1
|
Feng K, Li X, Bai Y, Zhang D, Tian L. Mechanisms of cancer cell death induction by triptolide: A comprehensive overview. Heliyon 2024; 10:e24335. [PMID: 38293343 PMCID: PMC10826740 DOI: 10.1016/j.heliyon.2024.e24335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The need for naturally occurring constituents is driven by the rise in the cancer prevalence and the unpleasant side effects associated with chemotherapeutics. Triptolide, the primary active component of "Tripterygium Wilfordii", has exploited for biological mechanisms and therapeutic potential against various tumors. Based on the recent pre-clinical investigations, triptolide is linked to the induction of death of cancerous cells by triggering cellular apoptosis via inhibiting heat shock protein expression (HSP70), and cyclin dependent kinase (CDKs) by up regulating expression of P21. MKP1, histone methyl transferases and RNA polymerases have all recently identified as potential targets of triptolide in cells. Autophagy, AKT signaling pathway and various pathways involving targeted proteins such as A-disintegrin & metalloprotease-10 (ADAM10), Polycystin-2 (PC-2), dCTP pyro-phosphatase 1 (DCTP1), peroxiredoxin-I (Prx-I), TAK1 binding protein (TAB1), kinase subunit (DNA-PKcs) and the xeroderma-pigmentosum B (XPB or ERCC3) have been exploited. Besides that, triptolide is responsible for enhancing the effectiveness of various chemotherapeutics. In addition, several triptolide moieties, including minnelide and LLDT8, have progressed in investigations on humans for the treatment of cancer. Targeted strategies, such as triptolide conjugation with ligands or triptolide loaded nano-carriers, are efficient techniques to confront toxicities associated with triptolide. We expect and anticipate that advances in near future, regarding combination therapies of triptolide, might be beneficial against cancerous cells.
Collapse
Affiliation(s)
- Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Xiaojiang Li
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Dawei Zhang
- Department of General Surgery Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| |
Collapse
|
2
|
Triptolide-mediated downregulation of FLIP S in hepatoma cells occurs at the post-transcriptional level independently of proteasome-mediated pathways. Med Oncol 2023; 40:7. [PMID: 36308574 PMCID: PMC9617966 DOI: 10.1007/s12032-022-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/20/2022] [Indexed: 01/17/2023]
Abstract
Cellular c-FLIP prevents apoptosis mediated by death receptor through inhibiting activation of caspase-8. Therefore, when c-FLIP is downregulated or eliminated, caspase-8 activation is promoted, and death receptor ligand-induced apoptosis is activated. It was reported that triptolide (TPL) sensitized tumor cells to TNF-α-induced apoptosis by blocking TNF-α-induced activation of NF-κB and transcription of c-IAP1 and c-IAP2. However, the effect of TPL on basal c-FLIP expression was not understood. In this study, we found that the combination of TNF-α and TPL accelerated apoptosis in human hepatocellular carcinoma cells and TNF-α-induced elevated as well as basal level of FLIPS protein were downregulated by TPL. Additionally, we demonstrated that the basal level of FLIPS in Huh7 cells was continuously downregulated following the incubation of TPL and downregulated more when dosage of TPL for treatment was increased. Subsequently, we showed that TPL reduced FLIPS level in a transcription- and degradation-independent mechanism. Our findings suggest that TPL induces loss of FLIPS at the post-transcriptional level independently of proteasome-mediated pathway, an additional mechanism of TPL sensitizing cancer cells to TNF-α-induced apoptosis.
Collapse
|
3
|
Biswas S, Tikader B, Kar S, Viswanathan GA. Modulation of signaling cross-talk between pJNK and pAKT generates optimal apoptotic response. PLoS Comput Biol 2022; 18:e1010626. [PMID: 36240239 PMCID: PMC9604984 DOI: 10.1371/journal.pcbi.1010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/26/2022] [Accepted: 10/03/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a well-known modulator of apoptosis by maintaining a balance between proliferation and cell-death in normal cells. Cancer cells often evade apoptotic response following TNFα stimulation by altering signaling cross-talks. Thus, varying the extent of signaling cross-talk could enable optimal TNFα mediated apoptotic dynamics. Herein, we use an experimental data-driven mathematical modeling to quantitate the extent of synergistic signaling cross-talk between the intracellular entities phosphorylated JNK (pJNK) and phosphorylated AKT (pAKT) that orchestrate the phenotypic apoptosis level by modulating the activated Caspase3 dynamics. Our study reveals that this modulation is orchestrated by the distinct dynamic nature of the synergism at early and late phases. We show that this synergism in signal flow is governed by branches originating from either TNFα receptor and NFκB, which facilitates signaling through survival pathways. We demonstrate that the experimentally quantified apoptosis levels semi-quantitatively correlates with the model simulated Caspase3 transients. Interestingly, perturbing pJNK and pAKT transient dynamics fine-tunes this accumulated Caspase3 guided apoptotic response. Thus, our study offers useful insights for identifying potential targeted therapies for optimal apoptotic response.
Collapse
Affiliation(s)
- Sharmila Biswas
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Baishakhi Tikader
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Sandip Kar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| | - Ganesh A. Viswanathan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| |
Collapse
|
4
|
Nuzzo G, Senese G, Gallo C, Albiani F, Romano L, d’Ippolito G, Manzo E, Fontana A. Antitumor Potential of Immunomodulatory Natural Products. Mar Drugs 2022; 20:md20060386. [PMID: 35736189 PMCID: PMC9229642 DOI: 10.3390/md20060386] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the leading causes of death globally. Anticancer drugs aim to block tumor growth by killing cancerous cells in order to prevent tumor progression and metastasis. Efficient anticancer drugs should also minimize general toxicity towards organs and healthy cells. Tumor growth can also be successfully restrained by targeting and modulating immune response. Cancer immunotherapy is assuming a growing relevance in the fight against cancer and has recently aroused much interest for its wider safety and the capability to complement conventional chemotherapeutic approaches. Natural products are a traditional source of molecules with relevant potential in the pharmacological field. The huge structural diversity of metabolites with low molecular weight (small molecules) from terrestrial and marine organisms has provided lead compounds for the discovery of many modern anticancer drugs. Many natural products combine chemo-protective and immunomodulant activity, thus offering the potential to be used alone or in association with conventional cancer therapy. In this review, we report the natural products known to possess antitumor properties by interaction with immune system, as well as discuss the possible immunomodulatory mechanisms of these molecules.
Collapse
Affiliation(s)
- Genoveffa Nuzzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Giuseppina Senese
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Carmela Gallo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Federica Albiani
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Lucia Romano
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Giuliana d’Ippolito
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
| | - Emiliano Manzo
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Correspondence: (G.N.); (E.M.); Tel.: +39-081-8675104 (G.N.); +39-081-8675177 (E.M.)
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.S.); (C.G.); (F.A.); (L.R.); (G.d.); (A.F.)
- Department of Biology, University of Naples Federico II, Via Cinthia–Bld. 7, 80126 Napoli, Italy
| |
Collapse
|
5
|
Liskova V, Kajsik M, Chovancova B, Roller L, Krizanova O. Camptothecin, triptolide, and apoptosis inducer kit have differential effects on mitochondria in colorectal carcinoma cells. FEBS Open Bio 2022; 12:913-924. [PMID: 35318813 PMCID: PMC9063445 DOI: 10.1002/2211-5463.13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial fission and fusion are required for cell survival, and several studies have shown an imbalance between fission and fusion in cancer. High levels of mitochondrial fusion are observed in drug‐resistant tumor cells, whereas mitochondrial fission may be important in sensitizing tumor cells to chemotherapy drugs. Based on current knowledge, we hypothesized that different chemotherapeutics might differentially affect mitochondrial dynamics and energy production. Thus, we selected chemotherapeutics with different mechanisms of action (camptothecin, triptolide and apoptosis inducer kit) and investigated their effect on mitochondria in colorectal carcinoma cells. We report that these chemotherapeutics decreased the activity of complex I and reduced the mitochondrial membrane potential, and also decreased the size of mitochondria in the colorectal carcinoma cell lines DLD1 and HCT‐116. Treatment with camptothecin, triptolide and/or apoptosis inducer kit results in differential effects of fission on apoptosis in these cells. Our results suggest that fission is an important process in apoptosis induced by chemotherapeutics.
Collapse
Affiliation(s)
- Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Kajsik
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Trnava, Slovakia
| | - Barbora Chovancova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Trnava, Slovakia
| |
Collapse
|
6
|
Das R, Mehta DK, Dhanawat M. Medicinal Plants in Cancer Treatment: Contribution of Nuclear Factor-Kappa B (NF-kB) Inhibitors. Mini Rev Med Chem 2022; 22:1938-1962. [PMID: 35260052 DOI: 10.2174/1389557522666220307170126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Nuclear factor-kappa B (NF-κB) is one of the principal inducible proteins that is a predominant transcription factor known to control the gene expression in mammals and plays a pivotal role in regulating cell signalling in the body under certain physiological and pathological conditions. In cancer cells, such as colon, breast, pancreatic, ovarian, melanoma, and lymphoma, the NF-κB pathway has been reported to be active. In cellular proliferation, promoting angiogenesis, invasion, metastasis of tumour cells and blocking apoptosis, the constitutive activity of NF-κB signalling has been reported. Therefore, immense attention has been given to developing drugs targeting NF-κB signalling pathways to treat many types of tumours. They are a desirable therapeutic target for drugs, and many studies concentrated on recognizing compounds. They may be able to reverse or standstill the growth and spread of tumours that selectively interfere with this pathway. Recently, numerous substances derived from plants have been evaluated as possible inhibitors of the NF-κB pathway. These include various compounds, such as flavonoids, lignans, diterpenes, sesquiterpenes, polyphenols, etc. A study supported by folk medicine demonstrated that plant-derived compounds could suppress NF-κB signalling. Taking this into account, the present review revealed the anticancer potential of naturally occurring compounds which have been verified both by inhibiting the NF-κB signalling and suppressing growth and spread of cancer and highlighting their mechanism of NF-κB inhibition.
Collapse
Affiliation(s)
- Rina Das
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Meenakshi Dhanawat
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
7
|
Zhu H, Wang X, Wang X, Pan G, Zhu Y, Feng Y. The toxicity and safety of Chinese medicine from the bench to the bedside. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Wang Y, Wang B, Yang X. The Study of Cellular Mechanism of Triptolide in the Treatment of Cancer, Bone Loss and Cardiovascular Disease and Triptolide's Toxicity. Curr Stem Cell Res Ther 2020; 15:18-23. [PMID: 30834841 DOI: 10.2174/1574888x14666190301155810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022]
Abstract
Triptolide (TPL), the active component of Tripterygium wilfordii Hook F (Twhf) has been used to treat cancer and bone loss conditions for over two hundred years in traditional Chinese medicine (TCM). In this paper, we reviewed the specific molecular mechanisms in the treatment of cancer, bone loss and cardiovascular disease. In addition, we analyze the toxicity of TPL and collect some optimized derivatives extracted from TPL. Although positive results were obtained in most cell culture and animal studies, further studies are needed to substantiate the beneficial effects of TPL.
Collapse
Affiliation(s)
- Youhan Wang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Shaanxi University of Traditional Chinese Medicine, Xian Yang, China
| | - Biao Wang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Xiaobin Yang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Wei J, Yan Y, Chen X, Qian L, Zeng S, Li Z, Dai S, Gong Z, Xu Z. The Roles of Plant-Derived Triptolide on Non-Small Cell Lung Cancer. Oncol Res 2019; 27:849-858. [PMID: 30982492 PMCID: PMC7848329 DOI: 10.3727/096504018x15447833065047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Over the past decade, natural compounds have been proven to be effective against many human diseases, including cancers. Triptolide (TPL), a diterpenoid triepoxide from the Chinese herb Tripterygium wilfordii Hook F, has exhibited attractive cytotoxic activity on several cancer cells. An increasing number of studies have emphasized the antitumor effects of TPL on non-small cell lung cancer (NSCLC). Here we mainly focused on the key molecular signaling pathways that lead to the inhibitory effects of TPL on human NSCLC, such as mitogen-activated protein kinases (MAPKs) modulation, inhibition of NF-κB activation, suppression of miRNA expression, etc. In addition, the effect of TIG on immune response in cancer patients is summarized for improved immune modulation utilization. However, the clinical use of TPL is often limited by its severe toxicity and water insolubility. Future clinical trials and drug delivery strategies that will evaluate the security and validate the underlying tumor-killing properties of TPL in human NSCLC are also to be discussed.
Collapse
Affiliation(s)
- Jie Wei
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yuanliang Yan
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xi Chen
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Long Qian
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuangshuang Zeng
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhi Li
- ‡Center for Molecular Medicine, Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuang Dai
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhicheng Gong
- *Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- †National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zhijie Xu
- §Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
10
|
Broad targeting of triptolide to resistance and sensitization for cancer therapy. Biomed Pharmacother 2018; 104:771-780. [DOI: 10.1016/j.biopha.2018.05.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 12/29/2022] Open
|
11
|
Shubin NJ, Pham TN, Staudenmayer KL, Parent BA, Qiu Q, O'Keefe GE. A Potential Mechanism for Immune Suppression by Beta-Adrenergic Receptor Stimulation following Traumatic Injury. J Innate Immun 2018; 10:202-214. [PMID: 29455206 DOI: 10.1159/000486972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/17/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND β-Adrenergic agents suppress inflammation and may play an important role in posttraumatic infections. Mechanisms may include inhibition of MAP kinase signaling. We sought to determine whether MKP-1 contributed to catecholamine suppression of innate immunity and also wanted to know whether early catecholamine treatment after traumatic injury increases the risk of later nosocomial infection. METHODS We performed experiments using THP-1 cells and peripheral blood mononuclear cells from healthy individuals. We exposed cells to epinephrine and/or LPS and measured inflammatory gene transcription and MAP kinase activation. We inhibited MKP-1 activity to determine its role in catecholamine-induced immune suppression. Finally, we studied injured subjects to determine whether early catecholamine treatment was associated with nosocomial infection. RESULTS Epinephrine increases MKP-1 transcripts and protein and decreases LPS-induced p38 and JNK phosphorylation and TNF-α gene transcription. RNAi inhibition of MKP-1 at least partially restores LPS-induced TNF-α gene expression (p = 0.024). In the clinical cohort, subjects treated with β-adrenergic agents had an increased risk of ventilator-associated pneumonia (aOR = 1.9; 95% CI = 1.3-2.6) and bacteremia (aOR = 1.5; 95% CI = 1.1-2.3). CONCLUSIONS MKP-1 may have a role in catecholamine-induced suppression of innate immunity, and exogenous catecholamines might contribute to nosocomial infection risk.
Collapse
Affiliation(s)
- Nicholas J Shubin
- Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, Washington, USA
| | - Tam N Pham
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | | | - Brodie A Parent
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Qian Qiu
- Harborview Injury Prevention and Research Center, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Grant E O'Keefe
- Harborview Injury Prevention and Research Center, Department of Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Chen SR, Dai Y, Zhao J, Lin L, Wang Y, Wang Y. A Mechanistic Overview of Triptolide and Celastrol, Natural Products from Tripterygium wilfordii Hook F. Front Pharmacol 2018; 9:104. [PMID: 29491837 PMCID: PMC5817256 DOI: 10.3389/fphar.2018.00104] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022] Open
Abstract
Triptolide and celastrol are predominantly active natural products isolated from the medicinal plant Tripterygium wilfordii Hook F. These compounds exhibit similar pharmacological activities, including anti-cancer, anti-inflammation, anti-obesity, and anti-diabetic activities. Triptolide and celastrol also provide neuroprotection and prevent cardiovascular and metabolic diseases. However, toxicity restricts the further development of triptolide and celastrol. In this review, we comprehensively review therapeutic targets and mechanisms of action, and translational study of triptolide and celastrol. We systemically discuss the structure-activity-relationship of triptolide, celastrol, and their derivatives. Furthermore, we propose the use of structural derivatives, targeted therapy, and combination treatment as possible solutions to reduce toxicity and increase therapeutic window of these potent natural products from T. wilfordii Hook F.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yan Dai
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
13
|
Xu H, Fan X, Zhang G, Liu X, Li Z, Li Y, Jiang B. LLDT-288, a novel triptolide analogue exhibits potent antitumor activity in vitro and in vivo. Biomed Pharmacother 2017; 93:1004-1009. [DOI: 10.1016/j.biopha.2017.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023] Open
|
14
|
Szabo R, Skropeta D. Advancement of Sialyltransferase Inhibitors: Therapeutic Challenges and Opportunities. Med Res Rev 2016; 37:219-270. [DOI: 10.1002/med.21407] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Rémi Szabo
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
| | - Danielle Skropeta
- School of Chemistry; University of Wollongong; Wollongong NSW 2522 Australia
- Centre for Medical & Molecular Bioscience; University of Wollongong; Wollongong NSW 2522 Australia
| |
Collapse
|
15
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
16
|
Li Q, Sun W, Yuan D, Lv T, Yin J, Cao E, Xiao X, Song Y. Efficacy and safety of recombinant human tumor necrosis factor application for the treatment of malignant pleural effusion caused by lung cancer. Thorac Cancer 2015; 7:136-9. [PMID: 26816548 PMCID: PMC4718129 DOI: 10.1111/1759-7714.12296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/21/2015] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural effusion (MPE) signifies a poor prognosis for patients with lung cancer. For treating physicians, the primary goals are to achieve sufficient control of MPE and minimize invasive intervention. Recombinant human mutant tumor necrosis factor‐alpha (rhu‐TNF) has been used in the treatment of MPE. The aim of our research was to evaluate the efficacy and safety of rhu‐TNF application via ultrasound‐guided chest tube for the treatment of MPE. rhu‐TNF was administered as a single dose to 102 patients with MPE caused by lung cancer, and dexamethasone (Dxm, 5 mg) was administered 30 minutes before rhu‐TNF in 35 randomly selected patients in order test its ability to prevent side effects. The primary endpoint was the efficacy of the rhu‐TNF treatment (disease response rate) and side effects (pain, fever, and flu‐like symptoms), evaluated four weeks after instillation. The disease response rate of rhu‐TNF treatment was 81.37%. Side effects included 13 (12.75%) patients complaining of flu‐like symptoms, 15 (14.71%) with fever/chill, and 14 (13.73%) with chest pain. A significantly higher efficacy was observed for treatment with 3 MU versus 2 MU of rhu‐TNF (P = 0.036), while the adverse effects were similar. There was no significant association between the dose of rhu‐TNF and progression‐free survival (P = 0.752). In conclusion, our study shows that intra‐pleural instillation of rhu‐TNF achieves sufficient control of MPE and minimizes invasive intervention.
Collapse
Affiliation(s)
- Qian Li
- Department of Respiratory and Critical Care Medicine Jinling Hospital School of Medicine Nanjing University Nanjing China
| | - Wenkui Sun
- Department of Respiratory and Critical Care Medicine Jinling Hospital School of Medicine Nanjing University Nanjing China
| | - Dongmei Yuan
- Department of Respiratory and Critical Care Medicine Jinling Hospital School of Medicine Nanjing University Nanjing China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine Jinling Hospital School of Medicine Nanjing University Nanjing China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine Jinling Hospital School of Medicine Nanjing University Nanjing China
| | - Ehong Cao
- Department of Respiratory and Critical Care Medicine Jinling Hospital School of Medicine Nanjing University Nanjing China
| | - Xinwu Xiao
- Department of Respiratory and Critical Care Medicine Jinling Hospital School of Medicine Nanjing University Nanjing China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine Jinling Hospital School of Medicine Nanjing University Nanjing China
| |
Collapse
|
17
|
Li X, Mao Y, Li K, Shi T, Yao H, Yao J, Wang S. Pharmacokinetics and tissue distribution study in mice of triptolide-loaded lipid emulsion and accumulation effect on pancreas. Drug Deliv 2015; 23:1344-54. [DOI: 10.3109/10717544.2015.1028603] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xue Li
- School of Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, China,
| | - Yuling Mao
- School of Chinese Medicines, Shenyang Pharmaceutical University, Shenyang, China,
| | - Kai Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China,
| | - Tianyu Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China,
| | - Huimin Yao
- Department of Pharmaceutical and Food Science, Tonghua Normal University, Tonghua, China, and
| | - Jianhua Yao
- Department of Foreign Language, School of Social Sciences and Literary, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China,
| |
Collapse
|
18
|
He QL, Titov DV, Li J, Tan M, Ye Z, Zhao Y, Romo D, Liu JO. Covalent Modification of a Cysteine Residue in the XPB Subunit of the General Transcription Factor TFIIH Through Single Epoxide Cleavage of the Transcription Inhibitor Triptolide. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
He QL, Titov DV, Li J, Tan M, Ye Z, Zhao Y, Romo D, Liu JO. Covalent modification of a cysteine residue in the XPB subunit of the general transcription factor TFIIH through single epoxide cleavage of the transcription inhibitor triptolide. Angew Chem Int Ed Engl 2014; 54:1859-63. [PMID: 25504624 DOI: 10.1002/anie.201408817] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/26/2014] [Indexed: 11/11/2022]
Abstract
Triptolide is a key component of the traditional Chinese medicinal plant Thunder God Vine and has potent anticancer and immunosuppressive activities. It is an irreversible inhibitor of eukaryotic transcription through covalent modification of XPB, a subunit of the general transcription factor TFIIH. Cys342 of XPB was identified as the residue that undergoes covalent modification by the 12,13-epoxide group of triptolide. Mutation of Cys342 of XPB to threonine conferred resistance to triptolide on the mutant protein. Replacement of the endogenous wild-type XPB with the Cys342Thr mutant in a HEK293T cell line rendered it completely resistant to triptolide, thus validating XPB as the physiologically relevant target of triptolide. Together, these results deepen our understanding of the interaction between triptolide and XPB and have implications for the future development of new analogues of triptolide as leads for anticancer and immunosuppressive drugs.
Collapse
Affiliation(s)
- Qing-Li He
- Department of Pharmacology, Johns Hopkins School of Medicine, 725 North Wolfe Street, Hunterian Building, Room 516, Baltimore, MD 21205 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:67-79. [PMID: 24933225 DOI: 10.1016/j.jep.2014.06.006] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii Hook. f. (Tripterygium wilfordii), also known as Huangteng and gelsemium elegan, is a traditional Chinese medicine that has been marketed in China as Tripterygium wilfordii glycoside tablets. Triptolide (TP), an active component in Tripterygium wilfordii extracts, has been used to treat various diseases, including lupus, cancer, rheumatoid arthritis and nephritic syndrome. This review summarizes recent developments in the research on the pharmacodynamics, pharmacokinetics, pharmacy and toxicology of TP, with a focus on its novel mechanism of reducing toxicity. This review provides insight for future studies on traditional Chinese medicine, a field that is both historically and currently important. MATERIALS AND METHODS We included studies published primarily within the last five years that were available in online academic databases (e.g., PubMed, Google Scholar, CNKI, SciFinder and Web of Science). RESULTS TP has a long history of use in China because it displays multiple pharmacological activities, including anti-rheumatism, anti-inflammatory, anti-tumor and neuroprotective properties. It has been widely used for the treatment of various diseases, such as rheumatoid arthritis, nephritic syndrome, lupus, Behcet׳s disease and central nervous system diseases. Recently, numerous breakthroughs have been made in our understanding of the pharmacological efficacy of TP. Although TP has been marketed as a traditional Chinese medicine, its multi-organ toxicity prevents it from being widely used in clinical practice. CONCLUSIONS Triptolide, a biologically active natural product extracted from the root of Tripterygium wilfordii, has shown promising pharmacological effects, particularly as an anti-tumor agent. Currently, in anti-cancer research, more effort should be devoted to investigating effective anti-tumor targets and confirming the anti-tumor spectrum and clinical indications of novel anti-tumor pro-drugs. To apply TP appropriately, with high efficacy and low toxicity, the safety and non-toxic dose range for specific target organs and diseases should be determined, the altered pathways and mechanisms of exposure need to be clarified, and an early warning system for toxicity needs to be established. With further in-depth study of the efficacy and toxicity of TP, we believe that TP will become a promising multi-use drug with improved clinical efficacy and safety in the future.
Collapse
Affiliation(s)
- Xiao-Jiaoyang Li
- Jiangsu Center of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhen-Zhou Jiang
- Jiangsu Center of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| | - Lu-yong Zhang
- Jiangsu Center of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Li M, Wang X, Liu M, Qi X, Li J. NF-κB signaling inhibition and anticancer activities of LLDT-246 on human colorectal cancer HCT-116 cells in vitro. Biomed Pharmacother 2014; 68:527-35. [DOI: 10.1016/j.biopha.2014.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/28/2014] [Indexed: 01/21/2023] Open
|
22
|
|
23
|
Wang L, Song Y. [Advances on effects of triptolide with non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 16:378-81. [PMID: 23866670 PMCID: PMC6000656 DOI: 10.3779/j.issn.1009-3419.2013.07.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
雷公藤内酯醇对多种非小细胞肺癌(non-small cell lung cancer, NSCLC)细胞系具有杀伤作用,可通过干预细胞周期、激活caspase信号通路、抑制血管内皮生长因子(vascular endothelial growth factor, VEGF)的表达、抑制NF-κB活性等多种途径来促进肺癌细胞死亡。现将雷公藤内酯醇的抑瘤功能及其具体作用机制加以综述,为其在NSCLC中的科学研究及临床应用提供思路。
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory Medicine, Nanjing General Hospital of Nanjing Command, Clinical School of the Medical College of Nanjing University, Nanjing 210002, China
| | | |
Collapse
|
24
|
Ding X, Zhang B, Pei Q, Pan J, Huang S, Yang Y, Zhu Z, Lv Y, Zou X. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1. BMC Cancer 2014; 14:271. [PMID: 24742042 PMCID: PMC3997440 DOI: 10.1186/1471-2407-14-271] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/08/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. METHODS CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. RESULTS Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. CONCLUSIONS Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Lv
- Department of Gastroenterology, Drum Tower Hospital, Affiliated to Medical School of Nanjing University, Nanjing, China.
| | | |
Collapse
|
25
|
Fidler JM, An J, Carter BZ, Andreeff M. Preclinical antileukemic activity, toxicology, toxicokinetics and formulation development of triptolide derivative MRx102. Cancer Chemother Pharmacol 2014; 73:961-74. [PMID: 24619497 DOI: 10.1007/s00280-014-2428-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
PURPOSE Triptolide induces cancer cell apoptosis by inhibiting RNA synthesis and signaling pathways like NF-κB. We compared triptolide prodrug MRx102 to triptolide to determine whether it displayed comparable efficacy and improved toxicology and toxicokinetic profiles. METHODS MV4-11 AML cells and cells from AML patients were analyzed for MRx102- and triptolide-induced cytotoxicity/apoptosis. MRx102 and triptolide were compared in toxicology/toxicokinetics studies in rat and dog using a new emulsion formulation. RESULTS MRx102 induced cytotoxicity in MV4-11 cells (IC50 = 15.2 nM, 7.29 nM for triptolide) and apoptosis in cells from AML patients (EC50 = 40.6 nM and 2.13 nM for triptolide). MRx102 and triptolide induced apoptosis in CD34+CD38- AML stem/progenitor cells with a similar difference in activity (EC50, MRx102 = 40.8 nM, triptolide = 2.14 nM). In a rat toxicology comparison using a new intravenous emulsion formulation, the MRx102 MTD was 4.5 mg/kg for males and 3 mg/kg for females; the triptolide MTD was 0.63 mg/kg for males and 0.317 mg/kg for females. The MRx102 NOAEL was 1.5-3.0 mg/kg, and the triptolide NOAEL was 0.05-0.15 mg/kg. Mean plasma concentrations for both MRx102 and triptolide decreased rapidly from a high C max following i.v. injection. Plasma triptolide levels stabilized at a consistent level through 2 h after MRx102 injection. Triptolide T 1/2,e values for MRx102-injected rats (~0.85 to ~3.7 h) were markedly greater than triptolide-injected rats (~0.15 to ~0.39 h), indicating more extended triptolide exposure with MRx102. MRx102 dog toxicology and toxicokinetics results are presented. CONCLUSIONS MRx102 was 20- to 60-fold safer than triptolide comparing rat NOAELs. This may be due to the improved toxicokinetic profile of MRx102 compared to triptolide using the emulsion formulation, with no high C max and more consistent early exposure to triptolide.
Collapse
Affiliation(s)
- John M Fidler
- MyeloRx LLC, 941 Railroad Avenue, Vallejo, CA, 94592, USA,
| | | | | | | |
Collapse
|
26
|
Afreen S, Dermime S. The immunoinhibitory B7-H1 molecule as a potential target in cancer: Killing many birds with one stone. Hematol Oncol Stem Cell Ther 2014; 7:1-17. [DOI: 10.1016/j.hemonc.2013.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023] Open
|
27
|
Su P, Cheng Q, Wang X, Cheng X, Zhang M, Tong Y, Li F, Gao W, Huang L. Characterization of eight terpenoids from tissue cultures of the Chinese herbal plant,Tripterygium wilfordii, by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2014; 28:1183-92. [DOI: 10.1002/bmc.3140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ping Su
- School of Traditional Chinese Medicine; Capital Medical University; Beijing 100069 People's Republic of China
- National Resource Center for Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing 100700 People's Republic of China
| | - Qiqing Cheng
- School of Traditional Chinese Medicine; Capital Medical University; Beijing 100069 People's Republic of China
- National Resource Center for Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing 100700 People's Republic of China
| | - Xiujuan Wang
- School of Traditional Chinese Medicine; Capital Medical University; Beijing 100069 People's Republic of China
| | - Xiaoqing Cheng
- School of Traditional Chinese Medicine; Capital Medical University; Beijing 100069 People's Republic of China
| | - Meng Zhang
- School of Traditional Chinese Medicine; Capital Medical University; Beijing 100069 People's Republic of China
| | - Yuru Tong
- School of Traditional Chinese Medicine; Capital Medical University; Beijing 100069 People's Republic of China
- National Resource Center for Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing 100700 People's Republic of China
| | - Fei Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute; National Institutes of Health; Bethesda MD 20892 USA
| | - Wei Gao
- School of Traditional Chinese Medicine; Capital Medical University; Beijing 100069 People's Republic of China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing 100700 People's Republic of China
| |
Collapse
|
28
|
Design, synthesis and anticancer activity evaluation of novel C14 heterocycle substituted epi-triptolide. Eur J Med Chem 2014; 73:46-55. [DOI: 10.1016/j.ejmech.2013.11.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/31/2013] [Accepted: 11/25/2013] [Indexed: 11/18/2022]
|
29
|
Xu H, Tang H, Feng H, Li Y. Design, Synthesis and Structure-Activity Relationships Studies on the D Ring of the Natural Product Triptolide. ChemMedChem 2013; 9:290-5. [DOI: 10.1002/cmdc.201300409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Indexed: 11/07/2022]
|
30
|
Rousalova I, Banerjee S, Sangwan V, Evenson K, McCauley JA, Kratzke R, Vickers SM, Saluja A, D'Cunha J. Minnelide: a novel therapeutic that promotes apoptosis in non-small cell lung carcinoma in vivo. PLoS One 2013; 8:e77411. [PMID: 24143232 PMCID: PMC3797124 DOI: 10.1371/journal.pone.0077411] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Minnelide, a pro-drug of triptolide, has recently emerged as a potent anticancer agent. The precise mechanisms of its cytotoxic effects remain unclear. METHODS Cell viability was studied using CCK8 assay. Cell proliferation was measured real-time on cultured cells using Electric Cell Substrate Impedence Sensing (ECIS). Apoptosis was assayed by Caspase activity on cultured lung cancer cells and TUNEL staining on tissue sections. Expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA, APAF-1) was estimated by qRTPCR. Effect of Minnelide on proliferative cells in the tissue was estimated by Ki-67 staining of animal tissue sections. RESULTS In this study, we investigated in vitro and in vivo antitumor effects of triptolide/Minnelide in non-small cell lung carcinoma (NSCLC). Triptolide/Minnelide exhibited anti-proliferative effects and induced apoptosis in NSCLC cell lines and NSCLC mouse models. Triptolide/Minnelide significantly down-regulated the expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA) and up-regulated pro-apoptotic APAF-1 gene, in part, via attenuating the NF-κB signaling activity. CONCLUSION In conclusion, our results provide supporting mechanistic evidence for Minnelide as a potential in NSCLC.
Collapse
Affiliation(s)
- Ilona Rousalova
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Herbal compound triptolide synergistically enhanced antitumor activity of vasostatin120–180. Anticancer Drugs 2013; 24:945-57. [DOI: 10.1097/cad.0b013e3283651862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Owa C, Messina ME, Halaby R. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells. Int J Womens Health 2013; 5:557-69. [PMID: 24043955 PMCID: PMC3772696 DOI: 10.2147/ijwh.s44074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3. Methods MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells. Results These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability. Conclusion Our results suggest that further studies are warranted to investigate triptolide’s potential as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Chie Owa
- Department of Biology, Montclair State University, Montclair, NJ, USA
| | | | | |
Collapse
|
33
|
Park SW, Kim YI. Triptolide induces apoptosis of PMA-treated THP-1 cells through activation of caspases, inhibition of NF-κB and activation of MAPKs. Int J Oncol 2013; 43:1169-75. [PMID: 23900299 DOI: 10.3892/ijo.2013.2033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/07/2013] [Indexed: 11/05/2022] Open
Abstract
Triptolide is known to be involved in many cellular events, such as those related to immunosuppressive and antitumor activity. We investigated whether triptolide mediates these effects through multiple mechanisms, including activation of cell cycle arrest and caspase-dependent pathways, as well as by blocking nuclear factor-κB (NF-κB) activation and by potentiating the activities of the mitogen-activated protein kinase (MAPK) pathway, in phorbol myristate acetate (PMA)-differentiated THP-1 cells. Triptolide significantly inhibited cell proliferation in a dose- and time-dependent manner and it increased the apoptotic fraction in the cell cycle and the number of apoptotic THP-1 cells. Exposure of the cells to triptolide also increased caspase-3 activity in these cells. Furthermore, co-treatment of cells with triptolide and the pan-caspase inhibitor, Z-VAD-FMK, or the caspase-3 inhibitor, Z-DEVE-FMK, increased THP-1 cell growth. Triptolide treatment resulted in a significant decrease in mRNA expression levels in genes encoding Bcl-2, cyclin D1, p27 and survivin and an increase in those encoding Bax and p21 in THP-1 cells. Triptolide not only inhibited NF-κB activation, but also activated p38 MAPK and MEK/ERK phosphorylation. These results show that triptolide inhibits the growth of THP-1 cells by inducing apoptosis through caspase activation and the mechanism involves NF-κB inhibition and the MAPK pathway.
Collapse
Affiliation(s)
- Seung-Won Park
- Department of Biotechnology, Catholic University of Daegu, Daegu 712-702, Republic of Korea
| | | |
Collapse
|
34
|
Lin Y, Peng N, Li J, Zhuang H, Hua ZC. Herbal compound triptolide synergistically enhanced antitumor activity of amino-terminal fragment of urokinase. Mol Cancer 2013; 12:54. [PMID: 23758884 PMCID: PMC3728221 DOI: 10.1186/1476-4598-12-54] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/05/2013] [Indexed: 01/29/2023] Open
Abstract
Background Urokinase (uPA) and its receptor (uPAR) play an important role in tumour growth and metastasis, and overexpression of these molecules is strongly correlated with poor prognosis in a variety of malignant tumours. Targeting the excessive activation of this system as well as the proliferation of the tumour vascular endothelial cell would be expected to prevent tumour neovasculature and halt tumour development. The amino terminal fragment (ATF) of urokinase has been confirmed effective to inhibit the proliferation, migration and invasiveness of cancer cells via interrupting the interaction of uPA and uPAR. Triptolide (TPL) is a purified diterpenoid isolated from the Chinese herb Tripterygium wilfordii Hook F that has shown antitumor activities in various cancer cell types. However, its therapeutic application is limited by its toxicity in normal tissues and complications caused in patients. In this study, we attempted to investigate the synergistic anticancer activity of TPL and ATF in various solid tumour cells. Methods Using in vitro and in vivo experiments, we investigated the combined effect of TPL and ATF at a low dosage on cell proliferation, cell apoptosis, cell cycle distribution, cell migration, signalling pathways, xenograft tumour growth and angiogenesis. Results Our data showed that the sensitivity of a combined therapy using TPL and ATF was higher than that of TPL or ATF alone. Suppression of NF-κB transcriptional activity, activation of caspase-9/caspase-3, cell cycle arrest, and inhibition of uPAR-mediated signalling pathway contributed to the synergistic effects of this combination therapy. Furthermore, using a mouse xenograft model, we demonstrated that the combined treatment completely suppressed tumour growth by inhibiting angiogenesis as compared with ATF or TPL treatment alone. Conclusions Our study suggests that lower concentration of ATF and TPL used in combination may produce a synergistic anticancer efficacy that warrants further investigation for its potential clinical applications.
Collapse
Affiliation(s)
- Yuli Lin
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University, 22 Han Kou Road, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
35
|
TAN BEEJEN, CHIU GIGIN. Role of oxidative stress, endoplasmic reticulum stress and ERK activation in triptolide-induced apoptosis. Int J Oncol 2013; 42:1605-12. [DOI: 10.3892/ijo.2013.1843] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/24/2012] [Indexed: 11/06/2022] Open
|
36
|
Eftekhari-Sis B, Zirak M, Akbari A. Arylglyoxals in Synthesis of Heterocyclic Compounds. Chem Rev 2013; 113:2958-3043. [DOI: 10.1021/cr300176g] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bagher Eftekhari-Sis
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| | - Maryam Zirak
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran,
Iran
| | - Ali Akbari
- Department of Chemistry, Faculty
of Science, University of Maragheh, Golshahr,
P.O. Box. 55181-83111, Maragheh, Iran
| |
Collapse
|
37
|
Abstract
OBJECTIVES We aim to pharmacologically downregulate heat shock protein 27 (HSP27) through triptolide (TPL) to improve the drug sensitivity of pancreatic cancer to cisplatin (DDP). METHODS In vitro, we assessed cell viability and apoptosis by the combination of TPL and DDP in gemcitabine-resistant human pancreatic carcinoma PANC-1 and MIA PaCa-2 cell lines and examined the effect of silencing HSP27 by a small interfering RNA on cytotoxicity induced by TPL or DDP. In vivo, we apply TPL with DDP in a xenograft model to test the synergic action. RESULTS Triptolide cooperates with DDP to decrease cell viability and to induce apoptosis via the mitochondrial pathway, which is accompanied by a sharp decline in HSP27. Knocking down endogenous HSP27 can sensitize cancer cells to cytotoxicity with TPL or DDP, indicating the critical role of HSP27 down-regulation in the synergic effect. Meanwhile, TPL acts in synergy with DDP to cause tumor regression in vivo. CONCLUSIONS The combined therapy of TPL and DDP triggers a synergic apoptosis via inhibiting HSP27 in human gemcitabine-resistant pancreatic carcinoma and has a strong potential to be developed into a new effective regimen for pancreatic cancer treatment.
Collapse
|
38
|
Li H, Hui L, Xu W, Shen H, Chen Q, Long L, Zhu X. Triptolide modulates the sensitivity of K562/A02 cells to adriamycin by regulating miR-21 expression. PHARMACEUTICAL BIOLOGY 2012; 50:1233-1240. [PMID: 22957792 DOI: 10.3109/13880209.2012.665931] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Multidrug-resistance is a serious obstacle encountered in leukemia treatment. Recent studies have shown microRNA-21 (miR-21) is overexpressed in several types of cancer and contributes to tumor resistance to chemotherapy. In our previous studies, we found triptolide (TPL) could enhance adriamycin-induced cytotoxicity and apoptosis in K562/A02 cells. OBJECTIVE In the present study, we investigated the mechanism of TPL on the sensitivity of K562/A02 cells to adriamycin. MATERIALS AND METHODS Cell viability was assessed by methyl thiazolyl tetrazolium (MTT) assay. Expression of mature miR-21 was determined by SYBER green PCR. The miR-21 mimics and inhibitors were chemically synthesized and transfected into K562 cells or K562/A02 cells. PTEN protein levels was determined by western blots. PTEN promoter activity was measured by luciferase assays. RESULTS TPL (5 nmol/L) increased the sensitivity of K562/A02 to adriamycin. When adriamycin was combined with 5 nmol/L TPL, the mean apoptotic population of K562/A02 cells was increased from 4.3 to 18.5%, respectively. K562/A02 cells showed a significant reduction in miR-21 and phosphatase and tensin homolog deleted on chromosome ten (PTEN) expressions after TPL treatment. K562/A02 cells that were transfected with the miR-21 inhibitor had a significantly higher PTEN protein level than the control. K562 cells that were pre-treated with PTEN siRNA had increased survival rate compared to the control group. DISCUSSION AND CONCLUSION Our findings indicated that triptolide modulates the sensitivity of K562/A02 cells to adriamycin by regulating miR-21 expression. Triptolide inhibited miR-21 expression and enhanced PTEN levels in K562/A02 cells.
Collapse
Affiliation(s)
- Hao Li
- Department of Central Laboratory,The Affiliated People’s Hospital, Jiangsu University, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Pacak K, Sirova M, Giubellino A, Lencesova L, Csaderova L, Laukova M, Hudecova S, Krizanova O. NF-κB inhibition significantly upregulates the norepinephrine transporter system, causes apoptosis in pheochromocytoma cell lines and prevents metastasis in an animal model. Int J Cancer 2012; 131:2445-55. [PMID: 22407736 DOI: 10.1002/ijc.27524] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 02/27/2012] [Indexed: 11/07/2022]
Abstract
Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are specific types of neuroendocrine tumors that originate in the adrenal medulla or sympathetic/parasympathetic paraganglia, respectively. Although these tumors are intensively studied, a very effective treatment for metastatic PHEO or PGL has not yet been established. Preclinical evaluations of novel therapies for these tumors are very much required. Therefore, in this study we tested the effect of triptolide (TTL), a potent nuclear factor-kappaB (NF-κB) inhibitor, on the cell membrane norepinephrine transporter (NET) system, considered to be the gatekeeper for the radiotherapeutic agent 131I-metaiodobenzylguanidine (131I-MIBG). We measured changes in the mRNA and protein levels of NET and correlated them with proapoptotic factors and metastasis inhibition. The study was performed on three different stable PHEO cell lines. We found that blocking NF-κB with TTL or capsaicin increased both NET mRNA and protein levels. Involvement of NF-κB in the upregulation of NET was verified by mRNA silencing of this site and also by using NF-κB antipeptide. Moreover, in vivo treatment with TTL significantly reduced metastatic burden in an animal model of metastatic PHEO. The present study for the first time shows how NF-κB inhibitors could be successfully used in the treatment of metastatic PHEO/PGL by a significant upregulation of NET to increase the efficacy of 131I-MIBG and by the induction of apoptosis.
Collapse
Affiliation(s)
- Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Leyva-Illades D, Cherla RP, Lee MS, Tesh VL. Regulation of cytokine and chemokine expression by the ribotoxic stress response elicited by Shiga toxin type 1 in human macrophage-like THP-1 cells. Infect Immun 2012; 80:2109-20. [PMID: 22431646 PMCID: PMC3370584 DOI: 10.1128/iai.06025-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/04/2012] [Indexed: 01/20/2023] Open
Abstract
Shiga toxins (Stxs) are cytotoxins produced by the enteric pathogens Shigella dysenteriae serotype 1 and Shiga toxin-producing Escherichia coli (STEC). Stxs bind to a membrane glycolipid receptor, enter cells, and undergo retrograde transport to ultimately reach the cytosol, where the toxins exert their protein synthesis-inhibitory activity by depurination of a single adenine residue from the 28S rRNA component of eukaryotic ribosomes. The depurination reaction activates the ribotoxic stress response, leading to signaling via the mitogen-activated protein kinase (MAPK) pathways (Jun N-terminal protein kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) in human epithelial, endothelial, and myeloid cells. We previously showed that treatment of human macrophage-like THP-1 cells with Stxs resulted in increased cytokine and chemokine expression. In the present study, we show that individual inactivation of ERK, JNK, and p38 MAPKs using pharmacological inhibitors in the presence of Stx1 resulted in differential regulation of the cytokines tumor necrosis factor alpha and interleukin-1β (IL-1β) and chemokines IL-8, growth-regulated protein-β, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β. THP-1 cells exposed to Stx1 upregulate the expression of select dual-specificity phosphatases (DUSPs), enzymes that dephosphorylate and inactivate MAPKs in mammalian cells. In this study, we confirmed DUSP1 protein production by THP-1 cells treated with Stx1. DUSP1 inhibition by triptolide showed that ERK and p38 phosphorylation is regulated by DUSP1, while JNK phosphorylation is not. Inhibition of p38 MAPK signaling blocked the ability of Stx1 to induce DUSP1 mRNA expression, suggesting that an autoregulatory signaling loop may be activated by Stxs. Thus, Stxs appear to be capable of eliciting signals which both activate and deactivate signaling for increased cytokine/chemokine production in human macrophage-like cells.
Collapse
Affiliation(s)
- Dinorah Leyva-Illades
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | | | | | | |
Collapse
|
41
|
Lu N, Liu J, Liu J, Zhang C, Jiang F, Wu H, Chen L, Zeng W, Cao X, Yan T, Wang G, Zhou H, Lin B, Yan X, Zhang XK, Zeng JZ. Antagonist effect of triptolide on AKT activation by truncated retinoid X receptor-alpha. PLoS One 2012; 7:e35722. [PMID: 22545132 PMCID: PMC3335786 DOI: 10.1371/journal.pone.0035722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/20/2012] [Indexed: 11/18/2022] Open
Abstract
Background Retinoid X receptor-alpha (RXRα) is a key member of the nuclear receptor superfamily. We recently demonstrated that proteolytic cleavage of RXRα resulted in production of a truncated product, tRXRα, which promotes cancer cell survival by activating phosphatidylinositol-3-OH kinase (PI3K)/AKT pathway. However, how the tRXRα-mediated signaling pathway in cancer cells is regulated remains elusive. Methodology/Principal Findings We screened a natural product library for tRXRα targeting leads and identified that triptolide, an active component isolated from traditional Chinese herb Trypterygium wilfordii Hook F, could modulate tRXRα-mediated cancer cell survival pathway in vitro and in animals. Our results reveal that triptolide strongly induces cancer cell apoptosis dependent on intracellular tRXRα expression levels, demonstrating that tRXRα serves as an important intracellular target of triptolide. We show that triptolide selectively induces tRXRα degradation and inhibits tRXRα-dependent AKT activity without affecting the full-length RXRα. Interestingly, such effects of triptolide are due to its activation of p38. Although triptolide also activates Erk1/2 and MAPK pathways, the effects of triptolide on tRXRα degradation and AKT activity are only reversed by p38 siRNA and p38 inhibitor. In addition, the p38 inhibitor potently inhibits tRXRα interaction with p85α leading to AKT inactivation. Our results demonstrate an interesting novel signaling interplay between p38 and AKT through tRXRα mediation. We finally show that targeting tRXRα by triptolide strongly activates TNFα death signaling and enhances the anticancer activity of other chemotherapies Conclusions/Significance Our results identify triptolide as a new xenobiotic regulator of the tRXRα-dependent survival pathway and provide new insight into the mechanism by which triptolide acts to induce apoptosis of cancer cells. Triptolide represents one of the most promising therapeutic leads of natural products of traditional Chinese medicine with unfortunate side-effects. Our findings will offer new strategies to develop improved triptolide analogs for cancer therapy.
Collapse
Affiliation(s)
- Na Lu
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Jinxing Liu
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Jie Liu
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Chunyun Zhang
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Hua Wu
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Liqun Chen
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Wenjun Zeng
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Xihua Cao
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Tingdong Yan
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Guanghui Wang
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Hu Zhou
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Bingzhen Lin
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Xiaomei Yan
- The Key Laboratory of Analytical Science, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiao-kun Zhang
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (JZ); (XK)
| | - Jin-Zhang Zeng
- School of Pharmaceutical Sciences and Institute for Biomedical Research, Xiamen University, Xiamen, China
- * E-mail: (JZ); (XK)
| |
Collapse
|
42
|
Zhou ZL, Yang YX, Ding J, Li YC, Miao ZH. Triptolide: structural modifications, structure-activity relationships, bioactivities, clinical development and mechanisms. Nat Prod Rep 2012; 29:457-75. [PMID: 22270059 DOI: 10.1039/c2np00088a] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triptolide, a principal bioactive ingredient of Tripterygium wilfordii Hook F, has attracted extensive exploration due to its unique structure of a diterpenoid triepoxide and multiple biological activities. This review will focus on the structural modifications, structure-activity relationships, pharmacology, and clinical development of triptolide in the last forty years.
Collapse
Affiliation(s)
- Zhao-Li Zhou
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P.R. China
| | | | | | | | | |
Collapse
|
43
|
Li H, Hui L, Xu W, Shen H, Chen Q, Long L, Zhu X. Modulation of P-glycoprotein expression by triptolide in adriamycin-resistant K562/A02 cells. Oncol Lett 2011; 3:485-489. [PMID: 22740937 DOI: 10.3892/ol.2011.500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/25/2011] [Indexed: 11/05/2022] Open
Abstract
Multidrug resistance is a serious obstacle encountered in leukemia treatment. Previous studies have found drug resistance in human leukemia is mainly associated with overexpression of the multidrug resistance gene 1 (MDR1). The aim of the present study was to investigate the modulation of P-glycoprotein expression by triptolide in adriamycin-resistant K562/A02 cells. The reverse effects of triptolide on drug resistance in K562/A02 cells were assessed by 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide (MTT) assay. The percentage of apoptotic cells was obtained from annexin V/fluorescein isothiocyanate (FITC) and propridium iodide (PI) double-staining. The effects of triptolide on P-glycoprotein activity were evaluated by measuring intracellular adriamycin accumulation. The expression of P-glycoprotein was determined by flow cytometry. A luciferase reporter gene assay was used to detect the transcriptional activity of the MDR1 promoter. Results revealed that triptolide decreased the degree of resistance of K562/A02 cells, and significantly inhibited P-glycoprotein expression and drug-transport function, and increased the accumulation of adriamycin in K562/A02 cells as measured by flow cytometry. A luciferase reporter gene assay demonstrated that triptolide was capable of inhibiting the transcriptional activity of the MDR1 promoter. Triptolide may effectively reverse the adriamycin resistance in K562/A02 cells via modulation of the P-glycoprotein expression and by increasing intracellular adriamycin accumulation.
Collapse
Affiliation(s)
- Hao Li
- Department of Central Laboratory, The Affiliated People's Hospital, Jiangsu University, Jiangsu, P.R. China
| | | | | | | | | | | | | |
Collapse
|
44
|
MRx102, a triptolide derivative, has potent antileukemic activity in vitro and in a murine model of AML. Leukemia 2011; 26:443-50. [PMID: 21904380 DOI: 10.1038/leu.2011.246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Triptolide, isolated from the herb Tripterygium wilfordii, has been shown to potently induce apoptosis in various malignant cells by inhibiting RNA synthesis and nuclear factor-κB activity. Previously, we showed that triptolide promotes apoptosis in acute myeloid leukemia (AML) cells via the mitochondria-mediated pathway, in part, by decreasing levels of the anti-apoptotic proteins XIAP and Mcl-1. MRx102 is a triptolide derivative, currently in preclinical development. Here we show that MRx102 potently promoted apoptosis in AML cell lines, with EC(50) values of 14.5±0.6 nM and 37.0±0.9 nM at 48 h for OCI-AML3 and MV4-11 cells, respectively. MRx102, at low nanomolar concentrations, also induced apoptosis in bulk, CD34(+) progenitor, and more importantly, CD34(+)CD38(-) stem/progenitor cells from AML patients, even when they were protected by coculture with bone marrow derived mesenchymal stromal cells. MRx102 decreased XIAP and Mcl-1 protein levels and inhibited RNA synthesis in OCI-AML3 cells. In vivo, MRx102 greatly decreased leukemia burden and increased survival time in non-obese diabetic/severe combined immunodeficiency mice harboring Ba/F3-ITD cells. Collectively, we demonstrated that MRx102 has potent antileukemic activity both in vitro and in vivo, has the potential to eliminate AML stem/progenitor cells and overcome microenvironmental protection of leukemic cells, and warrants clinical investigation.
Collapse
|
45
|
Loss of VOPP1 overexpression in squamous carcinoma cells induces apoptosis through oxidative cellular injury. J Transl Med 2011; 91:1170-80. [PMID: 21519330 DOI: 10.1038/labinvest.2011.70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The vesicular overexpressed in cancer prosurvival protein 1 (VOPP1) gene product (previously known as GASP and ECOP) has a poorly characterized functional role in cancer cells, although its expression levels are known to be elevated in many cancer types. To determine the role that VOPP1 has in human squamous cell carcinoma (SCC), a series of siRNA-mediated expression knockdown experiments were performed in carcinoma-derived model systems with confirmed endogenous VOPP1 overexpression (three SCC-derived cell lines: SCC-9, FaDu, and H2170, as well as the cervical adenocarcinoma HeLa cell line, which has been examined in relevant previous reports). The data indicate that VOPP1 knockdown induces cell death at 72 h post-transfection and this is caused by the induction of apoptosis via the intrinsic pathway. Analysis of microarray gene expression profiling showed that genes whose expression was affected by VOPP1 knockdown exhibited enrichment in annotations of oxidative stress and mitochondrial dysfunction. Reporters of reactive oxygen species (ROS) and mitochondrial membrane potential show that ROS levels become elevated and mitochondrial dysfunction occurs with VOPP1 knockdown at time points before the activation of effector caspases and cell death seen at later time points. Furthermore, the introduction of the antioxidant N-acetyl cysteine was able to abrogate the induction of apoptosis observed with VOPP1 knockdown in a dose-responsive manner. Reporter constructs for NF-κB-mediated transcription are not affected in SCC cell lines by VOPP1 knockdown. Taken together, these data support the hypothesis that VOPP1 overexpression in cancer participates in the control of the intracellular redox state, and that its loss leads to oxidative cellular injury leading to cell death by the intrinsic apoptotic pathway.
Collapse
|
46
|
Park B, Sung B, Yadav VR, Chaturvedi MM, Aggarwal BB. Triptolide, histone acetyltransferase inhibitor, suppresses growth and chemosensitizes leukemic cells through inhibition of gene expression regulated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK pathway. Biochem Pharmacol 2011; 82:1134-44. [PMID: 21820422 DOI: 10.1016/j.bcp.2011.07.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 01/24/2023]
Abstract
Triptolide, a diterpene triepoxide, from the Chinese herb Tripterygium wilfordii Hook.f, exerts its anti-inflammatory and immunosuppressive activities by inhibiting the transcription factor nuclear factor-κB (NF-κB) pathway, through a mechanism not yet fully understood. We found that triptolide, in nanomolar concentrations, suppressed both constitutive and inducible NF-κB activation, but did not directly inhibit binding of p65 to the DNA. The diterpene did block TNF-induced ubiquitination, phosphorylation, and degradation of IκBα, the inhibitor of NF-κB and inhibited acetylation of p65 through suppression of binding of p65 to CBP/p300. Triptolide also inhibited the IκBα kinase (IKK) that activates NF-κB and phosphorylation of p65 at serine 276, 536. Furthermore, the NF-κB reporter activity induced by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKKβ was abolished by the triepoxide. Triptolide also abrogated TNF-induced expression of cell survival proteins (XIAP, Bcl-x(L), Bcl-2, survivin, cIAP-1 and cIAP-2), cell proliferative proteins (cyclin D1, c-myc and cyclooxygenase-2), and metastasis proteins (ICAM-1 and MMP-9). This led to enhancement of apoptosis induced by TNF, taxol, and thalidomide by the diterpene and to suppression of tumor invasion. Overall, our results demonstrate that triptolide can block the inflammatory pathway activated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK, sensitizes cells to apoptosis, and inhibits invasion of tumor cells.
Collapse
Affiliation(s)
- Byoungduck Park
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | |
Collapse
|
47
|
Muntané J. Harnessing tumor necrosis factor receptors to enhance antitumor activities of drugs. Chem Res Toxicol 2011; 24:1610-6. [PMID: 21740002 DOI: 10.1021/tx2002349] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is the second-leading cause of death in the U.S. behind heart disease and over stroke. The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The inhibition of cell death pathways is one of these tumor characteristics which also include sustained proliferative signaling, evading growth suppressor signaling, replicative immortality, angiogenesis, and promotion of invasion and metastasis. Cell death is mediated through death receptor (DR) stimulation initiated by specific ligands that transmit signaling to the cell death machinery or through the participation of mitochondria. Cell death involving DR is mediated by the superfamily of tumor necrosis factor receptor (TNF-R) which includes TNF-R type I, CD95, DR3, TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 (TRAIL-R1) and -2 (TRAIL-R2), DR6, ectodysplasin A (EDA) receptor (EDAR), and the nerve growth factor (NGF) receptor (NGFR). The expression of these receptors in healthy and tumor cells induces treatment side effects that limit the systemic administration of cell death-inducing therapies. The present review is focused on the different therapeutic strategies such as targeted antibodies or small molecules addressed to selective stimulated DR-mediated apoptosis or reduce cell proliferation in cancer cells.
Collapse
Affiliation(s)
- Jordi Muntané
- Liver Research Unit, Instituto Maimónides para la Investigación Biomédica de Córdoba, Reina Sofia University Hospital , Córdoba, Spain.
| |
Collapse
|
48
|
The main anticancer bullets of the Chinese medicinal herb, thunder god vine. Molecules 2011; 16:5283-97. [PMID: 21701438 PMCID: PMC6264543 DOI: 10.3390/molecules16065283] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022] Open
Abstract
The thunder god vine or Tripterygium wilfordii Hook. F. is a representative Chinese medicinal herb which has been used widely and successfully for centuries in treating inflammatory diseases. More than 100 components have been isolated from this plant, and most of them have potent therapeutic efficacy for a variety of autoimmune and inflammatory diseases. In the past four decades, the anticancer activities of the extracts from this medicinal herb have attracted intensive attention by researchers worldwide. The diterpenoid epoxide triptolide and the quinone triterpene celastrol are two important bioactive ingredients that show a divergent therapeutic profile and can perturb multiple signal pathways. Both compounds promise to turn traditional medicines into modern drugs. In this review, we will mainly address the anticancer activities and mechanisms of action of these two agents and briefly describe some other antitumor components of the thunder god vine.
Collapse
|
49
|
Sun Y, Zhou H, Yang BX. Drug discovery for polycystic kidney disease. Acta Pharmacol Sin 2011; 32:805-16. [PMID: 21642949 PMCID: PMC4009953 DOI: 10.1038/aps.2011.29] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 03/17/2011] [Indexed: 12/19/2022]
Abstract
In polycystic kidney disease (PKD), a most common human genetic diseases, fluid-filled cysts displace normal renal tubules and cause end-stage renal failure. PKD is a serious and costly disorder. There is no available therapy that prevents or slows down the cystogenesis and cyst expansion in PKD. Numerous efforts have been made to find drug targets and the candidate drugs to treat PKD. Recent studies have defined the mechanisms underlying PKD and new therapies directed toward them. In this review article, we summarize the pathogenesis of PKD, possible drug targets, available PKD models for screening and evaluating new drugs as well as candidate drugs that are being developed.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Bao-xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| |
Collapse
|
50
|
Yang SW, Wang W, Xie XY, Zhu WP, Li FQ. In vitro synergistic cytotoxic effect of triptolide combined with hydroxycamptothecin on pancreatic cancer cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:121-34. [PMID: 21213403 DOI: 10.1142/s0192415x11008695] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is a devastating disease characterized by low sensitivity to conventional chemotherapeutic treatment that has a poor prognosis. Therefore, novel effective chemotherapeutic regimens need to be developed. In this study, we analyzed the combined cytotoxic effect of triptolide and hydroxycamptothecin (HCPT) on pancreatic cancer cell line PANC-1 by using 3-(4.5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) and fluorescence- activated cell sorting (FACS) assays. Our results showed that the sensitivity of a combined therapy using triptolide and HCPT was higher than that of triptolide or HCPT alone and that activation of caspase-9/caspase-3 and inhibition of nuclear factor-kappaB (NF-κB) signaling pathway may contribute to the synergistic cytotoxic effect of this combination therapy. Therefore, our observations provided evidence supporting the clinical applications of the combination chemotherapy using triptolide and HCPT for treating pancreatic cancer.
Collapse
Affiliation(s)
- Su-Wen Yang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, P. R. China
| | | | | | | | | |
Collapse
|