1
|
Vemula V, Huber T, Ušaj M, Bugyi B, Månsson A. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity. J Biol Chem 2020; 296:100181. [PMID: 33303625 PMCID: PMC7948409 DOI: 10.1074/jbc.ra120.015863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Actin is a major intracellular protein with key functions in cellular motility, signaling, and structural rearrangements. Its dynamic behavior, such as polymerization and depolymerization of actin filaments in response to intracellular and extracellular cues, is regulated by an abundance of actin binding proteins. Out of these, gelsolin is one of the most potent for filament severing. However, myosin motor activity also fragments actin filaments through motor-induced forces, suggesting that these two proteins could cooperate to regulate filament dynamics and motility. To test this idea, we used an in vitro motility assay, where actin filaments are propelled by surface-adsorbed heavy meromyosin (HMM) motor fragments. This allows studies of both motility and filament dynamics using isolated proteins. Gelsolin, at both nanomolar and micromolar Ca2+ concentration, appreciably enhanced actin filament severing caused by HMM-induced forces at 1 mM MgATP, an effect that was increased at higher HMM motor density. This finding is consistent with cooperativity between actin filament severing by myosin-induced forces and by gelsolin. We also observed reduced sliding velocity of the HMM-propelled filaments in the presence of gelsolin, providing further support of myosin-gelsolin cooperativity. Total internal reflection fluorescence microscopy–based single molecule studies corroborated that the velocity reduction was a direct effect of gelsolin binding to the filament and revealed different filament severing pattern of stationary and HMM propelled filaments. Overall, the results corroborate cooperative effects between gelsolin-induced alterations in the actin filaments and changes due to myosin motor activity leading to enhanced F-actin severing of possible physiological relevance.
Collapse
Affiliation(s)
- Venukumar Vemula
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Tamás Huber
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary
| | - Marko Ušaj
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Beáta Bugyi
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary.
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
2
|
Szatmári D, Bugyi B, Ujfalusi Z, Grama L, Dudás R, Nyitrai M. Cardiac leiomodin2 binds to the sides of actin filaments and regulates the ATPase activity of myosin. PLoS One 2017; 12:e0186288. [PMID: 29023566 PMCID: PMC5638494 DOI: 10.1371/journal.pone.0186288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 09/28/2017] [Indexed: 12/26/2022] Open
Abstract
Leiomodin proteins are vertebrate homologues of tropomodulin, having a role in the assembly and maintenance of muscle thin filaments. Leiomodin2 contains an N-terminal tropomodulin homolog fragment including tropomyosin-, and actin-binding sites, and a C-terminal Wiskott-Aldrich syndrome homology 2 actin-binding domain. The cardiac leiomodin2 isoform associates to the pointed end of actin filaments, where it supports the lengthening of thin filaments and competes with tropomodulin. It was recently found that cardiac leiomodin2 can localise also along the length of sarcomeric actin filaments. While the activities of leiomodin2 related to pointed end binding are relatively well described, the potential side binding activity and its functional consequences are less well understood. To better understand the biological functions of leiomodin2, in the present work we analysed the structural features and the activities of Rattus norvegicus cardiac leiomodin2 in actin dynamics by spectroscopic and high-speed sedimentation approaches. By monitoring the fluorescence parameters of leiomodin2 tryptophan residues we found that it possesses flexible, intrinsically disordered regions. Leiomodin2 accelerates the polymerisation of actin in an ionic strength dependent manner, which relies on its N-terminal regions. Importantly, we demonstrate that leiomodin2 binds to the sides of actin filaments and induces structural alterations in actin filaments. Upon its interaction with the filaments leiomodin2 decreases the actin-activated Mg2+-ATPase activity of skeletal muscle myosin. These observations suggest that through its binding to side of actin filaments and its effect on myosin activity leiomodin2 has more functions in muscle cells than it was indicated in previous studies.
Collapse
Affiliation(s)
- Dávid Szatmári
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
| | - Zoltán Ujfalusi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - László Grama
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Réka Dudás
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Miklós Nyitrai
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
- University of Pécs, Szentágothai Research Centre, Pécs, Hungary
- Hungarian Academy of Sciences-University of Pécs, Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
- * E-mail:
| |
Collapse
|
3
|
Bidone TC, Kim T, Deriu MA, Morbiducci U, Kamm RD. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks. Biomech Model Mechanobiol 2015; 14:1143-55. [PMID: 25708806 DOI: 10.1007/s10237-015-0660-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 01/01/2023]
Abstract
Cells are able to respond to mechanical forces and deformations. The actin cytoskeleton, a highly dynamic scaffolding structure, plays an important role in cell mechano-sensing. Thus, understanding rheological behaviors of the actin cytoskeleton is critical for delineating mechanical behaviors of cells. The actin cytoskeleton consists of interconnected actin filaments (F-actin) that form via self-assembly of actin monomers. It has been shown that molecular changes of the monomer subunits impact the rigidity of F-actin. However, it remains inconclusive whether or not the molecular changes can propagate to the network level and thus alter the rheological properties of actin networks. Here, we focus on how cation binding and nucleotide state tune the molecular conformation and rigidity of F-actin and a representative rheological behavior of actin networks, strain-stiffening. We employ a multiscale approach by combining established computational techniques: molecular dynamics, normal mode analysis and Brownian dynamics. Our findings indicate that different combinations of nucleotide (ATP, ADP or ADP-Pi) and cation [Formula: see text] or [Formula: see text] at one or multiple sites) binding change the molecular conformation of F-actin by varying inter- and intra-strand interactions which bridge adjacent subunits between and within F-actin helical strands. This is reflected in the rigidity of actin filaments against bending and stretching. We found that differences in extension and bending rigidity of F-actin induced by cation binding to the low-, intermediate- and high-affinity sites vary the strain-stiffening response of actin networks crosslinked by rigid crosslinkers, such as scruin, whereas they minimally impact the strain-stiffening response when compliant crosslinkers, such as filamin A or [Formula: see text]-actinin, are used.
Collapse
Affiliation(s)
- Tamara Carla Bidone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | | | | | | | | |
Collapse
|
4
|
Kardos R, Nevalainen E, Nyitrai M, Hild G. The effect of ADF/cofilin and profilin on the dynamics of monomeric actin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2010-9. [PMID: 23845993 DOI: 10.1016/j.bbapap.2013.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/22/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
The main goal of the work was to uncover the dynamical changes in actin induced by the binding of cofilin and profilin. The change in the structure and flexibility of the small domain and its function in the thermodynamic stability of the actin monomer were examined with fluorescence spectroscopy and differential scanning calorimetry (DSC). The structure around the C-terminus of actin is slightly affected by the presence of cofilin and profilin. Temperature dependent fluorescence resonance energy transfer measurements indicated that both actin binding proteins decreased the flexibility of the protein matrix between the subdomains 1 and 2. Time resolved anisotropy decay measurements supported the idea that cofilin and profilin changed similarly the dynamics around the fluorescently labeled Cys-374 and Lys-61 residues in subdomains 1 and 2, respectively. DSC experiments indicated that the thermodynamic stability of actin increased by cofilin and decreased in the presence of profilin. Based on the information obtained it is possible to conclude that while the small domain of actin acts uniformly in the presence of cofilin and profilin the overall stability of actin changes differently in the presence of the studied actin binding proteins. The results support the idea that the small domain of actin behaves as a rigid unit during the opening and closing of the nucleotide binding pocket in the presence of profilin and cofilin as well. The structural arrangement of the nucleotide binding cleft mainly influences the global stability of actin while the dynamics of the different segments can change autonomously.
Collapse
Affiliation(s)
- Roland Kardos
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary; Szentágothai Research Center, Ifjúság str. 34, Pécs H-7624, Hungary
| | | | | | | |
Collapse
|
5
|
Ujfalusi Z, Kovács M, Nagy NT, Barkó S, Hild G, Lukács A, Nyitrai M, Bugyi B. Myosin and tropomyosin stabilize the conformation of formin-nucleated actin filaments. J Biol Chem 2012; 287:31894-904. [PMID: 22753415 PMCID: PMC3442522 DOI: 10.1074/jbc.m112.341230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The conformational elasticity of the actin cytoskeleton is essential for its versatile biological functions. Increasing evidence supports that the interplay between the structural and functional properties of actin filaments is finely regulated by actin-binding proteins; however, the underlying mechanisms and biological consequences are not completely understood. Previous studies showed that the binding of formins to the barbed end induces conformational transitions in actin filaments by making them more flexible through long range allosteric interactions. These conformational changes are accompanied by altered functional properties of the filaments. To get insight into the conformational regulation of formin-nucleated actin structures, in the present work we investigated in detail how binding partners of formin-generated actin structures, myosin and tropomyosin, affect the conformation of the formin-nucleated actin filaments using fluorescence spectroscopic approaches. Time-dependent fluorescence anisotropy and temperature-dependent Förster-type resonance energy transfer measurements revealed that heavy meromyosin, similarly to tropomyosin, restores the formin-induced effects and stabilizes the conformation of actin filaments. The stabilizing effect of heavy meromyosin is cooperative. The kinetic analysis revealed that despite the qualitatively similar effects of heavy meromyosin and tropomyosin on the conformational dynamics of actin filaments the mechanisms of the conformational transition are different for the two proteins. Heavy meromyosin stabilizes the formin-nucleated actin filaments in an apparently single step reaction upon binding, whereas the stabilization by tropomyosin occurs after complex formation. These observations support the idea that actin-binding proteins are key elements of the molecular mechanisms that regulate the conformational and functional diversity of actin filaments in living cells.
Collapse
Affiliation(s)
- Zoltán Ujfalusi
- Department of Biophysics, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hild G, Bugyi B, Nyitrai M. Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken) 2010; 67:609-29. [PMID: 20672362 PMCID: PMC3038201 DOI: 10.1002/cm.20473] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 07/15/2010] [Indexed: 12/30/2022]
Abstract
Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function.
Collapse
Affiliation(s)
- Gábor Hild
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | |
Collapse
|
7
|
Ujfalusi-Pozsonyi K, Hild G, Gróf P, Gutay-Tóth Z, Bacsó Z, Nyitrai M. The effects of detergents on the polymerization properties of actin. Cytometry A 2010; 77:447-56. [PMID: 20151434 DOI: 10.1002/cyto.a.20855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Effects of some detergents-most frequently used in membrane raft studies-on the polymerization properties of actin were examined under in vitro and in vivo conditions, for protein and cellular investigations, respectively. Under in vitro conditions the polymerization rates were measured with pyrene-labeled actin. We found that polymerization rate depended on the detergent concentration by following either biphasic characteristics or only decreasing tendency. The strongest effects were observed at relatively low detergent concentrations. SDS-PAGE electrophoresis and dynamic light-scattering measurements provided further evidences for the size distribution of actin filaments formed under the influence of detergents. Comparing the polymerization rates measured in the presence of different detergents to those obtained with various magnesium and KCl concentrations showed that detergents may influence the actin polymerization at three levels by modifying: (i) the monomer-monomer interaction, (ii) the local ionic strength, and (iii) the affinity of actin for various cations. In vivo studies on NIH 3T3MDR1 cells using TRITC-phalloidin detected fast depolymerization of large extent around the critical micellar concentrations of the detergents. We concluded that microdomain insolubility observed in the presence of detergents is hardly to be the result of the stabilization of the submembrane actin cytoskeleton merely; rather inter-lipid and lipid-protein interactions are also involved within the detergent-resistant membranes.
Collapse
Affiliation(s)
- Kinga Ujfalusi-Pozsonyi
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | | | | | | | |
Collapse
|
8
|
Vig A, Dudás R, Kupi T, Orbán J, Hild G, Lőrinczy D, Nyitrai M. EFFECT OF PHALLOIDIN ON FILAMENTS POLYMERIZED FROM HEART MUSCLE ADP-ACTIN MONOMERS. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2009; 95:721-725. [PMID: 20582250 PMCID: PMC2892334 DOI: 10.1007/s10973-008-9404-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effect of phalloidin on filaments polymerized from ADP-actin monomers of the heart muscle was investigated with differential scanning calorimetry. Heart muscle contains alpha-skeletal and alpha-cardiac actin isoforms. In the absence of phalloidin the melting temperature was 55 degrees C for the alpha-cardiac actin isoform and 58 degrees C for the alpha-skeletal one when the filaments were generated from ADP-actin monomers. After the binding of phalloidin the melting temperature was isoform independent (85.5 degrees C). We concluded that phalloidin stabilized the actin filaments of alpha-skeletal and alpha-cardiac actin isoforms to the same extent when they were polymerized from ADP-actin monomers.
Collapse
Affiliation(s)
- Andrea Vig
- University of Pécs, Faculty of Medicine, Department of Biophysics, Szigeti str. 12, Pécs 7624, Hungary
| | - Réka Dudás
- University of Pécs, Faculty of Medicine, Department of Biophysics, Szigeti str. 12, Pécs 7624, Hungary
| | - Tünde Kupi
- University of Pécs, Faculty of Medicine, Department of Biophysics, Szigeti str. 12, Pécs 7624, Hungary
| | - J. Orbán
- University of Pécs, Faculty of Medicine, Department of Biophysics, Szigeti str. 12, Pécs 7624, Hungary
| | - G. Hild
- University of Pécs, Faculty of Medicine, Department of Biophysics, Szigeti str. 12, Pécs 7624, Hungary
| | - D. Lőrinczy
- University of Pécs, Faculty of Medicine, Department of Biophysics, Szigeti str. 12, Pécs 7624, Hungary
| | - M. Nyitrai
- University of Pécs, Faculty of Medicine, Department of Biophysics, Szigeti str. 12, Pécs 7624, Hungary
| |
Collapse
|
9
|
Arii Y, Hatori K. Relationship between the flexibility and the motility of actin filaments: effects of pH. Biochem Biophys Res Commun 2008; 371:772-6. [PMID: 18457659 DOI: 10.1016/j.bbrc.2008.04.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Both the sliding velocity of fluorescently labeled actin filament and its persistence length as an index of the bending flexibility of the filament were examined in the motility assay as varying the pH values of the solution for preparing actin filaments. When the pH value was varied from 5.0 to 9.0 in the solution in which actin filaments were formed from the constituent monomers, the motile performance of Mg(2+) bound actin filaments (Mg-F-actin) was apparently suppressed compared to the case of Ca(2+) bound ones (Ca-F-actin). The persistence length for Ca-F-actin gradually increased with the increase of the pH value while the similar length for Mg-F-actin remained rather independent of the value. The largest sliding velocity of the filament, on the other hand, obtained at the persistence length of roughly 6 microm for both cases of Mg-F-actin and Ca-F-actin.
Collapse
Affiliation(s)
- Yusuke Arii
- Department of Bio-System Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan
| | | |
Collapse
|
10
|
Bugyi B, Papp G, Hild G, Lõrinczy D, Nevalainen EM, Lappalainen P, Somogyi B, Nyitrai M. Formins regulate actin filament flexibility through long range allosteric interactions. J Biol Chem 2006; 281:10727-36. [PMID: 16490788 PMCID: PMC2865996 DOI: 10.1074/jbc.m510252200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The members of the formin family nucleate actin polymerization and play essential roles in the regulation of the actin cytoskeleton during a wide range of cellular and developmental processes. In the present work, we describe the effects of mDia1-FH2 on the conformation of actin filaments by using a temperature-dependent fluorescence resonance energy transfer method. Our results revealed that actin filaments were more flexible in the presence than in the absence of formin. The effect strongly depends on the mDia1-FH2 concentration in a way that indicates that more than one mechanism is responsible for the formin effect. In accordance with the more flexible filament structure, the thermal stability of actin decreased and the rate of phosphate dissociation from actin filaments increased in the presence of formin. The interpretation of the results supports a model in which formin binding to barbed ends makes filaments more flexible through long range allosteric interactions, whereas binding of formin to the sides of the filaments stabilizes the protomer-protomer interactions. These results suggest that formins can regulate the conformation of actin filaments and may thus also modulate the affinity of actin-binding proteins to filaments nucleated/capped by formins.
Collapse
Affiliation(s)
- Beáta Bugyi
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Szigeti str. 12, H-7624, Hungary
| | - Gábor Papp
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Szigeti str. 12, H-7624, Hungary
| | - Gábor Hild
- Research Group for Fluorescence Spectroscopy, Office for Academy Research Groups Attached to Universities and Other Institutions at the:
| | - Dénes Lõrinczy
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Szigeti str. 12, H-7624, Hungary
| | - Elisa M. Nevalainen
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka Lappalainen
- Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Béla Somogyi
- Research Group for Fluorescence Spectroscopy, Office for Academy Research Groups Attached to Universities and Other Institutions at the:
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Szigeti str. 12, H-7624, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Szigeti str. 12, H-7624, Hungary
| |
Collapse
|
11
|
Mátyus L, Szöllosi J, Jenei A. Steady-state fluorescence quenching applications for studying protein structure and dynamics. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 83:223-36. [PMID: 16488620 DOI: 10.1016/j.jphotobiol.2005.12.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
Fluorescence quenching methods are useful to obtain information about the conformational and/or dynamic changes of proteins in complex macromolecular systems. In this review steady-state methods are described and the data interpretation is thoroughly discussed. As a special case of fluorescence quenching mechanism, fluorescence resonance energy transfer (FRET) phenomenon is also presented. Application of a FRET based method to characterize the temperature dependence of the flexibility of protein matrix is clearly demonstrated.
Collapse
Affiliation(s)
- László Mátyus
- Department of Biophysics and Cell Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98, P.O. Box 39, H-4012 Debrecen, Hungary.
| | | | | |
Collapse
|
12
|
Bódis E, Strambini GB, Gonnelli M, Málnási-Csizmadia A, Somogyi B. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain. Biophys J 2005; 87:1146-54. [PMID: 15298917 PMCID: PMC1304453 DOI: 10.1529/biophysj.104.041855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.
Collapse
Affiliation(s)
- Emöke Bódis
- Hungarian Academy of Sciences, Research Group for Fluorescence Spectroscopy, Office for Academy Research Groups Attached to Universities and Other Institutions, 7624 Pécs, Hungary
| | | | | | | | | |
Collapse
|
13
|
Visegrády B, Lorinczy D, Hild G, Somogyi B, Nyitrai M. The effect of phalloidin and jasplakinolide on the flexibility and thermal stability of actin filaments. FEBS Lett 2004; 565:163-6. [PMID: 15135072 DOI: 10.1016/j.febslet.2004.03.096] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/25/2004] [Accepted: 03/30/2004] [Indexed: 11/24/2022]
Abstract
In this work the effect of phalloidin and jasplakinolide on the dynamic properties and thermal stability of actin filaments was studied. Temperature dependent fluorescence resonance energy transfer measurements showed that filaments of Ca-actin became more rigid in the presence of phalloidin or jasplakinolide. Differential scanning calorimetric data implied that the stiffer filaments also had greater thermal stability in the presence of phalloidin or jasplakinolide. The fluorescence and calorimetric measurements provided evidences that the extent of stabilization by jasplakinolide was greater than that by phalloidin.
Collapse
Affiliation(s)
- Balázs Visegrády
- Department of Biophysics, Faculty of Medicine, University of Pécs, Szigeti str. 12, Pécs H-7624, Hungary
| | | | | | | | | |
Collapse
|
14
|
Haupt H, Scheibe F, Mazurek B. Therapeutic efficacy of magnesium in acoustic trauma in the guinea pig. ORL J Otorhinolaryngol Relat Spec 2003; 65:134-9. [PMID: 12925813 DOI: 10.1159/000072250] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Accepted: 03/21/2003] [Indexed: 11/19/2022]
Abstract
Comparative functional and morphological tests were performed in two groups of impulse noise-exposed guinea pigs treated either with magnesium (Mg) or isotonic saline as a placebo to extend the knowledge on the therapeutic efficacy of Mg in acoustic trauma demonstrated recently. The permanent threshold shifts were significantly lower in the Mg than in the placebo group as measured by auditory brainstem response audiometry, distortion product otoacoustic emissions and compound action potentials (CAPs) 1 week after exposure. This also applies to the damage to hair cell stereocilia tested with scanning electron microscopy. There were frequency-related differences in the individual functional responses. The CAP threshold shifts reflected the morphological damage most obviously.
Collapse
Affiliation(s)
- Heidemarie Haupt
- Department of Otorhinolaryngology, Charité Hospital, Humboldt University, Schumannstrasse 20-21, DE-10177 Berlin, Germany
| | | | | |
Collapse
|
15
|
Hild G, Nyitrai M, Somogyi B. Intermonomer flexibility of Ca- and Mg-actin filaments at different pH values. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:842-9. [PMID: 11846785 DOI: 10.1046/j.0014-2956.2001.02716.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fluorescence resonance energy transfer parameter, f, is defined as the efficiency of the energy transfer normalized by the quantum yield of the donor in the presence of acceptor. It is possible to characterize the flexibility of the protein matrix between the appropriate fluorescent probes by monitoring the temperature dependence of f. The intermonomer flexibility of the Ca-actin and Mg-actin filaments was characterized by using this method at pH values of 6.5 and 7.4. The protomers were labeled on Cys374 with donor [N-(((iodoacetyl)amino)ethyl)-5-naphthylamine-1-sulfonate; IAEDANS] or acceptor [5-(iodoacetamido)fluorescein; IAF] molecules. The temperature profile of f suggested that the intermonomer flexibility of actin filaments was larger at pH 7.4 than pH 6.5 in the case of Mg-F-actin while this difference was absent in the case of Ca-F-actin. More rigid intermonomer connection was identified at both pH values between the protomers of Mg-F-actin compared to the Ca-F-actin. The results were further supported by time dependent fluorescence measurements made on IAEDANS and IAF labeled Mg- and Ca-actin filaments at pH 6.5 and 7.4. Our spectroscopic results may suggest that the altered function of muscle following the change of pH within the muscle cells under physiological or pathological conditions might be affected by the modified dynamic properties of the magnesium saturated actin filaments. The change of the intracellular pH does not have an effect on the intermonomer flexibility of the Ca-actin filaments.
Collapse
Affiliation(s)
- Gábor Hild
- Department of Biophysics, University of Pécs, Faculty of Medicine, Hungary
| | | | | |
Collapse
|
16
|
Schüler H. ATPase activity and conformational changes in the regulation of actin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1549:137-47. [PMID: 11690650 DOI: 10.1016/s0167-4838(01)00255-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The eukaryotic microfilament system is regulated in part through the nucleotide- and cation-dependent conformation of the actin molecule. In this review, recent literature on the crystal and solution structures of actin and other actin-superfamily proteins is summarized. Furthermore, the structure of the nucleotide binding cleft is discussed in terms of the mechanism of ATP hydrolysis and P(i) release. Two distinct domain movements are suggested to participate in the regulation of actin. (1) High-affinity binding of Mg(2+) to actin induces a rearrangement of side chains in the nucleotide binding site leading to an increased ATPase activity and polymerizability, as well as a rotation of subdomain 2 which is mediated by the hydroxyl of serine-14. (2) Hydrolysis of ATP and subsequent release of inorganic phosphate lead to a butterfly-like opening of the actin molecule brought about by a shearing in the interdomain helix 135-150. These domain rearrangements modulate the interaction of actin with a variety of different proteins, and conversely, protein binding to actin can restrict these conformational changes, with ultimate effects on the assembly state of the microfilament system.
Collapse
Affiliation(s)
- H Schüler
- Department of Cell Biology, Wenner-Gren Institute, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
17
|
Nyitrai M, Hild G, Hartvig N, Belágyi J, Somogyi B. Conformational and dynamic differences between actin filaments polymerized from ATP- or ADP-actin monomers. J Biol Chem 2000; 275:41143-9. [PMID: 11005806 DOI: 10.1074/jbc.m004146200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conformational and dynamic properties of actin filaments polymerized from ATP- or ADP-actin monomers were compared by using fluorescence spectroscopic methods. The fluorescence intensity of IAEDANS attached to the Cys(374) residue of actin was smaller in filaments from ADP-actin than in filaments from ATP-actin monomers, which reflected a nucleotide-induced conformational difference in subdomain 1 of the monomer. Radial coordinate calculations revealed that this conformational difference did not modify the distance of Cys(374) from the longitudinal filament axis. Temperature-dependent fluorescence resonance energy transfer measurements between donor and acceptor molecules on Cys(374) of neighboring actin protomers revealed that the inter-monomer flexibility of filaments assembled from ADP-actin monomers were substantially greater than the one of filaments from ATP-actin monomers. Flexibility was reduced by phalloidin in both types of filaments.
Collapse
Affiliation(s)
- M Nyitrai
- Research Group for Fluorescence Spectroscopy, University of Pécs, Pécs, Hungary
| | | | | | | | | |
Collapse
|
18
|
Somogyi B, Lakos Z, Szarka A, Nyitrai M. Protein flexibility as revealed by fluorescence resonance energy transfer: an extension of the method for systems with multiple labels. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2000; 59:26-32. [PMID: 11332886 DOI: 10.1016/s1011-1344(00)00130-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The temperature profile of the normalized fluorescence resonance energy transfer efficiency is capable of monitoring the relative change of flexibility and/or conformational state of macromolecules [Biochemistry 23 (1984) 3403]. The method described earlier for one donor-one acceptor systems is extended to multiple fluorophore systems when the energy transfer occurs between either one donor-m acceptors, or n donors-one acceptor or n donors-m acceptors (where n and m are integer values). It is shown that the normalized energy transfer efficiency obtained for systems containing multiple labels is a linear combination of the normalized transfer efficiency assigned to individual donor-acceptor pairs of the system, thus its temperature profile is capable of monitoring the change of intramolecular flexibility and/or conformational state.
Collapse
Affiliation(s)
- B Somogyi
- Research Group of the Hungarian Academy of Sciences at the University of Pécs, Faculty of Medicine
| | | | | | | |
Collapse
|
19
|
Bonet C, Ternent D, Maciver SK, Mozo-Villarias A. Rapid formation and high diffusibility of actin-cofilin cofilaments at low pH. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3378-84. [PMID: 10824126 DOI: 10.1046/j.1432-1327.2000.01372.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cofilin is a small actin-binding protein that is known to bind both F-actin and G-actin, severing the former. The interaction of cofilin with actin is pH-sensitive, F-actin being preferentially bound at low pH and G-actin at higher pH, within the physiological range. Diffusion coefficients of F-actin with cofilin were measured by the fluorescence recovery after photobleaching (FRAP) technique. This has the potential for simultaneous and direct measurement of average polymer length via the average diffusion coefficient of the polymers (DLM) as well as the fraction of polymerized actin, fLM, present in solution. In the range of cofilin-actin ratios up to 1 : 1 and at both pH 6.5 and pH 8.0, the diffusion coefficients of the polymers increased with the amount of cofilin present in the complex, in a co-operative manner to a plateau. We interpret this as indicating co-operative binding/severing and that filaments less than a certain length cannot be severed further. Under the conditions used here, filaments were found to be more motile at pH 6.5 than at pH 8.0. At pH 8.0, some actin is expected to be sequestered as ADP-actin-cofilin complexes, with the remaining actin being present as long slowly diffusing filaments. At pH 6.5, however, cofilin binds to F-actin to form short rapidly diffusing cofilaments. These filaments form very rapidly from cofilin-actin monomeric complexes, possibly indicating that this complex is able to polymerize without dissociation. These findings may be relevant to the nuclear import of actin-cofilin complexes.
Collapse
Affiliation(s)
- C Bonet
- Departament de Ciencies Mediques Basiques, Universitat de Lleida, Spain
| | | | | | | |
Collapse
|
20
|
Nyitrai M, Hild G, Lukács A, Bódis E, Somogyi B. Conformational distributions and proximity relationships in the rigor complex of actin and myosin subfragment-1. J Biol Chem 2000; 275:2404-9. [PMID: 10644692 DOI: 10.1074/jbc.275.4.2404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic conformational changes in the myosin head are considered essential for muscle contraction. We hereby show that the extension of the fluorescence resonance energy transfer method described originally by Taylor et al. (Taylor, D. L., Reidler, J., Spudich, J. A., and Stryer, L. (1981) J. Cell Biol. 89, 362-367) allows determination of the position of a labeled point outside the actin filament in supramolecular complexes and also characterization of the conformational heterogeneity of an actin-binding protein while considering donor-acceptor distance distributions. Using this method we analyzed proximity relationships between two labeled points of S1 and the actin filament in the acto-S1 rigor complex. The donor (N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonate) was attached to either the catalytic domain (Cys-707) or the essential light chain (Cys-177) of S1, whereas the acceptor (5-(iodoacetamido)fluorescein) was attached to the actin filament (Cys-374). In contrast to the narrow positional distribution (assumed as being Gaussian) of Cys-707 (5 +/- 3 A), the positional distribution of Cys-177 was found to be broad (102 +/- 4 A). Such a broad positional distribution of the label on the essential light chain of S1 may be important in accommodating the helically arranged acto-myosin binding relative to the filament axis.
Collapse
Affiliation(s)
- M Nyitrai
- Research Group of the Hungarian Academy of Sciences at, University Medical School of Pécs, H-7601 Pécs, Hungary
| | | | | | | | | |
Collapse
|
21
|
Gaszner B, Nyitrai M, Hartvig N, Köszegi T, Somogyi B, Belágyi J. Replacement of ATP with ADP affects the dynamic and conformational properties of actin monomer. Biochemistry 1999; 38:12885-92. [PMID: 10504259 DOI: 10.1021/bi990748y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of the replacement of ATP with ADP on the conformational and dynamic properties of the actin monomer was investigated, by means of electron paramagnetic resonance (EPR) and fluorescence spectroscopic methods. The measurement of the ATP concentration during these experiments provided the opportunity to estimate the time dependence of ADP-Mg-G-actin concentration in the samples. According to the results of the fluorescence resonance energy transfer experiments, the Gln-41 and Cys-374 residues are closer to each other in the ADP-Mg-G-actin than in the ATP-Mg-G-actin. The fluorescence resonance energy transfer efficiency increased simultaneously with the ADP-G-actin concentration and reached its maximum value within 30 min at 20 degrees C. The EPR data indicate the presence of an ADP-Mg-G-actin population that can be characterized by an increased rotational correlation time, which is similar to the one observed in actin filaments, and exists only transiently. We suggest that the conformational transitions, which were reflected by our EPR data, were coupled with the transient appearance of short actin oligomers during the nucleotide exchange. Besides these relatively fast conformational changes, there is a slower conformational transition that could be detected several hours after the initiation of the nucleotide exchange.
Collapse
Affiliation(s)
- B Gaszner
- Central Research Laboratory, Research Group of the Hungarian Academy of Sciences, and Departments of Biophysics and Clinical Chemistry, University Medical School of Pécs, P.O. Box 99, H-7601 Pécs, Hungary
| | | | | | | | | | | |
Collapse
|