1
|
Chen Z, Zheng X, Shu X, Hua G, Zhu R, Sun L, Chen J. Supplemental L-arginine promotes hepatocyte proliferation and alters liver fatty acid metabolism in the late embryonic phase: an RNA-seq analysis. Poult Sci 2024; 103:104175. [PMID: 39216267 PMCID: PMC11402549 DOI: 10.1016/j.psj.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The in ovo feeding (IOF) of L-arginine (L-Arg) to chick embryos is a viable method for improving early intestinal development, subsequently leading to an acceleration in growth rate during the posthatch stage. However, the liver, being the pivotal organ for energy metabolism in poultry, the precise effects and mechanisms of L-Arg on the liver development and metabolism remain unclear. To elucidate these, the present study injected 2 doses of L-Arg (10 mg/egg and 15 mg/egg) into the embryos of Hongyao chickens at 17.5 d of incubation, subsequently incubating them until d 19 for further analysis. IOF of 15 mg L-Arg/egg significantly increased the organ indices of liver and small intestine, as well as the duodenal villus height/crypt depth. RNA-Seq analysis of liver tissues showed that the metabolism of xenobiotics, amino acid metabolism, and the fatty acid metabolism were significantly enriched in L-Arg injection group. The core differentially expressed genes (DEGs) were primarily involved in cell proliferation and fatty acid metabolism. The CCK8 assays revealed that supplemental L-Arg significantly enhanced the proliferation of primary embryo hepatocytes and leghorn male hepatoma (LMH) cells. Upregulation of core DEGs, including HBEGF, HES4, NEK3, EGR1, and USP2, significantly promoted the proliferation of liver cells. Additionally, analysis of triglyceride and total cholesterol content, as well as oil red O staining, indicated that supplemental L-Arg effectively reduced lipid accumulation. Overall, L-Arg supplementation in late chick embryos may promote early liver and small intestine development by reducing liver lipid deposition and enhancing energy efficiency, necessitating further experimental validation. This study provides profound insights into the molecular regulatory network of L-Arg in promoting the development of chicken embryos. The identified DEGs that promote cell proliferation and lipid metabolism can serve as novel targets for further developing methods to enhance early development of chicken embryos.
Collapse
Affiliation(s)
- Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liumei Sun
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
3
|
Zhang Y, Chen W, Zeng W, Lu Z, Zhou X. Biallelic loss of function NEK3 mutations deacetylate α-tubulin and downregulate NUP205 that predispose individuals to cilia-related abnormal cardiac left-right patterning. Cell Death Dis 2020; 11:1005. [PMID: 33230144 PMCID: PMC7684299 DOI: 10.1038/s41419-020-03214-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
Defective left–right (LR) organization involving abnormalities in cilia ultrastructure causes laterality disorders including situs inversus (SI) and heterotaxy (Htx) with the prevalence approximately 1/10,000 births. In this study, we describe two unrelated family trios with abnormal cardiac LR patterning. Through whole-exome sequencing (WES), we identified compound heterozygous mutations (c.805-1G >C; p. Ile269GlnfsTer8/c.1117dupA; p.Thr373AsnfsTer19) (c.29T>C; p.Ile10Thr/c.356A>G; p.His119Arg) of NEK3, encoding a NIMA (never in mitosis A)-related kinase, in two affected individuals, respectively. Protein levels of NEK3 were abrogated in Patient-1 with biallelic loss-of function (LoF) NEK3 mutations that causes premature stop codon. Subsequence transcriptome analysis revealed that NNMT (nicotinamide N-methyltransferase) and SIRT2 (sirtuin2) was upregulated by NEK3 knockdown in human retinal pigment epithelial (RPE) cells in vitro, which associates α-tubulin deacetylation by western blot and immunofluorescence. Transmission electron microscopy (TEM) analysis further identified defective ciliary ultrastructure in Patient-1. Furthermore, inner ring components of nuclear pore complex (NPC) including nucleoporin (NUP)205, NUP188, and NUP155 were significantly downregulated in NEK3-silenced cells. In conclusion, we identified biallelic mutations of NEK3 predispose individual to abnormal cardiac left–right patterning via SIRT2-mediated α-tubulin deacetylation and downregulation of inner ring nucleoporins. Our study suggested that NEK3 could be a candidate gene for human ciliopathies.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Weicheng Chen
- Pediatric Cardiovascular Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Weijia Zeng
- School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Zhouping Lu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Xiangyu Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| |
Collapse
|
4
|
Shen W, Han Q, Sun F, Li Z, Li L. Nek9,a sensitive immunohistochemical marker for Schwannian, melanocytic and myogenic tumours. J Clin Pathol 2020; 74:jclinpath-2020-206864. [PMID: 32792414 DOI: 10.1136/jclinpath-2020-206864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/03/2022]
Abstract
AIMS In our previous study, striking Nek9 staining was observed in peripheral nerves for the first time. Therefore, in the current study, we aimed to detect Nek9 expression in peripheral nerve sheath tumours, melanocytic tumours and their mimics. METHODS The expression of Nek9 was analysed in 234 mesenchymal tumours including schwannoma, neurofibroma, malignant peripheral nerve sheath tumour (MPNST), melanoma and their mimics adopting immunohistochemistry. In addition, S-100 and SOX10 were detected in all tumours. RESULTS The results revealed an intense and diffuse staining of Nek9 in all schwannomas (30/30) and melanomas (20/20). The neurofibromas (86%, 19/22) and MPNSTs (76%, 18/21) showed a high frequency of positive Nek9 staining. Nek9 showed a comparable sensitivity to S-100, and better sensitivity and less specificity than that of SOX10. Among the histological mimics, Nek9 was only strongly and diffusely expressed in rhabdomyosarcomas (RSs) (97%,37/38) while negatively stained in most of the other tumours. It was noted that Nek9 immunoresponse was more diffuse than that of MyoD1 and myogenin in RS. CONCLUSIONS In summary, Nek9 has a good sensitivity in the diagnosis of tumours with Schwannian, melanocytic and skeletal muscle differentiations. The immunohistochemical analysis of Nek9 expression may be helpful in the diagnosis and differential diagnosis of the aforementioned tumours.
Collapse
Affiliation(s)
- Wenping Shen
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Qun Han
- Department of Pathology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Feifei Sun
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Zhishuang Li
- Department of Pathology, Second Hospital of Shandong University, Jinan, China
| | - Li Li
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|
6
|
Wells CI, Kapadia NR, Couñago RM, Drewry DH. In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases. MEDCHEMCOMM 2018; 9:44-66. [PMID: 30108900 PMCID: PMC6071746 DOI: 10.1039/c7md00510e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Potent, selective, and cell active small molecule kinase inhibitors are useful tools to help unravel the complexities of kinase signaling. As the biological functions of individual kinases become better understood, they can become targets of drug discovery efforts. The small molecules used to shed light on function can also then serve as chemical starting points in these drug discovery efforts. The Nek family of kinases has received very little attention, as judged by number of citations in PubMed, yet they appear to play many key roles and have been implicated in disease. Here we present our work to identify high quality chemical starting points that have emerged due to the increased incidence of broad kinome screening. We anticipate that this analysis will allow the community to progress towards the generation of chemical probes and eventually drugs that target members of the Nek family.
Collapse
Affiliation(s)
- C I Wells
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - N R Kapadia
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - R M Couñago
- Structural Genomics Consortium , Universidade Estadual de Campinas - UNICAMP , Campinas , SP , 13083 Brazil
| | - D H Drewry
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| |
Collapse
|
7
|
Harrington KM, Clevenger CV. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J Biol Chem 2016; 291:21388-21406. [PMID: 27489110 PMCID: PMC5076809 DOI: 10.1074/jbc.m116.726190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/27/2016] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence supports a role for prolactin (PRL) in the development and progression of human breast cancer. Although PRL is an established chemoattractant for breast cancer cells, the precise molecular mechanisms of how PRL regulates breast cancer cell motility and invasion are not fully understood. PRL activates the serine/threonine kinase NEK3, which was reported to enhance breast cancer cell migration, invasion, and the actin cytoskeletal reorganization necessary for these processes. However, the specific mechanisms of NEK3 activation in response to PRL signaling have not been defined. In this report, a novel PRL-inducible regulatory phosphorylation site within the activation segment of NEK3, threonine 165 (Thr-165), was identified. Phosphorylation at NEK3 Thr-165 was found to be dependent on activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway using both pharmacological inhibition and siRNA-mediated knockdown approaches. Strikingly, inhibition of phosphorylation at NEK3 Thr-165 by expression of a phospho-deficient mutant (NEK3-T165V) resulted in increased focal adhesion size, formation of zyxin-positive focal adhesions, and reorganization of the actin cytoskeleton into stress fibers. Concordantly, NEK3-T165V cells exhibited migratory defects. Together, these data support a modulatory role for phosphorylation at NEK3 Thr-165 in focal adhesion maturation and/or turnover to promote breast cancer cell migration.
Collapse
Affiliation(s)
- Katherine M Harrington
- From the Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
8
|
Meirelles GV, Perez AM, de Souza EE, Basei FL, Papa PF, Melo Hanchuk TD, Cardoso VB, Kobarg J. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases. World J Biol Chem 2014; 5:141-160. [PMID: 24921005 PMCID: PMC4050109 DOI: 10.4331/wjbc.v5.i2.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/07/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A (NIMA)-related kinases (Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals: (1) centrioles/mitosis; (2) primary ciliary function/ciliopathies; and (3) DNA damage response (DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups’ functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.
Collapse
|
9
|
Abstract
EHDs [EH (Eps15 homology)-domain-containing proteins] participate in different stages of endocytosis. EHD2 is a plasma-membrane-associated EHD which regulates trafficking from the plasma membrane and recycling. EHD2 has a role in nucleotide-dependent membrane remodelling and its ATP-binding domain is involved in dimerization, which creates a membrane-binding region. Nucleotide binding is important for association of EHD2 with the plasma membrane, since a nucleotide-free mutant (EHD2 T72A) failed to associate. To elucidate the possible function of EHD2 during endocytic trafficking, we attempted to unravel proteins that interact with EHD2, using the yeast two-hybrid system. A novel interaction was found between EHD2 and Nek3 [NIMA (never in mitosis in Aspergillus nidulans)-related kinase 3], a serine/threonine kinase. EHD2 was also found in association with Vav1, a Nek3-regulated GEF (guanine-nucleotide-exchange factor) for Rho GTPases. Since Vav1 regulates Rac1 activity and promotes actin polymerization, the impact of overexpression of EHD2 on Rac1 activity was tested. The results indicated that wt (wild-type) EHD2, but not its P-loop mutants, reduced Rac1 activity. The inhibitory effect of EHD2 overexpression was partially rescued by co-expression of Rac1 as measured using a cholera toxin trafficking assay. The results of the present study strongly indicate that EHD2 regulates trafficking from the plasma membrane by controlling Rac1 activity.
Collapse
|
10
|
Abstract
Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex-specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down-regulation of genes involved in both G1- and G2-phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells.
Collapse
|
11
|
Chang J, Baloh RH, Milbrandt J. The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons. J Cell Sci 2009; 122:2274-82. [PMID: 19509051 DOI: 10.1242/jcs.048975] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NIMA-related kinases (Neks) belong to a large family of Ser/Thr kinases that have critical roles in coordinating microtubule dynamics during ciliogenesis and mitotic progression. The Nek kinases are also expressed in neurons, whose axonal projections are, similarly to cilia, microtubule-abundant structures that extend from the cell body. We therefore investigated whether Nek kinases have additional, non-mitotic roles in neurons. We found that Nek3 influences neuronal morphogenesis and polarity through effects on microtubules. Nek3 is expressed in the cytoplasm and axons of neurons and is phosphorylated at Thr475 located in the C-terminal PEST domain, which regulates its catalytic activity. Although exogenous expression of wild-type or phosphomimic (T475D) Nek3 in cultured neurons has no discernible impact, expression of a phospho-defective mutant (T475A) or PEST-truncated Nek3 leads to distorted neuronal morphology with disturbed polarity and deacetylation of microtubules via HDAC6 in its kinase-dependent manner. Thus, the phosphorylation at Thr475 serves as a regulatory switch that alters Nek3 function. The deacetylation of microtubules in neurons by unphosphorylated Nek3 raises the possibility that it could have a role in disorders where axonal degeneration is an important component.
Collapse
Affiliation(s)
- Jufang Chang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
12
|
Philonenko ES, Volchkov PY, Mufazalov IA, Kiselev SL, Lagarkova MA. Protein kinases predominately expressed in human ES cell lines during differentiation. CELL AND TISSUE BIOLOGY 2007. [DOI: 10.1134/s1990519x07050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Miller SL, Antico G, Raghunath PN, Tomaszewski JE, Clevenger CV. Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene 2007; 26:4668-78. [PMID: 17297458 DOI: 10.1038/sj.onc.1210264] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prolactin (PRL) stimulates the cytoskeletal re-organization and motility of breast cancer cells. During PRL receptor signaling, Vav2 becomes phosphorylated and activated, an event regulated by the serine/threonine kinase Nek3. Given the regulatory role of Vav2, the function of Nek3 in PRL-mediated motility and invasion was examined. Overexpression of Nek3 in Chinese hamster ovary transfectants potentiated cytoskeletal re-organization in response to PRL. In contrast, downregulation of Nek3 expression by small-interfering RNA (siRNA) attenuated PRL-mediated cytoskeletal reorganization, activation of GTPase Rac1, cell migration and invasion of T47D cells. In addition, PRL stimulation induced an interaction between Nek3 and paxillin and significantly increased paxillin serine phosphorylation, whereas Nek3 siRNA-transfected cells showed a marked reduction in paxillin phosphorylation. Analysis of breast tissue microarrays also demonstrated a significant up-regulation of Nek3 expression in malignant versus normal specimens. These data suggest that Nek3 contributes to PRL-mediated breast cancer motility through mechanisms involving Rac1 activation and paxillin phosphorylation.
Collapse
Affiliation(s)
- S L Miller
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The Nek family of cell-cycle kinases is widely represented in eukaryotes and includes numerous proteins that were described only recently and remain poorly characterized. Comparing Neks in the context of clades allows us to examine the question of whether microbial eukaryotic Neks, although not strictly orthologs of their vertebrate counterparts, can provide clues to ancestral functions that might be retained in the vertebrate Neks. Relatives of the Nek2/NIMA proteins play important roles at the G2-M transition in nuclear envelope breakdown and centromere separation. Nek6, Nek7 and Nek9 also seem to regulate mitosis. By contrast, Nek1 and Nek8 have been linked with polycystic kidney disease. Results of statistical analysis indicate that the family coevolved with centrioles that function as both microtubule-organizing centers and the basal bodies of cilia. This evolutionary perspective, taken together with functional studies of microbial Neks, provides new insights into the cellular roles of the proteins and disease with which some of them have been linked.
Collapse
Affiliation(s)
- Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | | |
Collapse
|
15
|
Miller SL, DeMaria JE, Freier DO, Riegel AM, Clevenger CV. Novel association of Vav2 and Nek3 modulates signaling through the human prolactin receptor. Mol Endocrinol 2004; 19:939-49. [PMID: 15618286 DOI: 10.1210/me.2004-0443] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Prolactin (PRL) receptor activation contributes to the progression and motility of human breast cancer. This event activates multimeric signaling pathways, including the activation of the Vav family of guanine nucleotide exchange factors. To detect novel proteins interacting with Vav, yeast two-hybrid analysis was performed and demonstrated an interaction between the serine/threonine NIMA (never in mitosis A)-related family kinase p56Nek3 and Vav1. The PRL-dependent interaction of Nek3 with Vav1 and Vav2 was confirmed by coimmunoprecipitation analysis. PRL stimulation of T47D cells induced Nek3 kinase activity and the interaction of Vav2/Nek3 with the PRL receptor. Increased Nek3 levels up-regulated Vav2 serine and tyrosine phosphorylation, whereas knockdown of Nek3 resulted in a reduction of Vav2 phosphorylation. Activation of guanosine triphosphatase Rac-1 in Chinese hamster ovary transfectants required both Nek3 and Vav2 and was inhibited by the overexpression of a kinase inactivating Nek3 mutant. However, overexpression of either Nek3 or kinase-inactive Nek3 had no effect on Vav2-potentiated signal transducer and activator of transcription 5-mediated gene expression. Overexpression of kinase inactive Nek3 in T47D cells led to a 50% increase in apoptosis vs. controls. These data suggest that the PRL-mediated activation of Nek3 contributes differentially to Vav2 signaling pathways involving Rac1 and signal transducer and activator of transcription 5 and implicates Nek3 during PRL-mediated actions in breast cancer.
Collapse
Affiliation(s)
- Sommer L Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
16
|
Bowers AJ, Boylan JF. Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors. Gene 2004; 328:135-42. [PMID: 15019993 DOI: 10.1016/j.gene.2003.12.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 10/16/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
The family of human Nek (NIMA Related Kinase) kinases currently contains 11 members. We have identified Nek8 as a new member of the Nek kinase family. For many of the Nek family members, primary tumor expression data and function have been limited. However, all of the Nek family proteins share considerable homology with the Never In Mitosis, gene A (NIMA) kinase from the filamentous fungus Aspergillus nidulans. NIMA, as well as its most closely related human ortholog, Nek2, are required for G(2)/M progression and promote centrosome maturation during mitosis. We isolated Nek8 from a primary human colon cDNA library, and found it to be highly homologous to murine Nek8. Recently, a previously named Nek8 sequence was renamed Nek9/Nercc1 in Genbank due to its lack of homology to murine Nek8 and its high homology to murine Nek9. Interestingly, in our study, phylogenetic analysis suggests that human Nek8 and Nek9 form a subfamily within the Nek family. Nek8 has high homology to the Nek family kinase domain as well as to a regulator of chromosome condensation domain (RCC1), which is also present in Nek9. The open reading frame of human Nek8 encodes a 692 amino-acid protein with a calculated molecular weight of 75 kDa. Nek8 is differently expressed between normal human breast tissue and breast tumors. Overexpression of a mutated kinase domain Nek8 in U2-0S cells led to a decrease in actin protein, and a small increase in the level of cdk1/cyclinB1. Our data demonstrate for the first time that Nek8 is a novel tumor associated gene, and shares considerable sequence homology with the Nek family of protein kinases and may be involved in G(2)/M progression.
Collapse
Affiliation(s)
- Alex J Bowers
- Department of Cancer Biology, Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
17
|
Osmani AH, Davies J, Oakley CE, Oakley BR, Osmani SA. TINA interacts with the NIMA kinase in Aspergillus nidulans and negatively regulates astral microtubules during metaphase arrest. Mol Biol Cell 2003; 14:3169-79. [PMID: 12925754 PMCID: PMC181558 DOI: 10.1091/mbc.e02-11-0715] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The tinA gene of Aspergillus nidulans encodes a protein that interacts with the NIMA mitotic protein kinase in a cell cycle-specific manner. Highly similar proteins are encoded in Neurospora crassa and Aspergillus fumigatus. TINA and NIMA preferentially interact in interphase and larger forms of TINA are generated during mitosis. Localization studies indicate that TINA is specifically localized to the spindle pole bodies only during mitosis in a microtubule-dependent manner. Deletion of tinA alone is not lethal but displays synthetic lethality in combination with the anaphase-promoting complex/cyclosome mutation bimE7. At the bimE7 metaphase arrest point, lack of TINA enhanced the nucleation of bundles of cytoplasmic microtubules from the spindle pole bodies. These microtubules interacted to form spindles joined in series via astral microtubules as revealed by live cell imaging. Because TINA is modified and localizes to the spindle pole bodies at mitosis, and lack of TINA causes enhanced production of cytoplasmic microtubules at metaphase arrest, we suggest TINA is involved in negative regulation of the astral microtubule organizing capacity of the spindle pole bodies during metaphase.
Collapse
Affiliation(s)
- Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | |
Collapse
|
18
|
Minoguchi S, Minoguchi M, Yoshimura A. Differential control of the NIMA-related kinases, Nek6 and Nek7, by serum stimulation. Biochem Biophys Res Commun 2003; 301:899-906. [PMID: 12589797 DOI: 10.1016/s0006-291x(03)00049-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neks (NIMA-related kinases) are mammalian serine/threonine (Ser/Thr) protein kinases structurally related to Aspergillus NIMA (Never in Mitosis, gene A), which plays essential roles in mitotic signaling. Among these kinases, Nek6 and Nek7 are structurally related and constitute a subfamily in the NIMA/Nek family, although their functions still remain almost elusive. In this report, we studied the enzymatic regulation of Nek6 and Nek7 to gain an insight into their cellular functions. Recombinant Nek7 produced in bacteria was active comparably to Nek6; however, the Nek7 activity in mammalian cells was found to be significantly lower than Nek6. Since Nek6 previously has been reported to in vitro phosphorylate p70 ribosomal S6 kinase at Thr412, we examined if Nek6 and Nek7 activities were controlled by the amino acid supplement, which is known to affect the phosphorylation at Thr412, and did not observe any significant effect. However, we unexpectedly found that Nek7 kinase activity was rapidly and efficiently increased by serum deprivation, while Nek6 activity was decreased. This is well consistent with the lower activity of Nek7 in cells under normal growth conditions. In addition, it was suggested that Nek7 activity would be regulated in a cell cycle-dependent manner, although Nek6 was not. These clear differences in enzymatic control between the highly similar kinases, Nek6 and Nek7, suggest their distinct signaling functions in mammalian cells.
Collapse
Affiliation(s)
- Shigeru Minoguchi
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, 812-8582, Fukuoka, Japan.
| | | | | |
Collapse
|
19
|
Swenson KI, Winkler KE, Means AR. A new identity for MLK3 as an NIMA-related, cell cycle-regulated kinase that is localized near centrosomes and influences microtubule organization. Mol Biol Cell 2003; 14:156-72. [PMID: 12529434 PMCID: PMC140235 DOI: 10.1091/mbc.e02-02-0115] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Revised: 10/04/2002] [Accepted: 10/09/2002] [Indexed: 02/02/2023] Open
Abstract
Although conserved counterparts for most proteins involved in the G(2)/M transition of the cell cycle have been found in all eukaryotes, a notable exception is the essential but functionally enigmatic fungal kinase NIMA. While a number of vertebrate kinases have been identified with catalytic domain homology to NIMA, none of these resemble NIMA within its extensive noncatalytic region, a region critical for NIMA function in Aspergillus nidulans. We used a bioinformatics approach to search for proteins with homology to the noncatalytic region of NIMA and identified mixed lineage kinase 3 (MLK3). MLK3 has been proposed to serve as a component in MAP kinase cascades, particularly those resulting in the activation of the c-Jun N-terminal kinase (JNK). Here we describe the first in-depth study of endogenous MLK3 and report that, like NIMA, MLK3 phosphorylation and activity are enhanced during G(2)/M, whereas JNK remains inactive. Coincident with the G(2)/M transition, a period marked by dramatic reorganization of the cytoplasmic microtubule network, endogenous MLK3 transiently disperses away from the centrosome and centrosomal-proximal sites where it is localized during interphase. Furthermore, when overexpressed, MLK3, like NIMA, localizes to the centrosomal region, induces profound disruption of cytoplasmic microtubules and a nuclear distortion phenotype that differs from mitotic chromosome condensation. Cellular depletion of MLK3 protein using siRNA technology results in an increased sensitivity to the microtubule-stabilizing agent taxol. Our studies suggest a new role for MLK3, separable from its function in the JNK pathway, that may contribute to promoting microtubule instability, a hallmark of M phase entry.
Collapse
Affiliation(s)
- Katherine I Swenson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
20
|
Chen Y, Riley DJ, Zheng L, Chen PL, Lee WH. Phosphorylation of the mitotic regulator protein Hec1 by Nek2 kinase is essential for faithful chromosome segregation. J Biol Chem 2002; 277:49408-16. [PMID: 12386167 DOI: 10.1074/jbc.m207069200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hec1 (highly expressed in cancer) plays essential roles in chromosome segregation by interacting through its coiled-coil domains with several proteins that modulate the G(2)/M phase. Hec1 localizes to kinetochores, and its inactivation either by genetic deletion or antibody neutralization leads to severe and lethal chromosomal segregation errors, indicating that Hec1 plays a critical role in chromosome segregation. The mechanisms by which Hec1 is regulated, however, are not known. Here we show that human Hec1 is a serine phosphoprotein and that it binds specifically to the mitotic regulatory kinase Nek2 during G(2)/M. Nek2 phosphorylates Hec1 on serine residue 165, both in vitro and in vivo. Yeast cells are viable without scNek2/Kin3, a close structural homolog of Nek2 that binds to both human and yeast Hec1. When the same yeasts carry an scNek2/Kin3 (D55G) or Nek2 (E38G) mutation to mimic a similar temperature-sensitive nima mutation in Aspergillus, their growth is arrested at the nonpermissive temperature, because the scNek2/Kin3 (D55G) mutant binds to Hec1 but fails to phosphorylate it. Whereas wild-type human Hec1 rescues lethality resulting from deletion of Hec1 in Saccharomyces cerevesiae, a human Hec1 mutant or yeast Hec1 mutant changing Ser(165) to Ala or yeast Hec1 mutant changing Ser(201) to Ala does not. Mutations changing the same Ser residues to Glu, to mimic the negative charge created by phosphorylation, partially rescue lethality but result in a high incidence of errors in chromosomal segregation. These results suggest that cell cycle-regulated serine phosphorylation of Hec1 by Nek2 is essential for faithful chromosome segregation.
Collapse
Affiliation(s)
- Yumay Chen
- Institute of Biotechnology, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | | | | | | | | |
Collapse
|
21
|
Noguchi K, Fukazawa H, Murakami Y, Uehara Y. Nek11, a new member of the NIMA family of kinases, involved in DNA replication and genotoxic stress responses. J Biol Chem 2002; 277:39655-65. [PMID: 12154088 DOI: 10.1074/jbc.m204599200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication and genotoxic stresses activate various checkpoint-associated protein kinases, and checkpoint dysfunction often leads to cell lethality. Here, we have identified new members of the mammalian NIMA family of kinases, termed Nek11L and Nek11S (NIMA-related kinase 11 Long and Short isoform) as novel DNA replication/damage stresses-responsive kinases. Molecular cloning and biochemical studies showed that the catalytic domain of Nek11 is most similar to Nek4 and Nek3, and substrate specificity of Nek11L is distinguishable from those of NIMA and Nek2. The expression of nek11L mRNA increased through S to G(2)/M phase, and subcellular localization of Nek11 protein altered between interphase and prometaphase, suggesting multiple roles of Nek11. We found an activation of Nek11 kinase activity when cells were treated with various DNA-damaging agents and replication inhibitors, and this activation of Nek11 was suppressed by caffeine in HeLaS3 cells. The transient expression of wild-type Nek11L enhanced the aphidicolin-induced S-phase arrest, whereas the aphidicolin-induced S-phase arrest was reduced in the U2OS cell lines expressing kinase-negative Nek11L (K61R), and these cells were more sensitive to aphidicolin-induced cell lethality. Collectively, these results suggest that Nek11 has a role in the S-phase checkpoint downstream of the caffeine-sensitive pathway.
Collapse
Affiliation(s)
- Kohji Noguchi
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | |
Collapse
|
22
|
Abstract
Regulation of the centrosome, the major microtubule organizing centre in an animal cell, is in large part controlled by cell cycle-dependent protein phosphorylation. Along with cyclin dependent kinases, polo kinases and Aurora kinases, NIMA-related kinases are emerging as critical regulators of centrosome structure and function. Nek2 is the most closely related vertebrate protein by sequence to the essential mitotic regulator NIMA of Aspergillus nidulans. Nek2 is highly enriched at the centrosome and functional studies in human and Xenopus systems support a role for Nek2 in both maintenance and modulation of centrosome architecture. In particular, current evidence supports a model in which one function of Nek2 kinase activity is to promote the splitting of duplicated centrosomes at the onset of mitosis through phosphorylation of core centriolar proteins. Recent studies in lower organisms have raised the possibility that kinases related to Nek2 may have conserved functions in MTOC organization, as well as in other aspects of mitotic progression.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
23
|
Kimura M, Okano Y. Molecular cloning and characterization of the human NIMA-related protein kinase 3 gene (NEK3). Cytogenet Genome Res 2002; 95:177-82. [PMID: 12063396 DOI: 10.1159/000059342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
NEKs (NIMA-related kinases) are a group of protein kinases sharing high amino acid sequence identities with NIMA (never in mitosis gene a) which control mitosis in Aspergillus nidulans. We have cloned a cDNA for human NEK3, a novel human gene structurally related to NIMA, by RT-PCR. Its open reading frame encodes a protein of 489 amino acid residues with the calculated molecular mass of 56.0 kDa and a predicted pI of 6.58. Phylogenetic analysis suggests that mouse and human NEK3s constitute a subfamily within the NIMA family of protein kinases. The expression pattern of NEK3 was studied by RT-PCR and a high level of expression was detected in testis, ovary, and brain, with low-level expression being detected in most of the tissues studied. NEK3 mRNA was detected in all the proliferating cell lines studied, and the amount did not change during the cell cycle. The human NEK3 gene was assigned to human chromosome 13 by somatic cell hybrids and 13q14.2 by radiation hybrid mapping.
Collapse
Affiliation(s)
- M Kimura
- Department of Molecular Pathobiochemistry, Gifu University School of Medicine, Gifu, Japan.
| | | |
Collapse
|
24
|
Holland PM, Milne A, Garka K, Johnson RS, Willis C, Sims JE, Rauch CT, Bird TA, Virca GD. Purification, cloning, and characterization of Nek8, a novel NIMA-related kinase, and its candidate substrate Bicd2. J Biol Chem 2002; 277:16229-40. [PMID: 11864968 DOI: 10.1074/jbc.m108662200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We describe the isolation, cloning, and characterization of human Nek8, a new mammalian NIMA-related kinase, and its candidate substrate Bicd2. Nek8 was isolated as a beta-casein kinase activity in rabbit lung and has an N-terminal catalytic domain homologous to the Nek family of protein kinases. Nek8 also contains a central domain with homology to RCC1, a guanine nucleotide exchange factor for the GTPase Ran, and a C-terminal coiled-coil domain. Like Nek2, Nek8 prefers beta-casein over other exogenous substrates, has shared biochemical requirements for kinase activity, and is capable of autophosphorylation and oligomerization. Nek8 activity is not cell cycle regulated, but like Nek3, levels are consistently higher in G(0)-arrested cells. During the purification of Nek8 a second protein co-chromatographed with Nek8 activity. This protein, Bicd2, is a human homolog of the Drosophila protein Bicaudal D, a coiled-coil protein. Bicd2 is phosphorylated by Nek8 in vitro, and the endogenous proteins associate in vivo. Bicd2 localizes to cytoskeletal structures, and its subcellular localization is dependent on microtubule morphology. Treatment of cells with nocodazole leads to dramatic reorganization of Bicd2, and correlates with Nek8 phosphorylation. This may be indicative of a role for Nek8 and Bicd2 associated with cell cycle independent microtubule dynamics.
Collapse
|
25
|
Hashimoto Y, Akita H, Hibino M, Kohri K, Nakanishi M. Identification and characterization of Nek6 protein kinase, a potential human homolog of NIMA histone H3 kinase. Biochem Biophys Res Commun 2002; 293:753-8. [PMID: 12054534 DOI: 10.1016/s0006-291x(02)00297-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Aspergillus nidulans, the kinase activity of NIMA (never in mitosis, gene A) is critical for the initiation of mitosis. NIMA regulates mitotic chromatin condensation through phosphorylation of histone H3 at serine 10. In the present study, we identified human Nek6 (hNek6), a member of the mammalian NIMA-related kinases. The predicted hNek6 protein is comprised of 338 amino acids. Northern blot analysis revealed that hNek6 transcripts are ubiquitously expressed with the highest expression found in the heart and skeletal muscle. Lower cell cycle-dependent expression of hNek6 transcripts was observed in the early G1 phase. GFP-fused hNek6 protein showed both nuclear and cytoplasmic localizations in HeLa cells. Fluorescence in situ hybridization using full-length hNek6 cDNA as a probe showed that the hNek6 gene is localized to human chromosome 9q33-34, a region at which the loss of heterozygosity is associated with transitional cell carcinomas. Importantly, recombinant hNek6 protein produced in insect cells effectively phosphorylated histones H1 and H3, but not casein. Thus, these results suggest that, unlike other mammalian NIMA-related kinases, Nek6 is a mitotic histone kinase which regulates chromatin condensation in mammalian cells.
Collapse
Affiliation(s)
- Yoshihiro Hashimoto
- Department of Biochemistry, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
26
|
Cholera toxin-induced modulation of gene expression: elucidation via cDNA microarray for rational cell-based sensor design. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(01)01353-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Ha Kim Y, Yeol Choi J, Jeong Y, Wolgemuth DJ, Rhee K. Nek2 localizes to multiple sites in mitotic cells, suggesting its involvement in multiple cellular functions during the cell cycle. Biochem Biophys Res Commun 2002; 290:730-6. [PMID: 11785960 DOI: 10.1006/bbrc.2001.6212] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nek2 is a mammalian protein kinase that is structurally homologous to NIMA, a mitotic regulator in Aspergillus nidulans. To understand the possible cellular processes in which Nek2 participates during the cell cycle, we investigated the expression and subcellular localization of Nek2 in mitotic cells. The Nek2 protein levels were observed to be regulated in a cell cycle stage-specific manner in cultured cells. The cell cycle stage specificity of Nek2 expression was also confirmed in cells undergoing mitosis in vivo. Nek2 proteins were localized in both the nucleus and cytoplasm throughout the cell cycle, but exhibited dynamic changes in distribution, depending on the cell cycle stage. Nek2 was associated with chromosomes from prophase to metaphase and then was dissociated upon entering into anaphase. Nek2 then appeared at the midbody of the cytoplasmic bridge at telophase. Nek2 was also associated with the centrosome throughout the cell cycle as observed previously by others. Additionally, the nuclear localization of Nek2 was increased during S phase. Such dynamic behavior of Nek2 suggests that Nek2 may be a mitotic regulator that is involved in diverse cell cycle events.
Collapse
Affiliation(s)
- Yong Ha Kim
- School of Biological Sciences, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | |
Collapse
|
28
|
Kimura M, Okano Y. Identification and assignment of the human NIMA-related protein kinase 7 gene (NEK7) to human chromosome 1q31.3. CYTOGENETICS AND CELL GENETICS 2002; 94:33-8. [PMID: 11701951 DOI: 10.1159/000048779] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neks (NIMA-related kinase) are a group of protein kinases sharing high amino acid sequence identity with NIMA which controls initiation of mitosis in Aspergillus nidulans. We have identified and characterized human NEK7, a novel human gene structurally related to NIMA. Its open reading frame encodes a 302-amino acid protein and is 77% identical to human NEK6 protein. Phylogenetic analysis suggests that NEK6, NEK7, and Caenorhabditis elegans F19H6.1 constitute a subfamily within the NIMA family of protein kinases. Tissue distributions of NEK7 and NEK6 were studied by RT-PCR. NEK7 expression was restricted to a subset of tissues containing lung, muscle, testis, brain, heart, liver, leukocyte, and spleen, but NEK6 transcripts were detected in all tissues studied. The human NEK7 gene was assigned to human chromosome 1 by somatic cell hybrids and 1q31.3 by radiation hybrid mapping.
Collapse
Affiliation(s)
- M Kimura
- Department of Molecular Pathobiochemistry, Gifu University School of Medicine, Gifu, Japan
| | | |
Collapse
|
29
|
Belham C, Comb MJ, Avruch J. Identification of the NIMA family kinases NEK6/7 as regulators of the p70 ribosomal S6 kinase. Curr Biol 2001; 11:1155-67. [PMID: 11516946 DOI: 10.1016/s0960-9822(01)00369-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The p70 S6 kinase, like several other AGC family kinases, requires for activation the concurrent phosphorylation of a site on its activation loop and a site carboxyterminal to the catalytic domain, situated in a hydrophobic motif site FXXFS/TF/Y, e.g.,Thr412 in p70 S6 kinase (alpha 1). Phosphorylation of the former site is catalyzed by PDK1, whereas the kinase responsible for the phosphorylation of the latter site is not known. RESULTS The major protein kinase that is active on the p70 S6 kinase hydrophobic regulatory site, Thr412, was purified from rat liver and identified as the NIMA-related kinases NEK6 and NEK7. Recombinant NEK6 phosphorylates p70 S6 kinase at Thr412 and other sites and activates the p70 S6 kinase in vitro and in vivo, in a manner synergistic with PDK1. Kinase-inactive NEK6 interferes with insulin activation of p70 S6 kinase. The activity of recombinant NEK6 is dependent on its phosphorylation, but NEK6 activity is not regulated by PDK1 and is only modestly responsive to insulin and PI-3 kinase inhibitors. CONCLUSION NEK6 and probably NEK7 are novel candidate physiologic regulators of the p70 S6 kinase.
Collapse
Affiliation(s)
- C Belham
- Diabetes Unit, Medical Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
30
|
Dorin D, Le Roch K, Sallicandro P, Alano P, Parzy D, Poullet P, Meijer L, Doerig C. Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum Biochemical properties and possible involvement in MAPK regulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2600-8. [PMID: 11322879 DOI: 10.1046/j.1432-1327.2001.02151.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have cloned Pfnek-1, a gene encoding a novel protein kinase from the human malaria parasite Plasmodium falciparum. This enzyme displays maximal homology to the never-in-mitosis/Aspergillus (NIMA)/NIMA-like kinase (Nek) family of protein kinases, whose members are involved in eukaryotic cell division processes. Similar to other P. falciparum protein kinases and many enzymes of the NIMA/Nek family, Pfnek-1 possesses a large C-terminal extension in addition to the catalytic domain. Bacterially expressed recombinant Pfnek-1 protein is able to autophosphorylate and phosphorylate a panel of protein substrates with a specificity that is similar to that displayed by other members of the NIMA/Nek family. However, the FXXT motif usually found in NIMA/Nek protein kinases is substituted in Pfnek-1 by a SMAHS motif, which is reminiscent of a MAP/ERK kinase (MEK) activation site. Mutational analysis indicates that only one of the serine residues in this motif is essential for Pfnek-1 kinase activity in vitro. We show (a) that recombinant Pfnek-1 is able to specifically phosphorylate Pfmap-2, an atypical P. falciparum MAPK homologue, in vitro, and (b) that coincubation of Pfnek-1 and Pfmap-2 results in a synergistic increase in exogenous substrate labelling. This suggests that Pfnek-1 may be involved in the modulation of MAPK pathway output in malaria parasites. Finally, we demonstrate that recombinant Pfnek-1 can be used in inhibition assays to monitor the effect of kinase inhibitors, which opens the way to the screening of chemical libraries aimed at identifying potential new antimalarials.
Collapse
Affiliation(s)
- D Dorin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim YH, Rhee K. Involvement of Nek2 in mammalian development as a cell cycle regulator. ACTA ACUST UNITED AC 2001. [DOI: 10.1080/12265071.2001.9647607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Kandli M, Feige E, Chen A, Kilfin G, Motro B. Isolation and characterization of two evolutionarily conserved murine kinases (Nek6 and nek7) related to the fungal mitotic regulator, NIMA. Genomics 2000; 68:187-96. [PMID: 10964517 DOI: 10.1006/geno.2000.6293] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Entrance and exit from mitosis in Aspergillus nidulans require activation and proteolysis, respectively, of the NIMA (never in mitosis, gene A) serine/threonine kinase. Four different NIMA-related kinases were reported in mammals (Nek1-4), but none of them has been shown to perform mitotic functions related to those demonstrated for NIMA. We describe here the isolation of two novel murine protein kinase genes, designated nek6 and nek7, which are highly similar to each other (87% amino acid identity in the predicted kinase domain). Interestingly, Nek6 and Nek7 are also highly similar to the F19H6.1 protein kinase of Caenorhabditis elegans (76 and 73% amino acid identity in the kinase domain, respectively), and phylogenetic analysis suggests that these three proteins constitute a novel subfamily within the NIMA family of serine/threonine kinases. In contrast to the other documented NIMA-related kinases, Nek6/7 and F19H6.1 harbor their catalytic domain in the C-terminus of the protein. Immunofluorescence suggests that Nek6 and Nek7 are cytoplasmic. Linkage analysis, using the murine BXD recombinant inbred strain panel, localized nek6 to chromosome 2 at 28 cM. Using a mouse/hamster radiation hybrid panel, we assigned the nek7 gene to chromosome 1 at approximately 73 cM.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cell Cycle Proteins
- Chromosome Mapping
- Conserved Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Embryo, Mammalian/enzymology
- Evolution, Molecular
- Female
- Fungal Proteins/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Molecular Sequence Data
- NIMA-Related Kinase 1
- NIMA-Related Kinases
- Phylogeny
- Protein Serine-Threonine Kinases/genetics
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- M Kandli
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | | | | | | |
Collapse
|
33
|
De Souza CP, Osmani AH, Wu LP, Spotts JL, Osmani SA. Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 2000; 102:293-302. [PMID: 10975520 DOI: 10.1016/s0092-8674(00)00035-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phosphorylation of histone H3 serine 10 correlates with chromosome condensation and is required for normal chromosome segregation in Tetrahymena. This phosphorylation is dependent upon activation of the NIMA kinase in Aspergillus nidulans. NIMA expression also induces Ser-10 phosphorylation inappropriately in S phase-arrested cells and in the absence of NIMX(cdc2) activity. At mitosis, NIMA becomes enriched on chromatin and subsequently localizes to the mitotic spindle and spindle pole bodies. The chromatin-like localization of NIMA early in mitosis is tightly correlated with histone H3 phosphorylation. Finally, NIMA can phosphorylate histone H3 Ser-10 in vitro, suggesting that NIMA is a mitotic histone H3 kinase, perhaps helping to explain how NIMA promotes chromatin condensation in A. nidulans and when expressed in other eukaryotes.
Collapse
Affiliation(s)
- C P De Souza
- Henry Hood Research Program, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822, USA
| | | | | | | | | |
Collapse
|
34
|
Hayashi K, Igarashi H, Ogawa M, Sakaguchi N. Activity and substrate specificity of the murine STK2 Serine/Threonine kinase that is structurally related to the mitotic regulator protein NIMA of Aspergillus nidulans. Biochem Biophys Res Commun 1999; 264:449-56. [PMID: 10529384 DOI: 10.1006/bbrc.1999.1536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated a murine STK2 (mSTK2) cDNA that is homologous to murine Nek1 serine/threonine kinase, a family member related to the cell cycle regulator kinase NIMA of Aspergillus nidulans. Structural comparison demonstrated that the kinase domain of mSTK2 is highly similar to NIMA/Nek family but the C-terminal region is not similar to any proteins except for human STK2 (hSTK2). Similarly to Nek1, mSTK2 is expressed ubiquitously among various organs and is upregulated in the testis. The expression and localization of mSTK2 are not associated with the cell cycle progression of mitogen-activated lymphocyte and DNA-transfected fibroblast. The substrate specificity of mSTK2 is similar to NIMA, but the phosphorylation is observed exclusively upon threonine residues rather than serine. The mSTK2 is shown to be a new member of the NIMA/Nek family with similar substrate specificity, which might participate in a different role from NIMA kinase involved in the cell cycle regulation.
Collapse
Affiliation(s)
- K Hayashi
- Department of Immunology, Kumamoto University School of Medicine, 2-2-1, Honjo, Kumamoto, 860-0811, Japan
| | | | | | | |
Collapse
|