1
|
Plaza V, Pasten A, López-Ramírez LA, Mora-Montes HM, Rubio-Astudillo J, Silva-Moreno E, Castillo L. Botrytis cinerea PMT4 Is Involved in O-Glycosylation, Cell Wall Organization, Membrane Integrity, and Virulence. J Fungi (Basel) 2025; 11:71. [PMID: 39852490 PMCID: PMC11766925 DOI: 10.3390/jof11010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Proteins found within the fungal cell wall usually contain both N- and O-oligosaccharides. N-glycosylation is the process where these oligosaccharides (hereinafter: glycans) are attached to asparagine residues, while in O-glycosylation the glycans are covalently bound to serine or threonine residues. The PMT family is grouped into PMT1, PMT2, and PMT4 subfamilies. Using bioinformatics analysis within the Botrytis cinerea genome database, an ortholog to Saccharomyces cerevisiae Pmt4 and other fungal species was identified. The aim of this study was to assess the relevance of the bcpmt4 gene in B. cinerea glycosylation. For this purpose, the bcpmt4 gene was disrupted by homologous recombination in the B05.10 strain using a hygromycin B resistance cassette. Expression of bcpmt4 in S. cerevisiae ΔScpmt4 or ΔScpmt3 null mutants restored glycan levels like those observed in the parental strain. The phenotypic analysis showed that Δbcpmt4 null mutants exhibited significant changes in hyphal cell wall composition, including reduced mannan levels and increased amounts of chitin and glucan. Furthermore, the loss of bcpmt4 led to decreased glycosylation of glycoproteins in the B. cinerea cell wall. The null mutant lacking PMT4 was hypersensitive to a range of cell wall perturbing agents, antifungal drugs, and high hydrostatic pressure. Thus, in addition to their role in glycosylation, the PMT4 is required to virulence, biofilm formation, and membrane integrity. This study adds to our knowledge of the role of the B. cinerea bcpmt4 gene, which is involved in glycosylation and cell biology, cell wall formation, and antifungal response.
Collapse
Affiliation(s)
- Verónica Plaza
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena 1700000, Chile; (V.P.); (A.P.)
| | - Alice Pasten
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena 1700000, Chile; (V.P.); (A.P.)
| | - Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico; (L.A.L.-R.); (H.M.M.-M.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico; (L.A.L.-R.); (H.M.M.-M.)
| | - Julia Rubio-Astudillo
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 7500912, Chile;
| | - Evelyn Silva-Moreno
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago 7510041, Chile;
| | - Luis Castillo
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena 1700000, Chile; (V.P.); (A.P.)
| |
Collapse
|
2
|
Marquardt L, Montino M, Mühe Y, Schlotterhose P, Thumm M. Topology and Function of the S. cerevisiae Autophagy Protein Atg15. Cells 2023; 12:2056. [PMID: 37626866 PMCID: PMC10453639 DOI: 10.3390/cells12162056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The putative phospholipase Atg15 is required for the intravacuolar lysis of autophagic bodies and MVB vesicles. Intracellular membrane lysis is a highly sophisticated mechanism that is not fully understood. The amino-terminal transmembrane domain of Atg15 contains the sorting signal for entry into the MVB pathway. By replacing this domain, we generated chimeras located in the cytosol, the vacuole membrane, and the lumen. The variants at the vacuole membrane and in the lumen were highly active. Together with the absence of Atg15 from the phagophore and autophagic bodies, this suggests that, within the vacuole, Atg15 can lyse vesicles where it is not embedded. In-depth topological analyses showed that Atg15 is a single membrane-spanning protein with the amino-terminus in the cytosol and the rest, including the active site motif, in the ER lumen. Remarkably, only membrane-embedded Atg15 variants affected growth when overexpressed. The growth defects depended on its active site serine 332, showing that it was linked to the enzymatic activity of Atg15. Interestingly, the growth defects were independent of vacuolar proteinase A and vacuolar acidification.
Collapse
Affiliation(s)
| | | | | | | | - Michael Thumm
- Institute of Cellular Biochemistry, University Medicine, Humboldtallee 23, D-37073 Goettingen, Germany
| |
Collapse
|
3
|
Heterologous (Over) Expression of Human SoLute Carrier (SLC) in Yeast: A Well-Recognized Tool for Human Transporter Function/Structure Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081206. [PMID: 36013385 PMCID: PMC9410066 DOI: 10.3390/life12081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.
Collapse
|
4
|
Khaddaj R, Mari M, Cottier S, Reggiori F, Schneiter R. The surface of lipid droplets constitutes a barrier for endoplasmic reticulum-resident integral membrane proteins. J Cell Sci 2021; 135:268334. [PMID: 34028531 DOI: 10.1242/jcs.256206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins.
Collapse
Affiliation(s)
- Rasha Khaddaj
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Stéphanie Cottier
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Pejenaute-Ochoa MD, Santana-Molina C, Devos DP, Ibeas JI, Fernández-Álvarez A. Structural, Evolutionary, and Functional Analysis of the Protein O-Mannosyltransferase Family in Pathogenic Fungi. J Fungi (Basel) 2021; 7:jof7050328. [PMID: 33922798 PMCID: PMC8147084 DOI: 10.3390/jof7050328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Protein O-mannosyltransferases (Pmts) comprise a group of proteins that add mannoses to substrate proteins at the endoplasmic reticulum. This post-translational modification is important for the faithful transfer of nascent glycoproteins throughout the secretory pathway. Most fungi genomes encode three O-mannosyltransferases, usually named Pmt1, Pmt2, and Pmt4. In pathogenic fungi, Pmts, especially Pmt4, are key factors for virulence. Although the importance of Pmts for fungal pathogenesis is well established in a wide range of pathogens, questions remain regarding certain features of Pmts. For example, why does the single deletion of each pmt gene have an asymmetrical impact on host colonization? Here, we analyse the origin of Pmts in fungi and review the most important phenotypes associated with Pmt mutants in pathogenic fungi. Hence, we highlight the enormous relevance of these glycotransferases for fungal pathogenic development.
Collapse
|
6
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
Pawlik G, Renne MF, Kol MA, de Kroon AIPM. The topology of the ER-resident phospholipid methyltransferase Opi3 of Saccharomyces cerevisiae is consistent with in trans catalysis. J Biol Chem 2020; 295:2473-2482. [PMID: 31932304 PMCID: PMC7039565 DOI: 10.1074/jbc.ra119.011102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Phospholipid N-methyltransferases (PLMTs) synthesize phosphatidylcholine by methylating phosphatidylethanolamine using S-adenosylmethionine as a methyl donor. Eukaryotic PLMTs are integral membrane enzymes located in the endoplasmic reticulum (ER). Recently Opi3, a PLMT of the yeast Saccharomyces cerevisiae was proposed to perform in trans catalysis, i.e. while localized in the ER, Opi3 would methylate lipid substrates located in the plasma membrane at membrane contact sites. Here, we tested whether the Opi3 active site is located at the cytosolic side of the ER membrane, which is a prerequisite for in trans catalysis. The membrane topology of Opi3 (and its human counterpart, phosphatidylethanolamine N-methyltransferase, expressed in yeast) was addressed by topology prediction algorithms and by the substituted cysteine accessibility method. The results of these analyses indicated that Opi3 (as well as phosphatidylethanolamine N-methyltransferase) has an N-out C-in topology and contains four transmembrane domains, with the fourth forming a re-entrant loop. On the basis of the sequence conservation between the C-terminal half of Opi3 and isoprenyl cysteine carboxyl methyltransferases with a solved crystal structure, we identified amino acids critical for Opi3 activity by site-directed mutagenesis. Modeling of the structure of the C-terminal part of Opi3 was consistent with the topology obtained by the substituted cysteine accessibility method and revealed that the active site faces the cytosol. In conclusion, the location of the Opi3 active site identified here is consistent with the proposed mechanism of in trans catalysis, as well as with conventional catalysis in cis.
Collapse
Affiliation(s)
- Grzegorz Pawlik
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Mike F Renne
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Matthijs A Kol
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Anton I P M de Kroon
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
8
|
Albuquerque-Wendt A, Hütte HJ, Buettner FFR, Routier FH, Bakker H. Membrane Topological Model of Glycosyltransferases of the GT-C Superfamily. Int J Mol Sci 2019; 20:ijms20194842. [PMID: 31569500 PMCID: PMC6801728 DOI: 10.3390/ijms20194842] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Glycosyltransferases that use polyisoprenol-linked donor substrates are categorized in the GT-C superfamily. In eukaryotes, they act in the endoplasmic reticulum (ER) lumen and are involved in N-glycosylation, glypiation, O-mannosylation, and C-mannosylation of proteins. We generated a membrane topology model of C-mannosyltransferases (DPY19 family) that concurred perfectly with the 13 transmembrane domains (TMDs) observed in oligosaccharyltransferases (STT3 family) structures. A multiple alignment of family members from diverse organisms highlighted the presence of only a few conserved amino acids between DPY19s and STT3s. Most of these residues were shown to be essential for DPY19 function and are positioned in luminal loops that showed high conservation within the DPY19 family. Multiple alignments of other eukaryotic GT-C families underlined the presence of similar conserved motifs in luminal loops, in all enzymes of the superfamily. Most GT-C enzymes are proposed to have an uneven number of TDMs with 11 (POMT, TMTC, ALG9, ALG12, PIGB, PIGV, and PIGZ) or 13 (DPY19, STT3, and ALG10) membrane-spanning helices. In contrast, PIGM, ALG3, ALG6, and ALG8 have 12 or 14 TMDs and display a C-terminal dilysine ER-retrieval motif oriented towards the cytoplasm. We propose that all members of the GT-C superfamily are evolutionary related enzymes with preserved membrane topology.
Collapse
Affiliation(s)
| | - Hermann J Hütte
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany.
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany.
| | - Françoise H Routier
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany.
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
9
|
Muszewska A, Piłsyk S, Perlińska-Lenart U, Kruszewska JS. Diversity of Cell Wall Related Proteins in Human Pathogenic Fungi. J Fungi (Basel) 2017; 4:E6. [PMID: 29371499 PMCID: PMC5872309 DOI: 10.3390/jof4010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
The cell wall is one of the major keys to fungal identity. Fungi use their cell wall to sense the environment, and localize nutrients and competing microorganism. Pathogenic species additionally modify their cell walls to hide from a host's immune system. With the growing number of fungal infections and alarming shortage of available drugs, we are in need of new approaches to fight pathogens. The cell wall seems to be a natural target, since animal host cells are devoid of it. The current knowledge about fungal cell wall components is often limited, and there is huge diversity both in structure and composition between species. In order to compare the distribution of diverse proteins involved in cell wall biosynthesis and maintenance, we performed sequence homology searches against 24 fungal proteomes from distinct taxonomic groups, all reported as human pathogens. This approach led to identification of 4014 cell wall proteins (CWPs), and enabled us to speculate about cell wall composition in recently sequenced pathogenic fungi with limited experimental information. We found large expansions of several CWP families, in particular taxa, and a number of new CWPs possibly involved in evading host immune recognition. Here, we present a comprehensive evolutionary history of fungal CWP families in the context of the fungal tree of life.
Collapse
Affiliation(s)
- Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| | | | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-792 Warsaw, Poland.
| |
Collapse
|
10
|
Zatorska E, Gal L, Schmitt J, Bausewein D, Schuldiner M, Strahl S. Cellular Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast. Int J Mol Sci 2017; 18:ijms18061226. [PMID: 28598353 PMCID: PMC5486049 DOI: 10.3390/ijms18061226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
O-Mannosylation is a type of protein glycosylation initiated in the endoplasmic reticulum (ER) by the protein O-mannosyltransferase (PMT) family. Despite the vital role of O-mannosylation, its molecular functions and regulation are not fully characterized. To further explore the cellular impact of protein O-mannosylation, we performed a genome-wide screen to identify Saccharomyces cerevisiae mutants with increased sensitivity towards the PMT-specific inhibitor compound R3A-5a. We identified the cell wall and the ER as the cell compartments affected most upon PMT inhibition. Especially mutants with defects in N-glycosylation, biosynthesis of glycosylphosphatidylinositol-anchored proteins and cell wall β-1,6-glucan showed impaired growth when O-mannosylation became limiting. Signaling pathways that counteract cell wall defects and unbalanced ER homeostasis, namely the cell wall integrity pathway and the unfolded protein response, were highly crucial for the cell growth. Moreover, among the most affected mutants, we identified Ost3, one of two homologous subunits of the oligosaccharyltransferase complexes involved in N-glycosylation, suggesting a functional link between the two pathways. Indeed, we identified Pmt2 as a substrate for Ost3 suggesting that the reduced function of Pmt2 in the absence of N-glycosylation promoted sensitivity to the drug. Interestingly, even though S. cerevisiae Pmt1 and Pmt2 proteins are highly similar on the sequence, as well as the structural level and act as a complex, we identified only Pmt2, but not Pmt1, as an Ost3-specific substrate protein.
Collapse
Affiliation(s)
- Ewa Zatorska
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Jaro Schmitt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Daniela Bausewein
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
He Z, Luo L, Keyhani NO, Yu X, Ying S, Zhang Y. The C-terminal MIR-containing region in the Pmt1 O-mannosyltransferase restrains sporulation and is dispensable for virulence in Beauveria bassiana. Appl Microbiol Biotechnol 2016; 101:1143-1161. [DOI: 10.1007/s00253-016-7894-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/13/2016] [Accepted: 09/25/2016] [Indexed: 12/15/2022]
|
12
|
Bausewein D, Engel J, Jank T, Schoedl M, Strahl S. Functional Similarities between the Protein O-Mannosyltransferases Pmt4 from Bakers' Yeast and Human POMT1. J Biol Chem 2016; 291:18006-15. [PMID: 27358400 PMCID: PMC5016187 DOI: 10.1074/jbc.m116.739128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Indexed: 11/21/2022] Open
Abstract
Protein O-mannosylation is an essential post-translational modification. It is initiated in the endoplasmic reticulum by a family of protein O-mannosyltransferases that are conserved from yeast (PMTs) to human (POMTs). The degree of functional conservation between yeast and human protein O-mannosyltransferases is uncharacterized. In bakers' yeast, the main in vivo activities are due to heteromeric Pmt1-Pmt2 and homomeric Pmt4 complexes. Here we describe an enzymatic assay that allowed us to monitor Pmt4 activity in vitro. We demonstrate that detergent requirements and acceptor substrates of yeast Pmt4 are different from Pmt1-Pmt2, but resemble that of human POMTs. Furthermore, we mimicked two POMT1 amino acid exchanges (G76R and V428D) that result in severe congenital muscular dystrophies in humans, in yeast Pmt4 (I112R and I435D). In vivo and in vitro analyses showed that general features such as protein stability of the Pmt4 variants were not significantly affected, however, the mutants proved largely enzymatically inactive. Our results demonstrate functional and biochemical similarities between POMT1 and its orthologue from bakers' yeast Pmt4.
Collapse
Affiliation(s)
- Daniela Bausewein
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Jakob Engel
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Thomas Jank
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Maria Schoedl
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Sabine Strahl
- From the Centre for Organismal Studies, Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Guo M, Tan L, Nie X, Zhu X, Pan Y, Gao Z. The Pmt2p-Mediated Protein O-Mannosylation Is Required for Morphogenesis, Adhesive Properties, Cell Wall Integrity and Full Virulence of Magnaporthe oryzae. Front Microbiol 2016; 7:630. [PMID: 27199956 PMCID: PMC4852298 DOI: 10.3389/fmicb.2016.00630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
Protein O-mannosylation is a type of O-glycosylation that is characterized by the addition of mannose residues to target proteins, and is initially catalyzed by evolutionarily conserved protein O-mannosyltransferases (PMTs). In this study, three members of PMT were identified in Magnaporthe oryzae, and the pathogenic roles of MoPmt2, a member of PMT2 subfamily, were analyzed. We found that MoPmt2 is a homolog of Saccharomyces cerevisiae Pmt2 and could complement yeast Pmt2 function in resistance to CFW. Quantitative RT-PCR revealed that MoPmt2 is highly expressed during conidiation, and targeted disruption of MoPmt2 resulted in defects in conidiation and conidia morphology. The MoPmt2 mutants also showed a distinct reduction in fungal growth, which was associated with severe alterations in hyphal polarity. In addition, we found that the MoPmt2 mutants severely reduced virulence on both rice plants and barley leaves. The subsequent examination revealed that the fungal adhesion, conidial germination, CWI and invasive hyphae growth in host cells are responsible for defects on appressorium mediated penetration, and thus attenuated the pathogenicity of MoPmt2 mutants. Taken together, our results suggest that protein O-mannosyltransferase MoPmt2 plays essential roles in fungal growth and development, and is required for the full pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Min Guo
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Leyong Tan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Xiang Nie
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Xiaolei Zhu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Yuemin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| | - Zhimou Gao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University Hefei, China
| |
Collapse
|
14
|
Xu C, Ng DT. O-mannosylation: The other glycan player of ER quality control. Semin Cell Dev Biol 2015; 41:129-34. [DOI: 10.1016/j.semcdb.2015.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 01/07/2023]
|
15
|
González M, Brito N, González C. Identification of glycoproteins secreted by wild-type Botrytis cinerea and by protein O-mannosyltransferase mutants. BMC Microbiol 2014; 14:254. [PMID: 25305780 PMCID: PMC4197228 DOI: 10.1186/s12866-014-0254-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Botrytis cinerea secretes a high number of proteins that are predicted to have numerous O-glycosylation sites, frequently grouped in highly O-glycosylated regions, and analysis of mutants affected in O-glycosylation has shown, in B. cinerea and in other phytopathogenic fungi, that this process is important for fungal biology and virulence. Results We report here the purification of glycoproteins from the culture medium, for a wild-type strain of B. cinerea and for three mutants affected in the first step of O-glycosylation, and the identification of components in the purified protein samples. Overall, 158 proteins were identified belonging to a wide diversity of protein families, which possess Ser/Thr-rich regions (presumably highly O-glycosylated) twice as frequently as the whole secretome. Surprisingly, proteins predicted to be highly O-glycosylated tend to be more abundant in the secretomes of the mutants affected in O-glycosylation than in the wild type, possibly because a correct glycosylation of these proteins helps keep them in the cell wall or extracellular matrix. Overexpression of three proteins predicted to be O-glycosylated in various degrees allowed to confirm the presence of mannose α1-2 and/or α1-3 bonds, but no mannose α1-6 bonds, and resulted in an enhanced activity of the culture medium to elicit plant defenses. Conclusions Glycosylation of secretory proteins is very prevalent in B. cinerea and affects members of diverse protein families. O-glycosylated proteins play a role in the elicitation of plant defenses. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0254-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario González
- U.D. Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain.
| | - Nélida Brito
- U.D. Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain.
| | - Celedonio González
- U.D. Bioquímica y Biología Molecular, Universidad de La Laguna, 38206, La Laguna (Tenerife), Spain.
| |
Collapse
|
16
|
Kriangkripipat T, Momany M. Aspergillus nidulans Pmts form heterodimers in all pairwise combinations. FEBS Open Bio 2014; 4:335-41. [PMID: 24936400 PMCID: PMC4055783 DOI: 10.1016/j.fob.2014.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic protein O-mannosyltransferases (Pmts) are divided into three subfamilies (Pmt1, Pmt2, and Pmt4) and activity of Pmts in yeasts and animals requires assembly into complexes. In Saccharomyces cerevisiae, Pmt1 and Pmt2 form a heteromeric complex and Pmt 4 forms a homomeric complex. The filamentous fungus Aspergillus nidulans has three Pmts: PmtA (subfamily 2), PmtB (subfamily 1), and PmtC (subfamily 4). In this study we show that A. nidulans Pmts form heteromeric complexes in all possible pairwise combinations and that PmtC forms homomeric complexes. We also show that MsbA, an ortholog of a Pmt4-modified protein, is not modified by PmtC.
Collapse
Affiliation(s)
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Loibl M, Wunderle L, Hutzler J, Schulz BL, Aebi M, Strahl S. Protein O-mannosyltransferases associate with the translocon to modify translocating polypeptide chains. J Biol Chem 2014; 289:8599-611. [PMID: 24519942 DOI: 10.1074/jbc.m113.543116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Mannosylation and N-glycosylation are essential protein modifications that are initiated in the endoplasmic reticulum (ER). Protein translocation across the ER membrane and N-glycosylation are highly coordinated processes that take place at the translocon-oligosaccharyltransferase (OST) complex. In analogy, it was assumed that protein O-mannosyltransferases (PMTs) also act at the translocon, however, in recent years it turned out that prolonged ER residence allows O-mannosylation of un-/misfolded proteins or slow folding intermediates by Pmt1-Pmt2 complexes. Here, we reinvestigate protein O-mannosylation in the context of protein translocation. We demonstrate the association of Pmt1-Pmt2 with the OST, the trimeric Sec61, and the tetrameric Sec63 complex in vivo by co-immunoprecipitation. The coordinated interplay between PMTs and OST in vivo is further shown by a comprehensive mass spectrometry-based analysis of N-glycosylation site occupancy in pmtΔ mutants. In addition, we established a microsomal translation/translocation/O-mannosylation system. Using the serine/threonine-rich cell wall protein Ccw5 as a model, we show that PMTs efficiently mannosylate proteins during their translocation into microsomes. This in vitro system will help to unravel mechanistic differences between co- and post-translocational O-mannosylation.
Collapse
Affiliation(s)
- Martin Loibl
- From the Centre for Organismal Studies (COS), Cell Chemistry, Heidelberg University, 69120 Heidelberg, Germany and
| | | | | | | | | | | |
Collapse
|
18
|
Functional and molecular characterization of novel Hansenula polymorpha genes, HpPMT5 and HpPMT6, encoding protein O-mannosyltransferases. Fungal Genet Biol 2013; 58-59:10-24. [DOI: 10.1016/j.fgb.2013.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/20/2013] [Accepted: 08/01/2013] [Indexed: 02/02/2023]
|
19
|
González M, Brito N, Frías M, González C. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence. PLoS One 2013; 8:e65924. [PMID: 23762450 PMCID: PMC3675079 DOI: 10.1371/journal.pone.0065924] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/30/2013] [Indexed: 12/22/2022] Open
Abstract
Protein O-glycosylation is crucial in determining the structure and function of numerous secreted and membrane-bound proteins. In fungi, this process begins with the addition of a mannose residue by protein O-mannosyltransferases (PMTs) in the lumen side of the ER membrane. We have generated mutants of the three Botrytis cinerea pmt genes to study their role in the virulence of this wide-range plant pathogen. B. cinerea PMTs, especially PMT2, are critical for the stability of the cell wall and are necessary for sporulation and for the generation of the extracellular matrix. PMTs are also individually required for full virulence in a variety of hosts, with a special role in the penetration of intact plant leaves. The most significant case is that of grapevine leaves, whose penetration requires the three functional PMTs. Furthermore, PMT2 also contributes significantly to fungal adherence on grapevine and tobacco leaves. Analysis of extracellular and membrane proteins showed significant changes in the pattern of protein secretion and glycosylation by the pmt mutants, and allowed the identification of new protein substrates putatively glycosylated by specific PMTs. Since plants do no possess these enzymes, PMTs constitute a promising target in the development of novel control strategies against B. cinerea.
Collapse
Affiliation(s)
- Mario González
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, La Laguna (Tenerife), Spain
| | - Nélida Brito
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, La Laguna (Tenerife), Spain
| | - Marcos Frías
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, La Laguna (Tenerife), Spain
| | - Celedonio González
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, La Laguna (Tenerife), Spain
| |
Collapse
|
20
|
Argyros R, Nelson S, Kull A, Chen MT, Stadheim TA, Jiang B. A phenylalanine to serine substitution within an O-protein mannosyltransferase led to strong resistance to PMT-inhibitors in Pichia pastoris. PLoS One 2013; 8:e62229. [PMID: 23667461 PMCID: PMC3648545 DOI: 10.1371/journal.pone.0062229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022] Open
Abstract
Protein O-mannosyltransferases (PMTs) catalyze the initial reaction of protein O-mannosylation by transferring the first mannose unit onto serine and threonine residues of a nascent polypeptide being synthesized in the endoplasmic reticulum (ER). The PMTs are well conserved in eukaryotic organisms, and in vivo defects of these enzymes result in cell death in yeast and congenital diseases in humans. A group of rhodanine-3-acetic acid derivatives (PMTi) specifically inhibits PMT activity both in vitro and in vivo. As such, these chemical compounds have been effectively used to minimize the extent of O-mannosylation on heterologously produced proteins from different yeast expression hosts. However, very little is known about how these PMT-inhibitors interact with the PMT enzyme, or what structural features of the PMTs are required for inhibitor-protein interactions. To better understand the inhibitor-enzyme interactions, and to gain potential insights for developing more effective PMT-inhibitors, we isolated PMTi-resistant mutants in Pichia pastoris. In this study, we report the identification and characterization of a point mutation within the PpPMT2 gene. We demonstrate that this F664S point mutation resulted in a near complete loss of PMTi sensitivity, both in terms of growth-inhibition and reduction in O-mannosylglycan site occupancy. Our results provide genetic evidence demonstrating that the F664 residue plays a critical role in mediating the inhibitory effects of these PMTi compounds. Our data also indicate that the main target of these PMT-inhibitors in P. pastoris is Pmt2p, and that the F664 residue most likely interacts directly with the PMTi-compounds.
Collapse
Affiliation(s)
- Rebecca Argyros
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Stephanie Nelson
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Angela Kull
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Ming-Tang Chen
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Terrance A. Stadheim
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
| | - Bo Jiang
- GlycoFi Inc., a wholly-owned subsidiary of Merck & Co. Inc., Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
21
|
C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Mol Cell 2013; 50:295-302. [PMID: 23562325 DOI: 10.1016/j.molcel.2013.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/22/2013] [Accepted: 03/01/2013] [Indexed: 11/20/2022]
Abstract
Among the different types of protein glycosylation, C-mannosylation of tryptophan residues stands out because of the unique linkage formed between sugar and protein. Instead of the typical O- or N-glycosidic linkage, a C-C bond is used for attachment of a single mannose. C-mannose is characteristically found in thrombospondin type 1 repeats and in the WSXWS motif of type I cytokine receptors. The genetic base of the enzymatic activity catalyzing C-mannosylation was not known. Here we demonstrate that Caenorhabditis elegans DPY-19 is a C-mannosyltransferase. DPY-19 exhibits topological and sequential homology to the N-glycan oligosaccharyltransferase, highlighting an evolutionary link between N- and C-glycosylation. We show that the C. elegans surface receptors MIG-21 and UNC-5 are acceptor substrates of DPY-19 and that C-mannosylation is essential for the secretion of soluble MIG-21. Thereby, our data provide an explanation for the previously described identical Q neuroblast migration phenotypes of dpy-19 and mig-21 mutants.
Collapse
|
22
|
Loibl M, Strahl S. Protein O-mannosylation: what we have learned from baker's yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2438-46. [PMID: 23434682 DOI: 10.1016/j.bbamcr.2013.02.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Protein O-mannosylation is a vital type of glycosylation that is conserved among fungi, animals, and humans. It is initiated in the endoplasmic reticulum (ER) where the synthesis of the mannosyl donor substrate and the mannosyltransfer to proteins take place. O-mannosylation defects interfere with cell wall integrity and ER homeostasis in yeast, and define a pathomechanism of severe neuromuscular diseases in humans. SCOPE OF REVIEW On the molecular level, the O-mannosylation pathway and the function of O-mannosyl glycans have been characterized best in the eukaryotic model yeast Saccharomyces cerevisiae. In this review we summarize general features of protein O-mannosylation, including biosynthesis of the mannosyl donor, characteristics of acceptor substrates, and the protein O-mannosyltransferase machinery in the yeast ER. Further, we discuss the role of O-mannosyl glycans and address the question why protein O-mannosylation is essential for viability of yeast cells. GENERAL SIGNIFICANCE Understanding of the molecular mechanisms of protein O-mannosylation in yeast could lead to the development of novel antifungal drugs. In addition, transfer of the knowledge from yeast to mammals could help to develop diagnostic and therapeutic approaches in the frame of neuromuscular diseases. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
23
|
Loibl M, Strahl S. Photoaffinity labeling of protein O-mannosyltransferases of the PMT1/PMT2 subfamily. Methods Mol Biol 2013; 1022:107-17. [PMID: 23765657 DOI: 10.1007/978-1-62703-465-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protein O-mannosylation is initiated at the endoplasmic reticulum (ER) by dolichyl phosphate-mannose: protein O-mannosyltransferases (PMTs). PMTs are members of the glycosyltransferase (GT) C superfamily. They are large polytopic integral membrane proteins located in the ER membrane. PMTs utilize dolichyl phosphate--activated mannose as sugar donor. Glycosyltransfer of mannose to serine and threonine residues of nascent polypeptides leads to an inversion of the stereochemistry of the glycosidic bond. Here, we describe photoaffinity labeling of yeast Pmt1p using a photo-reactive probe that is based on the artificial mannosyl acceptor peptide YATAV. Due to the high homology of PMTs, this method can also be applied to study PMT1 and PMT2 subfamily members from fungi other than baker's yeast.
Collapse
Affiliation(s)
- Martin Loibl
- Cell Chemistry, Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
24
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
25
|
AglS, a novel component of the Haloferax volcanii N-glycosylation pathway, is a dolichol phosphate-mannose mannosyltransferase. J Bacteriol 2012; 194:6909-16. [PMID: 23086206 DOI: 10.1128/jb.01716-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Haloferax volcanii, a series of Agl proteins mediates protein N-glycosylation. The genes encoding all but one of the Agl proteins are sequestered into a single gene island. The same region of the genome includes sequences also suspected but not yet verified as serving N-glycosylation roles, such as HVO_1526. In the following, HVO_1526, renamed AglS, is shown to be necessary for the addition of the final mannose subunit of the pentasaccharide N-linked to the surface (S)-layer glycoprotein, a convenient reporter of N-glycosylation in Hfx. volcanii. Relying on bioinformatics, topological analysis, gene deletion, mass spectrometry, and biochemical assays, AglS was shown to act as a dolichol phosphate-mannose mannosyltransferase, mediating the transfer of mannose from dolichol phosphate to the tetrasaccharide corresponding to the first four subunits of the pentasaccharide N-linked to the S-layer glycoprotein.
Collapse
|
26
|
Pagac M, Vazquez HM, Bochud A, Roubaty C, Knöpfli C, Vionnet C, Conzelmann A. Topology of the microsomal glycerol-3-phosphate acyltransferase Gpt2p/Gat1p ofSaccharomyces cerevisiae. Mol Microbiol 2012; 86:1156-66. [DOI: 10.1111/mmi.12047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Martin Pagac
- Department of Biology; University of Fribourg; CH-1700; Fribourg; Switzerland
| | - Hector M. Vazquez
- Department of Biology; University of Fribourg; CH-1700; Fribourg; Switzerland
| | - Arlette Bochud
- Department of Biology; University of Fribourg; CH-1700; Fribourg; Switzerland
| | - Carole Roubaty
- Department of Biology; University of Fribourg; CH-1700; Fribourg; Switzerland
| | - Cécile Knöpfli
- Department of Biology; University of Fribourg; CH-1700; Fribourg; Switzerland
| | - Christine Vionnet
- Department of Biology; University of Fribourg; CH-1700; Fribourg; Switzerland
| | - Andreas Conzelmann
- Department of Biology; University of Fribourg; CH-1700; Fribourg; Switzerland
| |
Collapse
|
27
|
Topological and mutational analysis of Saccharomyces cerevisiae Fks1. EUKARYOTIC CELL 2012; 11:952-60. [PMID: 22581527 DOI: 10.1128/ec.00082-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fks1, with orthologs in nearly all fungi as well as plants and many protists, plays a central role in fungal cell wall formation as the putative catalytic component of β-1,3-glucan synthase. It is also the target for an important new antifungal group, the echinocandins, as evidenced by the localization of resistance-conferring mutations to Fks1 hot spots 1, 2, and 3 (residues 635 to 649, 1354 to 1361, and 690 to 700, respectively). Since Fks1 is an integral membrane protein and echinocandins are cyclic peptides with lipid tails, Fks1 topology is key to understanding its function and interaction with echinocandins. We used hemagglutinin (HA)-Suc2-His4C fusions to C-terminally truncated Saccharomyces cerevisiae Fks1 to experimentally define its topology and site-directed mutagenesis to test function of selected residues. Of the 15 to 18 transmembrane helices predicted in silico for Fks1 from evolutionarily diverse fungi, 13 were experimentally confirmed. The N terminus (residues 1 to 445) is cytosolic and the C terminus (residues 1823 to 1876) external; both are essential to Fks1 function. The cytosolic central domain (residues 715 to 1294) includes newly recognized homology to glycosyltransferases, and residues potentially involved in substrate UDP-glucose binding and catalysis are essential. All three hot spots are external, with hot spot 1 adjacent to and hot spot 3 largely embedded within the outer leaflet of the membrane. This topology suggests a model in which echinocandins interact through their lipid tails with hot spot 3 and through their cyclic peptides with hot spots 1 and 2.
Collapse
|
28
|
Lommel M, Schott A, Jank T, Hofmann V, Strahl S. A conserved acidic motif is crucial for enzymatic activity of protein O-mannosyltransferases. J Biol Chem 2011; 286:39768-75. [PMID: 21956107 DOI: 10.1074/jbc.m111.281196] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein O-mannosylation is an essential modification in fungi and mammals. It is initiated at the endoplasmic reticulum by a conserved family of dolichyl phosphate mannose-dependent protein O-mannosyltransferases (PMTs). PMTs are integral membrane proteins with two hydrophilic loops (loops 1 and 5) facing the endoplasmic reticulum lumen. Formation of dimeric PMT complexes is crucial for mannosyltransferase activity, but the direct cause is not known to date. In bakers' yeast, O-mannosylation is catalyzed largely by heterodimeric Pmt1p-Pmt2p and homodimeric Pmt4p complexes. To further characterize Pmt1p-Pmt2p complexes, we developed a photoaffinity probe based on the artificial mannosyl acceptor substrate Tyr-Ala-Thr-Ala-Val. The photoreactive probe was preferentially cross-linked to Pmt1p, and deletion of the loop 1 (but not loop 5) region abolished this interaction. Analysis of Pmt1p loop 1 mutants revealed that especially Glu-78 is crucial for binding of the photoreactive probe. Glu-78 belongs to an Asp-Glu motif that is highly conserved among PMTs. We further demonstrate that single amino acid substitutions in this motif completely abolish activity of Pmt4p complexes. In contrast, both acidic residues need to be exchanged to eliminate activity of Pmt1p-Pmt2p complexes. On the basis of our data, we propose that the loop 1 regions of dimeric complexes form part of the catalytic site.
Collapse
Affiliation(s)
- Mark Lommel
- Centre for Organismal Studies Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Pagac M, de la Mora HV, Duperrex C, Roubaty C, Vionnet C, Conzelmann A. Topology of 1-acyl-sn-glycerol-3-phosphate acyltransferases SLC1 and ALE1 and related membrane-bound O-acyltransferases (MBOATs) of Saccharomyces cerevisiae. J Biol Chem 2011; 286:36438-47. [PMID: 21849510 DOI: 10.1074/jbc.m111.256511] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast, phosphatidic acid, the biosynthetic precursor for all glycerophospholipids and triacylglycerols, is made de novo by the 1-acyl-sn-glycerol-3-phosphate acyltransferases Ale1p and Slc1p. Ale1p belongs to the membrane-bound O-acyltransferase (MBOAT) family, which contains many enzymes acylating lipids but also others that acylate secretory proteins residing in the lumen of the ER. A histidine present in a very short loop between two predicted transmembrane domains is the only residue that is conserved throughout the MBOAT gene family. The yeast MBOAT proteins of known function comprise Ale1p, the ergosterol acyltransferases Are1p and Are2p, and Gup1p, the last of which acylates lysophosphatidylinositol moieties of GPI anchors on ER lumenal GPI proteins. C-terminal topology reporters added to truncated versions of Gup1p yield a topology predicting a lumenal location of its uniquely conserved histidine 447 residue. The same approach shows that Ale1p and Are2p also have the uniquely conserved histidine residing in the ER lumen. Because these data raised the possibility that phosphatidic acid could be made in the lumen of the ER, we further investigated the topology of the second yeast 1-acyl-sn-glycerol-3-phosphate acyltransferase, Slc1p. The location of C-terminal topology reporters, microsomal assays probing the protease sensitivity of inserted tags, and the accessibility of natural or artificially inserted cysteines to membrane-impermeant alkylating agents all indicate that the most conserved motif containing the presumed active site histidine of Slc1p is oriented toward the ER lumen, whereas other conserved motifs are cytosolic. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Martin Pagac
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Different roles of the two components of human protein O-mannosyltransferase, POMT1 and POMT2. Biochem Biophys Res Commun 2011; 411:721-5. [PMID: 21782786 DOI: 10.1016/j.bbrc.2011.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
Abstract
Protein O-mannosyltransferase 1 (POMT1) and its homolog, POMT2, are responsible for the catalysis of the first step in O-mannosyl glycan synthesis. Mutations in their genes are associated with a type of congenital muscular dystrophy called Walker-Warburg syndrome. Arg(64), Glu(78) and Arg(138) in the N-terminus region of ScPmt1p, a POMT homolog in Saccharomyces cerevisiae, are important for transferase activity. Arg(138) is also essential for complex formation with ScPmt2p. Here we examined the effects of replacing the corresponding residues in human POMT1 and POMT2 with Ala on complex formation and enzymatic activity. The human POMT1 mutants lost almost all transferase activity while the POMT2 mutants retained enzymatic activity. Neither mutant lost its ability to form complexes with the native counter component. These results indicate that ScPmtps and human POMTs have different mechanisms of complex formation. They also suggest that human POMT1 and POMT2 have discrete functions since the effect of amino acid substitutions on enzymatic activity are different.
Collapse
|
31
|
Villasmil ML, Nickels Jr JT. Determination of the membrane topology of Arv1 and the requirement of the ER luminal region for Arv1 function in Saccharomyces cerevisiae. FEMS Yeast Res 2011; 11:524-7. [DOI: 10.1111/j.1567-1364.2011.00737.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Goder V, Melero A. Protein O-mannosyltransferases participate in ER protein quality control. J Cell Sci 2011; 124:144-53. [DOI: 10.1242/jcs.072181] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotic cells, proteins enter the secretory pathway at the endoplasmic reticulum (ER) as linear polypeptides and fold after translocation across or insertion into the membrane. If correct folding fails, many proteins are O-mannosylated inside the ER by an O-mannosyltransferase, the Pmt1p–Pmt2p complex. The consequences of this modification are controversial and the cellular role of the Pmt1p–Pmt2p complex in this respect is unclear. Here, we have identified the binding partners of yeast Pmt1p and Pmt2p. These include ER chaperones involved in oxidative protein folding; the Hrd1p complex, which is involved in ER-associated protein degradation (ERAD); and the p24 protein complex involved in ER export. The results suggest that the Pmt1p–Pmt2p complex participates in these processes. We tested this assumption in a functional assay and found that whereas the Pmt1p–Pmt2p complex promotes fast ER export of the GPI-anchored protein Gas1p, it retains the misfolded version Gas1*p and targets it to the Hrd1p complex for subsequent degradation. Our results reveal previously unknown cellular roles of the Pmt1p–Pmt2p complex in connection with the ERAD machinery and show its participation in ER protein quality control.
Collapse
Affiliation(s)
- Veit Goder
- Department of Genetics, University of Seville, Ave Reina Mercedes 6, 41012 Seville, Spain
| | - Alejandro Melero
- Department of Genetics, University of Seville, Ave Reina Mercedes 6, 41012 Seville, Spain
| |
Collapse
|
33
|
|
34
|
C terminus of Nce102 determines the structure and function of microdomains in the Saccharomyces cerevisiae plasma membrane. EUKARYOTIC CELL 2010; 9:1184-92. [PMID: 20581291 DOI: 10.1128/ec.00006-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The plasma membrane of the yeast Saccharomyces cerevisiae contains stably distributed lateral domains of specific composition and structure, termed MCC (membrane compartment of arginine permease Can1). Accumulation of Can1 and other specific proton symporters within MCC is known to regulate the turnover of these transporters and is controlled by the presence of another MCC protein, Nce102. We show that in an NCE102 deletion strain the function of Nce102 in directing the specific permeases into MCC can be complemented by overexpression of the NCE102 close homolog FHN1 (the previously uncharacterized YGR131W) as well as by distant Schizosaccharomyces pombe homolog fhn1 (SPBC1685.13). We conclude that this mechanism of plasma membrane organization is conserved through the phylum Ascomycota. We used a hemagglutinin (HA)/Suc2/His4C reporter to determine the membrane topology of Nce102. In contrast to predictions, its N and C termini are oriented toward the cytosol. Deletion of the C terminus or even of its last 6 amino acids does not disturb protein trafficking, but it seriously affects the formation of MCC. We show that the C-terminal part of the Nce102 protein is necessary for localization of both Nce102 itself and Can1 to MCC and also for the formation of furrow-like membrane invaginations, the characteristic ultrastructural feature of MCC domains.
Collapse
|
35
|
Mouyna I, Kniemeyer O, Jank T, Loussert C, Mellado E, Aimanianda V, Beauvais A, Wartenberg D, Sarfati J, Bayry J, Prévost MC, Brakhage AA, Strahl S, Huerre M, Latgé JP. Members of protein O-mannosyltransferase family in Aspergillus fumigatus differentially affect growth, morphogenesis and viability. Mol Microbiol 2010; 76:1205-21. [PMID: 20398215 DOI: 10.1111/j.1365-2958.2010.07164.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
O-mannosylation is an essential protein modification in eukaryotes. It is initiated at the endoplasmic reticulum by O-mannosyltransferases (PMT) that are evolutionary conserved from yeast to humans. The PMT family is phylogenetically classified into PMT1, PMT2 and PMT4 subfamilies, which differ in protein substrate specificity and number of genes per subfamily. In this study, we characterized for the first time the whole PMT family of a pathogenic filamentous fungus, Aspergillus fumigatus. Genome analysis showed that only one member of each subfamily is present in A. fumigatus, PMT1, PMT2 and PMT4. Despite the fact that all PMTs are transmembrane proteins with conserved peptide motifs, the phenotype of each PMT deletion mutant was very different in A. fumigatus. If disruption of PMT1 did not reveal any phenotype, deletion of PMT2 was lethal. Disruption of PMT4 resulted in abnormal mycelial growth and highly reduced conidiation associated to significant proteomic changes. The double pmt1pmt4 mutant was lethal. The single pmt4 mutant exhibited an exquisite sensitivity to echinocandins that is associated to major changes in the expression of signal transduction cascade genes. These results indicate that the PMT family members play a major role in growth, morphogenesis and viability of A. fumigatus.
Collapse
Affiliation(s)
- Isabelle Mouyna
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zarschler K, Janesch B, Pabst M, Altmann F, Messner P, Schäffer C. Protein tyrosine O-glycosylation--a rather unexplored prokaryotic glycosylation system. Glycobiology 2010; 20:787-98. [PMID: 20200052 DOI: 10.1093/glycob/cwq035] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycosylation is a frequent and heterogeneous posttranslational protein modification occurring in all domains of life. While protein N-glycosylation at asparagine and O-glycosylation at serine, threonine or hydroxyproline residues have been studied in great detail, only few data are available on O-glycosidic attachment of glycans to the amino acid tyrosine. In this study, we describe the identification and characterization of a bacterial protein tyrosine O-glycosylation system. In the Gram-positive, mesophilic bacterium Paenibacillus alvei CCM 2051(T), a polysaccharide consisting of [-->3)-beta-d-Galp-(1[alpha-d-Glcp-(1-->6)] -->4)-beta-d-ManpNAc-(1-->] repeating units is O-glycosidically linked via an adaptor with the structure -[GroA-2-->OPO(2)-->4-beta-d-ManpNAc-(1-->4)] -->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1-->3)-beta-d-Galp-(1--> to specific tyrosine residues of the S-layer protein SpaA. A +AH4-24.3-kb S-layer glycosylation (slg) gene cluster encodes the information necessary for the biosynthesis of this glycan chain within 18 open reading frames (ORF). The corresponding translation products are involved in the biosynthesis of nucleotide-activated monosaccharides, assembly and export as well as in the transfer of the completed polysaccharide chain to the S-layer target protein. All ORFs of the cluster, except those encoding the nucleotide sugar biosynthesis enzymes and the ATP binding cassette (ABC) transporter integral transmembrane proteins, were disrupted by the insertion of the mobile group II intron Ll.LtrB, and S-layer glycoproteins produced in mutant backgrounds were analyzed by mass spectrometry. There is evidence that the glycan chain is synthesized in a process comparable to the ABC-transporter-dependent pathway of the lipopolysaccharide O-polysaccharide biosynthesis. Furthermore, with the protein WsfB, we have identified an O-oligosaccharyl:protein transferase required for the formation of the covalent beta-d-Gal-->Tyr linkage between the glycan chain and the S-layer protein.
Collapse
Affiliation(s)
- Kristof Zarschler
- Department of NanoBiotechnology, ViennaInstitute of BioTechnology, Universität für Bodenkultur Wien, A-1190 Vienna,Austria
| | | | | | | | | | | |
Collapse
|
37
|
Bauerová-Hlinková V, Hostinová E, Gasperík J, Beck K, Borko L, Lai FA, Zahradníková A, Sevcík J. Bioinformatic mapping and production of recombinant N-terminal domains of human cardiac ryanodine receptor 2. Protein Expr Purif 2010; 71:33-41. [PMID: 20045464 PMCID: PMC2845809 DOI: 10.1016/j.pep.2009.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/18/2009] [Accepted: 12/29/2009] [Indexed: 12/17/2022]
Abstract
We report the domain analysis of the N-terminal region (residues 1-759) of the human cardiac ryanodine receptor (RyR2) that encompasses one of the discrete RyR2 mutation clusters associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1) and arrhythmogenic right ventricular dysplasia (ARVD2). Our strategy utilizes a bioinformatics approach complemented by protein expression, solubility analysis and limited proteolytic digestion. Based on the bioinformatics analysis, we designed a series of specific RyR2 N-terminal fragments for cloning and overexpression in Escherichia coli. High yields of soluble proteins were achieved for fragments RyR2(1-606)xHis(6), RyR2(391-606)xHis(6), RyR2(409-606)xHis(6), Trx.RyR2(384-606)xHis(6), TrxxRyR2(391-606)xHis(6) and Trx.RyR2(409-606)xHis(6). The folding of RyR2(1-606)xHis(6) was analyzed by circular dichroism spectroscopy resulting in alpha-helix and beta-sheet content of approximately 23% and approximately 29%, respectively, at temperatures up to 35 degrees C, which is in agreement with sequence based secondary structure predictions. Tryptic digestion of the largest recombinant protein, RyR2(1-606)xHis(6), resulted in the appearance of two specific subfragments of approximately 40 and 25 kDa. The 25 kDa fragment exhibited greater stability. Hybridization with anti-His(6).Tag antibody indicated that RyR2(1-606)xHis(6) is cleaved from the N-terminus and amino acid sequencing of the proteolytic fragments revealed that digestion occurred after residues 259 and 384, respectively.
Collapse
Affiliation(s)
- Vladena Bauerová-Hlinková
- Department of Protein Structure and Function, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Oka T, Saito F, Shimma YI, Yoko-o T, Nomura Y, Matsuoka K, Jigami Y. Characterization of endoplasmic reticulum-localized UDP-D-galactose: hydroxyproline O-galactosyltransferase using synthetic peptide substrates in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:332-40. [PMID: 19923238 PMCID: PMC2799367 DOI: 10.1104/pp.109.146266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 11/10/2009] [Indexed: 05/19/2023]
Abstract
We characterized peptidyl hydroxyproline (Hyp) O-galactosyltransferase (HGT), which is the initial enzyme in the arabinogalactan biosynthetic pathway. An in vitro assay of HGT activity was established using chemically synthesized fluorescent peptides as acceptor substrates and extracts from Arabidopsis (Arabidopsis thaliana) T87 cells as a source of crude enzyme. The galactose residue transferred to the peptide could be detected by high-performance liquid chromatography and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry analyses. HGT required a divalent cation of manganese for maximal activity and consumed UDP-D-galactose as a sugar donor. HGT exhibited an optimal pH range of pH 7.0 to 8.0 and an optimal temperature of 35 degrees C. The favorable substrates for the activity seemed to be peptides containing two alternating imino acid residues including at least one acceptor Hyp residue, although a peptide with single Hyp residue without any other imino acids also functioned as a substrate. The results of sucrose density gradient centrifugation revealed that the cellular localization of HGT activity is identical to those of endoplasmic reticulum markers such as Sec61 and Bip, indicating that HGT is predominantly localized to the endoplasmic reticulum. To our knowledge, this is the first characterization of HGT, and the data provide evidence that arabinogalactan biosynthesis occurs in the protein transport pathway.
Collapse
|
39
|
Ludvigsen M, Østergaard M, Vorum H, Jacobsen C, Honoré B. Identification and characterization of endonuclein binding proteins: evidence of modulatory effects on signal transduction and chaperone activity. BMC BIOCHEMISTRY 2009; 10:34. [PMID: 20028516 PMCID: PMC2810291 DOI: 10.1186/1471-2091-10-34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/22/2009] [Indexed: 11/10/2022]
Abstract
Background We have previously identified endonuclein as a cell cycle regulated WD-repeat protein that is up-regulated in adenocarcinoma of the pancreas. Now, we aim to investigate its biomedical functions. Results Using the cDNA encoding human endonuclein, we have expressed and purified the recombinant protein from Escherichia coli using metal affinity chromatography. The recombinant protein was immobilized to a column and by affinity chromatography several interacting proteins were purified from several litres of placenta tissue extract. After chromatography the eluted proteins were further separated by two-dimensional gel electrophoresis and identified by tandem mass spectrometry. The interacting proteins were identified as; Tax interaction protein 1 (TIP-1), Aα fibrinogen transcription factor (P16/SSBP1), immunoglobulin heavy chain binding protein (BiP), human ER-associated DNAJ (HEDJ/DNAJB11), endonuclein interaction protein 8 (EIP-8), and pregnancy specific β-1 glycoproteins (PSGs). Surface plasmon resonance analysis and confocal fluorescence microscopy were used to further characterize the interactions. Conclusions Our results demonstrate that endonuclein interacts with several proteins indicating a broad function including signal transduction and chaperone activity.
Collapse
Affiliation(s)
- Maja Ludvigsen
- Department of Medical Biochemistry, Aarhus University, Ole Worms Allé 3, Building 1170, Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
40
|
Manya H, Akasaka-Manya K, Nakajima A, Kawakita M, Endo T. Role of N-glycans in maintaining the activity of protein O-mannosyltransferases POMT1 and POMT2. J Biochem 2009; 147:337-44. [PMID: 19880378 DOI: 10.1093/jb/mvp170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complex of protein O-mannosyltransferase 1 (POMT1) and POMT2 catalyzes the initial step of O-mannosyl glycan biosynthesis. The mutations in either POMT1 or POMT2 can lead to Walker-Warburg syndrome, a congenital muscular dystrophy with abnormal neuronal migration. Here, we used three algorithms for predicting transmembrane helices to construct the secondary structural models of human POMT1 and POMT2. In these models, POMT1 and POMT2 have seven- and nine-transmembrane helices and contain four and five potential N-glycosylation sites, respectively. To determine whether these sites are actually glycosylated, we prepared mutant proteins that were defective in each site by site-directed mutagenesis. Three of the POMT1 sites and all of the POMT2 sites were found to be N-glycosylated, suggesting that these sites face the luminal side of the endoplasmic reticulum. Mutation of any single site did not significantly affect POMT activity, but mutations of all N-glycosylation sites of either POMT1 or POMT2 caused a loss of POMT activity. The loss of activity appeared to be due to the decreased hydrophilicity. These results suggest that the N-glycosylation of POMT1 and POMT2 is required for maintaining the conformation as well as the activity of the POMT1-POMT2 complex.
Collapse
Affiliation(s)
- Hiroshi Manya
- Glycobiology Research Group, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare, 35-2 Sakaecho, Itabashi-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
41
|
Fernández-Álvarez A, Elías-Villalobos A, Ibeas JI. The O-mannosyltransferase PMT4 is essential for normal appressorium formation and penetration in Ustilago maydis. THE PLANT CELL 2009; 21:3397-412. [PMID: 19880800 PMCID: PMC2782298 DOI: 10.1105/tpc.109.065839] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 09/07/2009] [Accepted: 10/05/2009] [Indexed: 05/19/2023]
Abstract
In Saccharomyces cerevisiae, the PMT, KRE2/MNT1, and MNN1 mannosyltransferase protein families catalyze the steps of the O-mannosylation pathway, sequentially adding mannoses to target proteins. We have identified members of all three families and analyzed their roles in pathogenesis of the maize smut fungus Ustilago maydis. Furthermore, we have shown that PMT4, one of the three PMT family members in U. maydis, is essential for tumor formation in Zea mays. Significantly, PMT4 seems to be required only for pathogenesis and is dispensable for other aspects of the U. maydis life cycle. We subsequently show that the deletion of pmt4 results in a strong reduction in the frequency of appressorium formation, with the few appressoria that do form lacking the capacity to penetrate the plant cuticle. Our findings suggest that the O-mannosylation pathway plays a key role in the posttranslational modification of proteins involved in the pathogenic development of U. maydis. The fact that PMT homologs are not found in plants may open new avenues for the development of fungal control strategies. Moreover, the discovery of a highly specific requirement for a single O-mannosyltransferase should aid in the identification of the proteins directly involved in fungal plant penetration, thus leading to a better understanding of plant-fungi interactions.
Collapse
|
42
|
Willger SD, Ernst JF, Alspaugh JA, Lengeler KB. Characterization of the PMT gene family in Cryptococcus neoformans. PLoS One 2009; 4:e6321. [PMID: 19633715 PMCID: PMC2711527 DOI: 10.1371/journal.pone.0006321] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/23/2009] [Indexed: 12/15/2022] Open
Abstract
Background Protein-O-mannosyltransferases (Pmt's) catalyze the initial step of protein-O-glycosylation, the addition of mannose residues to serine or threonine residues of target proteins. Methodology/Principal Findings Based on protein similarities, this highly conserved protein family can be divided into three subfamilies: the Pmt1 sub-family, the Pmt2 sub-family and the Pmt4 sub-family. In contrast to Saccharomyces cerevisiae and Candida albicans, but similar to filamentous fungi, three putative PMT genes (PMT1, PMT2, and PMT4) were identified in the genome of the human fungal pathogen Cryptococcus neoformans. Similar to Schizosaccharomyces pombe and C. albicans, C. neoformans PMT2 is an essential gene. In contrast, the pmt1 and pmt4 single mutants are viable; however, the pmt1/pmt4 deletions are synthetically lethal. Mutation of PMT1 and PMT4 resulted in distinct defects in cell morphology and cell integrity. The pmt1 mutant was more susceptible to SDS medium than wild-type strains and the mutant cells were enlarged. The pmt4 mutant grew poorly on high salt medium and demonstrated abnormal septum formation and defects in cell separation. Interestingly, the pmt1 and pmt4 mutants demonstrated variety-specific differences in the levels of susceptibility to osmotic and cell wall stress. Delayed melanin production in the pmt4 mutant was the only alteration of classical virulence-associated phenotypes. However, the pmt1 and pmt4 mutants showed attenuated virulence in a murine inhalation model of cryptococcosis. Conclusion/Significance These findings suggest that C. neoformans protein-O-mannosyltransferases play a crucial role in maintaining cell morphology, and that reduced protein-O-glycosylation leads to alterations in stress resistance, cell wall composition, cell integrity, and survival within the host.
Collapse
Affiliation(s)
- Sven D Willger
- Institut für Mikrobiologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
43
|
Cotarelo RP, Fano O, Raducu M, Peña A, Tarilonte P, Mateos F, Simón R, Cabello A, Cruces J. A double homozygous mutation in the POMT1 gene involving exon skipping gives rise to Walker-Warburg syndrome in two Spanish Gypsy families. Clin Genet 2009; 76:108-12. [PMID: 19519795 DOI: 10.1111/j.1399-0004.2009.01188.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Abstract
Protein O-mannosylation is an essential modification in fungi and animals. Different from most other types of O-glycosylation, protein O-mannosylation is initiated in the endoplasmic reticulum by the transfer of mannose from dolichol monophosphate-activated mannose to serine and threonine residues of secretory proteins. In recent years, it has emerged that even bacteria are capable of O-mannosylation and that the biosynthetic pathway of O-mannosyl glycans is conserved between pro- and eukaryotes. In this review, we summarize the observations that have opened up the field and highlight characteristics of O-mannosylation in the different domains/kingdoms of life.
Collapse
Affiliation(s)
- Mark Lommel
- Department V Cell Chemistry, Heidelberg Institute for Plant Sciences, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
45
|
Kämpf M, Absmanner B, Schwarz M, Lehle L. Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional alpha1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J Biol Chem 2009; 284:11900-12. [PMID: 19282279 DOI: 10.1074/jbc.m806416200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
N-Linked glycosylation involves the ordered, stepwise synthesis of the unique lipid-linked oligosaccharide precursor Glc(3)Man(9) GlcNAc(2)-PP-Dol on the endoplasmic reticulum (ER), catalyzed by a series of glycosyltransferases. Here we characterize Alg2 as a bifunctional enzyme that is required for both the transfer of the alpha1,3- and the alpha1,6-mannose-linked residue from GDP-mannose to Man(1)GlcNAc(2)-PP-Dol forming the Man(3)GlcNAc(2)-PP-Dol intermediate on the cytosolic side of the ER. Alg2 has a calculated mass of 58 kDa and is predicted to contain four transmembrane-spanning helices, two at the N terminus and two at the C terminus. Contradictory to topology predictions, we prove that only the two N-terminal domains fulfill this criterion, whereas the C-terminal hydrophobic sequences contribute to ER localization in a nontransmembrane manner. Surprisingly, none of the four domains is essential for transferase activity because truncated Alg2 variants can exert their function as long as Alg2 is associated with the ER by either its N- or C-terminal hydrophobic regions. By site-directed mutagenesis we demonstrate that an EX(7)E motif, conserved in a variety of glycosyltransferases, is not important for Alg2 function in vivo and in vitro. Instead, we identify a conserved lysine residue, Lys(230), as being essential for activity, which could be involved in the binding of the phosphate of the glycosyl donor.
Collapse
Affiliation(s)
- Michael Kämpf
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
46
|
Lommel M, Willer T, Strahl S. POMT2, a key enzyme in Walker–Warburg syndrome: somatic sPOMT2, but not testis-specific tPOMT2, is crucial for mannosyltransferase activity in vivo. Glycobiology 2008; 18:615-25. [DOI: 10.1093/glycob/cwn042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Chiba Y, Jigami Y. Production of humanized glycoproteins in bacteria and yeasts. Curr Opin Chem Biol 2007; 11:670-6. [DOI: 10.1016/j.cbpa.2007.08.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/30/2007] [Indexed: 11/26/2022]
|
48
|
Zhou H, Hu H, Zhang L, Li R, Ouyang H, Ming J, Jin C. O-Mannosyltransferase 1 in Aspergillus fumigatus (AfPmt1p) is crucial for cell wall integrity and conidium morphology, especially at an elevated temperature. EUKARYOTIC CELL 2007; 6:2260-8. [PMID: 17905922 PMCID: PMC2168251 DOI: 10.1128/ec.00261-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein O-mannosyltransferases initiate O mannosylation of secretory proteins, which are of fundamental importance in eukaryotes. In this study, the PMT gene family of the human fungal pathogen Aspergillus fumigatus was identified and characterized. Unlike the case in Saccharomyces cerevisiae, where the PMT family is highly redundant, only one member of each PMT subfamily, namely, Afpmt1, Afpmt2, and Afpmt4, is present in A. fumigatus. Mutants with a deletion of Afpmt1 are viable. In vitro and in vivo activity assays confirmed that the protein encoded by Afpmt1 acts as an O-mannosyltransferase (AfPmt1p). Characterization of the DeltaAfpmt1 mutant showed that a lack of AfPmt1p results in sensitivity to elevated temperature and defects in growth and cell wall integrity, thereby affecting cell morphology, conidium formation, and germination. In a mouse model, Afpmt1 was not required for the virulence of A. fumigatus under the experimental conditions used.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Goto M. Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 2007; 71:1415-27. [PMID: 17587671 DOI: 10.1271/bbb.70080] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein glycosylation is essential for eukaryotic cells from yeasts to humans. When compared to N-glycosylation, O-glycosylation is variable in sugar components and the mode of linkages connecting the sugars. In fungi, secretory proteins are commonly mannosylated by protein O-mannosyltransferase (PMT) in the endoplasmic reticulum, and subsequently glycosylated by several glycosyltransferases in the Golgi apparatus to form glycoproteins with diverse O-glycan structures. Protein O-glycosylation has roles in modulating the function of secretory proteins by enhancing the stability and solubility of the proteins, by affording protection from protease degradation, and by acting as a sorting determinant in yeasts. In filamentous fungi, protein O-glycosylation contributes to proper maintenance of fungal morphology, hyphal development, and differentiation. This review describes recent studies of the structure and function of protein O-glycosylation in industrially and medically important fungi.
Collapse
Affiliation(s)
- Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Japan.
| |
Collapse
|
50
|
Newstead S, Kim H, von Heijne G, Iwata S, Drew D. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2007; 104:13936-41. [PMID: 17709746 PMCID: PMC1955786 DOI: 10.1073/pnas.0704546104] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic membrane proteins are often difficult to produce in large quantities, which is a significant obstacle for further structural and biochemical investigation. Based on the analysis of 43 eukaryotic membrane proteins, we present a cost-effective high-throughput approach for rapidly screening membrane proteins that can be overproduced to levels of >1 mg per liter in Saccharomyces cerevisiae. We find that 70% of the well expressed membrane proteins tested in this system are stable, targeted to the correct organelle, and monodisperse in either Fos-choline 12 (FC-12) or n-dodecyl-beta-D-maltoside. We illustrate the advantage of such an approach, with the purification of monodisperse human and yeast nucleotide-sugar transporters to unprecedented levels. We estimate that our approach should be able to provide milligram quantities for at least one-quarter of all membrane proteins from both yeast and higher eukaryotic organisms.
Collapse
Affiliation(s)
- Simon Newstead
- *Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, United Kingdom
| | - Hyun Kim
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - So Iwata
- *Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, United Kingdom
- ERATO Human Receptor Crystallography Project, Kawasaki, Kanagawa 210-0855, Japan; and
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- To whom correspondence may be addressed. E-mail: or
| | - David Drew
- *Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, United Kingdom
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|