1
|
Ohsawa S, Schwaiger M, Iesmantavicius V, Hashimoto R, Moriyama H, Matoba H, Hirai G, Sodeoka M, Hashimoto A, Matsuyama A, Yoshida M, Yashiroda Y, Bühler M. Nitrogen signaling factor triggers a respiration-like gene expression program in fission yeast. EMBO J 2024; 43:4604-4624. [PMID: 39256560 PMCID: PMC11480445 DOI: 10.1038/s44318-024-00224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood. Here, we show that NSF physically interacts with the mitochondrial sulfide:quinone oxidoreductase Hmt2 and that it prompts a change from a fermentation- to a respiration-like gene expression program without any change in the carbon source. Our results suggest that NSF activity is not restricted to nitrogen metabolism alone and that it could function as a rheostat to prepare a population of S. pombe cells for an imminent shortage of their preferred nutrients.
Collapse
Affiliation(s)
- Shin Ohsawa
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Swiss Institute of Bioinformatics, 4056, Basel, Switzerland
| | - Vytautas Iesmantavicius
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Rio Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8538, Tokyo, Japan
| | - Hiromitsu Moriyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8538, Tokyo, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, 812-8582, Fukuoka, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, 812-8582, Fukuoka, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Atsushi Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Akihisa Matsuyama
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Office of University Professors, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
| | - Yoko Yashiroda
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan.
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan.
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- University of Basel, Petersplatz 10, 4003, Basel, Switzerland.
| |
Collapse
|
2
|
Ohtsuka H, Shimasaki T, Aiba H. Response to sulfur in Schizosaccharomyces pombe. FEMS Yeast Res 2021; 21:6324000. [PMID: 34279603 PMCID: PMC8310684 DOI: 10.1093/femsyr/foab041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Sulfur is an essential component of various biologically important molecules, including methionine, cysteine and glutathione, and it is also involved in coping with oxidative and heavy metal stress. Studies using model organisms, including budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe), have contributed not only to understanding various cellular processes but also to understanding the utilization and response mechanisms of each nutrient, including sulfur. Although fission yeast can use sulfate as a sulfur source, its sulfur metabolism pathway is slightly different from that of budding yeast because it does not have a trans-sulfuration pathway. In recent years, it has been found that sulfur starvation causes various cellular responses in S. pombe, including sporulation, cell cycle arrest at G2, chronological lifespan extension, autophagy induction and reduced translation. This MiniReview identifies two sulfate transporters in S. pombe, Sul1 (encoded by SPBC3H7.02) and Sul2 (encoded by SPAC869.05c), and summarizes the metabolic pathways of sulfur assimilation and cellular response to sulfur starvation. Understanding these responses, including metabolism and adaptation, will contribute to a better understanding of the various stress and nutrient starvation responses and chronological lifespan regulation caused by sulfur starvation.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Zhang T, Qin Z, Liu D, Wei M, Fu Z, Wang Q, Ma Y, Zhang Z. A novel transcription factor MRPS27 up-regulates the expression of sqr, a key gene of mitochondrial sulfide metabolism in echiuran worm Urechis unicinctus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108997. [PMID: 33549829 DOI: 10.1016/j.cbpc.2021.108997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide is a natural, widely distributed, poisonous substance and sulfide: quinone oxidoreductase (SQR) is responsible for oxidizing hydrogen sulfide to less toxic sulfur compounds. The increase of SQR mRNA level is an important mechanism for organisms to adapt to hydrogen sulfide-rich environments. However, its transcriptional regulation mechanism is not very clear. In this study, a mitochondrial 28S ribosomal protein S27 (MRPS27), which has never been reported as a transcription factor, was screened by yeast one-hybrid experiment from the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. Western blotting indicated that UuMRPS27 contents increased significantly in the nuclear extract of hindgut under exposed to 150 μM sulfide. ChIP and EMSA assays demonstrated that UuMRPS27 did bind to the sqr proximal promoter, the key binding sequence was CTAGAG (+12 to +17 of the promoter) detected by DNase I footprinting assay as well as transient transfection experiments. Furthermore, UuMRPS27, as a transcription activator, exhibited the highest transcription activity compared with other reported sqr transcription factors. Our data revealed for the first time the role of MRPS27 acting as a transcription factor which expanded the understanding of sqr transcriptional regulation in sulfide metabolism mechanism.
Collapse
Affiliation(s)
- Tingting Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhong Fu
- Hebei Research Institute of Marine and Fishery Science, Qinhuangdao 066002, China
| | - Qing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Wang S, Jiang L, Hu Q, Cui L, Zhu B, Fu X, Lai Q, Shao Z, Yang S. Characterization of Sulfurimonas hydrogeniphila sp. nov., a Novel Bacterium Predominant in Deep-Sea Hydrothermal Vents and Comparative Genomic Analyses of the Genus Sulfurimonas. Front Microbiol 2021; 12:626705. [PMID: 33717015 PMCID: PMC7952632 DOI: 10.3389/fmicb.2021.626705] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the genus Sulfurimonas within the class Campylobacteria are predominant in global deep-sea hydrothermal environments and widespread in global oceans. However, only few bacteria of this group have been isolated, and their adaptations for these extreme environments remain poorly understood. Here, we report a novel mesophilic, hydrogen- and sulfur-oxidizing bacterium, strain NW10T, isolated from a deep-sea sulfide chimney of Northwest Indian Ocean.16S rRNA gene sequence analysis showed that strain NW10T was most closely related to the vent species Sulfurimonas paralvinellae GO25T with 95.8% similarity, but ANI and DDH values between two strains were only 19.20 and 24.70%, respectively, indicating that strain NW10 represents a novel species. Phenotypic characterization showed strain NW10T is an obligate chemolithoautotroph utilizing thiosulfate, sulfide, elemental sulfur, or molecular hydrogen as energy sources, and molecular oxygen, nitrate, or elemental sulfur as electron acceptors. Moreover, hydrogen supported a better growth than reduced sulfur compounds. During thiosulfate oxidation, the strain can produce extracellular sulfur of elemental α-S8 with an unknown mechanism. Polyphasic taxonomy results support that strain NW10T represents a novel species of the genus Sulfurimonas, and named as Sulfurimonas hydrogeniphila sp. nov. Genome analyses revealed its diverse energy metabolisms driving carbon fixation via rTCA cycling, including pathways of sulfur/hydrogen oxidation, coupled oxygen/sulfur respiration and denitrification. Comparative analysis of the 11 available genomes from Sulfurimonas species revealed that vent bacteria, compared to marine non-vent strains, possess unique genes encoding Type V Sqr, Group II, and Coo hydrogenase, and are selectively enriched in genes related to signal transduction and inorganic ion transporters. These phenotypic and genotypic features of vent Sulfurimonas may explain their thriving in hydrothermal environments and help to understand the ecological role of Sulfurimonas bacteria in hydrothermal ecosystems.
Collapse
Affiliation(s)
- Shasha Wang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Lijing Jiang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Qitao Hu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Liang Cui
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Bitong Zhu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Suping Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, China
| |
Collapse
|
5
|
Ma X, Huang X, Jiao Z, He L, Li Y, Ow DW. Overproduction of plant nuclear export signals enhances diamide tolerance in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2020; 531:335-340. [PMID: 32800339 DOI: 10.1016/j.bbrc.2020.07.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/26/2022]
Abstract
The nuclear export signal (NES) endows a protein nuclear export ability. Surprisingly, our previous study shows that just the NES peptide of Schizosaccharomyces pombe Oxs1 (SpOxs1NES) can confer diamide tolerance by competing with transcription factor Pap1 for nuclear transport. This finding intrigued us to test the function of NESs from heterologous organisms. The Arabidopsis thaliana zinc finger transcription factor OXIDATIVE STRESS 2 (AtOXS2) is a nucleocytoplasmic shuttling protein and nearly all OXS2 members from maize and rice contain an NES. In this study, we find that the plant OXS2 members and their C-terminus (AT3 peptide) can confer diamide tolerance due to their NESs, and amino acids in non-conserved as well as conserved positions are necessary for the diamide tolerance. As in SpOxs1NES, the enhanced tolerance to diamide in fission yeast depends on Pap1. Like SpOxs1NES, OXS2 family NESs appear to compete for nuclear transport of the Pap1-like Arabidopsis protein bZIP10, as when overproduced in Arabidopsis protoplasts, bZIP10 is retained in the nucleus.
Collapse
Affiliation(s)
- Xiaoling Ma
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xing Huang
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhengli Jiao
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lilong He
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongqing Li
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - David W Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
6
|
Comparative transcriptome analysis reveals candidate genes related to cadmium accumulation and tolerance in two almond mushroom (Agaricus brasiliensis) strains with contrasting cadmium tolerance. PLoS One 2020; 15:e0239617. [PMID: 32991614 PMCID: PMC7523953 DOI: 10.1371/journal.pone.0239617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal occurring in the environment naturally. Almond mushroom (Agaricus brasiliensis) is a well-known cultivated edible and medicinal mushroom. In the past few decades, Cd accumulation in A.brasiliensis has received increasing attention. However, the molecular mechanisms of Cd-accumulation in A. brasiliensis are still unclear. In this paper, a comparative transcriptome of two A.brasiliensis strains with contrasting Cd accumulation and tolerance was performed to identify Cd-responsive genes possibly responsible for low Cd-accumulation and high Cd-tolerance. Using low Cd-accumulating and Cd-tolerant (J77) and high Cd-accumulating and Cd-sensitive (J1) A.brasiliensis strains, we investigated 0, 2 and 5 mg L-1 Cd-effects on mycelium growth, Cd-accumulation and transcriptome revealed by RNA-Seq. A total of 57,884 unigenes were obtained. Far less Cd-responsive genes were identified in J77 mycelia than those in J1 mycelia (e.g., ABC transporters, ZIP Zn transporter, Glutathione S-transferase and Cation efflux (CE) family). The higher Cd-accumulation in J1 mycelia might be due to Cd-induced upregulation of ZIP Zn transporter. Cd impaired cell wall, cell cycle, DNA replication and repair, thus decreasing J1 mycelium growth. Cd-stimulated production of sulfur-containing compounds, polysaccharides, organic acids, trehalose, ATP and NADPH, and sequestration of Cd might be adaptive responses of J1 mycelia to the increased Cd-accumulation. DNA replication and repair had better stability under 2 mg L-1 Cd, but greater positive modifications under 5 mg L-1 Cd. Better stability of DNA replication and repair, better cell wall and cell cycle stability might account for the higher Cd-tolerance of J77 mycelia. Our findings provide a comprehensive set of DEGs influenced by Cd stress; and shed light on molecular mechanism of A.brasiliensis Cd accumulation and Cd tolerance.
Collapse
|
7
|
Friederich MW, Elias AF, Kuster A, Laugwitz L, Larson AA, Landry AP, Ellwood‐Digel L, Mirsky DM, Dimmock D, Haven J, Jiang H, MacLean KN, Styren K, Schoof J, Goujon L, Lefrancois T, Friederich M, Coughlin CR, Banerjee R, Haack TB, Van Hove JLK. Pathogenic variants in SQOR encoding sulfide:quinone oxidoreductase are a potentially treatable cause of Leigh disease. J Inherit Metab Dis 2020; 43:1024-1036. [PMID: 32160317 PMCID: PMC7484123 DOI: 10.1002/jimd.12232] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.
Collapse
Affiliation(s)
- Marisa W. Friederich
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColorado
| | - Abdallah F. Elias
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Alice Kuster
- Department of NeurometabolismUniversity Hospital of NantesNantesFrance
- INRAE, UMR1280, PhAN, Nantes UniversitéNantesFrance
| | - Lucia Laugwitz
- Institut für Medizinische Genetik und Angewandte GenomikUniversitätsklinikum, University of TübingenTübingenGermany
| | - Austin A. Larson
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Aaron P. Landry
- Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Logan Ellwood‐Digel
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - David M. Mirsky
- Department of RadiologyUniversity of Colorado, and Children's Hospital ColoradoAuroraColorado
| | - David Dimmock
- Rady Children's Institute for Genomic MedicineSan DiegoCalifornia
| | - Jaclyn Haven
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Hua Jiang
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Kenneth N. MacLean
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Katie Styren
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Jonathan Schoof
- Department of Medical GeneticsShodair Children's HospitalHelenaMontana
| | - Louise Goujon
- Department of NeurometabolismUniversity Hospital of NantesNantesFrance
- Service de Génétique CliniqueUniversity Hospital of RennesRennesFrance
| | | | - Maike Friederich
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Curtis R. Coughlin
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
| | - Ruma Banerjee
- Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| | - Tobias B. Haack
- INRAE, UMR1280, PhAN, Nantes UniversitéNantesFrance
- Centre for Rare DiseasesUniversity of TübingenTübingenGermany
| | - Johan L. K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of PediatricsUniversity of ColoradoAuroraColorado
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColorado
| |
Collapse
|
8
|
Lencina AM, Gennis RB, Schurig-Briccio LA. The oligomeric state of the Caldivirga maquilingensis type III sulfide:Quinone Oxidoreductase is required for membrane binding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148132. [PMID: 31816290 DOI: 10.1016/j.bbabio.2019.148132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Sulfide:quinone oxidoreductase (SQR) is a monotopic membrane flavoprotein present in all domains of life, with multiple roles including sulfide detoxification, homeostasis and energy generation by providing electrons to respiratory or photosynthetic electron transport chains. A type III SQR from the hyperthermophilic archeon Caldivirga maquilingensis has been previously characterized, and its C-terminal amphipathic helices were demonstrated to be responsible for membrane binding. Here, the oligomeric state of this protein was experimentally evaluated by size exclusion chromatography, native gels and crosslinking, and found to be a monomer-dimer-trimer equilibrium. Remarkably, mutant and truncated variants unable to bind to the membrane are able to maintain their oligomeric association. Thus, unlike other related monotopic membrane proteins, the region involved in membrane binding does not influence oligomerization. Furthermore, by studying heterodimers between the WT and mutants, it was concluded that membrane binding requires an oligomer with at least two copies of the protein with intact C-terminal amphipathic helices. A structural homology model of the C. maquilingensis SQR was used to define the flavin- and quinone-binding sites. CmGly12, CmGly16, CmAla77 and CmPro44 were determined to be important for flavin binding. Unexpectedly, CmGly299 is only important for quinone reduction despite its proximity to bound FAD. CmPhe337 and CmPhe362 are also important for quinone binding apparently by direct interaction with the quinone ring, whereas CmLys359, postulated to hydrogen bond to the quinone, seems to have a more structural role. The results presented differentiate the Type III CmSQR from some of its counterparts classified as Type I, II and V.
Collapse
Affiliation(s)
- Andrea M Lencina
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Lici A Schurig-Briccio
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Shen Y, Chen J, Shen W, Chen C, Lin Z, Li C. Molecular characterization of a novel sulfide:quinone oxidoreductase from the razor clam Sinonovacula constricta and its expression response to sulfide stress. Comp Biochem Physiol B Biochem Mol Biol 2020; 239:110367. [DOI: 10.1016/j.cbpb.2019.110367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/10/2019] [Accepted: 10/03/2019] [Indexed: 01/16/2023]
|
10
|
Duzs Á, Tóth A, Németh B, Balogh T, Kós PB, Rákhely G. A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria. Appl Microbiol Biotechnol 2018; 102:5133-5147. [PMID: 29680900 DOI: 10.1007/s00253-018-8973-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/23/2018] [Accepted: 03/28/2018] [Indexed: 11/24/2022]
Abstract
Sulfide detoxification can be catalyzed by ancient membrane-bound flavoproteins, sulfide:quinone oxidoreductases (Sqr), which have important roles in sulfide homeostasis and sulfide-dependent energy conservation processes by transferring electrons from sulfide to respiratory or photosynthetic membrane electron flow. Sqr enzymes have been categorized into six groups. Several members of the groups I, II, III, and V are well-known, but type IV and VI Sqrs are, as yet, uncharacterized or hardly characterized at all. Here, we report detailed characterization of a type VI sulfide:quinone oxidoreductase (TrSqrF) from a purple sulfur bacterium, Thiocapsa roseopersicina. Phylogenetic analysis classified this enzyme in a special group composed of SqrFs of endosymbionts, while a weaker relationship could be observed with SqrF of Chlorobaculum tepidum which is the only type VI enzyme characterized so far. Directed mutagenesis experiments showed that TrSqrF contributed substantially to the sulfide:quinone oxidoreductase activity of the membranes. Expression of the sqrF gene could be induced by sulfide. Homologous recombinant TrSqrF protein was expressed and purified from the membranes of a SqrF-deleted T. roseopersicina strain. The purified protein contains redox-active covalently bound FAD cofactor. The recombinant TrSqrF enzyme catalyzes sulfur-dependent quinone reduction and prefers ubiquinone-type quinone compounds. Kinetic parameters of TrSqrF show that the affinity of the enzyme is similar to duroquinone and decylubiquinone, but the reaction has substantially lower activation energy with decylubiquinone, indicating that the quinone structure has an effect on the catalytic process. TrSqrF enzyme affinity for sulfide is low, therefore, in agreement with the gene expressional analyis, SqrF could play a role in energy-conserving sulfide oxidation at high sulfide concentrations. TrSqrF is a good model enzyme for the subgroup of type VI Sqrs of endosymbionts and its characterization might provide deeper insight into the molecular details of the ancient, anoxic, energy-gaining processes using sulfide as an electron donor.
Collapse
Affiliation(s)
- Ágnes Duzs
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - András Tóth
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Brigitta Németh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Tímea Balogh
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Péter B Kós
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.,Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary. .,Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, Szeged, 6726, Hungary.
| |
Collapse
|
11
|
Sousa FM, Pereira JG, Marreiros BC, Pereira MM. Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:742-753. [PMID: 29684324 DOI: 10.1016/j.bbabio.2018.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfide (H2S) is a versatile molecule with different functions in living organisms: it can work as a metabolite of sulfur and energetic metabolism or as a signaling molecule in higher Eukaryotes. H2S is also highly toxic since it is able to inhibit heme cooper oxygen reductases, preventing oxidative phosphorylation. Due to the fact that it can both inhibit and feed the respiratory chain, the immediate role of H2S on energy metabolism crucially relies on its bioavailability, meaning that studying the central players involved in the H2S homeostasis is key for understanding sulfide metabolism. Two different enzymes with sulfide oxidation activity (sulfide dehydrogenases) are known: flavocytochrome c sulfide dehydrogenase (FCSD), a sulfide:cytochrome c oxidoreductase; and sulfide:quinone oxidoreductase (SQR). In this work we performed a thorough bioinformatic study of SQRs and FCSDs and integrated all published data. We systematized several properties of these proteins: (i) nature of flavin binding, (ii) capping loops and (iii) presence of key amino acid residues. We also propose an update to the SQR classification system and discuss the role of these proteins in sulfur metabolism.
Collapse
Affiliation(s)
- Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Juliana G Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal; University of Lisbon, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
12
|
Cytoplasmic Localization of Sulfide:Quinone Oxidoreductase and Persulfide Dioxygenase of Cupriavidus pinatubonensis JMP134. Appl Environ Microbiol 2017; 83:AEM.01820-17. [PMID: 28939597 DOI: 10.1128/aem.01820-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
Heterotrophic bacteria have recently been reported to oxidize sulfide to sulfite and thiosulfate by using sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO). In chemolithotrophic bacteria, both SQR and PDO have been reported to function in the periplasmic space, with SQR as a peripheral membrane protein whose C terminus inserts into the cytoplasmic membrane and PDO as a soluble protein. Cupriavidus pinatubonensis JMP134, best known for its ability to degrade 2,4-dichlorophenoxyacetic acid and other aromatic pollutants, has a gene cluster of sqr and pdo encoding C. pinatubonensis SQR (CpSQR) and CpPDO2. When cloned in Escherichia coli, the enzymes are functional. Here we investigated whether they function in the periplasmic space or in the cytoplasm in heterotrophic bacteria. By using sequence analysis, biochemical detection, and green fluorescent protein (GFP)/PhoA fusion proteins, we found that CpSQR was located on the cytoplasmic side of the membrane and CpPDO2 was a soluble protein in the cytoplasm with a tendency to be peripherally located near the membrane. The location proximity of these proteins near the membrane in the cytoplasm may facilitate sulfide oxidation in heterotrophic bacteria. The information may guide the use of heterotrophic bacteria in bioremediation of organic pollutants as well as H2S.IMPORTANCE Sulfide (H2S, HS-, and S2-), which is common in natural gas and wastewater, causes a serious malodor at low levels and is deadly at high levels. Microbial oxidation of sulfide is a valid bioremediation method, in which chemolithotrophic bacteria that use sulfide as the energy source are often used to remove sulfide. Heterotrophic bacteria with SQR and PDO have recently been reported to oxidize sulfide to sulfite and thiosulfate. Cupriavidus pinatubonensis JMP134 has been extensively characterized for its ability to degrade organic pollutants, and it also contains SQR and PDO. This paper shows the localization of SQR and PDO inside the cytoplasm in the vicinity of the membrane. The information may provide guidance for using heterotrophic bacteria in sulfide bioremediation.
Collapse
|
13
|
Quinzii CM, Luna-Sanchez M, Ziosi M, Hidalgo-Gutierrez A, Kleiner G, Lopez LC. The Role of Sulfide Oxidation Impairment in the Pathogenesis of Primary CoQ Deficiency. Front Physiol 2017; 8:525. [PMID: 28790927 PMCID: PMC5525000 DOI: 10.3389/fphys.2017.00525] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/07/2017] [Indexed: 11/23/2022] Open
Abstract
Coenzyme Q (CoQ) is a lipid present in all cell membranes. One of the multiple metabolic functions of CoQ is to transport electrons in the reaction catalyzed by sulfide:quinone oxidoreductase (SQOR), the first enzyme of the oxidation pathway of sulfides (hydrogen sulfide, H2S). Early evidence of a defect in the metabolism of H2S in primary CoQ deficiency came from yeast studies in Schizosaccharomyces pombe strains defective for dps1 and ppt1 (homologs of PDSS1 and COQ2, respectively), which have H2S accumulation. Our recent studies in human skin fibroblasts and in murine models of primary CoQ deficiency show that, also in mammals, decreased CoQ levels cause impairment of H2S oxidation. Patient fibroblasts carrying different mutations in genes encoding proteins involved in CoQ biosynthesis show reduced SQOR activity and protein levels proportional to the levels of CoQ. In Pdss2kd/kd mice, kidney, the only organ clinically affected, shows reduced SQOR levels and downstream enzymes, accumulation of H2S, and glutathione depletion. Pdss2kd/kd mice have also low levels of thiosulfate in plasma and urine, and increased C4–C6 acylcarnitines in blood, due to inhibition of short-chain acyl-CoA dehydrogenase. Also in Coq9R239X mice, the symptomatic organ, cerebrum, shows accumulation of H2S, reduced SQOR, increase in thiosulfate sulfurtransferase and sulfite oxidase, and reduction in the levels of glutathione and glutathione enzymes, leading to alteration of the biosynthetic pathways of glutamate, serotonin, and catecholamines. Coq9R239X mice have also reduced blood pressure, possible consequence of H2S-induced vasorelaxation. Since liver is not clinically affected in Pdss2 and Coq9 mutant mice, the effects of the impairment of H2S oxidation in this organ were not investigated, despite its critical role in metabolism. In conclusion, in vitro and in vivo studies of CoQ deficient models provide evidence of tissue-specific H2S oxidation impairment, an additional pathomechanism that should be considered in the understanding and treatment of primary CoQ deficiency.
Collapse
Affiliation(s)
- Catarina M Quinzii
- Department of Neurology, Columbia University Medical CenterNew York, NY, United States
| | - Marta Luna-Sanchez
- Department of Physiology, Faculty of Medicine, University of GranadaGranada, Spain.,MRC Mitochondrial Biology UnitCambridge, United Kingdom
| | - Marcello Ziosi
- Department of Neurology, Columbia University Medical CenterNew York, NY, United States
| | | | - Giulio Kleiner
- Department of Neurology, Columbia University Medical CenterNew York, NY, United States
| | - Luis C Lopez
- Department of Physiology, Faculty of Medicine, University of GranadaGranada, Spain
| |
Collapse
|
14
|
Shen J, Peng H, Zhang Y, Trinidad JC, Giedroc DP. Staphylococcus aureus sqr Encodes a Type II Sulfide:Quinone Oxidoreductase and Impacts Reactive Sulfur Speciation in Cells. Biochemistry 2016; 55:6524-6534. [PMID: 27806570 DOI: 10.1021/acs.biochem.6b00714] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies implicate hydrogen sulfide (H2S) oxidation as an important aspect of bacterial antibiotic resistance and sulfide homeostasis. The cst operon of the major human pathogen Staphylococcus aureus is induced by exogenous H2S stress and encodes enzymes involved in sulfide oxidation, including a group I flavoprotein disulfide oxidoreductase sulfide:quinone oxidoreductase (SQR). In this work, we show that S. aureus SQR catalyzes the two-electron oxidation of sodium sulfide (Na2S) into sulfane sulfur (S0) when provided flavin adenine dinucleotide and a water-soluble quinone acceptor. Cyanide, sulfite, and coenzyme A (CoA) are all capable of functioning as the S0 acceptor in vitro. This activity requires a C167-C344 disulfide bond in the resting enzyme, with the intermediacy of a C344 persulfide in the catalytic cycle, verified by mass spectrometry of sulfide-reacted SQR. Incubation of purified SQR and S. aureus CstB, a known FeII persulfide dioxygenase-sulfurtransferase also encoded by the cst operon, yields thiosulfate from sulfide, in a CoA-dependent manner, thus confirming the intermediacy of CoASSH as a product and substrate of SQR and CstB, respectively. Sulfur metabolite profiling of wild-type, Δsqr, and Δsqr::pSQR strains reveals a marked and specific elevation in endogenous levels of CoASSH and inorganic tetrasulfide in the Δsqr strain. We conclude that SQR impacts the cellular speciation of these reactive sulfur species but implicates other mechanisms not dependent on SQR in the formation of low-molecular weight thiol persulfides and inorganic polysulfides during misregulation of sulfide homeostasis.
Collapse
Affiliation(s)
- Jiangchuan Shen
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Biochemistry Graduate Program, Indiana University , Bloomington, Indiana 47405, United States
| | - Hui Peng
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Biochemistry Graduate Program, Indiana University , Bloomington, Indiana 47405, United States
| | - Yixiang Zhang
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Laboratory for Biological Mass Spectrometry, Indiana University , Bloomington, Indiana 47405, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Laboratory for Biological Mass Spectrometry, Indiana University , Bloomington, Indiana 47405, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Department of Molecular and Cellular Biochemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Rose P, Moore PK, Zhu YZ. H 2S biosynthesis and catabolism: new insights from molecular studies. Cell Mol Life Sci 2016; 74:1391-1412. [PMID: 27844098 PMCID: PMC5357297 DOI: 10.1007/s00018-016-2406-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/07/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissues.
Collapse
Affiliation(s)
- Peter Rose
- School of Life Science, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.
| | - Philip K Moore
- Department of Pharmacology, National University of Singapore, Lee Kong Chian Wing, UHL #05-02R, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
16
|
Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:3317-3333. [PMID: 27558664 PMCID: PMC5068951 DOI: 10.1534/g3.116.033829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.
Collapse
|
17
|
Rodriguez-Mora MJ, Edgcomb VP, Taylor C, Scranton MI, Taylor GT, Chistoserdov AY. The Diversity of Sulfide Oxidation and Sulfate Reduction Genes Expressed by the Bacterial Communities of the Cariaco Basin, Venezuela. Open Microbiol J 2016; 10:140-9. [PMID: 27651847 PMCID: PMC5012083 DOI: 10.2174/1874285801610010140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 12/15/2015] [Accepted: 01/29/2016] [Indexed: 11/22/2022] Open
Abstract
Qualitative expression of dissimilative sulfite reductase (dsrA), a key gene in sulfate reduction, and sulfide:quinone oxidoreductase (sqr), a key gene in sulfide oxidation was investigated. Neither of the two could be amplified from mRNA retrieved with Niskin bottles but were amplified from mRNA retrieved by the Deep SID. The sqr and sqr-like genes retrieved from the Cariaco Basin were related to the sqr genes from a Bradyrhizobium sp., Methylomicrobium alcaliphilum, Sulfurovum sp. NBC37-1, Sulfurimonas autotrophica, Thiorhodospira sibirica and Chlorobium tepidum. The dsrA gene sequences obtained from the redoxcline of the Cariaco Basin belonged to chemoorganotrophic and chemoautotrophic sulfate and sulfur reducers belonging to the class Deltaproteobacteria (phylum Proteobacteria) and the order Clostridiales (phylum Firmicutes).
Collapse
Affiliation(s)
- Maria J Rodriguez-Mora
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504, USA
| | - Virginia P Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
| | - Craig Taylor
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA
| | - Mary I Scranton
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11794, USA
| | - Andrei Y Chistoserdov
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504, USA
| |
Collapse
|
18
|
Shuman KE, Hanson TE. A sulfide:quinone oxidoreductase from Chlorobaculum tepidum displays unusual kinetic properties. FEMS Microbiol Lett 2016; 363:fnw100. [PMID: 27190141 DOI: 10.1093/femsle/fnw100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Sulfide:quinone oxidoreductase (SQR) is the primary sulfide-oxidizing enzyme found in all three domains of life. Of the six phylogenetically distinct types of SQR, four have representatives that have been biochemically characterized. The genome of Chlorobaculum tepidum encodes three SQR homologs. One of these, encoded by CT1087, is a type VI SQR that has been previously shown to be required for growth at high sulfide concentrations and to be expressed in sulfide-dependent manner. Therefore, CT1087 was hypothesized to be a high sulfide adapted SQR. CT1087 was expressed in Escherichia coli with an N-terminal His-tag (CT1087NHis6) and purified by Ni-NTA chromatography. CT1087NHis6 was active and contained FAD as a strongly bound cofactor. The measured kinetic parameters for CT1087NHis6 indicate a low affinity for sulfide and a high enzymatic turnover rate consistent with the hypothesis for its function inferred from genetic and expression data. These are the first kinetic data for a type VI SQR and have implications for structure-function analyses of all SQR's.
Collapse
Affiliation(s)
- Kevin E Shuman
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Thomas E Hanson
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA School of Marine Science and Policy, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
19
|
Sulfide Consumption in Sulfurimonas denitrificans and Heterologous Expression of Its Three Sulfide-Quinone Reductase Homologs. J Bacteriol 2016; 198:1260-7. [PMID: 26833414 DOI: 10.1128/jb.01021-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Sulfurimonas denitrificans is a sulfur-oxidizing epsilonproteobacterium. It has been reported to grow with sulfide and to harbor genes that encode sulfide-quinone reductases (SQRs) (catalyze sulfide oxidation). However, the actual sulfide concentrations at which S. denitrificans grows and whether its SQRs are functional remain enigmatic. Here, we illustrate the sulfide concentrations at which S. denitrificans exhibits good growth, namely, 0.18 mM to roughly 1.7 mM. Around 2.23 mM, sulfide appears to inhibit growth. S. denitrificans harbors three SQR homolog genes on its genome (Suden_2082 for type II SQR, Suden_1879 for type III SQR, and Suden_619 for type IV SQR). They are all transcribed in S. denitrificans. According to our experiments, they appear to be loosely bound to the membrane. Each individual S. denitrificans SQR was heterologously expressed in the Rhodobacter capsulatus SB1003 sqr deletion mutant, and all exhibited SQR activities individually. This suggests that all of these three genes encode functional SQRs. This study also provides the first experimental evidence of a functional bacterial type III SQR. IMPORTANCE Although the epsilonproteobacterium Sulfurimonas denitrificans has been described as using many reduced sulfur compounds as electron donors, there is little knowledge about its growth with sulfide. In many bacteria, the sulfide-quinone reductase (SQR) is responsible for catalyzing sulfide oxidation. S. denitrificans has an array of different types of sqr genes on its genome and so do several other sulfur-oxidizing Epsilonproteobacteria. However, whether these SQRs are functional has remained unknown. Here, we shed light on sulfide metabolism in S. denitrificans. Our study provides the first experimental evidence of active epsilonproteobacterial SQRs and also gives the first report of a functional bacterial type III SQR.
Collapse
|
20
|
Pluskal T, Sajiki K, Becker J, Takeda K, Yanagida M. Diverse fission yeast genes required for responding to oxidative and metal stress: Comparative analysis of glutathione-related and other defense gene deletions. Genes Cells 2016; 21:530-42. [PMID: 27005325 DOI: 10.1111/gtc.12359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/22/2016] [Indexed: 12/25/2022]
Abstract
Living organisms have evolved multiple sophisticated mechanisms to deal with reactive oxygen species. We constructed a collection of twelve single-gene deletion strains of the fission yeast Schizosaccharomyces pombe designed for the study of oxidative and heavy metal stress responses. This collection contains deletions of biosynthetic enzymes of glutathione (Δgcs1 and Δgsa1), phytochelatin (Δpcs2), ubiquinone (Δabc1) and ergothioneine (Δegt1), as well as catalase (Δctt1), thioredoxins (Δtrx1 and Δtrx2), Cu/Zn- and Mn- superoxide dismutases (SODs; Δsod1 and Δsod2), sulfiredoxin (Δsrx1) and sulfide-quinone oxidoreductase (Δhmt2). First, we employed metabolomic analysis to examine the mutants of the glutathione biosynthetic pathway. We found that ophthalmic acid was produced by the same enzymes as glutathione in S. pombe. The identical genetic background of the strains allowed us to assess the severity of the individual gene knockouts by treating the deletion strains with oxidative agents. Among other results, we found that glutathione deletion strains were not particularly sensitive to peroxide or superoxide, but highly sensitive to cadmium stress. Our results show the astonishing diversity in cellular adaptation mechanisms to various types of oxidative and metal stress and provide a useful tool for further research into stress responses.
Collapse
Affiliation(s)
- Tomáš Pluskal
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Kenichi Sajiki
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Joanne Becker
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| | - Kojiro Takeda
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Okinawa, Japan
| |
Collapse
|
21
|
El-Baz AF, Sorour NM, Shetaia YM. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles. J Basic Microbiol 2015; 56:520-30. [PMID: 26467054 DOI: 10.1002/jobm.201500275] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/26/2015] [Indexed: 11/09/2022]
Abstract
Cadmium sulphide is one of the most promising materials for solar cells and of great interest due to its useful applications in photonics and electronics, thus the development of bio-mediated synthesis of cadmium sulphide nanoparticles (CdS NPs) is one of the essential areas in nanoparticles. The present study demonstrates for the first time the eco-friendly biosynthesis of CdS NPs using the yeast Trichosporon jirovecii. The biosynthesis of CdS NPs were confirmed by UV-Vis spectrum and characterized by X-ray diffraction assay and electron microscopy. Scanning and transmission electron microscope analyses shows the formation of spherical CdS NPs with a size range of about 6-15 nm with a mean Cd:S molar ratio of 1.0:0.98. T. jirovecii produced hydrogen sulfide on cysteine containing medium confirmed by positive cysteine-desulfhydrase activity and the colony color turned yellow on 0.1 mM cadmium containing medium. T. jirovecii tolerance to cadmium was increased by the UV treatment and three 0.6 mM cadmium tolerant mutants were generated upon the UV radiation treatment. The overall results indicated that T. jirovecii could tolerate cadmium toxicity by its conversion into CdS NPs on cysteine containing medium using cysteine-desulfhydrase as a defense response mechanism.
Collapse
Affiliation(s)
- Ashraf Farag El-Baz
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Noha Mohamed Sorour
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | | |
Collapse
|
22
|
Han Y, Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol 2015; 6:989. [PMID: 26441918 PMCID: PMC4584964 DOI: 10.3389/fmicb.2015.00989] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/04/2015] [Indexed: 01/11/2023] Open
Abstract
Sulfurimonas species are commonly isolated from sulfidic habitats and numerous 16S rRNA sequences related to Sulfurimonas species have been identified in chemically distinct environments, such as hydrothermal deep-sea vents, marine sediments, the ocean's water column, and terrestrial habitats. In some of these habitats, Sulfurimonas have been demonstrated to play an important role in chemoautotrophic processes. Sulfurimonas species can grow with a variety of electron donors and acceptors, which may contribute to their widespread distribution. Multiple copies of one type of enzyme (e.g., sulfide:quinone reductases and hydrogenases) may play a pivotal role in Sulfurimonas' flexibility to colonize disparate environments. Many of these genes appear to have been acquired through horizontal gene transfer which has promoted adaptations to the distinct habitats. Here we summarize Sulfurimonas' versatile energy metabolisms and link their physiological properties to their global distribution.
Collapse
Affiliation(s)
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| |
Collapse
|
23
|
Jin HS, Kim J, Park S, Park E, Kim BY, Choi VN, Yoo YH, Kim BT, Jeong SY. Association of the I264T variant in the sulfide quinone reductase-like (SQRDL) gene with osteoporosis in Korean postmenopausal women. PLoS One 2015; 10:e0135285. [PMID: 26258864 PMCID: PMC4530967 DOI: 10.1371/journal.pone.0135285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 01/21/2023] Open
Abstract
To identify novel susceptibility variants for osteoporosis in Korean postmenopausal women, we performed a genome-wide association analysis of 1180 nonsynonymous single nucleotide polymorphisms (nsSNPs) in 405 individuals with osteoporosis and 722 normal controls of the Korean Association Resource cohort. A logistic regression analysis revealed 72 nsSNPs that showed a significant association with osteoporosis (p<0.05). The top 10 nsSNPs showing the lowest p-values (p = 5.2×10-4-8.5×10-3) were further studied to investigate their effects at the protein level. Based on the results of an in silico prediction of the protein's functional effect based on amino acid alterations and a sequence conservation evaluation of the amino acid residues at the positions of the nsSNPs among orthologues, we selected one nsSNP in the SQRDL gene (rs1044032, SQRDL I264T) as a meaningful genetic variant associated with postmenopausal osteoporosis. To assess whether the SQRDL I264T variant played a functional role in the pathogenesis of osteoporosis, we examined the in vitro effect of the nsSNP on bone remodeling. Overexpression of the SQRDL I264T variant in the preosteoblast MC3T3-E1 cells significantly increased alkaline phosphatase activity, mineralization, and the mRNA expression of osteoblastogenesis markers, Runx2, Sp7, and Bglap genes, whereas the SQRDL wild type had no effect or a negative effect on osteoblast differentiation. Overexpression of the SQRDL I264T variant did not affect osteoclast differentiation of the primary-cultured monocytes. The known effects of hydrogen sulfide (H2S) on bone remodeling may explain the findings of the current study, which demonstrated the functional role of the H2S-catalyzing enzyme SQRDL I264T variant in osteoblast differentiation. In conclusion, the results of the statistical and experimental analyses indicate that the SQRDL I264T nsSNP may be a significant susceptibility variant for osteoporosis in Korean postmenopausal women that is involved in osteoblast differentiation.
Collapse
Affiliation(s)
- Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Republic of Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Sangwook Park
- Department of Biomedical Laboratory Science, College of Health, Kyungwoon University, Gumi, Republic of Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Bo-Young Kim
- Division of Intractable Disease, Center for Biomedical Sciences, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju, Republic of Korea
| | - Vit-Na Choi
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Young-Hyun Yoo
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Bom-Taeck Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
24
|
Jackson MR, Melideo SL, Jorns MS. Role of human sulfide: quinone oxidoreductase in H2S metabolism. Methods Enzymol 2015; 554:255-70. [PMID: 25725526 DOI: 10.1016/bs.mie.2014.11.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first step in the mammalian metabolism of H2S is catalyzed by sulfide:quinone oxidoreductase (SQOR). Human SQOR is an integral membrane protein, which presumably interacts with the inner mitochondrial membrane in a monotopic fashion. The enzyme is a member of a family of flavoprotein disulfide oxidoreductases (e.g., glutathione reductase) that utilize a Cys-S-S-Cys disulfide bridge as an additional redox center. SQOR catalyzes a two-electron oxidation of H2S to sulfane sulfur using coenzyme Q as electron acceptor. The enzyme also requires a third substrate to act as the acceptor of the sulfane sulfur from a cysteine persulfide intermediate. Here, we describe a method for the bacterial expression of human SQOR as a catalytically active membrane-bound protein, procedures for solubilization and purification of the recombinant protein to >95% homogeneity, and spectrophotometric assays to monitor SQOR-mediated H2S oxidation in reactions with different sulfane sulfur acceptors.
Collapse
Affiliation(s)
- Michael R Jackson
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Scott L Melideo
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Marilyn Schuman Jorns
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
25
|
Tsuchiya M, Toyofuku T, Uematsu K, Brüchert V, Collen J, Yamamoto H, Kitazato H. Cytologic and Genetic Characteristics of Endobiotic Bacteria and Kleptoplasts of Virgulinella fragilis (Foraminifera). J Eukaryot Microbiol 2015; 62:454-69. [PMID: 25510528 DOI: 10.1111/jeu.12200] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
The benthic foraminifer Virgulinella fragilis Grindell and Collen 1976 has multiple putative symbioses with both bacterial and kleptoplast endobionts, possibly aiding its survival in environments from dysoxia (5-45 μmol-O2 /L) to microxia (0-5 μmol-O2 /L) and in the dark. To clarify the origin and function of V. fragilis endobionts, we used genetic analyses and transmission electron microscope observations. Virgulinella fragilis retained δ-proteobacteria concentrated at its cell periphery just beneath the cell membranes. Unlike another foraminifer Stainforthia spp., which retains many bacterial species, V. fragilis has a less variable bacterial community. This suggests that V. fragilis maintains a specific intracellular bacterial flora. Unlike the endobiotic bacteria, V. fragilis klepto-plasts originated from various diatom species and are found in the interior cytoplasm. We found evidence of both retention and digestion of kleptoplasts, and of fragmentation of the kleptoplastid outer membrane that likely facilitates transport of kleptoplastid products to the host. Accumulations of mitochondria were observed encircling endobiotic bacteria. It is likely that the bacteria use host organic material for carbon oxidation. The mitochondria may use oxygen available around the δ-proteobacteria and synthesize adenosine triphosphate, perhaps for sulfide oxidation.
Collapse
Affiliation(s)
- Masashi Tsuchiya
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Takashi Toyofuku
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Katsuyuki Uematsu
- Marine Works Japan, Ltd, 3-54-1 Oppamahigashi-cho, Yokosuka, Kanagawa, 237-0036, Japan
| | - Volker Brüchert
- Department of Geology and Geochemistry, Stockholm University, Svante Arrhenius väg 8C, 10691, Stockholm, Sweden
| | - John Collen
- School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Hiroyuki Yamamoto
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Hiroshi Kitazato
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| |
Collapse
|
26
|
Zhang Y, Weiner JH. Characterization of the kinetics and electron paramagnetic resonance spectroscopic properties of Acidithiobacillus ferrooxidans sulfide:quinone oxidoreductase (SQR). Arch Biochem Biophys 2014; 564:110-9. [PMID: 25303790 DOI: 10.1016/j.abb.2014.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022]
Abstract
Acidithiobacillus ferrooxidans sulfide:quinone oxidoreductase (SQR) catalyzes the oxidation of sulfide to polysulfide chains or elemental sulfur coupled to quinone reduction via a non-covalent FAD cofactor. We investigated the role of the FAD using kinetics and EPR spectroscopy. The properties of the enzyme were compared with alanine and/or serine variants of conserved cysteine residues (Cys128, Cys160, Cys356) structurally close to the FAD cofactor and histidine residues (His132, His198) implicated in function. When the pre-steady state reduction of FAD was monitored, variants of Cys128 and His132 had similar rates to wild-type enzyme confirming they do not participate in the reductive half reaction whereas variants of Cys160, Cys356 and His198 had greatly reduced activity. Using steady state kinetics of Na2S-dependent decylubiquinone (DUQ) reduction we measured a kcat of 6.5s(-1) and a Km (Na2S) of 3.0μM and a Km (DUQ) of 3.4μM. Variants of Cys160, Cys356 and His198 had greatly diminished DUQ reduction activity whereas variants of Cys128 and His132 were less affected. A neutral flavin semiquinone was observed in the EPR spectrum of SQR reduced with Na2S which was enhanced in the Cys160Ala variant suggesting the presence of a Cys356-S(γ)-S-C(4A)-FAD adduct. Potentiometric titrations of the FAD semiquinone revealed an Em of -139±4mV at pH 7.0.
Collapse
Affiliation(s)
- Yanfei Zhang
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joel H Weiner
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
27
|
The vertebrate homologue of sulfide-quinone reductase in mammalian mitochondria. Cell Tissue Res 2014; 358:779-92. [DOI: 10.1007/s00441-014-1983-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
|
28
|
Coregulated genes link sulfide:quinone oxidoreductase and arsenic metabolism in Synechocystis sp. strain PCC6803. J Bacteriol 2014; 196:3430-40. [PMID: 25022856 DOI: 10.1128/jb.01864-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the biogeochemistry of the two environmentally hazardous compounds arsenic and sulfide has been extensively investigated, the biological interference of these two toxic but potentially energy-rich compounds has only been hypothesized and indirectly proven. Here we provide direct evidence for the first time that in the photosynthetic model organism Synechocystis sp. strain PCC6803 the two metabolic pathways are linked by coregulated genes that are involved in arsenic transport, sulfide oxidation, and probably in sulfide-based alternative photosynthesis. Although Synechocystis sp. strain PCC6803 is an obligate photoautotrophic cyanobacterium that grows via oxygenic photosynthesis, we discovered that specific genes are activated in the presence of sulfide or arsenite to exploit the energy potentials of these chemicals. These genes form an operon that we termed suoRSCT, located on a transposable element of type IS4 on the plasmid pSYSM of the cyanobacterium. suoS (sll5036) encodes a light-dependent, type I sulfide:quinone oxidoreductase. The suoR (sll5035) gene downstream of suoS encodes a regulatory protein that belongs to the ArsR-type repressors that are normally involved in arsenic resistance. We found that this repressor has dual specificity, resulting in 200-fold induction of the operon upon either arsenite or sulfide exposure. The suoT gene encodes a transmembrane protein similar to chromate transporters but in fact functioning as an arsenite importer at permissive concentrations. We propose that the proteins encoded by the suoRSCT operon might have played an important role under anaerobic, reducing conditions on primordial Earth and that the operon was acquired by the cyanobacterium via horizontal gene transfer.
Collapse
|
29
|
Iwaki T, Fujita Y, Tanaka N, Giga-Hama Y, Takegawa K. Mitochondrial ABC Transporter Atm1p Is Required for Protection against Oxidative Stress and Vacuolar Functions inSchizosaccharomyces pombe. Biosci Biotechnol Biochem 2014; 69:2109-16. [PMID: 16306692 DOI: 10.1271/bbb.69.2109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A potential correlation between mitochondrial and vacuolar functions is known to exit in yeast. Fission yeast atm1(+), SPAC15A10.01, encodes a putative half-type ABC transporter with an N-terminal mitochondrial-targeting signal. In an attempt to evaluate the possible involvement of mitochondrion in vacuole function, a functional analysis of atm1(+) was performed by gene disruption. Growth of the atm1 mutant was inhibited in the presence of oxidizing agents, and S. cerevisiae Atm1p was found to complement this growth defect. atm1Delta cells exhibited defects in fluid-phase endocytosis and vacuolar fusion under hypotonic stress. GFP-tagged Atm1p was observed to be localized in the mitochondria. These data strongly suggest that fission yeast Atm1p was not only involved in protection against oxidative stress, but also played a role in vacuolar functions.
Collapse
Affiliation(s)
- Tomoko Iwaki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Japan
| | | | | | | | | |
Collapse
|
30
|
Bauzá A, Quiñonero D, Deyà PM, Frontera A. On the importance of anion-π interactions in the mechanism of sulfide:quinone oxidoreductase. Chem Asian J 2013; 8:2708-13. [PMID: 23907989 DOI: 10.1002/asia.201300786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 12/26/2022]
Abstract
Sulfide:quinone oxidoreductase (SQR) is a flavin-dependent enzyme that plays a physiological role in two important processes. First, it is responsible for sulfide detoxification by oxidizing sulfide ions (S(2-) and HS(-)) to elementary sulfur and the electrons are first transferred to flavin adenine dinucleotide (FAD), which in turn passes them to the quinone pool in the membrane. Second, in sulfidotrophic bacteria, SQRs play a key role in the sulfide-dependent respiration and anaerobic photosynthesis, deriving energy for their growth from reduced sulfur. Two mechanisms of action for SQR have been proposed: first, nucleophilic attack of a Cys residue on the C4 of FAD, and second, an alternate anionic radical mechanism by direct electron transfer from Cys to the isoalloxazine ring of FAD. Both mechanisms involve a common anionic intermediate that it is stabilized by a relevant anion-π interaction and its previous formation (from HS(-) and Cys-S-S-Cys) is also facilitated by reducing the transition-state barrier, owing to an interaction that involves the π system of FAD. By analyzing the X-ray structures of SQRs available in the Protein Data Bank (PDB) and using DFT calculations, we demonstrate the relevance of the anion-π interaction in the enzymatic mechanism.
Collapse
Affiliation(s)
- Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain), Fax: (+34) 971-173498
| | | | | | | |
Collapse
|
31
|
Lencina AM, Ding Z, Schurig-Briccio LA, Gennis RB. Characterization of the Type III sulfide:quinone oxidoreductase from Caldivirga maquilingensis and its membrane binding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:266-75. [PMID: 23103448 DOI: 10.1016/j.bbabio.2012.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/17/2012] [Accepted: 10/19/2012] [Indexed: 11/28/2022]
Abstract
Sulfide:quinone oxidoreductases (SQRs) are ubiquitous enzymes which have multiple roles: sulfide detoxification, energy generation by providing electrons to respiratory or photosynthetic electron transfer chains, and sulfide homeostasis. A recent structure-based classification defines 6 groups of putative SQRs (I-VI), and representatives of all but group III have been confirmed to have sulfide oxidase activity. In the current work, we report the first characterization of a predicted group III SQR from Caldivirga maquilingensis, and confirm that this protein is a sulfide oxidase. The gene encoding the enzyme was cloned, and the protein was expressed in E. coli and purified. The enzyme oxidizes sulfide using decylubiquinone as an electron acceptor, and is inhibited by aurachin C and iodoacetamide. Analysis of the amino acid sequence indicates that the C. maquilingensis SQR has two amphiphilic helices at the C-terminus but lacks any transmembrane helices. This suggests that C. maquilingensis SQR interacts with the membrane surface and that the interactions are mediated by the C-terminal amphiphilic helices. Mutations within the last C-terminal amphiphilic helix resulted in a water-soluble form of the enzyme which, remarkably, retains full SQR activity using decylubiquinone as the electron acceptor. Mutations at one position, L379, also located in the C-terminal amphiphilic helix, inactivated the enzyme by preventing the interaction with decylubiquinone. It is concluded that the C-terminal amphiphilic helix is important for membrane binding and for forming part of the pathway providing access of the quinone substrate to the protein-bound flavin at the enzyme active site.
Collapse
Affiliation(s)
- Andrea M Lencina
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
32
|
Jackson MR, Melideo SL, Jorns MS. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 2012; 51:6804-15. [PMID: 22852582 DOI: 10.1021/bi300778t] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sulfide:quinone oxidoreductase (SQOR) is a membrane-bound enzyme that catalyzes the first step in the mitochondrial metabolism of H(2)S. Human SQOR is successfully expressed at low temperature in Escherichia coli by using an optimized synthetic gene and cold-adapted chaperonins. Recombinant SQOR contains noncovalently bound FAD and catalyzes the two-electron oxidation of H(2)S to S(0) (sulfane sulfur) using CoQ(1) as an electron acceptor. The prosthetic group is reduced upon anaerobic addition of H(2)S in a reaction that proceeds via a long-wavelength-absorbing intermediate (λ(max) = 673 nm). Cyanide, sulfite, or sulfide can act as the sulfane sulfur acceptor in reactions that (i) exhibit pH optima at 8.5, 7.5, or 7.0, respectively, and (ii) produce thiocyanate, thiosulfate, or a putative sulfur analogue of hydrogen peroxide (H(2)S(2)), respectively. Importantly, thiosulfate is a known intermediate in the oxidation of H(2)S by intact animals and the major product formed in glutathione-depleted cells or mitochondria. Oxidation of H(2)S by SQOR with sulfite as the sulfane sulfur acceptor is rapid and highly efficient at physiological pH (k(cat)/K(m,H(2)S) = 2.9 × 10(7) M(-1) s(-1)). A similar efficiency is observed with cyanide, a clearly artificial acceptor, at pH 8.5, whereas a 100-fold lower value is seen with sulfide as the acceptor at pH 7.0. The latter reaction is unlikely to occur in healthy individuals but may become significant under certain pathological conditions. We propose that sulfite is the physiological acceptor of the sulfane sulfur and that the SQOR reaction is the predominant source of the thiosulfate produced during H(2)S oxidation by mammalian tissues.
Collapse
Affiliation(s)
- Michael R Jackson
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
33
|
Structure-activity characterization of sulfide:quinone oxidoreductase variants. J Struct Biol 2012; 178:319-28. [PMID: 22542586 DOI: 10.1016/j.jsb.2012.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 11/22/2022]
Abstract
Sulfide:quinone oxidoreductase (SQR) is a peripheral membrane protein that catalyzes the oxidation of sulfide species to elemental sulfur. The enzymatic reaction proceeds in two steps. The electrons from sulfides are transferred first to the enzyme cofactor, FAD, which, in turn, passes them onto the quinone pool in the membrane. Several wild-type SQR structures have been reported recently. However, the enzymatic mechanism of SQR has not been fully delineated. In order to understand the role of the catalytically essential residues in the enzymatic mechanism of SQR we produced a number of variants of the conserved residues in the catalytic site including the cysteine triad of SQR from the acidophilic, chemolithotrophic bacterium Acidithiobacillus ferrooxidans. These were structurally characterized and their activities for each reaction step were determined. In addition, the crystal structures of the wild-type SQR with sodium selenide and gold(I) cyanide have been determined. Previously we proposed a mechanism for the reduction of sulfides to elemental sulfur involving nucleophilic attack of Cys356 on C(4A) atom of FAD. Here we also consider an alternative anionic radical mechanism by direct electron transfer from Cys356 to the isoalloxazine ring of FAD.
Collapse
|
34
|
Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Ackermann M, Kubitza M, Maier K, Brawanski A, Hauska G, Piña AL. The vertebrate homolog of sulfide-quinone reductase is expressed in mitochondria of neuronal tissues. Neuroscience 2011; 199:1-12. [PMID: 22067608 DOI: 10.1016/j.neuroscience.2011.10.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 12/24/2022]
Abstract
Hydrogen sulfide (H₂S) can be consumed by both invertebrates and vertebrates as an inorganic substrate. The pathway metabolizing H₂S probably involves three mitochondrial enzymes, one of which is sulfide-quinone oxidoreductase (SQR), known as sulfide-quinone reductase-like protein (SQRDL) in vertebrates. Evidence from fission yeast suggests that SQR might have a role in regulating sulfide levels in the cell. Regulation might be essential for H₂S to act as a gaseous transmitter (gasotransmitter). The brain is an organ with high activity of gasotransmitters, like nitric oxide (NO) and H₂S, which are known to affect synaptic transmission. In this study, we provide evidence that SQRDL is expressed in the mammalian brain. Real-time polymerase chain reaction (PCR) showed an increase in the number of Sqrdl transcripts in the brain with increasing age. Cellular fractionation and subsequent analysis by Western blotting indicated that the protein is located in mitochondria, which is the site of sulfide consumption in the cell. With an immunohistochemical approach, we demonstrated that the SQRDL protein is expressed in neurons, oligodendrocytes, and endothelial cells. Taken together, our data suggest that brain tissue harbors the machinery required for local regulation of sulfide levels.
Collapse
Affiliation(s)
- M Ackermann
- Department of Neurosurgery at the University Clinic, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Hydrogen sulfide (H2S), an endogenously produced small molecule, protects animals from various stresses. Recent studies demonstrate that animals exposed to H2S are long lived, resistant to hypoxia, and resistant to ischemia–reperfusion injury. We performed a forward genetic screen to gain insights into the molecular mechanisms Caenorhabditis elegans uses to appropriately respond to H2S. At least two distinct pathways appear to be important for this response, including the H2S-oxidation pathway and the hydrogen cyanide (HCN)-assimilation pathway. The H2S-oxidation pathway requires two distinct enzymes important for the oxidation of H2S: the sulfide:quinone reductase sqrd-1 and the dioxygenase ethe-1. The HCN-assimilation pathway requires the cysteine synthase homologs cysl-1 and cysl-2. A low dose of either H2S or HCN can activate hypoxia-inducible factor 1 (HIF-1), which is required for C. elegans to respond to either gas. sqrd-1 and cysl-2 represent the entry points in the H2S-oxidation and HCN-assimilation pathways, respectively, and expression of both of these enzymes is highly induced by HIF-1 in response to both H2S and HCN. In addition to their role in appropriately responding to H2S and HCN, we found that cysl-1 and cysl-2 are both essential mediators of innate immunity against fast paralytic killing by Pseudomonas. Furthermore, in agreement with these data, we showed that growing worms in the presence of H2S is sufficient to confer resistance to Pseudomonas fast paralytic killing. Our results suggest the hypoxia-independent hif-1 response in C. elegans evolved to respond to the naturally occurring small molecules H2S and HCN.
Collapse
|
37
|
Gazdag Z, Fujs S, Koszegi B, Kálmán N, Papp G, Emri T, Belágyi J, Pócsi I, Raspor P, Pesti M. The abc1-/coq8- respiratory-deficient mutant of Schizosaccharomyces pombe suffers from glutathione underproduction and hyperaccumulates Cd2+. Folia Microbiol (Praha) 2011; 56:353-9. [PMID: 21818608 DOI: 10.1007/s12223-011-0058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/28/2011] [Indexed: 11/26/2022]
Abstract
The abc1(-)/coq8(-) gene deletion respiratory-deficient mutant NBp17 of fission yeast Schizosaccharomyces pombe displayed a phenotypic fermentation pattern with enhanced production of glycerol and acetate, and also possessed oxidative stress-sensitive phenotypes to H(2)O(2), menadione, tBuOOH, Cd(2+), and chromate in comparison with its parental respiratory-competent strain HNT. As a consequence of internal stress-inducing mutation, adaptation processes to restore the redox homeostasis of mutant NBp17 cells were detected in minimal glucose medium. Mutant NBp17 produced significantly increased amounts of O(2)•- and H(2)O(2) as a result of the decreased internal glutathione concentration and the only slightly increased glutathione reductase activity. The Cr(VI) reduction capacity and hence the •OH production ability were decreased. The mutant cells demonstrated increased specific activities of superoxide dismutases and glutathione reductase (but not catalase) to detoxify at least partially the overproduction of reactive oxygen species. All these features may be explained by the decreased redox capacity of the mutant cells. Most notably, mutant NBp17 hyperaccumulated yellow CdS.
Collapse
Affiliation(s)
- Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gregersen LH, Bryant DA, Frigaard NU. Mechanisms and evolution of oxidative sulfur metabolism in green sulfur bacteria. Front Microbiol 2011; 2:116. [PMID: 21833341 PMCID: PMC3153061 DOI: 10.3389/fmicb.2011.00116] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/11/2011] [Indexed: 11/13/2022] Open
Abstract
Green sulfur bacteria (GSB) constitute a closely related group of photoautotrophic and thiotrophic bacteria with limited phenotypic variation. They typically oxidize sulfide and thiosulfate to sulfate with sulfur globules as an intermediate. Based on genome sequence information from 15 strains, the distribution and phylogeny of enzymes involved in their oxidative sulfur metabolism was investigated. At least one homolog of sulfide:quinone oxidoreductase (SQR) is present in all strains. In all sulfur-oxidizing GSB strains except the earliest diverging Chloroherpeton thalassium, the sulfide oxidation product is further oxidized to sulfite by the dissimilatory sulfite reductase (DSR) system. This system consists of components horizontally acquired partly from sulfide-oxidizing and partly from sulfate-reducing bacteria. Depending on the strain, the sulfite is probably oxidized to sulfate by one of two different mechanisms that have different evolutionary origins: adenosine-5'-phosphosulfate reductase or polysulfide reductase-like complex 3. Thiosulfate utilization by the SOX system in GSB has apparently been acquired horizontally from Proteobacteria. SoxCD does not occur in GSB, and its function in sulfate formation in other bacteria has been replaced by the DSR system in GSB. Sequence analyses suggested that the conserved soxJXYZAKBW gene cluster was horizontally acquired by Chlorobium phaeovibrioides DSM 265 from the Chlorobaculum lineage and that this acquisition was mediated by a mobile genetic element. Thus, the last common ancestor of currently known GSB was probably photoautotrophic, hydrogenotrophic, and contained SQR but not DSR or SOX. In addition, the predominance of the Chlorobium-Chlorobaculum-Prosthecochloris lineage among cultured GSB could be due to the horizontally acquired DSR and SOX systems. Finally, based upon structural, biochemical, and phylogenetic analyses, a uniform nomenclature is suggested for sqr genes in prokaryotes.
Collapse
Affiliation(s)
- Lea H. Gregersen
- Department of Biology, University of CopenhagenHelsingør, Denmark
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | | |
Collapse
|
39
|
Ma YB, Zhang ZF, Shao MY, Kang KH, Tan Z, Li JL. Sulfide:quinone oxidoreductase from echiuran worm Urechis unicinctus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:93-107. [PMID: 20419499 DOI: 10.1007/s10126-010-9273-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/03/2010] [Indexed: 05/29/2023]
Abstract
Sulfide is a natural, widely distributed, poisonous substance, and sulfide:quinone oxidoreductase (SQR) has been identified to be responsible for the initial oxidation of sulfide in mitochondria. In this study, full-length SQR cDNA was cloned from the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. The protein consisted of 451 amino acids with a theoretical pI of 8.98 and molecular weight of 50.5 kDa. Subsequently, the SQR mRNA expression in different tissues was assessed by real-time reverse transcription and polymerase chain reaction and showed that the highest expression was in midgut, followed by anal sacs and coelomic fluid cells, and then body wall and hindgut. Furthermore, activated SQR was obtained by dilution refolding of recombinant SQR expression in E. coli, and the refolded product showed optimal activity at 37 °C and pH 8.5 and K (m) for ubiquinone and sulfide at 15.6 µM and 40.3 µM, respectively. EDTA and GSH had an activating effect on refolded SQR, while Zn(2+) caused decreased activity. Western blot showed that SQR in vivo was located in mitochondria and was ∼ 10 kDa heavier than the recombinant protein. In addition, SQR, detected by immunohistochemistry, was mainly located in the epithelium of all tissues examined. Ultrastructural observations of these tissues' epithelium by transmission electron microscopy provided indirect cytological evidence for its mitochondrial location. Interesting aspects of the U. unicinctus SQR amino acid sequence, its catalytic mechanism, and the different roles of these tissues in sulfide metabolic adaptation are also discussed.
Collapse
Affiliation(s)
- Yu-Bin Ma
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | | | | | | | | | | |
Collapse
|
40
|
Marcia M, Ermler U, Peng G, Michel H. A new structure-based classification of sulfide:quinone oxidoreductases. Proteins 2010; 78:1073-83. [PMID: 20077566 DOI: 10.1002/prot.22665] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sulfide:quinone oxidoreductases (SQR) are ubiquitous membrane-bound flavoproteins involved in sulfide detoxification, in sulfide-dependent energy conservation processes and potenatially in the homeostasis of the neurotransmitter sulfide. The first 2 structures of SQRs from the bacterium Aquifex aeolicus (Marcia et al., Proc Natl Acad Sci USA 2009; 106:9625-9630) and the archaeon Acidianus ambivalens (Brito et al., Biochemistry 2009; 48:5613-5622) were determined recently by X-ray crystallography revealing unexpected differences in the active sites and in flavin adenine dinucleotide binding. Besides the reciprocal differences, they show a different conformation of the active site compared with another sulfide oxidizing enzyme, the flavocytochrome c:sulfide dehydrogenase (FCSD) from Allochromatium vinosum (protein data bank id: 1FCD). In addition to the new structural data, the number of available SQR-like protein sequences is continuously increasing (Pham et al., Microbiology 2008; 154:3112-3121) and the SQR activity of new members of this protein family was recently proven too (Chan et al., J Bacteriol 2009; 191:1026-1034). In the light of the new data, here we revisit the previously proposed contradictory SQR classification and we define new structure-based sequence fingerprints that support a subdivision of the SQR family into six groups. Our report summarizes the state-of-art knowledge about SQRs and highlights the questions that still remain unanswered. Despite two decades of work already done on these enzymes, new and most exciting discoveries can be expected in the future.
Collapse
Affiliation(s)
- Marco Marcia
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60596 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
41
|
Crystal Structure of Sulfide:Quinone Oxidoreductase from Acidithiobacillus ferrooxidans: Insights into Sulfidotrophic Respiration and Detoxification. J Mol Biol 2010; 398:292-305. [DOI: 10.1016/j.jmb.2010.03.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 11/21/2022]
|
42
|
Brito JA, Sousa FL, Stelter M, Bandeiras TM, Vonrhein C, Teixeira M, Pereira MM, Archer M. Structural and functional insights into sulfide:quinone oxidoreductase. Biochemistry 2009; 48:5613-22. [PMID: 19438211 DOI: 10.1021/bi9003827] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A sulfide:quinone oxidoreductase (SQR) was isolated from the membranes of the hyperthermoacidophilic archaeon Acidianus ambivalens, and its X-ray structure, the first reported for an SQR, was determined to 2.6 A resolution. This enzyme was functionally and structurally characterized and was shown to have two redox active sites: a covalently bound FAD and an adjacent pair of cysteine residues. Most interestingly, the X-ray structure revealed the presence of a chain of three sulfur atoms bridging those two cysteine residues. The possible implications of this observation in the catalytic mechanism for sulfide oxidation are discussed, and the role of SQR in the sulfur dependent bioenergetics of A. ambivalens, linked to oxygen reduction, is addressed.
Collapse
Affiliation(s)
- José A Brito
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang Y, Cherney MM, Solomonson M, Liu J, James MNG, Weiner JH. Preliminary X-ray crystallographic analysis of sulfide:quinone oxidoreductase from Acidithiobacillus ferrooxidans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:839-42. [PMID: 19652354 PMCID: PMC2720348 DOI: 10.1107/s1744309109027535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/07/2009] [Indexed: 03/19/2023]
Abstract
The gene product of open reading frame AFE_1293 from Acidithiobacillus ferrooxidans ATCC 23270 is annotated as encoding a sulfide:quinone oxidoreductase, an enzyme that catalyses electron transfer from sulfide to quinone. Following overexpression in Escherichia coli, the enzyme was purified and crystallized using the hanging-drop vapour-diffusion method. The native crystals belonged to the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 131.7, c = 208.8 A, and diffracted to 2.3 A resolution. Preliminary crystallographic analysis indicated the presence of a dimer in the asymmetric unit, with an extreme value of the Matthews coefficient (V(M)) of 4.53 A(3) Da(-1) and a solvent content of 72.9%.
Collapse
Affiliation(s)
- Yanfei Zhang
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, People’s Republic of China
| | - Maia M. Cherney
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Matthew Solomonson
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jianshe Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, People’s Republic of China
| | - Michael N. G. James
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Joel H. Weiner
- Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
44
|
Biosynthesis and bioproduction of coenzyme Q10by yeasts and other organisms. Biotechnol Appl Biochem 2009; 53:217-26. [DOI: 10.1042/ba20090035] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration. Proc Natl Acad Sci U S A 2009; 106:9625-30. [PMID: 19487671 DOI: 10.1073/pnas.0904165106] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sulfide:quinone oxidoreductase (SQR) is a flavoprotein with homologues in all domains of life except plants. It plays a physiological role both in sulfide detoxification and in energy transduction. We isolated the protein from native membranes of the hyperthermophilic bacterium Aquifex aeolicus, and we determined its X-ray structure in the "as-purified," substrate-bound, and inhibitor-bound forms at resolutions of 2.3, 2.0, and 2.9 A, respectively. The structure is composed of 2 Rossmann domains and 1 attachment domain, with an overall monomeric architecture typical of disulfide oxidoreductase flavoproteins. A. aeolicus SQR is a surprisingly trimeric, periplasmic integral monotopic membrane protein that inserts about 12 A into the lipidic bilayer through an amphipathic helix-turn-helix tripodal motif. The quinone is located in a channel that extends from the si side of the FAD to the membrane. The quinone ring is sandwiched between the conserved amino acids Phe-385 and Ile-346, and it is possibly protonated upon reduction via Glu-318 and/or neighboring water molecules. Sulfide polymerization occurs on the re side of FAD, where the invariant Cys-156 and Cys-347 appear to be covalently bound to polysulfur fragments. The structure suggests that FAD is covalently linked to the polypeptide in an unusual way, via a disulfide bridge between the 8-methyl group and Cys-124. The applicability of this disulfide bridge for transferring electrons from sulfide to FAD, 2 mechanisms for sulfide polymerization and channeling of the substrate, S(2-), and of the product, S(n), in and out of the active site are discussed.
Collapse
|
46
|
Vashisht AA, Kennedy PJ, Russell P. Centaurin-like protein Cnt5 contributes to arsenic and cadmium resistance in fission yeast. FEMS Yeast Res 2009; 9:257-69. [PMID: 19076239 PMCID: PMC2820371 DOI: 10.1111/j.1567-1364.2008.00467.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Arsenic (As) and cadmium (Cd) are two of the most hazardous substances in the environment and have been implicated in a number of human diseases including cancer. Their mechanisms of toxicity and subsequent carcinogenesis are not understood. To identify the genes involved in As/Cd detoxification, we screened a random insertional mutagenesis library of Schizosaccharomyces pombe for mutants that are hypersensitive to As/Cd. Mutations were mapped to spc1(+) (sty1(+)) and SPBC17G9.08c. Spc1 is a stress-activated protein kinase orthologous to human p38. A fragment of SPBC17G9.08c was previously identified as csx2, a high-copy suppressor of cut6 that encodes an acetyl-CoA carboxylase involved in fatty acid biosynthesis. SPBC17G9.08c is a member of the centaurin ADP ribosylation factor GTPase activating protein family found in a variety of fungi, plants and metazoans, but not in Saccharomyces cerevisiae. Cnt5, so named because its closest human homolog is centaurin beta-5, binds to phosphatidic acid and phosphatidyl serine in vitro. Microscopic localization of Cnt5-GFP indicates significant redistribution of Cnt5 from the cytoplasm to the cell membranes in response to As stress. These data suggest a model in which Cnt5 contributes to As/Cd resistance by maintaining membrane integrity or by modulating membrane trafficking.
Collapse
Affiliation(s)
- Ajay Amar Vashisht
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037. U.S.A
| | - Patrick Joseph Kennedy
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037. U.S.A
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037. U.S.A
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037. U.S.A
| |
Collapse
|
47
|
Cui TZ, Kawamukai M. Coq10, a mitochondrial coenzyme Q binding protein, is required for proper respiration in Schizosaccharomyces pombe. FEBS J 2008; 276:748-59. [DOI: 10.1111/j.1742-4658.2008.06821.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Pham VH, Yong JJ, Park SJ, Yoon DN, Chung WH, Rhee SK. Molecular analysis of the diversity of the sulfide : quinone reductase (sqr) gene in sediment environments. MICROBIOLOGY-SGM 2008; 154:3112-3121. [PMID: 18832317 DOI: 10.1099/mic.0.2008/018580-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our newly designed primers were evaluated for the molecular analysis of specific groups of the sqr gene encoding sulfide : quinone reductase (SQR) in sediment environments. Based on the phylogenetic analysis, we classified the sqr sequences into six groups. PCR primers specific for each group were developed. We successfully amplified sqr-like gene sequences related to groups 1, 2 and 4 from diverse sediments including a marine sediment (SW), a tidal flat (TS), a river sediment (RS) and a lake sediment (FW). We recovered a total of 82 unique phylotypes (based on a 95 % amino acid sequence similarity cutoff) from 243 individual sqr-like gene sequences. Phylotype richness varied widely among the groups of sqr-like gene sequences (group 1>group 2>group 4) and sediments (SW>TS>RS>FW). Most of the sqr-like gene sequences were affiliated with the Proteobacteria clade and were distantly related to the reference sqr gene sequences from cultivated strains (less than approximately 80 % amino acid sequence similarity). Unique sqr-like gene sequences were associated with individual sediment samples in groups 1 and 2. This molecular tool has also enabled us to detect sqr-like genes in a sulfur-oxidizing enrichment from marine sediments. Collectively, our results support the presence of previously unrecognized sqr gene-containing micro-organisms that play important roles in the global biogeochemical cycle of sulfur.
Collapse
Affiliation(s)
- Vinh Hoa Pham
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea
| | - Jeong-Joong Yong
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea
| | - Soo-Je Park
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea
| | - Dae-No Yoon
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea
| | - Won-Hyong Chung
- National Genome Information Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, Korea
| |
Collapse
|
49
|
Kennedy PJ, Vashisht AA, Hoe KL, Kim DU, Park HO, Hayles J, Russell P. A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe. Toxicol Sci 2008; 106:124-39. [PMID: 18684775 PMCID: PMC2563147 DOI: 10.1093/toxsci/kfn153] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 07/21/2008] [Indexed: 11/14/2022] Open
Abstract
Cadmium is a worldwide environmental toxicant responsible for a range of human diseases including cancer. Cellular injury from cadmium is minimized by stress-responsive detoxification mechanisms. We explored the genetic requirements for cadmium tolerance by individually screening mutants from the fission yeast (Schizosaccharomyces pombe) haploid deletion collection for inhibited growth on agar growth media containing cadmium. Cadmium-sensitive mutants were further tested for sensitivity to oxidative stress (hydrogen peroxide) and osmotic stress (potassium chloride). Of 2649 mutants screened, 237 were sensitive to cadmium, of which 168 were cadmium specific. Most were previously unknown to be involved in cadmium tolerance. The 237 genes represent a number of pathways including sulfate assimilation, phytochelatin synthesis and transport, ubiquinone (Coenzyme Q10) biosynthesis, stress signaling, cell wall biosynthesis and cell morphology, gene expression and chromatin remodeling, vacuole function, and intracellular transport of macromolecules. The ubiquinone biosynthesis mutants are acutely sensitive to cadmium but only mildly sensitive to hydrogen peroxide, indicating that Coenzyme Q10 plays a larger role in cadmium tolerance than just as an antioxidant. These and several other mutants turn yellow when exposed to cadmium, suggesting cadmium sulfide accumulation. This phenotype can potentially be used as a biomarker for cadmium. There is remarkably little overlap with a comparable screen of the Saccharomyces cerevisiae haploid deletion collection, indicating that the two distantly related yeasts utilize significantly different strategies for coping with cadmium stress. These strategies and their relation to cadmium detoxification in humans are discussed.
Collapse
Affiliation(s)
- Patrick J. Kennedy
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Ajay A. Vashisht
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Kwang-Lae Hoe
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Dong-Uk Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Han-Oh Park
- BiONEER Corporation, Daejeon 306-220, Republic of Korea
| | - Jacqueline Hayles
- Cell Cycle Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
50
|
Miki R, Saiki R, Ozoe Y, Kawamukai M. Comparison of a coq7 deletion mutant with other respiration-defective mutants in fission yeast. FEBS J 2008; 275:5309-24. [DOI: 10.1111/j.1742-4658.2008.06661.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|