1
|
Stampone E, Bencivenga D, Dassi L, Sarnelli S, Campagnolo L, Lacconi V, Della Ragione F, Borriello A. p57 Kip2 Phosphorylation Modulates Its Localization, Stability, and Interactions. Int J Mol Sci 2024; 25:11176. [PMID: 39456957 PMCID: PMC11508627 DOI: 10.3390/ijms252011176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
p57Kip2 is a member of the cyclin-dependent kinase (CDK) Interacting Protein/Kinase Inhibitory Protein (CIP/Kip) family that also includes p21Cip1/WAF1 and p27Kip1. Different from its siblings, few data are available about the p57Kip2 protein, especially in humans. Structurally, p57Kip2 is an intrinsically unstructured protein, a characteristic that confers functional flexibility with multiple transient interactions influencing the metabolism and roles of the protein. Being an IUP, its localization, stability, and binding to functional partners might be strongly modulated by post-translational modifications, especially phosphorylation. In this work, we investigated by two-dimensional analysis the phosphorylation pattern of p57Kip2 in different cellular models, revealing how the human protein appears to be extensively phosphorylated, compared to p21Cip1/WAF1 and p27Kip1. We further observed clear differences in the phosphoisoforms distributed in the cytosolic and nuclear compartments in asynchronous and synchronized cells. Particularly, the unmodified form is detectable only in the nucleus, while the more acidic forms are present in the cytoplasm. Most importantly, we found that the phosphorylation state of p57Kip2 influences the binding with some p57Kip2 partners, such as CDKs, LIMK1 and CRM1. Thus, it is necessary to completely identify the phosphorylated residues of the protein to fully unravel the roles of this CIP/Kip protein, which are still partially identified.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Luisa Dassi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Sara Sarnelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (V.L.)
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy (V.L.)
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (L.D.); (S.S.); (F.D.R.)
| |
Collapse
|
2
|
Romo A, Rodríguez TM, Yu G, Dewey RA. Chimeric TβRII-SE/Fc overexpression by a lentiviral vector exerts strong antitumoral activity on colorectal cancer-derived cell lines in vitro and on xenografts. Cancer Gene Ther 2024; 31:174-185. [PMID: 37993543 DOI: 10.1038/s41417-023-00694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
The TGF signaling pathway is a key regulator of cancer progression. In this work, we report for the first time the antitumor activity of TβRII-SE/Fc, a novel peptibody whose targeting domain is comprised of the soluble endogenous isoform of the human TGF-β type II receptor (TβRII-SE). Overexpression of TβRIISE/Fc reduces in vitro cell proliferation and migration while inducing cell cycle arrest and apoptosis in human colorectal cancer-derived cell lines. Moreover, TβRII-SE/Fc overexpression reduces tumorigenicity in BALB/c nude athymic mice. Our results revealed that TRII-SE/Fc-expressing tumors were significantly reduced in size or were even incapable of developing. We also demonstrated that the novel peptibody has the ability to inhibit the canonical TGF-β and BMP signaling pathways while identifying SMAD-dependent and independent proteins involved in tumor progression that are modulated by TβRII-SE/Fc. These findings provide insights into the underlying mechanism responsible for the antitumor activity of TβRII-SE/Fc. Although more studies are required to demonstrate the effectiveness and safety of the novel peptibody as a new therapeutic for the treatment of cancer, our initial in vitro and in vivo results in human colorectal tumor-derived cell lines are highly encouraging. Our results may serve as the foundation for further research and development of a novel biopharmaceutical for oncology.
Collapse
Affiliation(s)
- Ana Romo
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina
- RADBIO S.A.S., Sunchales, Argentina
| | - Tania Melina Rodríguez
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina
| | - Guo Yu
- Bio X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ricardo Alfredo Dewey
- Laboratorio de Terapia Génica y Células Madre, Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina.
- RADBIO S.A.S., Sunchales, Argentina.
- Centro de Medicina Traslacional (CEMET), Hospital de Alta Complejidad en Red "El Cruce" Nestor Carlos Kirchner, Florencio Varela, Argentina.
| |
Collapse
|
3
|
Shaikh A, Wesner AA, Abuhattab M, Kutty RG, Premnath P. Cell cycle regulators and bone: development and regeneration. Cell Biosci 2023; 13:35. [PMID: 36810262 PMCID: PMC9942316 DOI: 10.1186/s13578-023-00988-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Cell cycle regulators act as inhibitors or activators to prevent cancerogenesis. It has also been established that they can play an active role in differentiation, apoptosis, senescence, and other cell processes. Emerging evidence has demonstrated a role for cell cycle regulators in bone healing/development cascade. We demonstrated that deletion of p21, a cell cycle regulator acting at the G1/S transition enhanced bone repair capacity after a burr-hole injury in the proximal tibia of mice. Similarly, another study has shown that inhibition of p27 can increase bone mineral density and bone formation. Here, we provide a concise review of cell cycle regulators that influence cells like osteoblasts, osteoclasts, and chondrocytes, during development and/or healing of bone. It is imperative to understand the regulatory processes that govern cell cycle during bone healing and development as this will pave the way to develop novel therapies to improve bone healing after injury in instances of aged or osteoporotic fractures.
Collapse
Affiliation(s)
- Alisha Shaikh
- grid.267468.90000 0001 0695 7223Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI 53211 USA
| | - Austin A. Wesner
- grid.267468.90000 0001 0695 7223Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI 53211 USA
| | - Mohanad Abuhattab
- grid.267468.90000 0001 0695 7223Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI 53211 USA
| | - Raman G. Kutty
- Department of Internal Medicine, White River Health System, Batesville, AR USA
| | - Priyatha Premnath
- Department of Biomedical Engineering, University of Wisconsin-Milwaukee, College of Engineering and Applied Sciences, 3200 N Cramer St, Milwaukee, WI, 53211, USA.
| |
Collapse
|
4
|
Takahashi K, Amano H, Urano T, Li M, Oki M, Aoki K, Amizuka N, Nakayama KI, Nakayama K, Udagawa N, Higashi N. p57Kip2 is an essential regulator of vitamin D receptor-dependent mechanisms. PLoS One 2023; 18:e0276838. [PMID: 36791055 PMCID: PMC9931147 DOI: 10.1371/journal.pone.0276838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/14/2022] [Indexed: 02/16/2023] Open
Abstract
A cyclin-dependent kinase (CDK) inhibitor, p57Kip2, is an important molecule involved in bone development; p57Kip2-deficient (p57-/-) mice display neonatal lethality resulting from abnormal bone formation and cleft palate. The modulator 1α,25-dihydroxyvitamin D3 (l,25-(OH)2VD3) has shown the potential to suppress the proliferation and induce the differentiation of normal and tumor cells. The current study assessed the role of p57Kip2 in the 1,25-(OH)2VD3-regulated differentiation of osteoblasts because p57Kip2 is associated with the vitamin D receptor (VDR). Additionally, 1,25-(OH)2VD3 treatment increased p57KIP2 expression and induced the colocalization of p57KIP2 with VDR in the osteoblast nucleus. Primary p57-/- osteoblasts exhibited higher proliferation rates with Cdk activation than p57+/+ cells. A lower level of nodule mineralization was observed in p57-/- osteoblasts than in p57+/+ cells. In p57+/+ osteoblasts, 1,25-(OH)2VD3 upregulated the p57Kip2 and opn mRNA expression levels, while the opn expression levels were significantly decreased in p57-/- cells. The osteoclastogenesis assay performed using bone marrow cocultured with 1,25-(OH)2VD3-treated osteoblasts revealed a decreased efficiency of 1,25-(OH)2VD3-stimulated osteoclastogenesis in p57-/- cells. Based on these results, p57Kip2 might function as a mediator of 1,25-(OH)2VD3 signaling, thereby enabling sufficient VDR activation for osteoblast maturation.
Collapse
Affiliation(s)
- Katsuhiko Takahashi
- Department of Biochemistry, Hoshi University, Ebara, Shinagawa-ku, Tokyo
- Department of Anatomy, School of Medicine, Showa University Hatanodai, Shinagawa-ku, Tokyo
| | - Hitoshi Amano
- Department of Biochemistry, Hoshi University, Ebara, Shinagawa-ku, Tokyo
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
- * E-mail:
| | - Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Geriatric Medicine, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Minqi Li
- Stomatology Department of Jining Medical University, Jining, and Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Meiko Oki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Norio Amizuka
- Developmental Biology and Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Nobuaki Higashi
- Department of Biochemistry, Hoshi University, Ebara, Shinagawa-ku, Tokyo
| |
Collapse
|
5
|
Creff J, Besson A. Functional Versatility of the CDK Inhibitor p57 Kip2. Front Cell Dev Biol 2020; 8:584590. [PMID: 33117811 PMCID: PMC7575724 DOI: 10.3389/fcell.2020.584590] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The cyclin/CDK inhibitor p57Kip2 belongs to the Cip/Kip family, with p21Cip1 and p27Kip1, and is the least studied member of the family. Unlike the other family members, p57Kip2 has a unique role during embryogenesis and is the only CDK inhibitor required for embryonic development. p57Kip2 is encoded by the imprinted gene CDKN1C, which is the gene most frequently silenced or mutated in the genetic disorder Beckwith-Wiedemann syndrome (BWS), characterized by multiple developmental anomalies. Although initially identified as a cell cycle inhibitor based on its homology to other Cip/Kip family proteins, multiple novel functions have been ascribed to p57Kip2 in recent years that participate in the control of various cellular processes, including apoptosis, migration and transcription. Here, we will review our current knowledge on p57Kip2 structure, regulation, and its diverse functions during development and homeostasis, as well as its potential implication in the development of various pathologies, including cancer.
Collapse
Affiliation(s)
- Justine Creff
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| | - Arnaud Besson
- Centre National de la Recherche Scientifique, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Centre de Biologie Intégrative, Université de Toulouse, Toulouse, France
| |
Collapse
|
6
|
Wang Y, Zhao S, Chen Y, Wang Y, Wang T, Wo X, Dong Y, Zhang J, Xu W, Qu C, Feng X, Wu X, Wang Y, Zhong Z, Zhao W. N-Acetyl cysteine effectively alleviates Coxsackievirus B-Induced myocarditis through suppressing viral replication and inflammatory response. Antiviral Res 2020; 179:104699. [DOI: 10.1016/j.antiviral.2019.104699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
|
7
|
Iwasaki Y, Yamato H, Fukagawa M. TGF-Beta Signaling in Bone with Chronic Kidney Disease. Int J Mol Sci 2018; 19:E2352. [PMID: 30103389 PMCID: PMC6121599 DOI: 10.3390/ijms19082352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-β signaling is not only important in skeletal development, but also essential in bone remodeling in adult bone. The bone remodeling process involves integrated cell activities induced by multiple stimuli to balance bone resorption and bone formation. TGF-β plays a role in bone remodeling by coordinating cell activities to maintain bone homeostasis. However, mineral metabolism disturbance in chronic kidney disease (CKD) results in abnormal bone remodeling, which leads to ectopic calcification in CKD. High circulating levels of humoral factors such as parathyroid hormone, fibroblast growth factor 23, and Wnt inhibitors modulate bone remodeling in CKD. Several reports have revealed that TGF-β is involved in the production and functions of these factors in bone. TGF-β may act as a factor that mediates abnormal bone remodeling in CKD.
Collapse
Affiliation(s)
- Yoshiko Iwasaki
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1163, Japan.
| | - Hideyuki Yamato
- Division of Nephrology and Metabolism, Tokai University School of Medicine, Kanagawa 259-119, Japan.
| | - Masafumi Fukagawa
- Division of Nephrology and Metabolism, Tokai University School of Medicine, Kanagawa 259-119, Japan.
| |
Collapse
|
8
|
CDK1 inhibition facilitates formation of syncytiotrophoblasts and expression of human Chorionic Gonadotropin. Placenta 2018; 66:57-64. [PMID: 29884303 DOI: 10.1016/j.placenta.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022]
Abstract
AIMS The human placental syncytiotrophoblast (STB) cells play essential roles in embryo implantation and nutrient exchange between the mother and the fetus. STBs are polyploid which are formed by fusion of diploid cytotrophoblast (CTB) cells. Abnormality in STBs formation can result in pregnancy-related disorders. While a number of genes have been associated with CTB fusion the initial events that trigger cell fusion are not well understood. Primary objective of this study was to enhance our understanding about the molecular mechanism of placental cell fusion. METHODS FACS and microscopic analysis was used to optimize Forskolin-induced fusion of BeWo cells (surrogate of CTBs) and subsequently, changes in the expression of different cell cycle regulator genes were analyzed through Western blotting and qPCR. Immunohistochemistry was performed on the first trimester placental tissue sections to validate the results in the context of placental tissue. Effect of Cyclin Dependent Kinase 1 (CDK1) inhibitor, RO3306, on BeWo cell fusion was studied by microscopy and FACS, and by monitoring the expression of human Chorionic Gonadotropin (hCG) by Western blotting and qPCR. RESULTS The data showed that the placental cell fusion was associated with down regulation of CDK1 and its associated cyclin B, and significant decrease in DNA replication. Moreover, inhibition of CDK1 by an exogenous inhibitor induced placental cell fusion and expression of hCG. CONCLUSION Here, we report that the placental cell fusion can be induced by inhibiting CDK1. This study has a high therapeutic significance to manage pregnancy related abnormalities.
Collapse
|
9
|
Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. Int J Biochem Cell Biol 2016; 79:403-418. [DOI: 10.1016/j.biocel.2016.07.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 01/10/2023]
|
10
|
Wang H, Wang R, Wang Z, Liu Q, Mao Y, Duan X. ClC-3 chloride channel functions as a mechanically sensitive channel in osteoblasts. Biochem Cell Biol 2015; 93:558-65. [PMID: 26436462 DOI: 10.1139/bcb-2015-0018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical stimulation usually causes the volume changes of osteoblasts. Whether these volume changes could be sensed by the ClC-3 chloride channel, a volume-sensitive ion channel, and further promote the osteodifferentiation in osteoblasts has not been determined. In this study, we applied persistent static compression on MC3T3-E1 cells to detect the expression changes of ClC-3, osteogenic markers, as well as some molecules related with signaling transduction pathway. We tested the key role of ClC-3 in transferring the mechanical signal to osteoinduction by ClC-3 overexpressing and siRNA technique. We found that ClC-3 level was up-regulated by mechanical stimulation in MC3T3-E1 cells. Mechanical force also up-regulated the mRNA level of osteogenic markers such as alkaline phosphatase (Alp), bone sialoprotein (Bsp), and osteocalcin (Oc), which could be blocked or strengthened by Clcn3 siRNA or overexpressing, and Alp expression was more sensitive to the changes of ClC-3 level. We also found that runt-related transcription factor 2 (Runx2), transforming growth factor beta 1 (TGF-β1), and Wnt pathway might be involved in ClC-3 mediated mechanical transduction in osteoblasts. The data from the current study suggest that the ClC-3 chloride channel acts as a mechanically sensitive channel to regulate osteodifferentiation in osteoblasts.
Collapse
Affiliation(s)
- Huan Wang
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.,b State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Rong Wang
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhe Wang
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Qian Liu
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yong Mao
- c State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohong Duan
- a State Key Laboratory of Military Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
11
|
Querques F, Cantilena B, Cozzolino C, Esposito MT, Passaro F, Parisi S, Lombardo B, Russo T, Pastore L. Angiotensin receptor I stimulates osteoprogenitor proliferation through TGFβ-mediated signaling. J Cell Physiol 2015; 230:1466-74. [PMID: 25556973 DOI: 10.1002/jcp.24887] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/05/2014] [Indexed: 02/01/2023]
Abstract
Clinical studies of large human populations and pharmacological interventions in rodent models have recently suggested that anti-hypertensive drugs that target angiotensin II (Ang II) activity may also reduce loss of bone mineral density. Here, we identified in a genetic screening the Ang II type I receptor (AT1R) as a potential determinant of osteogenic differentiation and, implicitly, bone formation. Silencing of AT1R expression by RNA interference severely impaired the maturation of a multipotent mesenchymal cell line (W20-17) along the osteoblastic lineage. The same effect was also observed after the addition of the AT1R antagonist losartan but not the AT2R inhibitor PD123,319. Additional cell culture assays traced the time of greatest losartan action to the early stages of W20-17 differentiation, namely during cell proliferation. Indeed, addition of Ang II increased proliferation of differentiating W20-17 and primary mesenchymal stem cells and this stimulation was reversed by losartan treatment. Cells treated with losartan also displayed an appreciable decrease of activated (phosphorylated)-Smad2/3 proteins. Moreover, Ang II treatment elevated endogenous transforming growth factor β (TGFβ) expression considerably and in an AT1R-dependent manner. Finally, exogenous TGFβ was able to restore high proliferative activity to W20-17 cells that were treated with both Ang II and losartan. Collectively, these results suggest a novel mechanism of Ang II action in bone metabolism that is mediated by TGFβ and targets proliferation of osteoblast progenitors.
Collapse
Affiliation(s)
- Francesca Querques
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II,", Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jia H, Cong Q, Chua JFL, Liu H, Xia X, Zhang X, Lin J, Habib SL, Ao J, Zuo Q, Fu C, Li B. p57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance. Oncogene 2014; 34:3568-81. [DOI: 10.1038/onc.2014.287] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 06/22/2014] [Accepted: 07/27/2014] [Indexed: 02/05/2023]
|
13
|
Koutroutsos K, Kassimatis TI, Nomikos A, Giannopoulou I, Theohari I, Nakopoulou L. Effect of Smad pathway activation on podocyte cell cycle regulation: an immunohistochemical evaluation. Ren Fail 2014; 36:1310-6. [DOI: 10.3109/0886022x.2014.937664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
14
|
Mallaney C, Kothari A, Martens A, Challen GA. Clonal-level responses of functionally distinct hematopoietic stem cells to trophic factors. Exp Hematol 2014; 42:317-327.e2. [PMID: 24373928 PMCID: PMC4004675 DOI: 10.1016/j.exphem.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/01/2013] [Accepted: 11/22/2013] [Indexed: 11/29/2022]
Abstract
Recent findings from several groups have identified distinct classes of hematopoietic stem cells (HSCs) in the bone marrow, each with inherent functional biases in terms of their differentiation, self-renewal, proliferation, and lifespan. It has previously been demonstrated that myeloid- and lymphoid-biased HSCs can be prospectively enriched based on their degree of Hoechst dye efflux. In the present study, we used differential Hoechst efflux to enrich lineage-biased HSC subtypes and analyzed their functional potentials. Despite similar outputs in vitro, bone marrow transplantation assays revealed contrasting lineage differentiation in vivo. To stratify the molecular differences underlying these contrasting functional potentials at the clonal level, single-cell gene expression analysis was performed using the Fluidigm BioMark system and revealed dynamic expression of genes including Meis1, CEBP/α, Sfpi1, and Dnmt3a. Finally, single-cell gene expression analysis was used to unravel the opposing proliferative responses of lineage-biased HSCs to the growth factor TGF-β1, revealing a potential role for the cell cycle inhibitor Cdkn1c as molecular mediator. This work lends further credence to the concept of HSC heterogeneity, and it presents unprecedented molecular resolution of the HSC response to trophic factors using single-cell gene expression analysis.
Collapse
Affiliation(s)
- Cates Mallaney
- Division of Oncology, Section of Molecular Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO
| | - Alok Kothari
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Andrew Martens
- Division of Oncology, Section of Molecular Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO
| | - Grant A Challen
- Division of Oncology, Section of Molecular Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
15
|
|
16
|
Tang SY, Alliston T. Regulation of postnatal bone homeostasis by TGFβ. BONEKEY REPORTS 2013; 2:255. [PMID: 24404376 DOI: 10.1038/bonekey.2012.255] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/22/2012] [Indexed: 12/30/2022]
Abstract
Perhaps more so than any other tissue, bone has pivotal mechanical and biological functions. Underlying the ability of bone to execute these functions, whether providing structural support or preserving mineral homeostasis, is the dynamic remodeling of bone matrix. Cells within bone integrate multiple stimuli to balance the deposition and resorption of bone matrix. Transforming growth factor-β (TGFβ) uniquely coordinates bone cell activity to maintain bone homeostasis. TGFβ regulates the differentiation and function of both osteoblasts and osteoclasts, from lineage recruitment to terminal differentiation, to balance bone formation and resorption. TGFβ calibrates the synthesis and material quality of bone matrix and bone's responsiveness to applied mechanical loads. Therefore, by coupling the activity of bone forming and resorbing cells, and by sensing, responding to and defining physical cues, TGFβ integrates physical and biochemical stimuli to maintain bone homeostasis. Disruption of TGFβ signaling has significant consequences on bone mass and quality. Alternatively, TGFβ is a powerful lever that has the potential to yield therapeutic benefit in cases where bone homeostasis needs to be recalibrated.
Collapse
Affiliation(s)
- Simon Y Tang
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St Louis , St Louis, MO, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, School of Medicine, University of California, San Francisco , San Francisco, CA, USA
| |
Collapse
|
17
|
Cordonnier T, Langonné A, Sohier J, Layrolle P, Rosset P, Sensébé L, Deschaseaux F. Consistent osteoblastic differentiation of human mesenchymal stem cells with bone morphogenetic protein 4 and low serum. Tissue Eng Part C Methods 2010; 17:249-59. [PMID: 20822481 DOI: 10.1089/ten.tec.2010.0387] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Providing fully mature and functional osteoblasts is challenging for bone tissue engineering and regenerative medicine. Such cells could be obtained from multipotent bone marrow mesenchymal stem cells (MSCs) after induction by different osteogenic factors. However, there are some discrepancies in results, notably due to the use of sera and to the type of osteogenic factor. In this study, we compared the osteogenic differentiation of bone marrow MSCs induced by dexamethasone (Dex) or bone morphogenetic proteins (BMPs) by assessing phenotypes in vitro and functional osteoblasts in vivo. Reducing the content of fetal calf serum from 10% to 2% significantly increased the mineral deposition and expression of osteoblastic markers during osteogenesis. In comparison to Dex condition, the addition of BMP4 greatly improved the differentiation of MSCs into fully mature osteoblasts as seen by high expression of Osterix. These results were confirmed in different supportive matrixes, plastic flasks, or biphasic calcium phosphate biomaterials. In contrast to Dex-derived osteoblasts, BMP4-derived osteoblasts from MSCs were significantly able to produce new bone in subcutis of nude mice in accordance with in vitro results. In conclusion, we describe a convenient ex vivo method to produce consistently mature functional osteoblasts from human MSCs with use of BMP4 and low serum.
Collapse
Affiliation(s)
- Thomas Cordonnier
- Laboratory for Bone Resorption Physiopathology and Primary Bone Tumors Therapy, Faculty of Medicine, INSERM U957, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Borriello A, Caldarelli I, Bencivenga D, Cucciolla V, Oliva A, Usala E, Danise P, Ronzoni L, Perrotta S, Della Ragione F. p57 Kip2 is a downstream effector of BCR–ABL kinase inhibitors in chronic myelogenous leukemia cells. Carcinogenesis 2010; 32:10-8. [DOI: 10.1093/carcin/bgq211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
19
|
Urano T, Shiraki M, Usui T, Sasaki N, Ouchi Y, Inoue S. Identification of non-synonymous polymorphisms in the WDSOF1 gene as novel susceptibility markers for low bone mineral density in Japanese postmenopausal women. Bone 2010; 47:636-42. [PMID: 20601284 DOI: 10.1016/j.bone.2010.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 05/19/2010] [Accepted: 06/15/2010] [Indexed: 11/19/2022]
Abstract
Genetic factors are important for the development of osteoporosis. During the search for novel markers of single-nucleotide polymorphisms (SNPs) associated with bone mineral density (BMD) by performing a large-scale SNP screen with 251 Japanese postmenopausal women utilizing 50K SNP array, we here focused on the rs1370005 in the WD repeats and SOF1 domain-containing (WDSOF1) gene because we could found common non-synonymous variants in this WDSOF1 gene. The analysis of linkage disequilibrium (LD) in the WDSOF1 gene revealed that rs1370005 and 3 other non-synonymous SNPs (Arg47Ser, Pro108Leu and Ile194Val) lie in a 30-kb region of high LD. Quantitative real-time PCR (qRT-PCR) analysis showed that WDSOF1 mRNA was expressed in mouse primary osteoblasts and osteoclasts, suggesting that WDSOF1 plays some roles in the bone metabolism. We examined the 3 non-synonymous SNPs in WDSOF1 gene in 750 Japanese postmenopausal women. A trend test showed that Arg47Ser, Pro108Leu, and Ile194Val genotypes were significant associated with total body BMD (Arg47Ser; P=0.021, Pro108Leu; P=0.022 and Ile194Val; P=0.009). We also compared Z scores for total body BMD between the subjects bearing at least one minor allele and those lacking the minor allele using unpaired t test. Subjects with the one or two minor alleles had significantly lower Z scores for total body BMD (Arg47Ser; P=0.010, Pro108Leu; P=0.019 and Ile194Val; P=0.003). The present study suggests that these non-synonymous WDSOF1 polymorphisms play a role in the genetic susceptibility to osteoporosis.
Collapse
Affiliation(s)
- Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Ghali O, Chauveau C, Hardouin P, Broux O, Devedjian JC. TNF-alpha's effects on proliferation and apoptosis in human mesenchymal stem cells depend on RUNX2 expression. J Bone Miner Res 2010; 25:1616-26. [PMID: 20200969 DOI: 10.1002/jbmr.52] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RUNX2 is a bone-specific transcription factor that plays a critical role in prenatal bone formation and postnatal bone development. It regulates the expression of genes that are important in committing cells into the osteoblast lineage. There is increasing evidence that RUNX2 is involved in osteoblast proliferation. RUNX2 expression increases during osteoblast differentiation, and recent data even suggest that it acts as a proapoptotic factor. The cytokine tumor necrosis factor alpha (TNF-alpha) is known to modulate osteoblast functions in a manner that depends on the differentiation stage. TNF-alpha affects the rate at which mesenchymal precursor cells differentiate into osteoblasts and induces apoptosis in mature osteoblasts. Thus we sought to establish whether or not the effects of TNF-alpha and fetal calf serum on proliferation and apoptosis in human mesenchymal stem cells (hMSCs) were dependent on RUNX2 level and activity. We transfected hMSCs with small interfering RNAs (siRNAs) directed against RUNX2 and found that they proliferated more quickly than control hMSCs transfected with a nonspecific siRNA. This increase in proliferation was accompanied by a rise in cyclin A1, B1, and E1 expression and a decrease in levels of the cyclin inhibitor p21. Moreover, we observed that RUNX2 silencing protected hMSCs from TNF-alpha's antiproliferative and apoptotic effects. This protection was accompanied by the inhibition of caspase-3 activity and Bax expression. Our results confirmed that RUNX2 is a critical link between cell fate, proliferation, and growth control. This study also suggested that, depending on the osteoblasts' differentiation stage, RUNX2 may control cell growth by regulating the expression of elements involved in hormone and cytokine sensitivity.
Collapse
Affiliation(s)
- Olfa Ghali
- Laboratoire de Recherche sur les Biomatériaux/Laboratoire de Biologie Cellulaire et Moléculaire, EA 2603, IFR 114, Université Lille Nord de France, Boulogne-sur-mer, France
| | | | | | | | | |
Collapse
|
21
|
Lu Z, Hunter T. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors. Cell Cycle 2010; 9:2342-52. [PMID: 20519948 DOI: 10.4161/cc.9.12.11988] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The expression levels of the p21(Cip1) family CDK inhibitors (CKIs), p21(Cip1), p27(Kip1) and p57(Kip2), play a pivotal role in the precise regulation of cyclin-dependent kinase (CDK) activity, which is instrumental to proper cell cycle progression. The stabilities of p21(Cip1), p27(Kip1) and p57(Kip2) are all tightly and differentially regulated by ubiquitylation and proteasome-mediated degradation during various stages of the cell cycle, either in steady state or in response to extracellular stimuli, which often elicit site-specific phosphorylation of CKIs triggering their degradation.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
22
|
Targeted deletion of Capn4 in cells of the chondrocyte lineage impairs chondrocyte proliferation and differentiation. Mol Cell Biol 2010; 30:2799-810. [PMID: 20368361 DOI: 10.1128/mcb.00157-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calpains are calcium-dependent intracellular cysteine proteases, which include ubiquitously expressed mu- and m-calpains. Both calpains are heterodimers consisting of a large catalytic subunit and a small regulatory subunit. The calpain small subunit encoded by the gene Capn4 directly binds to the intracellular C-terminal tail of the receptor for the parathyroid hormone (PTH) and PTH-related peptide and modulates cellular functions in cells of the osteoblast lineage in vitro and in vivo. To investigate a physiological role of the calpain small subunit in cells of the chondrocyte lineage, we generated chondrocyte-specific Capn4 knockout mice. Mutant embryos had reduced chondrocyte proliferation and differentiation in embryonic growth plates compared with control littermates. In vitro analysis further revealed that deletion of Capn4 in cells of the chondrocyte lineage correlated with impaired cell cycle progression at the G(1)/S transition, reduced cyclin D gene transcription, and accumulated cell cycle proteins known as calpain substrates. Moreover, silencing of p27(Kip1) rescued an impaired cell growth phenotype in Capn4 knockdown cells, and reintroducing the calpain small subunit partially normalized cell growth and accumulated cyclin D protein levels in a dose-dependent manner. Collectively, our findings suggest that the calpain small subunit is essential for proper chondrocyte functions in embryonic growth plates.
Collapse
|
23
|
Urano T, Usui T, Shiraki M, Ouchi Y, Inoue S. Association of a single nucleotide polymorphism in the constitutive androstane receptor gene with bone mineral density. Geriatr Gerontol Int 2010; 9:235-41. [PMID: 19702932 DOI: 10.1111/j.1447-0594.2009.00527.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nuclear receptors play an important role in bone metabolism. In bone cells, the vitamin D receptor (VDR) and the steroid and xenobiotic receptor (SXR) are activated by vitamin D and vitamin K2, respectively. VDR and SXR are the NR1I subfamily members of nuclear receptors. We speculated that the constitutive androstane receptor (CAR), the third member of the NR1I subfamily, also could be implicated in the regulation of bone metabolism. Therefore, we analyzed expression of CAR mRNA in osteoblasts and then examined association of a single nucleotide polymorphism (SNP) in the human CAR gene at intron 2 (IVS2-99C>T, rs2502815) with bone mineral density (BMD). METHODS Expression levels of CAR mRNA were analyzed during the culture course of rat primary osteoblasts. Association of an SNP in the CAR gene with BMD was examined in 548 healthy Japanese postmenopausal women. RESULTS CAR mRNA increased at day 16 and then increased during culture of rat primary osteoblasts. The increase of CAR mRNA was parallel with the increase of alkaline phosphatase expression, a differentiation marker of osteoblasts. As a result of association study of an SNP in the CAR gene at intron 2, subjects with the CC genotype (n = 208) had significantly higher BMD than subjects with the TT or CT genotype (n = 340) (lumbar spine BMD, P = 0.0185; total body BMD, P = 0.0416). CONCLUSION CAR mRNA was expressed and regulated in primary osteoblasts. A genetic variation at the CAR gene locus is associated with BMD, suggesting an involvement of the CAR gene in bone metabolism.
Collapse
Affiliation(s)
- Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
24
|
Abstract
The F-box protein Fbxw7 (also known as Fbw7, SEL-10, hCdc4 or hAgo) mediates the ubiquitylation and thereby contributes to the degradation of proteins that positively regulate cell cycle. Conditional ablation of Fbxw7 in mouse embryonic fibroblasts (MEFs) induces cell-cycle arrest accompanied by abnormal accumulation of the intracellular domain of Notch1 (NICD1) and c-Myc. However, the molecular mechanisms by which the accumulation of NICD1 and c-Myc induces cell-cycle arrest have remained unclear. We have now examined the expression of cell-cycle inhibitors in Fbxw7-deficient MEFs and found that the abundance of p27(Kip1) and p57(Kip2) is paradoxically decreased. This phenomenon appears to be attributable to the accumulation of NICD1, given that it was recapitulated by overexpression of NICD1 and blocked by ablation of RBP-J. Conversely, the expression of p16(Ink4a) and p19(ARF) was increased in an NICD1-independent manner in Fbxw7-null MEFs. The increased expression of p19(ARF) was recapitulated by overexpression of c-Myc and abolished by ablation of c-Myc, suggesting that the accumulation of c-Myc is primarily responsible for that of p19(ARF). In contrast, the upregulation of p16(Ink4a) appeared to be independent of c-Myc. These results indicate that cell-cycle inhibitors undergo complex regulation by the Fbxw7-mediated proteolytic system.
Collapse
|
25
|
Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG. p57KIP2: "Kip"ing the cell under control. Mol Cancer Res 2009; 7:1902-19. [PMID: 19934273 DOI: 10.1158/1541-7786.mcr-09-0317] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p57(KIP2) is an imprinted gene located at the chromosomal locus 11p15.5. It is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family, which includes additionally p21(CIP1/WAF1) and p27(KIP1). It is the least studied CIP/KIP member and has a unique role in embryogenesis. p57(KIP2) regulates the cell cycle, although novel functions have been attributed to this protein including cytoskeletal organization. Molecular analysis of animal models and patients with Beckwith-Wiedemann Syndrome have shown its nodal implication in the pathogenesis of this syndrome. p57(KIP2) is frequently down-regulated in many common human malignancies through several mechanisms, denoting its anti-oncogenic function. This review is a thorough analysis of data available on p57(KIP2), in relation to p21(CIP1/WAF1) and p27(KIP1), on gene and protein structure, its transcriptional and translational regulation, and its role in human physiology and pathology, focusing on cancer development.
Collapse
Affiliation(s)
- Ioannis S Pateras
- Molecular Carcinogenesis Group, Laboratory of Histology-Embryology, Medical School, University of Athens, Greece
| | | | | | | | | |
Collapse
|
26
|
Vogel T, Ahrens S, Büttner N, Krieglstein K. Transforming growth factor beta promotes neuronal cell fate of mouse cortical and hippocampal progenitors in vitro and in vivo: identification of Nedd9 as an essential signaling component. ACTA ACUST UNITED AC 2009; 20:661-71. [PMID: 19587023 PMCID: PMC2820705 DOI: 10.1093/cercor/bhp134] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming Growth Factor β (Tgfβ) and associated signaling effectors are expressed in the forebrain, but little is known about the role of this multifunctional cytokine during forebrain development. Using hippocampal and cortical primary cell cultures of developing mouse brains, this study identified Tgfβ-regulated genes not only associated with cell cycle exit of progenitors but also with adoption of neuronal cell fate. Accordingly, we observed not only an antimitotic effect of Tgfβ on progenitors but also an increased expression of neuronal markers in Tgfβ treated cultures. This effect was dependent upon Smad4. Furthermore, in vivo loss-of-function analyses using Tgfβ2−/−/Tgfβ3−/− double mutant mice showed the opposite effect of increased cell proliferation and fewer neurons in the cerebral cortex and hippocampus. Gata2, Runx1, and Nedd9 were candidate genes regulated by Tgfβ and known to be involved in developmental processes of neuronal progenitors. Using siRNA-mediated knockdown, we identified Nedd9 as an essential signaling component for the Tgfβ-dependent increase in neuronal cell fate. Expression of this scaffolding protein, which is mainly described as a signaling molecule of the β1-integrin pathway, was not only induced after Tgfβ treatment but was also associated with morphological changes of the Nestin-positive progenitor pool observed upon exposure to Tgfβ.
Collapse
Affiliation(s)
- Tanja Vogel
- Department of Neuroanatomy, Centre of Anatomy, Georg-August-University, 37075 Goettingen, Germany
| | | | | | | |
Collapse
|
27
|
Li JKJ, Lin JCA, Liu HC, Chang WHS. Cytokine Release from Osteoblasts in Response to Different Intensities of Pulsed Electromagnetic Field Stimulation. Electromagn Biol Med 2009; 26:153-65. [PMID: 17886003 DOI: 10.1080/15368370701572837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We use an in-vitro osteoblast cell culture model to investigate the effects of low-frequency (7.5 Hz) pulsed electromagnetic field (PEMF) stimulation on osteoblast population, cytokines (prostaglandin E(2) (PGE(2)), transforming growth factor beta1(TGFbeta1), and alkaline phosphatase (ALP) activity to find the optimal intensity of PEMF for osteoblast growth. The results demonstrate that PEMF can stimulate osteoblast growth, release of TGFbeta1, and, in addition, an increase of ALP activity. The synthesis and release of PGE(2) in the culture medium are reduced with increasing numbers of cells. Higher intensity does not necessarily mean increased osteoblast growth, and the most efficient intensity is about 2 mV/cm in this case. Although the lower intensities of the PEMF are yet to be determined, the results of this study can shed light on the mechanisms of PEMF stimulation on non union fracture therapy and osteoporosis prevention in the future.
Collapse
Affiliation(s)
- Jimmy Kuan-Jung Li
- Bone Tissue Engineering Research Lab, Center for Nano Bioengineering, Chung Yuan Christian University, Chung Li, Taiwan, Republic of China
| | | | | | | |
Collapse
|
28
|
Ye W, Mairet-Coello G, Pasoreck E, Dicicco-Bloom E. Patterns of p57Kip2 expression in embryonic rat brain suggest roles in progenitor cell cycle exit and neuronal differentiation. Dev Neurobiol 2009; 69:1-21. [PMID: 18814313 DOI: 10.1002/dneu.20680] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In developing central nervous system, a variety of mechanisms couple cell cycle exit to differentiation during neurogenesis. The cyclin-dependent kinase (CDK) inhibitor p57Kip2 controls the transition from proliferation to differentiation in many tissues, but roles in developing brain remain uncertain. To characterize possible functions, we defined p57Kip2 protein expression in embryonic (E) day 12.5 to 20.5 rat brains using immunohistochemistry combined with markers of proliferation and differentiation. The p57Kip2 was localized primarily in cell nuclei and positive cells formed two distinct patterns including wide dispersion and laminar aggregation that were brain region-specific. From E12.5 to E16.5, p57Kip2 expression was detected mainly in ventricular zone (VZ) and/or mantle zone of hippocampus, septum, basal ganglia, thalamus, hypothalamus, midbrain, and spinal cord. After E18.5, p57Kip2 was detected in select regions undergoing differentiation. The p57Kip2 expression was also compared with regional transcription factors, including Ngn2, Nkx2.1, and Pax6. Time course studies performed in diencephalon showed that p57Kip2 immunoreactivity colocalized with BrdU at 8 hr in nuclei exhibiting the wide dispersion pattern, whereas colocalization in the laminar pattern occurred only later. Moreover, p57Kip2 frequently colocalized with neuronal marker, beta-III tubulin. Finally, we characterized relationships of p57Kip2 to CDK inhibitor p27Kip1: in proliferative regions, p57Kip2 expression preceded p27Kip1 as cells underwent differentiation, though the proteins colocalized in substantial numbers of cells, suggesting potentially related yet distinct functions of Cip/Kip family members during neurogenesis. Our observations that p57Kip2 exhibits nuclear expression as precursors exit the cell cycle and begin expressing neuronal characteristics suggests that the CDK inhibitor contributes to regulating the transition from proliferation to differentiation during brain development.
Collapse
Affiliation(s)
- Weizhen Ye
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
29
|
Sinuani I, Weissgarten J, Beberashvili I, Rapoport MJ, Sandbank J, Feldman L, Albeck M, Averbukh Z, Sredni B. The cyclin kinase inhibitor p57kip2 regulates TGF-beta-induced compensatory tubular hypertrophy: effect of the immunomodulator AS101. Nephrol Dial Transplant 2009; 24:2328-38. [PMID: 19321762 DOI: 10.1093/ndt/gfn742] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Compensatory tubular cell hypertrophy following unilateral nephrectomy is a cell cycle-dependent process. Our previous study showed that treatment of unilaterally nephrectomized rats with the immunomodulator AS101 partially inhibits compensatory hypertrophy of the remaining kidneys through the inhibition of IL-10-induced TGF-beta secretion by mesangial cells. The present study is focused on understanding the intracellular mechanism(s) of this phenomenon. METHODS A total of 120 male Sprague-Dawley rats were unilaterally nephrectomized or sham-operated and treated with AS101 or PBS. Kidney weight and protein/DNA ratio were assessed for each experimental animal. The expression of TGF-beta, PCNA, CDK 2, pRb, ppRb, p21(Waf1), p27(kip1) and p57(kip2) proteins in renal tissues was determined by western blot analysis and immunohistochemistry, and the immunoprecipitation of cyclin E complexes was performed. RESULTS Compensatory renal growth is initiated by proliferation of resident renal cells that precedes hypertrophy. Changes in TGF-beta expression were positively correlated with the amounts of p57(kip2), but not with p21(Waf1) and p27(kip1) expression in the remaining kidneys. Moreover, there was a marked abundance of p57(kip2) but not p21(Waf1) and p27(kip1) binding to the cyclin E complex in PBS-treated unilaterally nephrectomized rats compared to sham-operated animals. Treatment of uninephrectomized rats with AS101 reduced kidney weight and protein/DNA ratio, inhibited TGF-beta and p57(kip2) expression in the remaining kidneys, and decreased the level of p57(kip2) binding to cyclin E complexes. CONCLUSION These results demonstrate that TGF-beta-induced compensatory tubular cell hypertrophy is regulated in vivo by p57(kip2) but not by the p21(Waf1) and p27(kip1) cyclin kinase inhibitor proteins.
Collapse
Affiliation(s)
- Inna Sinuani
- Nephrology Division, Assaf Harofeh Medical Center, Zerifin, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mitra P, Ghule PN, van der Deen M, Medina R, Xie RL, Holmes WF, Ye X, Nakayama KI, Harper JW, Stein JL, Stein GS, van Wijnen AJ. CDK inhibitors selectively diminish cell cycle controlled activation of the histone H4 gene promoter by p220NPAT and HiNF-P. J Cell Physiol 2009; 219:438-48. [PMID: 19170105 DOI: 10.1002/jcp.21687] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell cycle progression into S phase requires the induction of histone gene expression to package newly synthesized DNA as chromatin. Cyclin E stimulation of CDK2 at the Restriction point late in G1 controls both histone gene expression by the p220(NPAT)/HiNF-P pathway and initiation of DNA replication through the pRB/E2F pathway. The three CDK inhibitors (CKIs) p21(CIP1/WAF1), p27(KIP1), and p57(KIP2) attenuate CDK2 activity. Here we find that gamma-irradiation induces p21(CIP1/WAF1) but not the other two CKIs, while reducing histone H4 mRNA levels but not histone H4 gene promoter activation by the p220(NPAT)/HiNF-P complex. We also show that p21(CIP1/WAF1) is less effective than p27(KIP1) and p57(KIP2) in inhibiting the CDK2 dependent phosphorylation of p220(NPAT) at subnuclear foci and transcriptional activation of histone H4 genes. The greater effectiveness of p57(KIP2) in blocking the p220(NPAT)/HiNF-P pathway is attributable in part to its ability to form a specific complex with p220(NPAT) that may suppress CDK2/cyclin E phosphorylation through direct substrate inhibition. We conclude that CKIs selectively control stimulation of the histone H4 gene promoter by the p220(NPAT)/HiNF-P complex.
Collapse
Affiliation(s)
- Partha Mitra
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nakai T, Mochida J, Sakai D. Synergistic role of c-Myc and ERK1/2 in the mitogenic response to TGF beta-1 in cultured rat nucleus pulposus cells. Arthritis Res Ther 2008; 10:R140. [PMID: 19061498 PMCID: PMC2656245 DOI: 10.1186/ar2567] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 11/29/2008] [Accepted: 12/05/2008] [Indexed: 12/24/2022] Open
Abstract
Introduction Although transforming growth factor β1 (TGFβ1) is known to be a potent inhibitor of proliferation in most cell types, it accelerates proliferation in certain mesenchymal cells, such as articular chondrocytes and nucleus pulposus cells. The low ability for self-renewal of nucleus pulposus cells is one obstacle in developing new therapeutic options for intervertebral disc diseases, and utilizing cytokines is one of the strategies to regulate nucleus pulposus cell proliferation. However, the precise cell cycle progression and molecular mechanisms by which TGFβ1 stimulates cell growth remain unclear. The aim of this study was to elucidate a mechanism that enables cell proliferation with TGFβ1 stimulation. Methods We tested cultured rat nucleus pulposus cells for proliferation and cell cycle distribution under exogenous TGFβ1 stimulation with and without putative pharmaceutical inhibitors. To understand the molecular mechanism, we evaluated the expression levels of key regulatory G1 phase proteins, c-Myc and the cyclin-dependent kinase inhibitors. Results We found that TGFβ1 promoted proliferation and cell cycle progression while reducing expression of the cyclin-dependent kinase inhibitors p21 and p27, which are downregulators of the cell cycle. Robust c-Myc expression for 2 h and immediate phosphorylation of extra cellular signal regulated kinase (ERK1/2) were detected in cultures when TGFβ1 was added. However, pretreatment with 10058-F4 (an inhibitor of c-Myc transcriptional activity) or PD98059 (an inhibitor of ERK1/2) suppressed c-Myc expression and ERK1/2 phosphorylation, and inhibited cell cycle promotion by TGFβ1. Conclusions Our experimental results indicate that TGFβ1 promotes cell proliferation and cell cycle progression in rat nucleus pulposus cells and that c-Myc and phosphorylated ERK1/2 play important roles in this mechanism. While the difference between rat and human disc tissues requires future studies using different species, investigation of distinct response in the rat model provides fundamental information to elucidate a specific regulatory pathway of TGFβ1.
Collapse
Affiliation(s)
- Tomoko Nakai
- Division of Organogenesis, Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | |
Collapse
|
32
|
Kim M, Nakamoto T, Nishimori S, Tanaka K, Chiba T. A new ubiquitin ligase involved in p57KIP2 proteolysis regulates osteoblast cell differentiation. EMBO Rep 2008; 9:878-84. [PMID: 18660753 DOI: 10.1038/embor.2008.125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 05/14/2008] [Accepted: 06/03/2008] [Indexed: 11/10/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) has many physiological functions and inhibits the differentiation of osteoblasts. Previously, we reported that TGF-beta1 stimulation induces the degradation of p57(KIP2) in osteoblasts. p57(KIP2) proteolysis depends on the ubiquitin-proteasome pathway and SMAD-mediated transcription; however, the molecular mechanism underlying p57(KIP2) degradation has been largely unknown. Here, we show that FBL12, a new F-box protein expressed in the limb bud of developing embryos, is involved in TGF-beta1-induced degradation of p57(KIP2). FBL12 formed an SCF(FBL12) complex and directly ubiquitinated p57(KIP2) in a phosphorylation-dependent manner. Inhibition of FBL12 by RNA interference suppressed the degradation of p57(KIP2) and a dominant-negative mutant of FBL12 (FBL12DeltaF) increased the steady-state level of p57(KIP2). Furthermore, wild-type FBL12 inhibited and FBL12DeltaF promoted the differentiation of primary osteoblasts. As overexpression of p57(KIP2) promoted osteoblast differentiation, these results indicate the importance of FBL12 and the degradation of p57(KIP2) in the regulation of osteoblast cell differentiation.
Collapse
Affiliation(s)
- Minsoo Kim
- Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | |
Collapse
|
33
|
Yeh N, Miller JP, Gaur T, Capellini TD, Nikolich-Zugich J, de la Hoz C, Selleri L, Bromage TG, van Wijnen AJ, Stein GS, Lian JB, Vidal A, Koff A. Cooperation between p27 and p107 during endochondral ossification suggests a genetic pathway controlled by p27 and p130. Mol Cell Biol 2007; 27:5161-71. [PMID: 17502351 PMCID: PMC1951950 DOI: 10.1128/mcb.02431-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/21/2007] [Accepted: 05/02/2007] [Indexed: 02/05/2023] Open
Abstract
Pocket proteins and cyclin-dependent kinase (CDK) inhibitors negatively regulate cell proliferation and can promote differentiation. However, which members of these gene families, which cell type they interact in, and what they do to promote differentiation in that cell type during mouse development are largely unknown. To identify the cell types in which p107 and p27 interact, we generated compound mutant mice. These mice were null for p107 and had a deletion in p27 that prevented its binding to cyclin-CDK complexes. Although a fraction of these animals survived into adulthood and looked similar to single p27 mutant mice, a larger number of animals died at birth or within a few weeks thereafter. These animals displayed defects in chondrocyte maturation and endochondral bone formation. Proliferation of chondrocytes was increased, and ectopic ossification was observed. Uncommitted mouse embryo fibroblasts could be induced into the chondrocytic lineage ex vivo, but these cells failed to mature normally. These results demonstrate that p27 carries out overlapping functions with p107 in controlling cell cycle exit during chondrocyte maturation. The phenotypic similarities between p107(-/-) p27(D51/D51) and p107(-/-) p130(-/-) mice and the cells derived from them suggest that p27 and p130 act in an analogous pathway during chondrocyte maturation.
Collapse
Affiliation(s)
- Nancy Yeh
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Usui T, Urano T, Shiraki M, Ouchi Y, Inoue S. Association of a single nucleotide polymorphism in Wnt10bgene with bone mineral density. Geriatr Gerontol Int 2007. [DOI: 10.1111/j.1447-0594.2007.00368.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Zavrski I, Jakob C, Kaiser M, Fleissner C, Heider U, Sezer O. Molecular and clinical aspects of proteasome inhibition in the treatment of cancer. Recent Results Cancer Res 2007; 176:165-76. [PMID: 17607924 DOI: 10.1007/978-3-540-46091-6_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The proteasome is a multicatalytic threonine protease responsible for intracellular protein turnover in eukaryotic cells, including the processing and degradation of several proteins involved in cell cycle control and the regulation of apoptosis. Preclinical studies have shown that the treatment with proteasome inhibitors results in decreased proliferation, induction of apoptosis, and sensitization of tumor cells against conventional chemotherapeutic agents and irradiation. The effects were conferred to stabilization of p21, p27, Bax, p53, I-KB, and the resulting inhibition of the nuclear factor-KB (NF-KB) activation. Bortezomib is the first proteasome inhibitor that has entered clinical trials. In multiple myeloma, both the FDA (United States Food and Drug Administration) and EMEA (European Medicine Evaluation Agency) granted an approval for the use of bortezomib (Velcade, Millennium Pharmaceuticals, Cambridge, MA, USA) for the treatment of relapsed multiple myeloma. At present, clinical trials are examining the activity in a variety of solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Ivana Zavrski
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Hofer TPJ, Frankenberger M, Staples KJ, Ziegler-Heitbrock L. Expression of p57-Kip2 in monocytes and macrophages. Immunobiology 2006; 211:455-62. [PMID: 16920485 DOI: 10.1016/j.imbio.2006.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/24/2006] [Indexed: 01/07/2023]
Abstract
The p57-Kip2 gene encodes a cyclin-dependent kinase inhibitor and hence this gene has received much attention in the study of malignancy. We have analysed expression of this gene in human monocytes and macrophages. In comparison to CD14++ monocytes, p57-Kip2 expression was higher in both CD14+16+ monocytes and alveolar macrophages. p57-Kip2 expression decreased in CD14++ monocytes after stimulation with lipopolysaccharide but increased after incubation with methylprednisolone. The results indicate that p57-Kip2 may be involved in regulating the inflammatory response of monocytic cells.
Collapse
Affiliation(s)
- Thomas P J Hofer
- Clinical Cooperation Group Inflammatory Lung Diseases, GSF National Research Center for Environment and Health, GSF-Institute for Inhalation Biology and Asklepios Fachkliniken Muenchen-Gauting, Robert-Koch-Allee 29, D-82131 Gauting, Germany.
| | | | | | | |
Collapse
|
37
|
Fan GK, Chen J, Ping F, Geng Y. Immunohistochemical analysis of P57(kip2), p53 and hsp60 expressions in premalignant and malignant oral tissues. Oral Oncol 2006; 42:147-53. [PMID: 16246616 DOI: 10.1016/j.oraloncology.2005.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
To investigate the expressions and significances of P57(kip2), p53 and hsp60 proteins in the dysplasia-carcinoma sequence of oral mucosa. A retrospective study was performed in 10 cases of normal oral mucosa, 79 cases of leukoplakia and 67 cases of squamous cell carcinoma (SCC). The expressions of P57(kip2), p53 and hsp60 proteins were detected in the tissue samples of these populations using immunohistochemical method. P57(kip2) expression was decreased in oral leukoplakia with moderate or severe dysplasia, and further decreased in oral SCC. Negative expression of P57(kip2) was significantly associated with advanced tumor size, the occurrence of lymph node metastasis and the advanced clinical stage in oral SCC. The overall 5-year survival rate in the P57(kip2) positive group was significantly higher than that in the P57(kip2) negative group. P57(kip2) expression was decreased in oral leukoplakia with moderate or severe dysplasia, and further decreased in oral SCC. It was a remarkable progressive and prognostic biomarker in oral SCC.
Collapse
Affiliation(s)
- Guo-Kang Fan
- Department of Otorhinolaryngology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Jie-fang Road 88, Hanghzhou, Zhejiang 310009, China
| | | | | | | |
Collapse
|
38
|
Mitani T, Terashima M, Yoshimura H, Nariai Y, Tanigawa Y. TGF-β1 enhances degradation of IFN-γ-induced iNOS protein via proteasomes in RAW 264.7 cells. Nitric Oxide 2005; 13:78-87. [PMID: 15964225 DOI: 10.1016/j.niox.2005.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/02/2005] [Accepted: 05/06/2005] [Indexed: 11/17/2022]
Abstract
TGF-beta1 is a well-known immunosuppressive cytokine that inhibits inducible nitric oxide synthase (iNOS) gene expression in various cells including macrophages. In this study, we investigated the suppressive mechanisms of TGF-beta1 on IFN-gamma-induced iNOS gene expression using the murine macrophage-like cell line RAW 264.7. TGF-beta1 decreased iNOS protein amount through enhanced degradation, although TGF-beta1 did not affect IFN-gamma-induced iNOS mRNA level or stability. In addition, the enhancement of iNOS protein degradation by TGF-beta1 treatment was almost completely blocked by MG132, a proteasome inhibitor. Furthermore, TGF-beta1 enhanced the trypsin-like activity of proteasomes in the presence of IFN-gamma, although did not enhance the peptidylglutamyl-peptide hydrolyzing and chymotrypsin-like activities of proteasomes. The level of ubiquitinated iNOS protein was not significantly altered by IFN-gamma or IFN-gamma plus TGF-beta1 treatment. Because MG132 inhibited iNOS protein degradation and IFN-gamma plus TGF-beta1 treatment increased the trypsin-like activity of proteasomes, we hypothesized that TGF-beta1 might enhance iNOS protein degradation via the ubiquitin-proteasome pathway in the presence of IFN-gamma. We propose that these mechanisms of TGF-beta1 in the posttranslational regulation of iNOS gene expression may contribute to suppression of excess nitric oxide during inflammatory processes.
Collapse
Affiliation(s)
- Toshifumi Mitani
- Department of Biochemistry and Molecular Medicine, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
39
|
Moro T, Ogasawara T, Chikuda H, Ikeda T, Ogata N, Maruyama Z, Komori T, Hoshi K, Chung UI, Nakamura K, Okayama H, Kawaguchi H. Inhibition of Cdk6 expression through p38 MAP kinase is involved in differentiation of mouse prechondrocyte ATDC5. J Cell Physiol 2005; 204:927-33. [PMID: 15795936 DOI: 10.1002/jcp.20350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because a temporal arrest in the G1-phase of the cell cycle is a prerequisite for cell differentiation, this study investigated the involvement of cell cycle factors in the differentiation of cultured mouse prechondrocyte cell line ATDC5. Among the G1 cell cycle factors examined, both protein and mRNA levels of cyclin-dependent kinase (Cdk6) were downregulated during the culture in a differentiation medium. The protein degradation of Cdk6 was not involved in this downregulation because proteasome inhibitors did not reverse the protein level. When inhibitors of p38 MAPK, ERK-1/2, and PI3K/Akt were added to the culture, only a p38 MAPK inhibitor SB203580 blocked the decrease in the Cdk6 protein level by the differentiation medium, indicating that the Cdk6 inhibition was mediated by p38 MAPK pathway. In fact, p38 MAPK was confirmed to be phosphorylated during differentiation of ATDC5 cells. Enforced expression of Cdk6 in ATDC5 cells blocked the chondrocyte differentiation and inhibited Sox5 and Sox6 expressions. However, the Cdk6 overexpression did not affect the proliferation or the cell cycle progression, suggesting that the inhibitory effect of Cdk6 on the differentiation was exerted by a mechanism largely independent of its cell cycle regulation. These results indicate that Cdk6 may be a regulator of chondrocyte differentiation and that its p38-mediated downregulation is involved in the efficient differentiation.
Collapse
Affiliation(s)
- Toru Moro
- Department of Sensory and Motor System Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hsu S, Yamamoto T, Borke J, Walsh DS, Singh B, Rao S, Takaaki K, Nah-Do N, Lapp C, Lapp D, Foster E, Bollag WB, Lewis J, Wataha J, Osaki T, Schuster G. Green tea polyphenol-induced epidermal keratinocyte differentiation is associated with coordinated expression of p57/KIP2 and caspase 14. J Pharmacol Exp Ther 2004; 312:884-90. [PMID: 15537824 DOI: 10.1124/jpet.104.076075] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, exerts chemopreventive effects by selectively inducing apoptosis in tumor cells. In contrast, EGCG accelerates terminal differentiation in normal human epidermal keratinocytes (NHEK) mediated partially by up-regulation of p57/KIP2, a cyclin-dependent kinase inhibitor that confers growth arrest and differentiation. However, it is unclear if EGCG modulates caspase 14, a unique regulator of epithelial cell terminal differentiation associated with cornification. Here, we examined the effect of EGCG on caspase 14 expression in NHEK and correlated the protein and mRNA expression of p57/KIP2 with those of caspase 14 in either normal keratinocytes or p57/KIP2-expressing tumor cells (OSC2, an oral squamous cell carcinoma cell line). Additionally, paraffin-embedded normal and untreated psoriatic (aberrant keratinization) skin sections from humans were assessed for caspase 14 by immunohistochemistry. In NHEK, EGCG induced the expression of caspase 14 mRNA and protein levels within a 24-h period. The expression of p57/KIP2 in OSC2 cells was adequate to induce caspase 14 in the absence of EGCG; this induction of caspase 14 was down-regulated by transforming growth factor-beta1. In human psoriatic skin samples, caspase 14 staining in the upper epidermis was reduced, especially in nuclear areas. These results suggest that, in addition to p57/KIP2, EGCG-induced terminal differentiation of epidermal keratinocytes involves up-regulation of caspase 14. Further understanding of how EGCG modulates cellular differentiation may be useful in developing green tea preparations for selected clinical applications.
Collapse
Affiliation(s)
- Stephen Hsu
- Department of Oral Biology and Maxillofacial Pathology, School of Dentistry, AD1443, Medical College of Georgia, Augusta, GA 30912-1126, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fujita M, Urano T, Shiraki M, Momoeda M, Tsutsumi O, Hosoi T, Orimo H, Ouchi Y, Inoue S. Association of a single nucleotide polymorphism in the secreted frizzled-related protein 4 (sFRP4) gene with bone mineral density. Geriatr Gerontol Int 2004. [DOI: 10.1111/j.1447-0594.2004.00249.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Ogasawara T, Kawaguchi H, Jinno S, Hoshi K, Itaka K, Takato T, Nakamura K, Okayama H. Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol Cell Biol 2004; 24:6560-8. [PMID: 15254224 PMCID: PMC444857 DOI: 10.1128/mcb.24.15.6560-6568.2004] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Because a temporal arrest in the G(1) phase of the cell cycle is thought to be a prerequisite for cell differentiation, we investigated cell cycle factors that critically influence the differentiation of mouse osteoblastic MC3T3-E1 cells induced by bone morphogenetic protein 2 (BMP-2), a potent inducer of osteoblast differentiation. Of the G(1) cell cycle factors examined, the expression of cyclin-dependent kinase 6 (Cdk6) was found to be strongly down-regulated by BMP-2/Smads signaling, mainly via transcriptional repression. The enforced expression of Cdk6 blocked BMP-2-induced osteoblast differentiation to various degrees, depending on the level of its overexpression. However, neither BMP-2 treatment nor Cdk6 overexpression significantly affected cell proliferation, suggesting that the inhibitory effect of Cdk6 on cell differentiation was exerted by a mechanism that is largely independent of its cell cycle regulation. These results indicate that Cdk6 is a critical regulator of BMP-2-induced osteoblast differentiation and that its Smads-mediated down-regulation is essential for efficient osteoblast differentiation.
Collapse
Affiliation(s)
- Toru Ogasawara
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yokoo T, Toyoshima H, Miura M, Wang Y, Iida KT, Suzuki H, Sone H, Shimano H, Gotoda T, Nishimori S, Tanaka K, Yamada N. p57Kip2 regulates actin dynamics by binding and translocating LIM-kinase 1 to the nucleus. J Biol Chem 2003; 278:52919-23. [PMID: 14530263 DOI: 10.1074/jbc.m309334200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
p57Kip2 is the only cyclin-dependent kinase (Cdk) inhibitor shown to be essential for mouse embryogenesis. The fact suggests that p57 has a specific role that cannot be compensated by other Cdk inhibitors. LIM-kinase 1 (LIMK-1) is a downstream effector of the Rho family of GTPases that phosphorylates and inactivates an actin depolymerization factor, cofilin, to induce the formation of actin fiber. Here we demonstrate that p57 regulates actin dynamics by binding and translocating LIMK-1 from the cytoplasm into the nucleus, which in turn results in a reorganization of actin fiber. The central region of p57, a unique feature among the Cdk inhibitors, and the N-terminal region of LIMK-1, which contains the LIM domains were essential for the interaction. Expression of p57, but not p27Kip1 or a p57 mutant, with a deletion in the central region was shown to induce marked reorganization of actin filament and a translocation of LIMK-1. Our findings indicate p57 may act as a key regulator in embryogenesis by bearing two distinct functions, the regulation of cell cycle through binding to Cdks and the regulation of actin dynamics through binding to LIMK-1, both of which should be important in developmental procedure.
Collapse
Affiliation(s)
- Tomotaka Yokoo
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, Hatakeyama S, Nakayama K, Nakayama KI. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc Natl Acad Sci U S A 2003; 100:10231-6. [PMID: 12925736 PMCID: PMC193544 DOI: 10.1073/pnas.1831009100] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Indexed: 11/18/2022] Open
Abstract
The abundance of the cyclin-dependent kinase (CDK) inhibitor p57Kip2, an important regulator of cell cycle progression, is thought to be controlled by the ubiquitin-proteasome pathway. The Skp1/Cul1/F-box (SCF)-type E3 ubiquitin ligase complex SCFSkp2 has now been shown to be responsible for regulating the cellular level of p57Kip2 by targeting it for ubiquitylation and proteolysis. The elimination of p57Kip2 was impaired in Skp2-/- cells, resulting in abnormal accumulation of the protein. Coimmunoprecipitation analysis also revealed that Skp2 interacts with p57Kip2 in vivo. Overexpression of WT Skp2 promoted degradation of p57Kip2, whereas expression of a dominant negative mutant of Skp2 prolonged the half-life of p57Kip2. Mutation of the threonine residue (Thr-310) of human p57Kip2 that is conserved between the COOH-terminal QT domains of p57Kip2 and p27Kip1 prevented the effect of Skp2 on the stability of p57Kip2, suggesting that phosphorylation at this site is required for SCFSkp2-mediated ubiquitylation. Finally, the purified recombinant SCFSkp2 complex mediated p57Kip2 ubiquitylation in vitro in a manner dependent on the presence of the cyclin E-CDK2 complex. These observations thus demonstrate that the SCFSkp2 complex plays an important role in cell-cycle progression by determining the abundance of p57Kip2 and that of the related CDK inhibitor p27Kip1.
Collapse
Affiliation(s)
- Takumi Kamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Franklin CC, Rosenfeld-Franklin ME, White C, Kavanagh TJ, Fausto N. TGFbeta1-induced suppression of glutathione antioxidant defenses in hepatocytes: caspase-dependent post-translational and caspase-independent transcriptional regulatory mechanisms. FASEB J 2003; 17:1535-7. [PMID: 12824300 DOI: 10.1096/fj.02-0867fje] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
TGFbeta1-induced hepatocyte apoptosis involves the production of reactive oxygen species. An effective cellular defense mechanism against oxidative stress is the tripeptide glutathione (GSH), and the rate-limiting step in GSH biosynthesis is catalyzed by the heterodimeric holoenzyme glutamate cysteine ligase (GCL). Here, we demonstrate that TGFbeta1-induced apoptosis in the TAMH murine hepatocyte cell line is accompanied by both the cleavage and loss of the catalytic subunit of GCL (GCLC) and the down-regulation of GCLC gene expression resulting in a reduction in GCL activity and depletion of intracellular GSH. TGFbeta1-induced apoptosis is also accompanied by a reduction in Bcl-XL, an effect that may facilitate TGFbeta1-induced apoptosis as Bcl-XL overexpression inhibits TGFbeta1-induced caspase activation and cell death. Interestingly, Bcl-XL overexpression prevents TGFbeta1-induced cleavage of GCLC protein but not down-regulation of GCLC mRNA. Furthermore, TGFbeta1-induced down-regulation of GCLC mRNA is prevented by inhibition of histone deacetylase activity, suggesting that this is an active repression of GCLC gene transcription. These findings suggest that the suppression of GSH antioxidant defenses associated with the caspase-dependent cleavage of GCLC protein, caspase-independent suppression of GCLC gene expression, and depletion of intracellular GSH may play a role in enhancing TGFbeta1-induced oxidative stress and potentiating apoptotic cell death.
Collapse
Affiliation(s)
- Christopher C Franklin
- University of Washington, Department of Pathology, Box 357705, 1959 N.E. Pacific St., HSB K-088, Seattle, WA 98195-7705, USA.
| | | | | | | | | |
Collapse
|
46
|
Urano T. [Responsiveness to hormones in aged osteoblasts]. Nihon Ronen Igakkai Zasshi 2003; 40:336-8. [PMID: 12934561 DOI: 10.3143/geriatrics.40.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Li JK, Chang WH, Lin JC, Ruaan RC, Liu HC, Sun JS. Cytokine release from osteoblasts in response to ultrasound stimulation. Biomaterials 2003; 24:2379-85. [PMID: 12699675 DOI: 10.1016/s0142-9612(03)00033-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone is a dynamic tissue with a well-balanced homeostasis preserved by both formation and resorption of bone. Normal turnover of bone, however, can be upset by either increased osteoclast activity or decreased osteoblast function; either mechanism alone or both may result in a net loss of bone. Both osteoclasts and osteoblasts could be stimulated by mechanical stimulation in vitro, and it is assumed that this process may occur in vivo as well. In this experiment, we investigated this hypothesis by examining the effects of ultrasound stimulation on osteoblast growth and cytokine release. With this model, we explored the mechanism of low-intensity pulsed ultrasound on osteoblasts growth and upregulation of osteoclasts formation and function by cytokine release. The results showed that specific pulsed ultrasound exposure could enhance osteoblasts population together with increase in TGFbeta1 secretion and decrease in concentration of IL-6 and TNFalpha in the culture medium. Although, animal studies and clinical trial are needed to understand the real process in the whole body, ultrasound stimulation might be a good method for prevention of bone loss due to osteoporosis.
Collapse
Affiliation(s)
- J K Li
- Department of Biomedical Engineering, Room 818, Building of Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Bashir T, Pagano M. Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv Cancer Res 2003; 88:101-44. [PMID: 12665054 DOI: 10.1016/s0065-230x(03)88305-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ubiquitin pathway plays a central role in the regulation of cell growth and cell proliferation by controlling the abundance of key cell cycle proteins. Increasing evidence indicates that unscheduled proteolysis of many cell cycle regulators contributes significantly to tumorigenesis and is indeed found in many types of human cancers. Aberrant proteolysis with oncogenic potential is elicited by two major mechanisms: defective degradation of positive cell cycle regulators (i.e., proto-oncoproteins) and enhanced degradation of negative cell cycle regulators (i.e., tumor suppressor proteins). In many cases, increased protein stability is a result of mutations in the substrate that prevent the recognition of the protein by the ubiquitin-mediated degradation machinery. Alternatively, the specific recognition proteins mediating ubiquitination (ubiquitin ligases) are not expressed or harbor mutations rendering them inactive. In contrast, the overexpression of a ubiquitin ligase may result in the enhanced degradation of a negative cell cycle regulator. This chapter aims to review the involvement of the ubiquitin pathway in the scheduled destruction of some important cell cycle regulators and to discuss the implications of their aberrant degradation for the development of cancer.
Collapse
Affiliation(s)
- Tarig Bashir
- Department of Pathology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
49
|
Fujita M, Urano T, Horie K, Ikeda K, Tsukui T, Fukuoka H, Tsutsumi O, Ouchi Y, Inoue S. Estrogen activates cyclin-dependent kinases 4 and 6 through induction of cyclin D in rat primary osteoblasts. Biochem Biophys Res Commun 2002; 299:222-8. [PMID: 12437973 DOI: 10.1016/s0006-291x(02)02640-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Estrogen plays important roles in maintaining bone density and protecting against osteoporosis, but the underlying mechanisms of estrogen action via estrogen receptors (ERs) in bone remain to be clarified. In the present study, we isolated primary osteoblasts derived from transgenic rats harboring a dominant negative ER mutant, rat ERalpha (1-535) cDNA, and from their wild-type littermates. We observed that the rate of cell growth of osteoblasts from the transgenic rats was reduced compared to that of wild-type osteoblasts. Utilizing cDNA microarray analysis, we found that mRNA level of cyclin D2 was lower in the osteoblasts from the transgenic rats. D-type cyclins including cyclin D1, cyclin D2, and cyclin D3 are cell cycle regulators that promote progression through the early-to-mid G1 phase of the cell cycle. The protein levels of D-type cyclins including cyclin D2 and cyclin D3 but not cyclin D1 were elevated in wild-type osteoblasts with 17beta-estradiol treatment, resulting in the activation of cyclin-dependent kinases 4 and 6 (Cdk4/6) activities and the promotion of cell growth. Moreover, an anti-estrogen ICI 182,780 abolished the induction of the expression of D-type cyclins by 17beta-estradiol. Our findings indicate that estrogen and its receptors enhance Cdk4/6 activities through the induction of D-type cyclins, leading to the growth promotion of osteoblasts.
Collapse
Affiliation(s)
- Masayo Fujita
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8655, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The 26S proteasome constitutes the central proteolytic machinery of the highly conserved ubiquitin/proteasome system, the cell's major tool for extralysosomal protein degradation. Recently, a plethora of cell proteins implicated in the regulation of basic cellular processes, such as proliferation, differentiation, cell cycling, and apoptosis have been discovered to undergo processing and functional limitation by entering the ubiquitin/proteasome pathway with the final destination to be proteolytically degraded by the 26S proteasome. Because both negative and positive regulators of proliferation and apoptosis undergo proteasomal degradation in a tightly regulated and temporally controlled fashion, the 26S proteasome can play opposite roles in the regulation of proliferation and apoptosis. These roles are apparently defined by the cell's environment and proliferative state. Finally, proteasomal protein degradation is deregulated in a number of human diseases, including cancer and neurodegenerative and myodegenerative diseases, which all exhibit an imbalance of proliferation and apoptosis. An improved understanding of the modes of proteasomal action should lead to the development of beneficial therapeutic and diagnostic strategies in the future.
Collapse
Affiliation(s)
- Cord Naujokat
- Institute of Immunology (CN), Department of Transplantation Immunology, University of Heidelberg, Germany.
| | | |
Collapse
|