1
|
Sapkota A, Mondal A, Chug MK, Brisbois EJ. Biomimetic catheter surface with dual action NO-releasing and generating properties for enhanced antimicrobial efficacy. J Biomed Mater Res A 2023; 111:1627-1641. [PMID: 37209058 PMCID: PMC10524361 DOI: 10.1002/jbm.a.37560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Infection of indwelling catheters is a common healthcare problem, resulting in higher morbidity and mortality. The vulnerable population reliant on catheters post-surgery for food and fluid intake, blood transfusion, or urinary incontinence or retention is susceptible to hospital-acquired infection originating from the very catheter. Bacterial adhesion on catheters can take place during the insertion or over time when catheters are used for an extended period. Nitric oxide-releasing materials have shown promise in exhibiting antibacterial properties without the risk of antibacterial resistance which can be an issue with conventional antibiotics. In this study, 1, 5, and 10 wt % selenium (Se) and 10 wt % S-nitrosoglutathione (GSNO)-incorporated catheters were prepared through a layer-by-layer dip-coating method to demonstrate NO-releasing and NO-generating capability of the catheters. The presence of Se on the catheter interface resulted in a 5 times higher NO flux in 10% Se-GSNO catheter through catalytic NO generation. A physiological level of NO release was observed from 10% Se-GSNO catheters for 5 d, along with an enhanced NO generation via the catalytic activity as Se was able to increase NO availability. The catheters were also found to be compatible and stable when subjected to sterilization and storage, even at room temperature. Additionally, the catheters showed a 97.02% and 93.24% reduction in the adhesion of clinically relevant strains of Escherichia coli and Staphylococcus aureus, respectively. Cytocompatibility testing of the catheter with 3T3 mouse fibroblast cells supports the material's biocompatibility. These findings from the study establish the proposed catheter as a prospective antibacterial material that can be translated into a clinical setting to combat catheter-related infections.
Collapse
Affiliation(s)
- Aasma Sapkota
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
2
|
Berthou M, Clarot I, Gouyon J, Steyer D, Monat MA, Boudier A, Pallotta A. Thiol sensing: From current methods to nanoscale contribution. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Hubbard D, Tutrow K, Gaston B. S-Nitroso-l-cysteine and ventilatory drive: A pediatric perspective. Pediatr Pulmonol 2022; 57:2291-2297. [PMID: 35785452 PMCID: PMC9489637 DOI: 10.1002/ppul.26036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 01/01/2023]
Abstract
Though endogenous S-nitroso-l-cysteine (l-CSNO) signaling at the level of the carotid body increases minute ventilation (v̇E ), neither the background data nor the potential clinical relevance are well-understood by pulmonologists in general, or by pediatric pulmonologists in particular. Here, we first review how regulation of the synthesis, activation, transmembrane transport, target interaction, and degradation of l-CSNO can affect the ventilatory drive. In particular, we review l-CSNO formation by hemoglobin R to T conformational change and by nitric oxide (NO) synthases (NOS), and the downstream effects on v̇E through interaction with voltage-gated K+ (Kv) channel proteins and other targets in the peripheral and central nervous systems. We will review how these effects are independent of-and, in fact may be opposite to-those of NO. Next, we will review evidence that specific elements of this pathway may underlie disorders of respiratory control in childhood. Finally, we will review the potential clinical implications of this pathway in the development of respiratory stimulants, with a particular focus on potential pediatric applications.
Collapse
Affiliation(s)
- Dallin Hubbard
- Division of Pediatric PulmonologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kaylee Tutrow
- Division of Pediatric PulmonologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Benjamin Gaston
- Division of Pediatric PulmonologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
4
|
Sherikar A, Dhavale R, Bhatia M. Vasorelaxant Effect of Novel Nitric Oxide-Hydrogen Sulfide Donor Chalcone in Isolated Rat Aorta: Involvement of cGMP Mediated sGC and Potassium Channel Activation. Curr Mol Pharmacol 2021; 13:126-136. [PMID: 31654520 DOI: 10.2174/1874467212666191025092346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Recently, nitric oxide (NO) and hydrogen sulfide (H2S) donating moieties were extensively studied for their role in the vasculature as they are responsible for many cellular and pathophysiological functioning. The objective of the present study is to evaluate novel NO and H2S donating chalcone moieties on isolated rat aorta for vasorelaxation, and to investigate the probable mechanism of action. METHODS To extend our knowledge of vasorelaxation by NO and H2S donor drugs, here we investigated the vasorelaxing activity of novel NO and H2S donating chalcone moieties on isolated rat aorta. The mechanism of vasorelaxation by these molecules was investigated by performing in vitro cGMP mediated sGC activation assay and using Tetraethylammonium chloride (TEA) as a potassium channel blocker and Methylene blue as NO blocker. RESULTS Both NO and H2S donating chalcone moieties were found to be potent vasorelaxant. The compound G4 and G5 produce the highest vasorelaxation with 3.716 and 3.789 M of pEC50, respectively. After the addition of TEA, G4 and G5 showed 2.772 and 2.796 M of pEC50, respectively. The compounds Ca1, Ca2, and D7 produced significant activation and release of cGMP mediated sGC which was 1.677, 1.769 and 1.768 M of pEC50, respectively. CONCLUSION The vasorelaxation by NO-donating chalcones was blocked by Methylene blue but it did not show any effect on H2S donating chalcones. The vasorelaxing potency of NO-donating molecules was observed to be less affected by the addition of TEA but H2S donors showed a decrease in both efficacy and potency. The cGMP release was more in the case of NO-donating molecules. The tested compounds were found potent for relaxing vasculature of rat aorta.
Collapse
Affiliation(s)
- Amol Sherikar
- Department of Pharmaceutical Chemistry, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal-Panhala, Dist- Kolhapur-416 113 (MS), India
| | - Rakesh Dhavale
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Near Chitranagri, Kolhapur-416 013 (MS), India
| | - Manish Bhatia
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Near Chitranagri, Kolhapur-416 013 (MS), India
| |
Collapse
|
5
|
Bhatia V, Elnagary L, Dakshinamurti S. Tracing the path of inhaled nitric oxide: Biological consequences of protein nitrosylation. Pediatr Pulmonol 2021; 56:525-538. [PMID: 33289321 DOI: 10.1002/ppul.25201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a comprehensive regulator of vascular and airway tone. Endogenous NO produced by nitric oxide synthases regulates multiple signaling cascades, including activation of soluble guanylate cyclase to generate cGMP, relaxing smooth muscle cells. Inhaled NO is an established therapy for pulmonary hypertension in neonates, and has been recently proposed for the treatment of hypoxic respiratory failure and acute respiratory distress syndrome due to COVID-19. In this review, we summarize the effects of endogenous and exogenous NO on protein S-nitrosylation, which is the selective and reversible covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine. This posttranslational modification targets specific cysteines based on the acid/base sequence of surrounding residues, with significant impacts on protein interactions and function. S-nitrosothiol (SNO) formation is tightly compartmentalized and enzymatically controlled, but also propagated by nonenzymatic transnitrosylation of downstream protein targets. Redox-based nitrosylation and denitrosylation pathways dynamically regulate the equilibrium of SNO-proteins. We review the physiological roles of SNO proteins, including nitrosohemoglobin and autoregulation of blood flow through hypoxic vasodilation, and pathological effects of nitrosylation including inhibition of critical vasodilator enzymes; and discuss the intersection of NO source and dose with redox environment, in determining the effects of protein nitrosylation.
Collapse
Affiliation(s)
- Vikram Bhatia
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Lara Elnagary
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.,Section of Neonatology, Departments of Pediatrics and Physiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
S-Nitrosoglutathione Reverts Dietary Sucrose-Induced Insulin Resistance. Antioxidants (Basel) 2020; 9:antiox9090870. [PMID: 32942712 PMCID: PMC7555592 DOI: 10.3390/antiox9090870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is a fundamental organ to ensure whole-body homeostasis, allowing for a proper increase in insulin sensitivity from the fast to the postprandial status. Hepatic regulation of glucose metabolism is crucial and has been shown to be modulated by glutathione (GSH) and nitric oxide (NO). However, knowledge of the metabolic action of GSH and NO in glucose homeostasis remains incomplete. The current study was designed to test the hypothesis that treatment with S-nitrosoglutathione is sufficient to revert insulin resistance induced by a high-sucrose diet. Male Wistar rats were divided in a control or high-sucrose group. Insulin sensitivity was determined: (i) in the fast state; (ii) after a standardized test meal; (iii) after GSH + NO; and after (iv) S-nitrosoglutathione (GSNO) administration. The fasting glucose level was not different between the control and high-sucrose group. In the liver, the high-sucrose model shows increased NO and unchanged GSH levels. In control animals, insulin sensitivity increased after a meal or administration of GSH+NO/GSNO, but this was abrogated by sucrose feeding. GSNO was able to revert insulin resistance induced by sucrose feeding, in a dose-dependent manner, suggesting that they have an insulin-sensitizing effect in vivo. These effects are associated with an increased insulin receptor and Akt phosphorylation in muscle cells. Our findings demonstrate that GSNO promotes insulin sensitivity in a sucrose-induced insulin-resistant animal model and further implicates that this antioxidant molecule may act as a potential pharmacological tool for the treatment of insulin resistance in obesity and type 2 diabetes.
Collapse
|
7
|
Yu Z, Cao J, Zhu S, Zhang L, Peng Y, Shi J. Exogenous Nitric Oxide Enhances Disease Resistance by Nitrosylation and Inhibition of S-Nitrosoglutathione Reductase in Peach Fruit. FRONTIERS IN PLANT SCIENCE 2020; 11:543. [PMID: 32670301 PMCID: PMC7326068 DOI: 10.3389/fpls.2020.00543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO), a signaling molecule, participates in defense responses during plant-pathogen interactions. S-Nitrosoglutathione (GSNO) is found to be an active intracellular NO storage center and regulated by S-nitrosoglutathione reductase (GSNOR) in plants. However, the role of GSNOR in NO-induced disease resistance is not clear. In this research, the effects of NO and GSNOR inhibitor (N6022) on the defense response of harvested peach fruit to Monilinia fructicola infection were investigated. It was found that the disease incidence and lesion diameter of peach fruits were markedly (P < 0.05) reduced by NO and GSNOR inhibitor. However, the expression of GSNOR was significantly inhibited (P < 0.05) by NO only during 2-6 h. Analyses using iodo-TMT tags to detect the nitrosylation sites of GSNOR revealed that the sulfhydryl group of the 85-cysteine site was nitrosylated after NO treatment in peach fruit at 6 and 12 h, suggesting that exogenous NO enhances disease resistance via initial inhibition of gene expression and the S-nitrosylation of GSNOR, thereby inhibiting GSNOR activity. Moreover, NO and GSNOR inhibitor enhanced the expression of systemic acquired resistance (SAR)-related genes, such as pathogenesis-related gene 1 (PR1), nonexpressor of PR1 (NPR1), and TGACG-binding factor 1 (TGA1). These results demonstrated that S-nitrosylation of GSNOR protein and inhibition of GSNOR activity contributed to the enhanced disease resistance in fruit.
Collapse
Affiliation(s)
- Zifei Yu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jixuan Cao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Shuhua Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Lili Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Yong Peng
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
8
|
Kamm A, Przychodzen P, Kuban-Jankowska A, Jacewicz D, Dabrowska AM, Nussberger S, Wozniak M, Gorska-Ponikowska M. Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide 2019; 93:102-114. [PMID: 31541733 DOI: 10.1016/j.niox.2019.09.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
Elevated levels of reactive nitrogen species, alteration in redox balance and deregulated redox signaling are common hallmarks of cancer progression and chemoresistance. However, depending on the cellular context, distinct reactive nitrogen species are also hypothesized to mediate cytotoxic activity and are thus used in anticancer therapies. We present here the dual face of nitric oxide and its derivatives in cancer biology. Main derivatives of nitric oxide, such as nitrogen dioxide and peroxynitrite cause cell death by inducing protein and lipid peroxidation and/or DNA damage. Moreover, they control the activity of important protein players within the pro- and anti-apoptotic signaling pathways. Thus, the control of intracellular reactive nitrogen species may become a sophisticated tool in anticancer strategies.
Collapse
Affiliation(s)
- Anna Kamm
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Paulina Przychodzen
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Michal Wozniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland; Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| |
Collapse
|
9
|
Bentur L, Gur M, Ashkenazi M, Livnat-Levanon G, Mizrahi M, Tal A, Ghaffari A, Geffen Y, Aviram M, Efrati O. Pilot study to test inhaled nitric oxide in cystic fibrosis patients with refractory Mycobacterium abscessus lung infection. J Cyst Fibros 2019; 19:225-231. [PMID: 31129068 DOI: 10.1016/j.jcf.2019.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Airways of Cystic Fibrosis (CF) patients are Nitric Oxide (NO) deficient which may contribute to impaired lung function and infection clearance. Mycobacterium abscessus (M. abscessus) infection prevalence is increasing in CF patients and is associated with increased morbidity and mortality. Here, we assess the safety and efficacy of intermittent inhaled NO (iNO) as adjuvant therapy in CF patients with refractory M. abscessus lung infection. METHODS A prospective, open-label pilot study of iNO (160 ppm) administered five times/day during hospitalization (14 days), and three times/day during ambulatory treatment (7 days) was conducted. The primary outcome was safety measured by NO-related adverse events (AEs). Secondary outcomes were six-minute walk distance (6MWD), forced expiratory volume in 1 s (FEV1), and M. abscessus burden in airways. RESULTS Nine subjects were recruited. INO at 160 ppm was well-tolerated and no iNO-related SAEs were observed during the study. Mean FEV1 and 6WMD were increased relative to baseline during NO treatment. M. abscessus culture conversion was not achieved, but 3/9 patients experienced at least one negative culture during the study. Mean time to positivity in M. abscessus culture, and qPCR analysis showed reductions in sputum bacterial load. The study was not powered to achieve statistical significance in FEV1, 6WMD, and bacterial load. CONCLUSIONS Intermittent iNO at 160 ppm is well tolerated and safe and led to increases in mean 6MWD and FEV1. INO exhibited potential antibacterial activity against M. abscessus. Further evaluation of secondary endpoints in a larger cohort of CF patients is warranted to demonstrate statistical significance.
Collapse
Affiliation(s)
- Lea Bentur
- Pediatric Pulmonary Institute and CF Center, Ruth Children's Hospital, Rambam Health Care Campus, POB 9602, Haifa, Israel; Technion-Israel Institute of Technology, Haifa, Israel.
| | - Michal Gur
- Pediatric Pulmonary Institute and CF Center, Ruth Children's Hospital, Rambam Health Care Campus, POB 9602, Haifa, Israel; Technion-Israel Institute of Technology, Haifa, Israel
| | - Moshe Ashkenazi
- Pediatric Pulmonary Institute and National CF Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Ramat-Gan, Israel; Pediatric Pulmonary Unit, Soroka University Medical Center POB 151, Beer-Sheva, Israel
| | - Galit Livnat-Levanon
- Pediatric Pulmonology Unit and CF Center, Lady Davis Carmel Medical Center, Haifa, Israel
| | | | - Asher Tal
- AIT Therapeutics Inc, Garden City, NY 11530, USA
| | | | - Yuval Geffen
- Microbiology Laboratory, Rambam Health Care Campus, POB 9602, Haifa, Israel
| | - Micha Aviram
- Pediatric Pulmonary Unit, Soroka University Medical Center POB 151, Beer-Sheva, Israel
| | - Ori Efrati
- Pediatric Pulmonary Institute and National CF Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer 52621, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, POB 39040, Tel-Aviv, Israel
| |
Collapse
|
10
|
Szaciłowski K, Stasicka Z. S-Nitrosothiols: Materials, Reactivity and Mechanisms. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967401103165181] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article provides a comprehensive view of S-nitrosothiols, chemical behaviour, the pathways leading to their synthesis, their spectral properties, analytical methods of detection and determination, chemical and photochemical reactivity, kinetic aspects and suggested mechanisms. The structure parameters of S-nitrosothiols and the parent thiols are analysed with respect to their effect on the strengthening or weakening the S–NO bond, and in consequence on the S-nitrosothiol stability. This depends also on the ease of S–S bond formation in the product disulphide. These structural features seem to be crucial both to spontaneous as well as to Cu-catalysed decomposition. Principal emphasis is given here to the S-nitrosothiols’ ability to act as ligands and to the effect of coordination on the ligand properties. The chemical and photochemical behaviours of the complexes are described in more detail and their roles in chemical and biochemical systems are discussed. The aim of the article is to demonstrate that the contribution of S-nitrosothiols to chemical and biochemical processes is more diverse than supposed hitherto. Nevertheless, their role is predictable and, based on the correlation between structure and reactivity, many important mechanisms of biochemical processes can be interpreted and various applications designed.
Collapse
Affiliation(s)
- Konrad Szaciłowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | - Zofia Stasicka
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| |
Collapse
|
11
|
Stsiapura VI, Bederman I, Stepuro II, Morozkina TS, Lewis SJ, Smith L, Gaston B, Marozkina N. S-Nitrosoglutathione formation at gastric pH is augmented by ascorbic acid and by the antioxidant vitamin complex, Resiston. PHARMACEUTICAL BIOLOGY 2018; 56:86-93. [PMID: 29298528 PMCID: PMC6130629 DOI: 10.1080/13880209.2017.1421674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Exogenous nitrogen oxides must be made bioavailable to sustain normal physiology because nitric oxide synthase (NOS) deficient mice are viable. In the stomach, S-nitrosoglutathione (GSNO) is formed from ingested nitrite and high levels of airway glutathione (GSH) that are cleared and swallowed. However, gastric GSNO may be broken down by nutrients like ascorbic acid (AA) before it is absorbed. OBJECTIVE To study the effect of AA on GSNO formation and stability. MATERIALS AND METHODS GSH and nitrite were reacted with or without 5 mM AA or Resiston (5 mM AA with retinoic acid and α-tocopherol). GSNO was measured by reduction/chemiluminescence and HPLC. AA and reduced thiols were measured colorimetrically. O-Nitrosoascorbate and AA were measured by gas chromatography-mass spectrometry (GC-MS). RESULTS GSNO was formed in saline and gastric samples (pH ∼4.5) from physiological levels of GSH and nitrite. Neither AA nor Resiston decreased [GSNO] at pH >3; rather, they increased [GSNO] (0.12 ± 0.19 μM without AA; 0.42 ± 0.35 μM with AA; and 0.43 ± 0.23 μM with Resiston; n = 4 each; p ≤ 0.05). However, AA compounds decreased [GSNO] at lower pH and with incubation >1 h. Mechanistically, AA, but not dehydroascorbate, increased GSNO formation; and the O-nitrosoascorbate intermediate was formed. CONCLUSIONS AA, with or without other antioxidants, did not deplete GSNO formed from physiological levels of GSH and nitrite at pH >3. In fact, it favoured GSNO formation, likely through O-nitrosoascorbate. Gastric GSNO could be a NOS-independent source of bioavailable nitrogen oxides.
Collapse
Affiliation(s)
| | - Ilya Bederman
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Ivan I. Stepuro
- Department of Biochemistry, Yanka Kupala State University, Grodno, Belarus
| | | | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Laura Smith
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Gaston
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
- Divisions of Pediatrics Pulmonology, Allergy, Immunology and Sleep Medicine and Gastroenterology and Nutrition, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Nadzeya Marozkina
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
- CONTACT Nadzeya MarozkinaCase Western Reserve University, 10900 Euclid Ave, BRB 722, Cleveland, OH44106, USA
| |
Collapse
|
12
|
Sharina IG, Martin E. The Role of Reactive Oxygen and Nitrogen Species in the Expression and Splicing of Nitric Oxide Receptor. Antioxid Redox Signal 2017; 26:122-136. [PMID: 26972233 PMCID: PMC7061304 DOI: 10.1089/ars.2016.6687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO)-dependent signaling is critical to many cellular functions and physiological processes. Soluble guanylyl cyclase (sGC) acts as an NO receptor and mediates the majority of NO functions. The signaling between NO and sGC is strongly altered by reactive oxygen and nitrogen species. Recent Advances: Besides NO scavenging, sGC is affected by oxidation/loss of sGC heme, oxidation, or nitrosation of cysteine residues and phosphorylation. Apo-sGC or sGC containing oxidized heme is targeted for degradation. sGC transcription and the stability of sGC mRNA are also affected by oxidative stress. CRITICAL ISSUES Studies cited in this review suggest the existence of compensatory processes that adapt cellular processes to diminished sGC function under conditions of short-term or moderate oxidative stress. Alternative splicing of sGC transcripts is discussed as a mechanism with the potential to both enhance and reduce sGC function. The expression of α1 isoform B, a functional and stable splice variant of human α1 sGC subunit, is proposed as one of such compensatory mechanisms. The expression of dysfunctional splice isoforms is discussed as a contributor to decreased sGC function in vascular disease. FUTURE DIRECTIONS Targeting the process of sGC splicing may be an important approach to maintain the composition of sGC transcripts that are expressed in healthy tissues under normal conditions. Emerging new strategies that allow for targeted manipulations of RNA splicing offer opportunities to use this approach as a preventive measure and to control the composition of sGC splice isoforms. Rational management of expressed sGC splice forms may be a valuable complementary treatment strategy for existing sGC-directed therapies. Antioxid. Redox Signal. 26, 122-136.
Collapse
Affiliation(s)
- Iraida G Sharina
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas
| | - Emil Martin
- 1 Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center in Houston Medical School , Houston, Texas.,2 School of Science and Technology, Nazarbayev University , Astana, Kazakhstan
| |
Collapse
|
13
|
Raffay TM, Dylag AM, Di Fiore JM, Smith LA, Einisman HJ, Li Y, Lakner MM, Khalil AM, MacFarlane PM, Martin RJ, Gaston B. S-Nitrosoglutathione Attenuates Airway Hyperresponsiveness in Murine Bronchopulmonary Dysplasia. Mol Pharmacol 2016; 90:418-26. [PMID: 27484068 PMCID: PMC5034690 DOI: 10.1124/mol.116.104125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by lifelong obstructive lung disease and profound, refractory bronchospasm. It is observed among survivors of premature birth who have been treated with prolonged supplemental oxygen. Therapeutic options are limited. Using a neonatal mouse model of BPD, we show that hyperoxia increases activity and expression of a mediator of endogenous bronchoconstriction, S-nitrosoglutathione (GSNO) reductase. MicroRNA-342-3p, predicted in silico and shown in this study in vitro to suppress expression of GSNO reductase, was decreased in hyperoxia-exposed pups. Both pretreatment with aerosolized GSNO and inhibition of GSNO reductase attenuated airway hyperresponsiveness in vivo among juvenile and adult mice exposed to neonatal hyperoxia. Our data suggest that neonatal hyperoxia exposure causes detrimental effects on airway hyperreactivity through microRNA-342-3p–mediated upregulation of GSNO reductase expression. Furthermore, our data demonstrate that this adverse effect can be overcome by supplementing its substrate, GSNO, or by inhibiting the enzyme itself. Rates of BPD have not improved over the past two decades; nor have new therapies been developed. GSNO-based therapies are a novel treatment of the respiratory problems that patients with BPD experience.
Collapse
Affiliation(s)
- Thomas M Raffay
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew M Dylag
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Juliann M Di Fiore
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Laura A Smith
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Helly J Einisman
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yuejin Li
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mitchell M Lakner
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ahmad M Khalil
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peter M MacFarlane
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Richard J Martin
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Benjamin Gaston
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
14
|
Wu B, Yu H, Wang Y, Pan Z, Zhang Y, Li T, Li L, Zhang W, Ge L, Chen Y, Ho CK, Zhu D, Huang X, Lou Y. Peroxiredoxin-2 nitrosylation facilitates cardiomyogenesis of mouse embryonic stem cells via XBP-1s/PI3K pathway. Free Radic Biol Med 2016; 97:179-191. [PMID: 27261193 DOI: 10.1016/j.freeradbiomed.2016.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/10/2016] [Accepted: 05/28/2016] [Indexed: 11/24/2022]
Abstract
Protein nitrosylation is a ubiquitous post-translational modification in almost all biological systems. However, its function on stem cell biology is so far incompletely understood. Here, we demonstrated that peroxiredoxin 2 (Prdx-2) nitrosylation was involved in cardiomyocyte differentiation of mouse embryonic stem (ES) cells induced by S-nitrosoglutathione (GSNO). We found that temporary GSNO exposure could promote ES cell-derived cardiomyogenesis. Using a stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics approach, coupled with biotin switch technique, a total of 104 nitrosylated proteins were identified. Specifically, one of the antioxidant enzymes, Prdx-2, was abundantly nitrosylated and temporarily reduced in antioxidant activity, causing transient endogenous hydrogen peroxide (H2O2) accumulation and subsequent X-box binding protein-1s/phosphatidylinositol 3-kinase pathway activation. The present study reveals the mechanism in which GSNO favors cardiomyocyte differentiation. Prdx-2 nitrosylation could be a potent strategy to affect the pluripotent stem cell-derived cardiomyogenesis.
Collapse
Affiliation(s)
- Bowen Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Science and Technology Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Yifan Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Zongfu Pan
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihan Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tong Li
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Li
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Science and Technology Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weichen Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Lijun Ge
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
| | - Choe Kyong Ho
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; College of International Education, Zhejiang University, Hangzhou 310058, China; Haeju Medical University, Haeju, Democratic People's Republic of Korea
| | - Danyan Zhu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Science and Technology Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Huang
- Key Science and Technology Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cardiovascular Key Laboratory of Zhejiang Province, The 2nd Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Yijia Lou
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Science and Technology Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Nour-Eldine W, Ghantous CM, Zibara K, Dib L, Issaa H, Itani HA, El-Zein N, Zeidan A. Adiponectin Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Remodeling through Nitric Oxide and the RhoA/ROCK Pathway. Front Pharmacol 2016; 7:86. [PMID: 27092079 PMCID: PMC4823273 DOI: 10.3389/fphar.2016.00086] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Adiponectin (APN), an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II) induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II. METHODS AND RESULTS Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO), the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS) mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor S-nitroso-N-acetylpenicillamine (SNAP), or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 h Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22(phox) mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47(phox) expression. CONCLUSION Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese UniversityBeirut, Lebanon
| | - Crystal M Ghantous
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese University Beirut, Lebanon
| | - Leila Dib
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hawraa Issaa
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese UniversityBeirut, Lebanon
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Nabil El-Zein
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese University Beirut, Lebanon
| | - Asad Zeidan
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
16
|
Nitric oxide and the thioredoxin system: a complex interplay in redox regulation. Biochim Biophys Acta Gen Subj 2015; 1850:2476-84. [DOI: 10.1016/j.bbagen.2015.09.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/26/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
|
17
|
Won JS, Annamalai B, Choi S, Singh I, Singh AK. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion. Brain Res 2015; 1624:359-369. [PMID: 26271717 DOI: 10.1016/j.brainres.2015.07.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-β accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3β and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology, Medical University of South Carolina, USA
| | | | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, USA
| | - Avtar K Singh
- Department of Pathology, Medical University of South Carolina, USA; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
18
|
Stsiapura VI, Shuali VK, Gaston BM, Lehmann KK. Detection of S-nitroso compounds by use of midinfrared cavity ring-down spectroscopy. Anal Chem 2015; 87:3345-53. [PMID: 25692741 PMCID: PMC4519009 DOI: 10.1021/ac5045143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
S-Nitroso compounds have received much attention in biological research. In addition to their role as nitric oxide donors, there is growing evidence that these compounds are involved in signaling processes in biological systems. Determination of S-nitrosylated proteins is of great importance for fundamental biological research and medical applications. The most common method to assay biological S-nitroso compounds is to chemically or photochemically reduce SNO functional groups to release nitric oxide, which is then entrained in an inert gas stream and detected, usually through chemiluminescence. We report a method of S-nitroso compound detection using cavity ring-down measurements of gaseous NO absorbance at 5.2 μm. The proposed method, in contrast to the chemiluminescence-based approach, can be used to distinguish isotopic forms of NO. We demonstrated sensitivity down to ∼2 pmol of S(14)NO groups and ∼5 pmol of S(15)NO groups for S-nitroso compounds in aqueous solutions. The wide dynamic range of cavity ring-down detection allows the measurement of S-nitroso compound levels from pico- to nanomole amounts.
Collapse
Affiliation(s)
| | - Vincent K. Shuali
- Chemistry Department, University of Virginia, Charlottesville, VA 22904
- Physics Department, University of Virginia, Charlottesville, VA 22904
| | - Benjamin M. Gaston
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Kevin K. Lehmann
- Chemistry Department, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
19
|
Rajagopal S, Nalli AD, Kumar DP, Bhattacharya S, Hu W, Mahavadi S, Grider JR, Murthy KS. Cytokine-induced S-nitrosylation of soluble guanylyl cyclase and expression of phosphodiesterase 1A contribute to dysfunction of longitudinal smooth muscle relaxation. J Pharmacol Exp Ther 2014; 352:509-18. [PMID: 25550199 DOI: 10.1124/jpet.114.221929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The effect of proinflammatory cytokines on the expression and activity of soluble guanylyl cyclase (sGC) and cGMP-phosphodiesterases (PDEs) was determined in intestinal longitudinal smooth muscle. In control muscle cells, cGMP levels are regulated via activation of sGC and PDE5; the activity of the latter is regulated via feedback phosphorylation by cGMP-dependent protein kinase. In muscle cells isolated from muscle strips cultured with interleukin-1β (IL-1β) or tumor necrosis factor α (TNF-α) or obtained from the colon of TNBS (2,4,6-trinitrobenzene sulfonic acid)-treated mice, expression of inducible nitric oxide synthase (iNOS) was induced and sGC was S-nitrosylated, resulting in attenuation of nitric oxide (NO)-induced sGC activity and cGMP formation. The effect of cytokines on sGC S-nitrosylation and activity was blocked by the iNOS inhibitor 1400W [N-([3-(aminomethyl)phenyl]methyl)ethanimidamide dihydrochloride]. The effect of cytokines on cGMP levels measured in the absence of IBMX (3-isobutyl-1-methylxanthine), however, was partly reversed by 1400W or PDE1 inhibitor vinpocetine and completely reversed by a combination of 1400W and vinpocetine. Expression of PDE1A was induced and was accompanied by an increase in PDE1A activity in muscle cells isolated from muscle strips cultured with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice; the effect of cytokines on PDE1 expression and activity was blocked by MG132 (benzyl N-[(2S)-4-methyl-1-[[(2S)-4-methyl-1-[[(2S)-4-methyl-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]carbamate), an inhibitor of nuclear factor κB activity. NO-induced muscle relaxation was inhibited in longitudinal muscle cells isolated from muscle strips cultured with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice, and this inhibition was completely reversed by the combination of both 1400W and vinpocetine. Inhibition of smooth muscle relaxation during inflammation reflects the combined effects of decreased sGC activity via S-nitrosylation and increased cGMP hydrolysis via PDE1 expression.
Collapse
Affiliation(s)
- Senthilkumar Rajagopal
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Ancy D Nalli
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Divya P Kumar
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sayak Bhattacharya
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Wenhui Hu
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
20
|
Kolesnik B, Heine CL, Schmidt R, Schmidt K, Mayer B, Gorren ACF. Aerobic nitric oxide-induced thiol nitrosation in the presence and absence of magnesium cations. Free Radic Biol Med 2014; 76:286-98. [PMID: 25236749 PMCID: PMC4647830 DOI: 10.1016/j.freeradbiomed.2014.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/13/2014] [Accepted: 08/25/2014] [Indexed: 12/29/2022]
Abstract
Although different routes for the S-nitrosation of cysteinyl residues have been proposed, the main in vivo pathway is unknown. We recently demonstrated that direct (as opposed to autoxidation-mediated) aerobic nitrosation of glutathione is surprisingly efficient, especially in the presence of Mg(2+). In the present study we investigated this reaction in greater detail. From the rates of NO decay and the yields of nitrosoglutathione (GSNO) we estimated values for the apparent rate constants of 8.9 ± 0.4 and 0.55 ± 0.06 M(-1)s(-1) in the presence and absence of Mg(2+). The maximum yield of GSNO was close to 100% in the presence of Mg(2+) but only about half as high in its absence. From this observation we conclude that, in the absence of Mg(2+), nitrosation starts by formation of a complex between NO and O2, which then reacts with the thiol. Omission of superoxide dismutase (SOD) reduced by half the GSNO yield in the absence of Mg(2+), demonstrating O2(-) formation. The reaction in the presence of Mg(2+) seems to involve formation of a Mg(2+)•glutathione (GSH) complex. SOD did not affect Mg(2+)-stimulated nitrosation, suggesting that no O2(-) is formed in that reaction. Replacing GSH with other thiols revealed that reaction rates increased with the pKa of the thiol, suggesting that the nucleophilicity of the thiol is crucial for the reaction, but that the thiol need not be deprotonated. We propose that in cells Mg(2+)-stimulated NO/O2-induced nitrosothiol formation may be a physiologically relevant reaction.
Collapse
Affiliation(s)
- Bernd Kolesnik
- Department of Pharmacology & Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | - Christian L Heine
- Department of Pharmacology & Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | - Renate Schmidt
- Department of Pharmacology & Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | - Kurt Schmidt
- Department of Pharmacology & Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology & Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | - Antonius C F Gorren
- Department of Pharmacology & Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria.
| |
Collapse
|
21
|
Imbrogno S. The eel heart: multilevel insights into functional organ plasticity. J Exp Biol 2013; 216:3575-86. [DOI: 10.1242/jeb.089292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Summary
The remarkable functional homogeneity of the heart as an organ requires a well-coordinated myocardial heterogeneity. An example is represented by the selective sensitivity of the different cardiac cells to physical (i.e. shear stress and/or stretch) or chemical stimuli (e.g. catecholamines, angiotensin II, natriuretic peptides, etc.), and the cell-specific synthesis and release of these substances. The biological significance of the cardiac heterogeneity has recently received great attention in attempts to dissect the complexity of the mechanisms that control the cardiac form and function. A useful approach in this regard is to identify natural models of cardiac plasticity. Among fishes, eels (genus Anguilla), for their adaptive and acclimatory abilities, represent a group of animals so far largely used to explore the structural and ultrastructural myoarchitecture organization, as well as the complex molecular networks involved in the modulation of the heart function, such as those converting environmental signals into physiological responses. However, an overview on the existing current knowledge of eel cardiac form and function is not yet available. In this context, this review will illustrate major features of eel cardiac organization and pumping performance. Aspects of autocrine–paracrine modulation and the influence of factors such as body growth, exercise, hypoxia and temperature will highlight the power of the eel heart as an experimental model useful to decipher how the cardiac morpho-functional heterogeneities may support the uniformity of the whole-organ mechanics.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Italy
| |
Collapse
|
22
|
Kolesnik B, Palten K, Schrammel A, Stessel H, Schmidt K, Mayer B, Gorren AC. Efficient nitrosation of glutathione by nitric oxide. Free Radic Biol Med 2013; 63:51-64. [PMID: 23660531 PMCID: PMC3734348 DOI: 10.1016/j.freeradbiomed.2013.04.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 01/24/2013] [Accepted: 04/27/2013] [Indexed: 02/07/2023]
Abstract
Nitrosothiols are increasingly regarded as important participants in a range of physiological processes, yet little is known about their biological generation. Nitrosothiols can be formed from the corresponding thiols by nitric oxide in a reaction that requires the presence of oxygen and is mediated by reactive intermediates (NO₂ or N₂O₃) formed in the course of NO autoxidation. Because the autoxidation of NO is second order in NO, it is extremely slow at submicromolar NO concentrations, casting doubt on its physiological relevance. In this paper we present evidence that at submicromolar NO concentrations the aerobic nitrosation of glutathione does not involve NO autoxidation but a reaction that is first order in NO. We show that this reaction produces nitrosoglutathione efficiently in a reaction that is strongly stimulated by physiological concentrations of Mg(2+). These observations suggest that direct aerobic nitrosation may represent a physiologically relevant pathway of nitrosothiol formation.
Collapse
|
23
|
|
24
|
Is Endothelial Nitric Oxide Synthase a Moonlighting Protein Whose Day Job is Cholesterol Sulfate Synthesis? Implications for Cholesterol Transport, Diabetes and Cardiovascular Disease. ENTROPY 2012. [DOI: 10.3390/e14122492] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Abstract
Red blood cell (RBC) transfusion is indicated to improve oxygen delivery to tissue, and for no other purpose. We have come to appreciate that donor RBCs are fundamentally altered during processing and storage in a manner that both impairs oxygen transport efficacy and introduces additional risk by perturbing both immune and coagulation systems. The protean biophysical and physiological changes in RBC function arising from storage are termed the "storage lesion;" many have been understood for some time; for example, we know that the oxygen affinity of stored blood rises during the storage period and that intracellular allosteric regulators, notably 2,3-bisphosphoglyceric acid and ATP, are depleted during storage. Our appreciation of other storage lesion features has emerged with improved understanding of coagulation, immune, and vascular signaling systems. Here, we review key features of the "storage lesion." Additionally, we call particular attention to the newly appreciated role of RBCs in regulating linkage between regional blood flow and regional O(2) consumption by regulating the bioavailability of key vasoactive mediators in plasma, and discuss how processing and storage disturb this key signaling function and impair transfusion efficacy.
Collapse
Affiliation(s)
- Allan Doctor
- Division of Pediatric Critical Care Medicine, Washington University School of Medicine, St Louis Children's Hospital, St Louis, MO 63110, USA.
| | - Phil Spinella
- Department of Pediatrics and Biochemistry Washington University in St Louis School of Medicine St Louis, MO
| |
Collapse
|
26
|
Fernandes AB, Guarino MP, Macedo MP. Understanding the in-vivo relevance of S-nitrosothiols in insulin action. Can J Physiol Pharmacol 2012; 90:887-94. [PMID: 22694074 DOI: 10.1139/y2012-090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insulin sensitivity is maximal in the postprandial state, decreasing with a fasting period through a mechanism that is dependent on the integrity of the hepatic parasympathetic nerves/nitric oxide (NO) production and increased hepatic glutathione (GSH) levels. GSH and NO react to form S-nitrosoglutathione (GSNO), an S-nitrosothiol (RSNO) for which the in-vivo effects are still being determined. The goal of this study was to test the hypothesis that in-vivo administration of RSNOs, GSNO, or S-nitroso-N-acetylpenicillamine (SNAP) increases insulin sensitivity in fasted or fed-denervated animals, but not in fed animals, where full postprandial insulin sensitivity is achieved. Fasted, fed, or fed-denervated male Wistar rats were used as models for different insulin sensitivity conditions. The rapid insulin sensitivity test (RIST) was used to measure insulin-stimulated glucose disposal before and after drug administration (GSNO, SNAP, or 3-morpholinosydnonimine (SIN-1), intravenous (i.v.) or to the portal vein (i.p.v.)). Fast insulin sensitivity was not altered by administration of SIN-1 (neither i.v. nor i.p.v.). Intravenous infusion of RSNOs in fasted and fed hepatic denervated rats increased insulin sensitivity by 126.35% ± 35.43% and 82.7% ± 12.8%, respectively. In fed animals, RSNOs decreased insulin sensitivity indicating a negative feedback mechanism. These results suggest that RSNOs incremental effect on insulin sensitivity represent a promising therapeutical tool in insulin resistance states.
Collapse
Affiliation(s)
- Ana B Fernandes
- CEDOC, Universidade Nova de Lisboa, Campo Mártires da Pátria, Portugal
| | | | | |
Collapse
|
27
|
Angelone T, Gattuso A, Imbrogno S, Mazza R, Tota B. Nitrite is a positive modulator of the Frank-Starling response in the vertebrate heart. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1271-81. [PMID: 22492815 DOI: 10.1152/ajpregu.00616.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evidence from both mammalian and nonmammalian vertebrates indicates that intracardiac nitric oxide (NO) facilitates myocardial relaxation, ventricular diastolic distensibility, and, consequently, the Frank-Starling response, i.e., the preload-induced increase of cardiac output. Since nitrite ion (NO(2)(-)), the major storage pool of bioactive NO, recently emerged as a cardioprotective endogenous modulator, we explored its influence on the Frank-Starling response in eel, frog, and rat hearts, used as paradigms of fish, amphibians, and mammals, respectively. We demonstrated that, like NO, exogenous nitrite improves the Frank-Starling response in all species, as indicated by an increase of stroke volume and stroke work (eel and frog) and of left ventricular (LV) pressure and LVdP/dt max (rat), used as indexes of inotropism. Unlike in frog and rat, in eel, the positive influence of nitrite appeared to be dependent on NO synthase inhibition. In all species, the effect was sensitive to NO scavengers, independent on nitroxyl anion, and mediated by a cGMP/PKG-dependent pathway. Moreover, the nitrite treatment increased S-nitrosylation of lower-molecular-weight proteins in cytosolic and membrane fractions. These results suggest that nitrite acts as a physiological source of NO, modulating through different species-specific mechanisms, the stretch-induced intrinsic regulation of the vertebrate heart.
Collapse
Affiliation(s)
- Tommaso Angelone
- Dept. of Cell Biology, Univ. of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | | | | | | | | |
Collapse
|
28
|
Foster MW, Yang Z, Gooden DM, Thompson JW, Ball CH, Turner ME, Hou Y, Pi J, Moseley MA, Que LG. Proteomic characterization of the cellular response to nitrosative stress mediated by s-nitrosoglutathione reductase inhibition. J Proteome Res 2012; 11:2480-91. [PMID: 22390303 DOI: 10.1021/pr201180m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The S-nitrosoglutathione-metabolizing enzyme, GSNO reductase (GSNOR), has emerged as an important regulator of protein S-nitrosylation. GSNOR ablation is protective in models of asthma and heart failure, raising the idea that GSNOR inhibitors might hold therapeutic value. Here, we investigated the effects of a small molecule inhibitor of GSNOR (GSNORi) in mouse RAW 264.7 macrophages. We found that GSNORi increased protein S-nitrosylation in cytokine-stimulated cells, and we utilized stable isotope labeling of amino acids in cell culture (SILAC) to quantify the cellular response to this "nitrosative stress". The expression of several cytokine-inducible immunomodulators, including osteopontin, cyclooxygenase-2, and nitric oxide synthase isoform 2 (NOS2), were decreased by GSNORi. In addition, selective targets of the redox-regulated transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-including heme oxygenase 1 (HO-1) and glutamate cysteine ligase modulatory subunit-were induced by GSNORi in a NOS2- and Nrf2-dependent manner. In cytokine-stimulated cells, Nrf2 protected from GSNORi-induced glutathione depletion and cytotoxicity and HO-1 activity was required for down-regulation of NOS2. Interestingly, GSNORi also affected a marked increase in NOS2 protein stability. Collectively, these data provide the most complete description of the global effects of GSNOR inhibition and demonstrate several important mechanisms for inducible response to GSNORi-mediated nitrosative stress.
Collapse
Affiliation(s)
- Matthew W Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Small Molecule Synthesis Facility and Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith BC, Fernhoff NB, Marletta MA. Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation. Biochemistry 2012; 51:1028-40. [PMID: 22242685 DOI: 10.1021/bi201818c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO), the product of the nitric oxide synthase (NOS) reaction, was previously shown to result in S-nitrosation of the NOS Zn(2+)-tetrathiolate and inactivation of the enzyme. To probe the potential physiological significance of NOS S-nitrosation, we determined the inactivation time scale of the inducible NOS isoform (iNOS) and found it directly correlates with an increase in the level of iNOS S-nitrosation. A kinetic model of NOS inactivation in which arginine is treated as a suicide substrate was developed. In this model, NO synthesized at the heme cofactor is partitioned between release into solution (NO release pathway) and NOS S-nitrosation followed by NOS inactivation (inactivation pathway). Experimentally determined progress curves of NO formation were fit to the model. The NO release pathway was perturbed through addition of the NO traps oxymyoglobin (MbO(2)) and β2 H-NOX, which yielded partition ratios between NO release and inactivation of ~100 at 4 μM MbO(2) and ~22000 at saturating trap concentrations. The results suggest that a portion of the NO synthesized at the heme cofactor reacts with the Zn(2+)-tetrathiolate without being released into solution. Perturbation of the inactivation pathway through addition of the reducing agent GSH or TCEP resulted in a concentration-dependent decrease in the level of iNOS S-nitrosation that directly correlated with protection from iNOS inactivation. iNOS inactivation was most responsive to physiological concentrations of GSH with an apparent K(m) value of 13 mM. NOS turnover that leads to NOS S-nitrosation might be a mechanism for controlling NOS activity, and NOS S-nitrosation could play a role in the physiological generation of nitrosothiols.
Collapse
Affiliation(s)
- Brian C Smith
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720-3220, United States
| | | | | |
Collapse
|
30
|
Sundararajan S, Gaston B. Sickle cell disease does not decrease pulmonary nitric oxide. J Pediatr 2012; 160:6-7. [PMID: 21924434 DOI: 10.1016/j.jpeds.2011.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 01/24/2023]
|
31
|
Beretta M, Wölkart G, Schernthaner M, Griesberger M, Neubauer R, Schmidt K, Sacherer M, Heinzel FR, Kohlwein SD, Mayer B. Vascular bioactivation of nitroglycerin is catalyzed by cytosolic aldehyde dehydrogenase-2. Circ Res 2011; 110:385-93. [PMID: 22207712 DOI: 10.1161/circresaha.111.245837] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE According to general view, aldehyde dehydrogenase-2 (ALDH2) catalyzes the high-affinity pathway of vascular nitroglycerin (GTN) bioactivation in smooth muscle mitochondria. Despite having wide implications to GTN pharmacology and raising many questions that are still unresolved, mitochondrial bioactivation of GTN in blood vessels is still lacking experimental support. OBJECTIVE In the present study, we investigated whether bioactivation of GTN is affected by the subcellular localization of ALDH2 using immortalized ALDH2-deficient aortic smooth muscle cells and mouse aortas with selective overexpression of the enzyme in either cytosol or mitochondria. METHODS AND RESULTS Quantitative Western blotting revealed that ALDH2 is mainly cytosolic in mouse aorta and human coronary arteries, with only approximately 15% (mouse) and approximately 5% (human) of the enzyme being localized in mitochondria. Infection of ALDH2-deficient aortic smooth muscle cells or isolated aortas with adenovirus containing ALDH2 cDNA with or without the mitochondrial signal peptide sequence led to selective expression of the protein in mitochondria and cytosol, respectively. Cytosolic overexpression of ALDH2 restored GTN-induced relaxation and GTN denitration to wild-type levels, whereas overexpression in mitochondria (6-fold vs wild-type) had no effect on relaxation. Overexpression of ALDH2 in the cytosol of ALDH2-deficient aortic smooth muscle cells led to a significant increase in GTN denitration and cyclic GMP accumulation, whereas mitochondrial overexpression had no effect. CONCLUSIONS The data indicate that vascular bioactivation of GTN is catalyzed by cytosolic ALDH2. Mitochondrial GTN metabolism may contribute to oxidative stress-related adverse effects of nitrate therapy and the development of nitrate tolerance.
Collapse
Affiliation(s)
- Matteo Beretta
- Department of Pharmacology and Toxicology, Karl-Franzens Universität Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, Olin AC, Plummer AL, Taylor DR. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 2011; 184:602-15. [PMID: 21885636 DOI: 10.1164/rccm.9120-11st] [Citation(s) in RCA: 1758] [Impact Index Per Article: 135.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Measurement of fractional nitric oxide (NO) concentration in exhaled breath (Fe(NO)) is a quantitative, noninvasive, simple, and safe method of measuring airway inflammation that provides a complementary tool to other ways of assessing airways disease, including asthma. While Fe(NO) measurement has been standardized, there is currently no reference guideline for practicing health care providers to guide them in the appropriate use and interpretation of Fe(NO) in clinical practice. PURPOSE To develop evidence-based guidelines for the interpretation of Fe(NO) measurements that incorporate evidence that has accumulated over the past decade. METHODS We created a multidisciplinary committee with expertise in the clinical care, clinical science, or basic science of airway disease and/or NO. The committee identified important clinical questions, synthesized the evidence, and formulated recommendations. Recommendations were developed using pragmatic systematic reviews of the literature and the GRADE approach. RESULTS The evidence related to the use of Fe(NO) measurements is reviewed and clinical practice recommendations are provided. CONCLUSIONS In the setting of chronic inflammatory airway disease including asthma, conventional tests such as FEV(1) reversibility or provocation tests are only indirectly associated with airway inflammation. Fe(NO) offers added advantages for patient care including, but not limited to (1) detecting of eosinophilic airway inflammation, (2) determining the likelihood of corticosteroid responsiveness, (3) monitoring of airway inflammation to determine the potential need for corticosteroid, and (4) unmasking of otherwise unsuspected nonadherence to corticosteroid therapy.
Collapse
|
33
|
Marozkina NV, Gaston B. S-Nitrosylation signaling regulates cellular protein interactions. Biochim Biophys Acta Gen Subj 2011; 1820:722-9. [PMID: 21745537 DOI: 10.1016/j.bbagen.2011.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND S-Nitrosothiols are made by nitric oxide synthases and other metalloproteins. Unlike nitric oxide, S-nitrosothiols are involved in localized, covalent signaling reactions in specific cellular compartments. These reactions are enzymatically regulated. SCOPE S-Nitrosylation affects interactions involved in virtually every aspect of normal cell biology. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation. MAJOR CONCLUSIONS AND SIGNIFICANCE S-Nitrosylation is a regulated signaling reaction.
Collapse
Affiliation(s)
- Nadzeya V Marozkina
- University of Virginia School of Medicine, Division of Pediatric Respiratory Medicine, PO Box 800386, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
34
|
Ghosh S, Erzurum SC. Nitric oxide metabolism in asthma pathophysiology. Biochim Biophys Acta Gen Subj 2011; 1810:1008-16. [PMID: 21718755 DOI: 10.1016/j.bbagen.2011.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/24/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma, a chronic inflammatory disease is typically characterized by bronchoconstriction and airway hyper-reactivity. SCOPE OF REVIEW A wealth of studies applying chemistry, molecular and cell biology to animal model systems and human asthma over the last decade has revealed that asthma is associated with increased synthesis of the gaseous molecule nitric oxide (NO). MAJOR CONCLUSION The high NO levels in the oxidative environment of the asthmatic airway lead to greater formation of reactive nitrogen species (RNS) and subsequent oxidation and nitration of proteins, which adversely affect protein functions that are biologically relevant to chronic inflammation. In contrast to the high levels of NO and nitrated products, there are lower levels of beneficial S-nitrosothiols (RSNO), which mediate bronchodilation, due to greater enzymatic catabolism of RSNO in the asthmatic airways. GENERAL SIGNIFICANCE This review discusses the rapidly accruing data linking metabolic products of NO as critical determinants in the chronic inflammation and airway reactivity of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.
Collapse
Affiliation(s)
- Sudakshina Ghosh
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
35
|
Nachuraju P, Friedman AJ, Friedman JM, Cabrales P. Exogenous nitric oxide prevents cardiovascular collapse during hemorrhagic shock. Resuscitation 2011; 82:607-13. [PMID: 21342744 DOI: 10.1016/j.resuscitation.2010.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/15/2010] [Accepted: 12/27/2010] [Indexed: 11/27/2022]
Abstract
This study investigated the systemic and microvascular hemodynamic changes related to increased nitric oxide (NO) availability following significant hemorrhage, made available by administration of NO releasing nanoparticles (NO-nps). Hemodynamic responses to hemorrhagic shock were studied in the hamster window chamber. Acute hemorrhage was induced by arterial controlled bleeding of 50% of blood volume, and the resulting hemodynamic parameters were followed over 90 min. Exogenous NO was administered in the form of NO-nps (5mg/kg suspended in 50 μl saline) 10 min following induced hemorrhage. Control groups received equal dose of NO free nanoparticles (Control-nps) and Vehicle solution. Animals treated with NO-nps partially maintained systemic and microvascular function during hypovolemic shock compared to animals treated with Control-nps or the Vehicle (50 μl saline). The continuous NO released by the NO-nps reverted arteriolar vasoconstriction, partially recovered both functional capillary density and microvascular blood flows. Additionally, NO supplementation post hemorrhage prevented cardiac decompensation, and thereby maintained and stabilized the heart rate. Paradoxically, the peripheral vasodilation induced by the NO-nps did not decrease blood pressure, and combined with NO's effects on vascular resistance, NO-nps promoted intravascular pressure redistribution and blood flow, avoiding tissue ischemia. Therefore, by increasing NO availability with NO-nps during hypovolemic shock, it is possible that cardiac stability and microvascular perfusion can be preserved, ultimately increasing survivability and local tissue viability, and reducing hemorrhagic shock sequelae. The relevance, stability, and efficacy of exogenous NO therapy in the form of NO-nps will potentially facilitate the intended use in battlefield and trauma situations.
Collapse
Affiliation(s)
- Parimala Nachuraju
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | | |
Collapse
|
36
|
Li J, Li R, Meng Z. Sulfur dioxide upregulates the aortic nitric oxide pathway in rats. Eur J Pharmacol 2010; 645:143-50. [PMID: 20674563 DOI: 10.1016/j.ejphar.2010.07.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 06/10/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Sulfur dioxide (SO(2)) is a common gaseous pollutant. It is also, however, endogenously generated from sulfur-containing amino acids. Recent studies have demonstrated that rat blood pressure can be lowered by SO(2)-exposure in vivo and that vasodilation caused by SO(2) at low concentrations (<450 microM) is endothelium-dependent in rat aorta. However, effects of SO(2) on nitric oxide synthase (NOS) and nitric oxide (NO) production have not been previously studied in rat aorta. The objective of the present study is to assess the effects of acute (10 min) and prolonged (2h) stimulation with different concentrations of SO(2) on NO/cGMP pathway in isolated rat aorta. The results show that: (1) the acute and prolonged pretreatments with SO(2) produced an inhibition of vasoconstrictions induced by norepinephrine. (2) SO(2) potentiated activity of endothelial nitric oxide synthase (eNOS), but not of induced NOS (iNOS). (3) SO(2) could increase expression of eNOS gene on the transcription and translation levels in rat aorta. (4) SO(2) enhanced NO formation in aortic tissue. (5) The level of cGMP in rat aorta was increased by SO(2) and no change of cAMP. These findings led to the conclusion: there were acute and prolonged effects of SO(2) on the NO/cGMP signalling pathway; and SO(2) could upregulate the eNOS-NO-cGMP pathway and at least partly by which the SO(2) might cause vasodilation and inhibition to vasoconstriction.
Collapse
Affiliation(s)
- Junling Li
- School of Physical Education, Shanxi University of Finance and Economics, Taiyuan 030006, China
| | | | | |
Collapse
|
37
|
Sandrim VC, Montenegro MF, Palei ACT, Metzger IF, Sertorio JTC, Cavalli RC, Tanus-Santos JE. Increased circulating cell-free hemoglobin levels reduce nitric oxide bioavailability in preeclampsia. Free Radic Biol Med 2010; 49:493-500. [PMID: 20510352 DOI: 10.1016/j.freeradbiomed.2010.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/30/2010] [Accepted: 05/15/2010] [Indexed: 01/24/2023]
Abstract
Contrasting with increased nitric oxide (NO) formation during healthy pregnancy, reduced NO bioavailability plays a role in preeclampsia. However, no study has examined whether increased NO consumption by enhanced circulating levels of cell-free hemoglobin plays a role in preeclampsia. We studied 82 pregnant women (38 healthy pregnant and 44 with preeclampsia). To assess NO bioavailability, we measured plasma and whole blood nitrite concentrations using an ozone-based chemiluminescence assay. Plasma ceruloplasmin concentrations and plasma NO consumption (pNOc) were assessed and plasma hemoglobin (pHb) concentrations were measured with a commercial immunoassay. We found lower whole blood and plasma nitrite concentrations in preeclamptic patients (-48 and -39%, respectively; both P<0.05) compared with healthy pregnant women. Plasma samples from preeclamptic women consumed 63% more NO (P=0.003) and had 53% higher pHb and 10% higher ceruloplasmin levels than those found in healthy pregnant women (P<0.01). We found significant positive correlations between pHb and pNOc (r=0.61; P<0.0001), negative correlations between pNOc and whole blood or plasma nitrite concentrations (P=0.02; r=-0.32 and P=0.01; r=-0.34, respectively), and negative correlations between pHb and whole blood or plasma nitrite concentrations (P=0.03; r=-0.36 and P=0.01; r=-0.38, respectively). These findings suggest that increased pHb levels lead to increased NO consumption and lower NO bioavailability in preeclamptic compared with healthy pregnant women.
Collapse
Affiliation(s)
- Valeria C Sandrim
- Santa Casa de Belo Horizonte, Núcleo de Pós-Graduação, Av. Francisco Sales, 1111, 30150-221, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
38
|
Rosenfeld RJ, Bonaventura J, Szymczyna BR, MacCoss MJ, Arvai AS, Yates JR, Tainer JA, Getzoff ED. Nitric-oxide synthase forms N-NO-pterin and S-NO-cys: implications for activity, allostery, and regulation. J Biol Chem 2010; 285:31581-9. [PMID: 20659888 DOI: 10.1074/jbc.m109.072496] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inducible nitric-oxide synthase (iNOS) produces biologically stressful levels of nitric oxide (NO) as a potent mediator of cellular cytotoxicity or signaling. Yet, how this nitrosative stress affects iNOS function in vivo is poorly understood. Here we define two specific non-heme iNOS nitrosation sites discovered by combining UV-visible spectroscopy, chemiluminescence, mass spectrometry, and x-ray crystallography. We detected auto-S-nitrosylation during enzymatic turnover by using chemiluminescence. Selective S-nitrosylation of the ZnS(4) site, which bridges the dimer interface, promoted a dimer-destabilizing order-to-disorder transition. The nitrosated iNOS crystal structure revealed an unexpected N-NO modification on the pterin cofactor. Furthermore, the structurally defined N-NO moiety is solvent-exposed and available to transfer NO to a partner. We investigated glutathione (GSH) as a potential transnitrosation partner because the intracellular GSH concentration is high and NOS can form S-nitrosoglutathione. Our computational results predicted a GSH binding site adjacent to the N-NO-pterin. Moreover, we detected GSH binding to iNOS with saturation transfer difference NMR spectroscopy. Collectively, these observations resolve previous paradoxes regarding this uncommon pterin cofactor in NOS and suggest means for regulating iNOS activity via N-NO-pterin and S-NO-Cys modifications. The iNOS self-nitrosation characterized here appears appropriate to help control NO production in response to cellular conditions.
Collapse
Affiliation(s)
- Robin J Rosenfeld
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jonasson S, Hedenstierna G, Hjoberg J. Concomitant administration of nitric oxide and glucocorticoids improves protection against bronchoconstriction in a murine model of asthma. J Appl Physiol (1985) 2010; 109:521-31. [PMID: 20538845 DOI: 10.1152/japplphysiol.01317.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids (GC) remain the first choice of treatment in asthma, but GC therapy is not always effective and is associated with side effects. In a porcine study in our laboratory, simultaneous administration of GC and nitric oxide (NO) attenuated the endotoxin-induced inflammatory response and made GC treatment more effective than inhaled NO or steroids alone. In the present study, we aimed to further investigate the interactions between NO and GC treatment in two murine models of asthma. Inflammation was induced by endotoxin, ovalbumin, or a combination of both. With an animal ventilator and a forced oscillation method (FlexiVent), lung mechanics and airway reactivity to methacholine in response to various treatments were assessed. We also describe histology and glucocorticoid receptor (GR) protein expression in response to inhaled NO treatment [40 ppm NO gas or NO donors sodium nitroprusside (SNP) or diethylamine NONOate (DEA/NO)]. SNP and GC provided protection against bronchoconstriction to a similar degree in the model of severe asthma. When GC-treated mice were given SNP, maximum airway reactivity was further reduced. Similar effects were seen after DEA/NO delivery to GC-treated animals. Using 1-H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ), a soluble guanylate cyclase inhibitor, we found this effect of NO donors to be mediated through a cGMP-independent mechanism. In the severe model, prolonged NO treatment restored or even increased the nuclear levels of GR. In conclusion, in our murine model of severe asthma GC treatment provided protection to only a limited degree against bronchoconstriction, while concomitant treatment with a NO donor was markedly more potent than the use of either NO or GC alone.
Collapse
Affiliation(s)
- Sofia Jonasson
- Dept. of Medical Sciences, Clinical Physiology, University Hospital, SE-751 85 Uppsala, Sweden.
| | | | | |
Collapse
|
40
|
|
41
|
Sonveaux P, Jordan BF, Gallez B, Feron O. Nitric oxide delivery to cancer: Why and how? Eur J Cancer 2009; 45:1352-69. [DOI: 10.1016/j.ejca.2008.12.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 12/12/2008] [Indexed: 02/07/2023]
|
42
|
Que LG, Yang Z, Stamler JS, Lugogo NL, Kraft M. S-nitrosoglutathione reductase: an important regulator in human asthma. Am J Respir Crit Care Med 2009; 180:226-31. [PMID: 19395503 DOI: 10.1164/rccm.200901-0158oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nitric oxide bioactivity, mediated through the formation of S-nitrosothiols (SNOs), has a significant effect on bronchomotor tone. S-Nitrosoglutathione is an endogenous bronchodilator that is decreased in children with asthmatic respiratory failure and in adults with asthma undergoing segmental airway challenge. Recently we showed that S-nitrosoglutathione reductase (GSNOR) regulates endogenous SNOs. Mice with genetic deletion of GSNOR are protected from airway hyperresponsivity in an allergic asthma model. OBJECTIVES We hypothesized that GSNOR is increased in human asthma and correlates with lung SNO content and airway reactivity. METHODS We recruited 36 subjects with mild asthma with FEV(1) 88.5 +/- 2.3% predicted and 34 healthy control subjects with FEV(1) 100.7 +/- 2.5% predicted. Bronchoalveolar lavage (BAL) was performed in all subjects. Cell counts, differentials, GSNOR activity, and SNO levels were determined in BAL. MEASUREMENTS AND MAIN RESULTS SNO content was decreased in asthmatic BAL compared with control BAL and correlated inversely with GSNOR expression in BAL cell lysates. Furthermore, GSNOR activity measured from BAL samples was significantly increased in subjects with asthma compared with control subjects and correlated inversely with the provocative concentration of methacholine causing a 20% decrease in FEV(1). CONCLUSIONS These findings suggest that GSNOR is an important regulator of airway SNO content and airways hyperresponsiveness in human asthma.
Collapse
Affiliation(s)
- Loretta G Que
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | | | | | |
Collapse
|
43
|
Pei DS, Sun YF, Song YJ. S-nitrosylation of PTEN Invovled in ischemic brain injury in rat hippocampal CA1 region. Neurochem Res 2009; 34:1507-12. [PMID: 19266280 DOI: 10.1007/s11064-009-9938-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 02/18/2009] [Indexed: 12/01/2022]
Abstract
The tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) is not only a protein, but also a lipid phosphatase that can negatively regulate the serine/threonine kinase Akt. It has been reported that PTEN can be regulated by means of phosphorylation. However, whether PTEN can be regulated by another post-translational protein modification (S-nitrosylation) was not fully elucidated. In this study, we investigated the S-nitrosylation of PTEN during transient cerebral ischemia/reperfusion in rat hippocampus. Transient brain ischemia was induced by the four-vessel occlusion in Sprague-Dawley rats. Our data show that S-nitrosylation of PTEN was increased significantly after 12 h of reperfusion compared with sham control. Pretreatment with the inhibitor of nNOS (7-NI) and the inhibitor of iNOS could inhibit PTEN's activity and decrease S-nitrosylation of PTEN. Taken together, these results indicate that nitric oxide could regulate PTEN's activity via S-nitrosylation during transient global ischemia in rat hippocampus.
Collapse
Affiliation(s)
- Dong-Sheng Pei
- Laboratory of Biological Cancer Therapy, Xuzhou Medical College, 84 West Huai-hai Road, 221002 Xuzhou, Jiangsu, People's Republic of China.
| | | | | |
Collapse
|
44
|
Pellegrino D, Shiva S, Angelone T, Gladwin MT, Tota B. Nitrite exerts potent negative inotropy in the isolated heart via eNOS-independent nitric oxide generation and cGMP-PKG pathway activation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:818-27. [PMID: 19248761 DOI: 10.1016/j.bbabio.2009.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 12/13/2022]
Abstract
The ubiquitous anion nitrite (NO(2)(-)) has recently emerged as an endocrine storage form of nitric oxide (NO) and a signalling molecule that mediates a number of biological responses. Although the role of NO in regulating cardiac function has been investigated in depth, the physiological signalling effects of nitrite on cardiac function have only recently been explored. We now show that remarkably low concentrations of nitrite (1 nM) significantly modulate cardiac contractility in isolated and perfused Langendorff rat heart. In particular, nitrite exhibits potent negative inotropic and lusitropic activities as evidenced by a decrease in left ventricular pressure and relaxation, respectively. Furthermore, we demonstrate that the nitrite-dependent effects are mediated by NO formation but independent of NO synthase (NOS) activity. Specifically, nitrite infusion in the Langendorff system produces NO and cGMP/PKG-dependent negative inotropism, as evidenced by the formation of cellular iron-nitrosyl complexes and inhibition of biological effect by NO scavengers and by PKG inhibitors. These data are consistent with the hypothesis that nitrite represents an eNOS-independent source of NO in the heart which modulates cardiac contractility through the NO-cGMP/PKG pathway. The observed high potency of nitrite supports a physiological function of nitrite as a source of cardiomyocyte NO and a fundamental signalling molecule in the heart.
Collapse
Affiliation(s)
- Daniela Pellegrino
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende, Italy
| | | | | | | | | |
Collapse
|
45
|
Murillo-Carretero M, Torroglosa A, Castro C, Villalobo A, Estrada C. S-Nitrosylation of the epidermal growth factor receptor: a regulatory mechanism of receptor tyrosine kinase activity. Free Radic Biol Med 2009; 46:471-9. [PMID: 19056486 DOI: 10.1016/j.freeradbiomed.2008.10.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 10/10/2008] [Accepted: 10/24/2008] [Indexed: 11/17/2022]
Abstract
Nitric oxide (NO) donors inhibit the epidermal growth factor (EGF)-dependent auto(trans)phosphorylation of the EGF receptor (EGFR) in several cell types in which NO exerts antiproliferative effects. We demonstrate in this report that NO inhibits, whereas NO synthase inhibition potentiates, the EGFR tyrosine kinase activity in NO-producing cells, indicating that physiological concentrations of NO were able to regulate the receptor activity. Depletion of intracellular glutathione enhanced the inhibitory effect of the NO donor 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA/NO) on EGFR tyrosine kinase activity, supporting the notion that such inhibition was a consequence of an S-nitrosylation reaction. Addition of DEA/NO to cell lysates resulted in the S-nitrosylation of a large number of proteins including the EGFR, as confirmed by the chemical detection of nitrosothiol groups in the immunoprecipitated receptor. We prepared a set of seven EGFR(C --> S) substitution mutants and demonstrated in transfected cells that the tyrosine kinase activity of the EGFR(C166S) mutant was completely resistant to NO, whereas the EGFR(C305S) mutant was partially resistant. In the presence of EGF, DEA/NO significantly inhibited Akt phosphorylation in cells transfected with wild-type EGFR, but not in those transfected with C166S or C305S mutants. We conclude that the EGFR can be posttranslationally regulated by reversible S-nitrosylation of C166 and C305 in living cells.
Collapse
|
46
|
Sun J, Yamaguchi N, Xu L, Eu JP, Stamler JS, Meissner G. Regulation of the cardiac muscle ryanodine receptor by O(2) tension and S-nitrosoglutathione. Biochemistry 2009; 47:13985-90. [PMID: 19053230 DOI: 10.1021/bi8012627] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cardiac and skeletal muscle sarcoplasmic reticulum ryanodine receptor Ca(2+) release channels contain thiols that are potential targets of endogenously produced reactive oxygen and nitrogen intermediates. Previously, we showed that the skeletal muscle ryanodine receptor (RyR1) has O(2)-sensitive thiols; only when these thiols are in the reduced state (pO(2) approximately 10 mmHg) can physiological concentrations of NO (nanomolar) activate RyR1. Here, we report that cardiac muscle ryanodine receptor (RyR2) activity also depends on pO(2), but unlike RyR1, RyR2 was not activated or S-nitrosylated directly by NO. Rather, activation and S-nitrosylation of RyR2 required S-nitrosoglutathione. The effects of peroxynitrite were indiscriminate on RyR1 and RyR2. Our results indicate that both RyR1 and RyR2 are pO(2)-responsive yet point to different mechanisms by which NO and S-nitrosoglutathione influence cardiac and skeletal muscle sarcoplasmic reticulum Ca(2+) release.
Collapse
Affiliation(s)
- Junhui Sun
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Our knowledge of nitric oxide (NO) as a crucial endogenous signalling molecule continues to expand. Many, but not all, of the actions of NO are mediated by activation of soluble guanylyl cyclase (sGC) in target tissues. The aim of this chapter is to encapsulate the functions of NO in mammalian biology, tied to the chemistry of this unusual signalling entity. The experimental usefulness and therapeutic potential of the most widely utilised NO donor drugs is reviewed, with special consideration given to the importance of choosing the correct NO donor for any given experiment, in vitro, in vivo or in clinical studies.
Collapse
Affiliation(s)
- Ian L Megson
- Free Radical Research Facility, Department of Diabetes, UHI Millennium Institute, Inverness, Scotland, IV2 3BL, UK.
| | | |
Collapse
|
48
|
Janssen-Heininger YMW, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 2008; 45:1-17. [PMID: 18423411 PMCID: PMC2453533 DOI: 10.1016/j.freeradbiomed.2008.03.011] [Citation(s) in RCA: 581] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/04/2008] [Accepted: 03/11/2008] [Indexed: 12/15/2022]
Abstract
Oxidants are produced as a by-product of aerobic metabolism, and organisms ranging from prokaryotes to mammals have evolved with an elaborate and redundant complement of antioxidant defenses to confer protection against oxidative insults. Compelling data now exist demonstrating that oxidants are used in physiological settings as signaling molecules with important regulatory functions controlling cell division, migration, contraction, and mediator production. These physiological functions are carried out in an exquisitely regulated and compartmentalized manner by mild oxidants, through subtle oxidative events that involve targeted amino acids in proteins. The precise understanding of the physiological relevance of redox signal transduction has been hampered by the lack of specificity of reagents and the need for chemical derivatization to visualize reversible oxidations. In addition, it is difficult to measure these subtle oxidation events in vivo. This article reviews some of the recent findings that illuminate the significance of redox signaling and exciting future perspectives. We also attempt to highlight some of the current pitfalls and the approaches needed to advance this important area of biochemical and biomedical research.
Collapse
|
49
|
Abstract
S-Nitrosylation is a ubiquitous signaling process in biological systems. Research regarding this signaling has been hampered, however, by assays that lack sensitivity and specificity. In particular, iodine-based assays for S-nitrosothiols (1) produce nitrosyliodide, a potent nitrosating agent that can be lost to reactions in the biological sample being studied; (2) require pretreatment of biological samples with several reagents that react with proteins, artifactually forming or breaking S-NO bonds before the assay; and (3) are not sensitive or specific for nitrogen oxides in biological samples, reporting a wide range of different concentrations and falsely reporting NO-modified proteins, to be nitrite. These data, therefore, suggest that iodine-based assays should never be used for biological S-nitrosothiols. There are other assays that provide reasonably sensitive and accurate data regarding biological S-nitrosothiols, including assays based on mass spectrometry, spectrophotometry, chemiluminescence, fluorescence, and immunostaining. Each assay, however, has limitations and should be quantitatively complemented by separate assays. Continued improvement in assays will facilitate improved understanding of S-nitrosylation signaling.
Collapse
Affiliation(s)
- Lisa A Palmer
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | |
Collapse
|
50
|
Abstract
Nitric oxide (NO) has multiple protective effects for regulating the cardiovascular and renal systems. The major functions include endothelium-dependent relaxation, anti-inflammatory effects, as well as antihypertrophic and antithrombotic activities. Many of the activities mediated by NO are systematically antagonized by angiotensin-II (Ang II), a vasconstrictor peptide. Studies described in the review below have demonstrated that the balance between NO and Ang II activities rather than the absolute concentration of each molecule determines their effects on the physiology and pathophysiology of the cardiovascular and renal systems. NO donors have been used for years as therapeutic agents for a range of cardiovascular conditions including angina, myocardial infarction and for the reduction of arterial stiffness. An understanding of the mechanisms underlying the effects of these medications will enable the development of novel therapies to balance the effects of NO in the cardiovascular system.
Collapse
Affiliation(s)
- Leopoldo Raij
- Nephrology/Hypertension Division, University of Miami, Veterans Affairs Medical Center, Miami, FL, USA.
| |
Collapse
|