and prokaryotes. Insertion sequences (ISs) are the simplest prokaryotic transposons and are divided into families on the basis of their organization and transposition mechanism. Here, we describe a link between transposition of IS608 and ISDra2, both members of the IS200/IS605 family, which uses obligatory single-stranded DNA intermediates, and the host replication fork. Replication direction through the IS plays a crucial role in excision: activity is maximal when the "top" IS strand is located on the lagging-strand template. Excision is stimulated upon transient inactivation of replicative helicase function or inhibition of Okazaki fragment synthesis. IS608 insertions also exhibit an orientation preference for the lagging-strand template and insertion can be specifically directed to stalled replication forks. An in silico genomic approach provides evidence that dissemination of other IS200/IS605 family members is also linked to host replication.
Collapse
Affiliation(s)
- Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, 118 Route de Narbonne, F31062 Toulouse Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Mechanistic insights into replication termination as revealed by investigations of the Reb1-Ter3 complex of Schizosaccharomyces pombe. Mol Cell Biol 2008; 28:6844-57. [PMID: 18794373 DOI: 10.1128/mcb.01235-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relatively little is known about the interaction of eukaryotic replication terminator proteins with the cognate termini and the replication termination mechanism. Here, we report a biochemical analysis of the interaction of the Reb1 terminator protein of Schizosaccharomyces pombe, which binds to the Ter3 site present in the nontranscribed spacers of ribosomal DNA, located in chromosome III. We show that Reb1 is a dimeric protein and that the N-terminal dimerization domain of the protein is dispensable for replication termination. Unlike its mammalian counterpart Ttf1, Reb1 did not need an accessory protein to bind to Ter3. The two myb/SANT domains and an adjacent, N-terminal 154-amino-acid-long segment (called the myb-associated domain) were both necessary and sufficient for optimal DNA binding in vitro and fork arrest in vivo. The protein and its binding site Ter3 were unable to arrest forks initiated in vivo from ars of Saccharomyces cerevisiae in the cell milieu of the latter despite the facts that the protein retained the proper affinity of binding, was located in vivo at the Ter site, and apparently was not displaced by the "sweepase" Rrm3. These observations suggest that replication fork arrest is not an intrinsic property of the Reb1-Ter3 complex.
Collapse
|
11
|
Replication termination mechanism as revealed by Tus-mediated polar arrest of a sliding helicase. Proc Natl Acad Sci U S A 2008; 105:12831-6. [PMID: 18708526 DOI: 10.1073/pnas.0805898105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The replication terminator protein Tus of Escherichia coli promotes polar fork arrest at sequence-specific replication termini (Ter) by antagonizing DNA unwinding by the replicative helicase DnaB. Here, we report that Tus is also a polar antitranslocase. We have used this activity as a tool to uncouple helicase arrest at a Tus-Ter complex from DNA unwinding and have shown that helicase arrest occurred without the generation of a DNA fork or a bubble of unpaired bases at the Tus-Ter complex. A mutant form of Tus, which reduces DnaB-Tus interaction but not the binding affinity of Tus for Ter DNA, was also defective in arresting a sliding DnaB. A model of polar fork arrest that proposes melting of the Tus-Ter complex and flipping of a conserved C residue of Ter at the blocking but not the nonblocking face has been reported. The model suggests that enhanced stability of Tus-Ter interaction caused by DNA melting and capture of a flipped base by Tus generates polarity strictly by enhanced protein-DNA interaction. In contrast, the observations presented here show that polarity of helicase and fork arrest in vitro is generated by a mechanism that not only involves interaction between the terminator protein and the arrested enzyme but also of Tus with Ter DNA, without any melting and base flipping in the termination complex.
Collapse
|
12
|
Hyvärinen AK, Pohjoismäki JLO, Reyes A, Wanrooij S, Yasukawa T, Karhunen PJ, Spelbrink JN, Holt IJ, Jacobs HT. The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA. Nucleic Acids Res 2007; 35:6458-74. [PMID: 17884915 PMCID: PMC2095818 DOI: 10.1093/nar/gkm676] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian mitochondrial transcription termination factor mTERF binds with high affinity to a site within the tRNA(Leu(UUR)) gene and regulates the amount of read through transcription from the ribosomal DNA into the remaining genes of the major coding strand of mitochondrial DNA (mtDNA). Electrophoretic mobility shift assays (EMSA) and SELEX, using mitochondrial protein extracts from cells induced to overexpress mTERF, revealed novel, weaker mTERF-binding sites, clustered in several regions of mtDNA, notably in the major non-coding region (NCR). Such binding in vivo was supported by mtDNA immunoprecipitation. Two-dimensional neutral agarose gel electrophoresis (2DNAGE) and 5' end mapping by ligation-mediated PCR (LM-PCR) identified the region of the canonical mTERF-binding site as a replication pause site. The strength of pausing was modulated by the expression level of mTERF. mTERF overexpression also affected replication pausing in other regions of the genome in which mTERF binding was found. These results indicate a role for TERF in mtDNA replication, in addition to its role in transcription. We suggest that mTERF could provide a system for coordinating the passage of replication and transcription complexes, analogous with replication pause-region binding proteins in other systems, whose main role is to safeguard the integrity of the genome whilst facilitating its efficient expression.
Collapse
Affiliation(s)
- Anne K. Hyvärinen
- Institute of Medical Technology and Tampere University Hospital, FI-33014, University of Tampere, Finland, MRC-Dunn Human Nutrition Unit, Cambridge, UK, Department of Forensic Medicine and Tampere University Hospital, FI-33014, University of Tampere, Finland and Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | - Jaakko L. O. Pohjoismäki
- Institute of Medical Technology and Tampere University Hospital, FI-33014, University of Tampere, Finland, MRC-Dunn Human Nutrition Unit, Cambridge, UK, Department of Forensic Medicine and Tampere University Hospital, FI-33014, University of Tampere, Finland and Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | - Aurelio Reyes
- Institute of Medical Technology and Tampere University Hospital, FI-33014, University of Tampere, Finland, MRC-Dunn Human Nutrition Unit, Cambridge, UK, Department of Forensic Medicine and Tampere University Hospital, FI-33014, University of Tampere, Finland and Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | - Sjoerd Wanrooij
- Institute of Medical Technology and Tampere University Hospital, FI-33014, University of Tampere, Finland, MRC-Dunn Human Nutrition Unit, Cambridge, UK, Department of Forensic Medicine and Tampere University Hospital, FI-33014, University of Tampere, Finland and Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | - Takehiro Yasukawa
- Institute of Medical Technology and Tampere University Hospital, FI-33014, University of Tampere, Finland, MRC-Dunn Human Nutrition Unit, Cambridge, UK, Department of Forensic Medicine and Tampere University Hospital, FI-33014, University of Tampere, Finland and Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | - Pekka J. Karhunen
- Institute of Medical Technology and Tampere University Hospital, FI-33014, University of Tampere, Finland, MRC-Dunn Human Nutrition Unit, Cambridge, UK, Department of Forensic Medicine and Tampere University Hospital, FI-33014, University of Tampere, Finland and Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | - Johannes N. Spelbrink
- Institute of Medical Technology and Tampere University Hospital, FI-33014, University of Tampere, Finland, MRC-Dunn Human Nutrition Unit, Cambridge, UK, Department of Forensic Medicine and Tampere University Hospital, FI-33014, University of Tampere, Finland and Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | - Ian J. Holt
- Institute of Medical Technology and Tampere University Hospital, FI-33014, University of Tampere, Finland, MRC-Dunn Human Nutrition Unit, Cambridge, UK, Department of Forensic Medicine and Tampere University Hospital, FI-33014, University of Tampere, Finland and Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | - Howard T. Jacobs
- Institute of Medical Technology and Tampere University Hospital, FI-33014, University of Tampere, Finland, MRC-Dunn Human Nutrition Unit, Cambridge, UK, Department of Forensic Medicine and Tampere University Hospital, FI-33014, University of Tampere, Finland and Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
- *To whom correspondence should be addressed. +358 3 3551 7731+358 3 3551 7710; E-mail:
| |
Collapse
|
13
|
Fierro-Fernández M, Hernández P, Krimer DB, Stasiak A, Schvartzman JB. Topological locking restrains replication fork reversal. Proc Natl Acad Sci U S A 2007; 104:1500-5. [PMID: 17242356 PMCID: PMC1780069 DOI: 10.1073/pnas.0609204104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional agarose gel electrophoresis, psoralen cross-linking, and electron microscopy were used to study the effects of positive supercoiling on fork reversal in isolated replication intermediates of bacterial DNA plasmids. The results obtained demonstrate that the formation of Holliday-like junctions at both forks of a replication bubble creates a topological constraint that prevents further regression of the forks. We propose that this topological locking of replication intermediates provides a biological safety mechanism that protects DNA molecules against extensive fork reversals.
Collapse
Affiliation(s)
- Marta Fierro-Fernández
- *Centro de Investigaciones Biológicas, Departamento de Biología Celulor, del Desarrollo, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040 Madrid, Spain; and
| | - Pablo Hernández
- *Centro de Investigaciones Biológicas, Departamento de Biología Celulor, del Desarrollo, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040 Madrid, Spain; and
| | - Dora B. Krimer
- *Centro de Investigaciones Biológicas, Departamento de Biología Celulor, del Desarrollo, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040 Madrid, Spain; and
| | - Andrzej Stasiak
- Laboratoire d'Analyse Ultrastructurale, Faculté de Biologie et de Médecine, Université de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
| | - Jorge B. Schvartzman
- *Centro de Investigaciones Biológicas, Departamento de Biología Celulor, del Desarrollo, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040 Madrid, Spain; and
| |
Collapse
|
14
|
Bidnenko V, Lestini R, Michel B. The Escherichia coli UvrD helicase is essential for Tus removal during recombination-dependent replication restart from Ter sites. Mol Microbiol 2007; 62:382-96. [PMID: 17020578 DOI: 10.1111/j.1365-2958.2006.05382.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blocking replication forks in the Escherichia coli chromosome by ectopic Ter sites renders the RecBCD pathway of homologous recombination and SOS induction essential for viability. In this work, we show that the E. coli helicase II (UvrD) is also essential for the growth of cells where replication forks are arrested at ectopic Ter sites. We propose that UvrD is required for Tus removal from Ter sites. The viability of a SOS non-inducible Ter-blocked strain is fully restored by the expression of the two SOS-induced proteins UvrD and RecA at high level, indicating that these are the only two SOS-induced proteins required for replication across Ter/Tus complexes. Several observations suggest that UvrD acts in concert with homologous recombination and we propose that UvrD is associated with recombination-initiated replication forks and that it removes Tus when a PriA-dependent, restarted replication fork goes across the Ter/Tus complex. Finally, expression of the UvrD homologue from Bacilus subtilis PcrA restores the growth of uvrD-deficient Ter-blocked cells, indicating that the capacity to dislodge Tus is conserved in this distant bacterial species.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Génétique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
15
|
Mulcair MD, Schaeffer PM, Oakley AJ, Cross HF, Neylon C, Hill TM, Dixon NE. A molecular mousetrap determines polarity of termination of DNA replication in E. coli. Cell 2006; 125:1309-19. [PMID: 16814717 DOI: 10.1016/j.cell.2006.04.040] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/16/2006] [Accepted: 04/26/2006] [Indexed: 11/24/2022]
Abstract
During chromosome synthesis in Escherichia coli, replication forks are blocked by Tus bound Ter sites on approach from one direction but not the other. To study the basis of this polarity, we measured the rates of dissociation of Tus from forked TerB oligonucleotides, such as would be produced by the replicative DnaB helicase at both the fork-blocking (nonpermissive) and permissive ends of the Ter site. Strand separation of a few nucleotides at the permissive end was sufficient to force rapid dissociation of Tus to allow fork progression. In contrast, strand separation extending to and including the strictly conserved G-C(6) base pair at the nonpermissive end led to formation of a stable locked complex. Lock formation specifically requires the cytosine residue, C(6). The crystal structure of the locked complex showed that C(6) moves 14 A from its normal position to bind in a cytosine-specific pocket on the surface of Tus.
Collapse
Affiliation(s)
- Mark D Mulcair
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Duggin IG. DNA Replication Fork Arrest by the Bacillus subtilis RTP–DNA Complex Involves a Mechanism that Is Independent of the Affinity of RTP–DNA Binding. J Mol Biol 2006; 361:1-6. [PMID: 16822523 DOI: 10.1016/j.jmb.2006.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/02/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
In order to elucidate the mechanism of DNA replication fork arrest by the replication terminator protein (RTP)-DNA complex, a set of RTP fusion proteins were constructed in which peptides of various sizes were fused to the C terminus; this placed the peptides at a surface location that was predicted to come into contact with the DNA replication machinery during fork arrest. The fusion proteins were capable of replication fork arrest in vivo, but they had a significantly reduced efficiency compared to wild-type RTP, which was not directly proportional to peptide size or sequence. Importantly, the fusion proteins retained completely normal RTP-DNA binding affinity. These findings rule out the molecular clamp model as the sole explanation for fork arrest by RTP, and suggest that RTP interacts with the replication machinery in a manner that directly contributes to the fork arrest mechanism.
Collapse
Affiliation(s)
- Iain G Duggin
- School of Molecular and Microbial Biosciences, The University of Sydney, Australia.
| |
Collapse
|
17
|
Mohanty BK, Bairwa NK, Bastia D. The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2006; 103:897-902. [PMID: 16418273 PMCID: PMC1347974 DOI: 10.1073/pnas.0506540103] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Termination of replication forks at the natural termini of the rDNA of Saccharomyces cerevisiae is controlled in a sequence-specific and polar mode by the interaction of the Fob1p replication terminator protein with the tandem Ter sites located in the nontranscribed spacers. Here we show, by both 2D gel analyses and chromatin immunoprecipitations (ChIP), that there exists a second level of global control mediated by the intra-S-phase checkpoint protein complex of Tof1p and Csm3p that protect stalled forks at Ter sites against the activity of the Rrm3p helicase ("sweepase"). The sweepase tends to release arrested forks presumably by the transient displacement of the Ter-bound Fob1p. Consistent with this mechanism, very few replication forks were arrested at the natural replication termini in the absence of the two checkpoint proteins. In the absence of the Rrm3p helicase, there was a slight enhancement of fork arrest at the Ter sites. Simultaneous deletions of the TOF1 (or CSM3), and the RRM3 genes restored fork arrest by removing both the fork-releasing and fork-protection activities. Other genes such as MRC1, WSS1, and PSY2 that are also involved in the MRC1 checkpoint pathway were not involved in this global control. This observation suggests that Tof1p-Csm3p function differently from MRC1 and the other above-mentioned genes. This mechanism is not restricted to the natural Ter sites but was also observed at fork arrest caused by the meeting of a replication fork with transcription approaching from the opposite direction.
Collapse
Affiliation(s)
- Bidyut K Mohanty
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
18
|
Neylon C, Kralicek AV, Hill TM, Dixon NE. Replication termination in Escherichia coli: structure and antihelicase activity of the Tus-Ter complex. Microbiol Mol Biol Rev 2005; 69:501-26. [PMID: 16148308 PMCID: PMC1197808 DOI: 10.1128/mmbr.69.3.501-526.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of the replicative DnaB helicase, but details of the mechanism are uncertain. One proposed mechanism involves a specific interaction between Tus-Ter and the helicase that prevents further DNA unwinding, while another is that the Tus-Ter complex itself is sufficient to block the helicase in a polar manner, without the need for specific protein-protein interactions. This review integrates three decades of experimental information on the action of the Tus-Ter complex with information available from the Tus-TerA crystal structure. We conclude that while it is possible to explain polar fork arrest by a mechanism involving only the Tus-Ter interaction, there are also strong indications of a role for specific Tus-DnaB interactions. The evidence suggests, therefore, that the termination system is more subtle and complex than may have been assumed. We describe some further experiments and insights that may assist in unraveling the details of this fascinating process.
Collapse
Affiliation(s)
- Cameron Neylon
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Polosa PL, Deceglie S, Roberti M, Gadaleta MN, Cantatore P. Contrahelicase activity of the mitochondrial transcription termination factor mtDBP. Nucleic Acids Res 2005; 33:3812-20. [PMID: 16006625 PMCID: PMC1174909 DOI: 10.1093/nar/gki693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sea urchin mitochondrial D-loop binding protein (mtDBP) is a transcription termination factor that is able to arrest bidirectionally mitochondrial RNA chain elongation. The observation that the mtDBP binding site in the main non-coding region is located in correspondence of the 3' end of the triplex structure, where the synthesis of heavy strand mitochondrial (mt) DNA is either prematurely terminated or allowed to continue, raised the question whether mtDBP could also regulate mtDNA replication. By using a helicase assay in the presence of the replicative helicase of SV40, we show that mtDBP is able to inhibit the enzyme thus acting as a contrahelicase. The impairing activity of mtDBP is bidirectional as it is independent of the orientation of the protein binding site. The inhibition is increased by the presence of the guanosine-rich sequence that flanks mtDBP binding site. Finally, a mechanism of abrogation of mtDBP contrahelicase activity is suggested that is based on the dissociation of mtDBP from DNA caused by the passage of the RNA polymerase through the protein-DNA complex. All these findings favour the view that mtDBP, besides serving as transcription termination factor, could also act as a negative regulator of mtDNA synthesis at the level of D-loop expansion.
Collapse
Affiliation(s)
- Paola Loguercio Polosa
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di BariVia Orabona, 4, 70125 Bari, Italy
| | - Stefania Deceglie
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di BariVia Orabona, 4, 70125 Bari, Italy
| | - Marina Roberti
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di BariVia Orabona, 4, 70125 Bari, Italy
| | - Maria Nicola Gadaleta
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di BariVia Orabona, 4, 70125 Bari, Italy
- Istituto di Biomembrane e Bioenergetica, CNRVia Amendola, 165/A, 70126 Bari, Italy
| | - Palmiro Cantatore
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di BariVia Orabona, 4, 70125 Bari, Italy
- Istituto di Biomembrane e Bioenergetica, CNRVia Amendola, 165/A, 70126 Bari, Italy
- To whom correspondence should be addressed at Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari, Italy. Tel: +39 080 5443378; Fax: +39 080 5443403;
| |
Collapse
|
20
|
Olavarrieta L, Martínez-Robles ML, Hernández P, Krimer DB, Schvartzman JB. Knotting dynamics during DNA replication. Mol Microbiol 2002; 46:699-707. [PMID: 12410827 DOI: 10.1046/j.1365-2958.2002.03217.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The topology of plasmid DNA changes continuously as replication progresses. But the dynamics of the process remains to be fully understood. Knotted bubbles form when topo IV knots the daughter duplexes behind the fork in response to their degree of intertwining. Here, we show that knotted bubbles can form during unimpaired DNA replication, but they become more evident in partially replicated intermediates containing a stalled fork. To learn more about the dynamics of knot formation as replication advances, we used two-dimensional agarose gel electrophoresis to identify knotted bubbles in partially replicated molecules in which the replication fork stalled at different stages of the process. The number and complexity of knotted bubbles rose as a function of bubble size, suggesting that knotting is affected by both precatenane density and bubble size.
Collapse
Affiliation(s)
- L Olavarrieta
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Olavarrieta L, Martínez-Robles ML, Sogo JM, Stasiak A, Hernández P, Krimer DB, Schvartzman JB. Supercoiling, knotting and replication fork reversal in partially replicated plasmids. Nucleic Acids Res 2002; 30:656-66. [PMID: 11809877 PMCID: PMC100290 DOI: 10.1093/nar/30.3.656] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To study the structure of partially replicated plasmids, we cloned the Escherichia coli polar replication terminator TerE in its active orientation at different locations in the ColE1 vector pBR18. The resulting plasmids, pBR18-TerE@StyI and pBR18-TerE@EcoRI, were analyzed by neutral/neutral two-dimensional agarose gel electrophoresis and electron microscopy. Replication forks stop at the Ter-TUS complex, leading to the accumulation of specific replication intermediates with a mass 1.26 times the mass of non-replicating plasmids for pBR18-TerE@StyI and 1.57 times for pBR18-TerE@EcoRI. The number of knotted bubbles detected after digestion with ScaI and the number and electrophoretic mobility of undigested partially replicated topoisomers reflect the changes in plasmid topology that occur in DNA molecules replicated to different extents. Exposure to increasing concentrations of chloroquine or ethidium bromide revealed that partially replicated topoisomers (CCCRIs) do not sustain positive supercoiling as efficiently as their non-replicating counterparts. It was suggested that this occurs because in partially replicated plasmids a positive DeltaLk is absorbed by regression of the replication fork. Indeed, we showed by electron microscopy that, at least in the presence of chloroquine, some of the CCCRIs of pBR18-Ter@StyI formed Holliday-like junction structures characteristic of reversed forks. However, not all the positive supercoiling was absorbed by fork reversal in the presence of high concentrations of ethidium bromide.
Collapse
Affiliation(s)
- L Olavarrieta
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Mulugu S, Potnis A, Shamsuzzaman, Taylor J, Alexander K, Bastia D. Mechanism of termination of DNA replication of Escherichia coli involves helicase-contrahelicase interaction. Proc Natl Acad Sci U S A 2001; 98:9569-74. [PMID: 11493686 PMCID: PMC55493 DOI: 10.1073/pnas.171065898] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Indexed: 11/18/2022] Open
Abstract
Using yeast forward and reverse two-hybrid analyses, we have discovered that the replication terminator protein Tus of Escherichia coli physically interacts with DnaB helicase in vivo. We have confirmed this protein-protein interaction in vitro. We show further that replication termination involves protein-protein interaction between Tus and DnaB at a critical region of Tus protein, called the L1 loop. Several mutations located in the L1 loop region not only reduced the protein-protein interaction but also eliminated or reduced the ability of the mutant forms of Tus to arrest DnaB at a Ter site. At least one mutation, E49K, significantly reduced Tus-DnaB interaction and almost completely eliminated the contrahelicase activity of Tus protein in vitro without significantly reducing the affinity of the mutant form of Tus for Ter DNA, in comparison with the wild-type protein. The results, considered along with the crystal structure of Tus-Ter complex, not only elucidate further the mechanism of helicase arrest but also explain the molecular basis of polarity of replication fork arrest at Ter sites.
Collapse
Affiliation(s)
- S Mulugu
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
23
|
Park K, Chattoraj DK. DnaA boxes in the P1 plasmid origin: the effect of their position on the directionality of replication and plasmid copy number. J Mol Biol 2001; 310:69-81. [PMID: 11419937 DOI: 10.1006/jmbi.2001.4741] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DnaA protein is essential for initiation of DNA replication in a wide variety of bacterial and plasmid replicons. The replication origin in these replicons invariably contains specific binding sites for the protein, called DnaA boxes. Plasmid P1 contains a set of DnaA boxes at each end of its origin but can function with either one of the sets. Here we report that the location of origin-opening, initiation site of replication forks and directionality of replication do not change whether the boxes are present at both or at one of the ends of the origin. Replication was bidirectional in all cases. These results imply that DnaA functions similarly from the two ends of the origin. However, origins with DnaA boxes proximal to the origin-opening location opened more efficiently and maintained plasmids at higher copy numbers. Origins with the distal set were inactive unless the adjacent P1 DNA sequences beyond the boxes were included. At either end, phasing of the boxes with respect to the remainder of the origin influenced the copy number. Thus, although the boxes can be at either end, their precise context is critical for efficient origin function.
Collapse
Affiliation(s)
- K Park
- Laboratory of Biochemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | |
Collapse
|
24
|
Santamaría D, Hernández P, Martínez-Robles ML, Krimer DB, Schvartzman JB. Premature termination of DNA replication in plasmids carrying two inversely oriented ColE1 origins. J Mol Biol 2000; 300:75-82. [PMID: 10864499 DOI: 10.1006/jmbi.2000.3843] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Escherichia coli plasmids carrying two inversely oriented ColE1 origins, DNA replication initiates at only one of the two potential origins. The other silent origin acts as a replication fork barrier. Whether this barrier is permanent or simply a pausing site remains unknown. Here, we used a repeated primer extension assay to map in vivo, at the nucleotide level, the 5' end of the nascent strand where initiation and blockage of replication forks occurs. Initiation occurred primarily at the previously defined origin, however, an alternative initiation site was detected 17 bp upstream. At the barrier, the lagging strand also terminated at the main initiation site. Therefore, the 5' end of the nascent strand at the barrier was identical to that generated during initiation. This observation strongly suggests that blockage of the replication fork at the silent origin is not just a pausing site but permanent, and leads to a premature termination event.
Collapse
Affiliation(s)
- D Santamaría
- Departamento de Biología Celular y del Desarrollo, CIB (CSIC), Velázquez 144, Madrid, 28006, Spain
| | | | | | | | | |
Collapse
|
25
|
Abstract
Chromosome replication is not a uniform and continuous process. Replication forks can be slowed down or arrested by DNA secondary structures, specific protein-DNA complexes, specific DNA-RNA hybrids, or interactions between the replication and transcription machineries. Replication arrest has important implications for the topology of replication intermediates and can trigger homologous and illegitimate recombination. Thus, replication arrest may be a key factor in genome instability. Several examples of these phenomena are reviewed here.
Collapse
Affiliation(s)
- O Hyrien
- Ecole Normale Supérieure, Paris, France
| |
Collapse
|
26
|
Rothstein R, Michel B, Gangloff S. Replication fork pausing and recombination or “gimme a break”. Genes Dev 2000. [DOI: 10.1101/gad.14.1.1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Guajardo R, Sousa R. Characterization of the effects of Escherichia coli replication terminator protein (Tus) on transcription reveals dynamic nature of the tus block to transcription complex progression. Nucleic Acids Res 1999; 27:2814-24. [PMID: 10373601 PMCID: PMC148493 DOI: 10.1093/nar/27.13.2814] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have characterized the blocks to progression of T7 and T3 RNA polymerase transcription complexes created when a Tus protein is bound to the template. The encounter with Tus impedes the progress of the transcription complexes of either enzyme. The duration of the block depends on which polymerase is used and the orientation of Tus on the DNA. Both genuine termination (dissociation of the transcription complex) and halting followed by continued progression after the block is abrogated are observed. The fraction of complexes that terminates depends on which polymerase is used and on the orientation of the Tus molecule. The efficiency of the block to transcription increases as the Tus concentration is increased, even if the concentration of Tus is already many times in excess of what is required to saturate its binding sites on the template in the absence of transcription. The block to transcription is rapidly abrogated if an excess of a DNA containing a binding site for Tus is added to a transcription reaction in which Tus and template have been preincubated. Finally, we find that transcription will rapidly displace Tus from a template under conditions that generate persistent blocks to transcription. These observations reveal that during the encounter with the transcription complex Tus rapidly dissociates from the template but that at sufficiently high concentrations Tus usually rebinds before the transcription complex can move forward. The advantage of a mechanism which can create a persistent block to transcription or replication complex progression, which can nevertheless be rapidly abrogated in response to down regulation of the blocking protein, is suggested.
Collapse
Affiliation(s)
- R Guajardo
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284-7760, USA
| | | |
Collapse
|
28
|
Abstract
Sequence-specific replication termini occur in many bacterial and plasmid chromosomes and consist of two components: a cis-acting ter site and a trans-acting replication terminator protein. The interaction of a terminator protein with the ter site creates a protein-DNA complex that arrests replication forks in a polar fashion by antagonizing the action of the replicative helicase (thereby exhibiting a contrahelicase activity). Terminator proteins also arrest RNA polymerases in a polar fashion. Passage of an RNA transcript through a terminus from the non-blocking direction abrogates replication termination function, a mechanism that is likely to be used in conditional termini or replication check points.
Collapse
Affiliation(s)
- D E Bussiere
- Department of Structural Biology, Abbott Laboratories, Abbott Park, IL 60064, USA
| | | |
Collapse
|
29
|
Santamaría D, de la Cueva G, Martínez-Robles ML, Krimer DB, Hernández P, Schvartzman JB. DnaB helicase is unable to dissociate RNA-DNA hybrids. Its implication in the polar pausing of replication forks at ColE1 origins. J Biol Chem 1998; 273:33386-96. [PMID: 9837915 DOI: 10.1074/jbc.273.50.33386] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A series of plasmids were constructed containing two unidirectional ColE1 replication origins in either the same or opposite orientations and their replication mode was investigated using two-dimensional agarose gel electrophoresis. The results obtained showed that, in these plasmids, initiation of DNA replication occurred at only one of the two potential origins per replication round regardless of origins orientation. In those plasmids with inversely oriented origins, the silent origin act as a polar pausing site for the replication fork initiated at the other origin. The distance between origins (up to 5.8 kilobase pairs) affected neither the interference between them to initiate replication nor the pausing function of the silent origin. A deletion analysis indicated that the presence of a transcription promoter upstream of the origin was the only essential requirement for it to initiate replication as well as to account for its polar pausing function. Finally, in vitro helicase assays showed that Escherichia coli DnaB is able to melt DNA-DNA homoduplexes but is very inefficient to unwind RNA-DNA hybrids. Altogether, these observations strongly suggest that replication forks pause at silent ColE1 origins due to the inability of DnaB helicase, which leads the replication fork in vivo, to unwind RNA-DNA hybrids.
Collapse
Affiliation(s)
- D Santamaría
- Departamento de Biología Celular y del Desarrollo, CIB (Consejo Superior de Investigaciones Científicas), Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|