1
|
Burén S, Jiménez-Vicente E, Echavarri-Erasun C, Rubio LM. Biosynthesis of Nitrogenase Cofactors. Chem Rev 2020; 120:4921-4968. [PMID: 31975585 PMCID: PMC7318056 DOI: 10.1021/acs.chemrev.9b00489] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/30/2022]
Abstract
Nitrogenase harbors three distinct metal prosthetic groups that are required for its activity. The simplest one is a [4Fe-4S] cluster located at the Fe protein nitrogenase component. The MoFe protein component carries an [8Fe-7S] group called P-cluster and a [7Fe-9S-C-Mo-R-homocitrate] group called FeMo-co. Formation of nitrogenase metalloclusters requires the participation of the structural nitrogenase components and many accessory proteins, and occurs both in situ, for the P-cluster, and in external assembly sites for FeMo-co. The biosynthesis of FeMo-co is performed stepwise and involves molecular scaffolds, metallochaperones, radical chemistry, and novel and unique biosynthetic intermediates. This review provides a critical overview of discoveries on nitrogenase cofactor structure, function, and activity over the last four decades.
Collapse
Affiliation(s)
- Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Emilio Jiménez-Vicente
- Department
of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, United States
| | - Carlos Echavarri-Erasun
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
2
|
Navarro-Rodríguez M, Buesa JM, Rubio LM. Genetic and Biochemical Analysis of the Azotobacter vinelandii Molybdenum Storage Protein. Front Microbiol 2019; 10:579. [PMID: 30984129 PMCID: PMC6448029 DOI: 10.3389/fmicb.2019.00579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
The N2 fixing bacterium Azotobacter vinelandii carries a molybdenum storage protein, referred to as MoSto, able to bind 25-fold more Mo than needed for maximum activity of its Mo nitrogenase. Here we have investigated a plausible role of MoSto as obligate intermediate in the pathway that provides Mo for the biosynthesis of nitrogenase iron-molybdenum cofactor (FeMo-co). The in vitro FeMo-co synthesis and insertion assay demonstrated that purified MoSto functions as Mo donor and that direct interaction with FeMo-co biosynthetic proteins stimulated Mo donation. The phenotype of an A. vinelandii strain lacking the MoSto subunit genes (ΔmosAB) was analyzed. Consistent with its role as storage protein, the ΔmosAB strain showed severe impairment to accumulate intracellular Mo and lower resilience than wild type to Mo starvation as demonstrated by decreased in vivo nitrogenase activity and competitive growth index. In addition, it was more sensitive than the wild type to diazotrophic growth inhibition by W. The ΔmosAB strain was found to readily derepress vnfDGK upon Mo step down, in contrast to the wild type that derepressed Vnf proteins only after prolonged Mo starvation. The ΔmosAB mutation was then introduced in a strain lacking V and Fe-only nitrogenase structural genes (Δvnf Δanf) to investigate possible compensations from these alternative systems. When grown in Mo-depleted medium, the ΔmosAB and mosAB + strains showed low but similar nitrogenase activities regardless of the presence of Vnf proteins. This study highlights the selective advantage that MoSto confers to A. vinelandii in situations of metal limitation as those found in many soil ecosystems. Such a favorable trait should be included in the gene complement of future nitrogen fixing plants.
Collapse
Affiliation(s)
- Mónica Navarro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - José María Buesa
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
3
|
Sam Jaikumar S, Yuvakkumar R, Suriya Prabha R, Karunakaran G, Rajendran V, Hong SI. Facile and novel synthetic method to prepare nano molybdenum and its catalytic activity. IET Nanobiotechnol 2015. [PMID: 26224349 DOI: 10.1049/iet-nbt.2014.0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study reports on a facile and economical synthetic method to prepare nano molybdenum by solid-state reaction technique. Metallic nano molybdenum was synthesised from molybdenum trioxide, molybdenum IV oxide and molybdenum VI oxide through thermal decomposition technique. Metallic nano molybdenum prepared from molybdenum IV oxide was used to study the catalytic effect of molybdenum nanoparticles on the growth of Anabaena sp. The increase in concentration of nano molybdenum from 0.1 to 100% in BG11 (N⁻ Mo⁻ + nano Mo) medium increases heterocyst frequency. The chlorophyll and protein content in Anabaena sp. was found to improve when compared with bulk molybdenum particles and showed a positive influence to be used as a nano nutrient for Anabaena sp.
Collapse
Affiliation(s)
- Sugumaran Sam Jaikumar
- Center for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Rathinam Yuvakkumar
- Department of Nanomaterials Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Rangaraj Suriya Prabha
- Center for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Gopalu Karunakaran
- Center for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Venkatachalam Rajendran
- Center for Nanoscience and Technology, K. S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India.
| | - Sun Ig Hong
- Department of Nanomaterials Engineering, Chungnam National University, Daejeon 305-764, South Korea
| |
Collapse
|
4
|
Hernandez JA, George SJ, Rubio LM. Molybdenum trafficking for nitrogen fixation. Biochemistry 2009; 48:9711-21. [PMID: 19772354 DOI: 10.1021/bi901217p] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molybdenum nitrogenase is responsible for most biological nitrogen fixation, a prokaryotic metabolic process that determines the global biogeochemical cycles of nitrogen and carbon. Here we describe the trafficking of molybdenum for nitrogen fixation in the model diazotrophic bacterium Azotobacter vinelandii. The genes and proteins involved in molybdenum uptake, homeostasis, storage, regulation, and nitrogenase cofactor biosynthesis are reviewed. Molybdenum biochemistry in A. vinelandii reveals unexpected mechanisms and a new role for iron-sulfur clusters in the sequestration and delivery of molybdenum.
Collapse
Affiliation(s)
- Jose A Hernandez
- Department of Biochemistry, Midwestern University, Glendale, Arizona 85308, USA
| | | | | |
Collapse
|
5
|
Abstract
The iron-molybdenum cofactor (FeMo-co), located at the active site of the molybdenum nitrogenase, is one of the most complex metal cofactors known to date. During the past several years, an intensive effort has been made to purify the proteins involved in FeMo-co synthesis and incorporation into nitrogenase. This effort is starting to provide insights into the structures of the FeMo-co biosynthetic intermediates and into the biochemical details of FeMo-co synthesis.
Collapse
Affiliation(s)
- Luis M Rubio
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
6
|
Zhou ZH, Hou SY, Cao ZX, Tsai KR, Chow YL. Syntheses, spectroscopies and structures of molybdenum(VI) complexes with homocitrate. Inorg Chem 2007; 45:8447-51. [PMID: 16999446 DOI: 10.1021/ic061429f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Initial investigations into the possible role of homocitric acid in iron molybdenum cofactor (FeMo-co) of nitrogenase lead us to isolate and characterize two tetrameric molybdate(VI) species. The complexes K2(NH4)2[(MoO2)4O3(R,S-Hhomocit)2].6H2O (1) and K5[(MoO2)4O3(R,S-Hhomocit)2]Cl.5H2O (2) (homocitric acid = H4homocit, C7H10O7) are prepared from the reactions of acyclic homocitric acid and molybdates, which represent the first synthetic structural examples of molybdenum homocitrate complexes. The homocitrate ligand trapped by tetranuclear molybdate coordinates to the molybdenum(VI) atom through alpha-alkoxy and alpha-, beta-carboxy groups. The physical properties, structural parameters, and their possible biological relevances are discussed.
Collapse
Affiliation(s)
- Zhao-Hui Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
7
|
Soboh B, Igarashi RY, Hernandez JA, Rubio LM. Purification of a NifEN protein complex that contains bound molybdenum and a FeMo-Co precursor from an Azotobacter vinelandii DeltanifHDK strain. J Biol Chem 2006; 281:36701-9. [PMID: 17012743 DOI: 10.1074/jbc.m606820200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NifEN protein complex serves as a molecular scaffold where some of the steps for the assembly of the iron-molybdenum cofactor (FeMo-co) of nitrogenase take place. A His-tagged version of the NifEN complex has been previously purified and shown to carry two identical [4Fe-4S] clusters of unknown function and a [Fe-S]-containing FeMo-co precursor. We have improved the purification of the his-NifEN protein from a DeltanifHDK strain of Azotobacter vinelandii and have found that the amounts of iron and molybdenum within NifEN were significantly higher than those reported previously. In an in vitro FeMo-co synthesis system with purified components, the NifEN protein served as a source of both molybdenum and a [Fe-S]-containing FeMo-co precursor, showing significant FeMo-co synthesis activity in the absence of externally added molybdate. Thus, the NifEN scaffold protein, purified from DeltanifHDK background, contained the Nif-Bco-derived Fe-S cluster and molybdenum, although these FeMo-co constituents were present at different levels within the protein complex.
Collapse
Affiliation(s)
- Basem Soboh
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
8
|
Fenske D, Gnida M, Schneider K, Meyer-Klaucke W, Schemberg J, Henschel V, Meyer AK, Knöchel A, Müller A. A new type of metalloprotein: The Mo storage protein from azotobacter vinelandii contains a polynuclear molybdenum-oxide cluster. Chembiochem 2005; 6:405-13. [PMID: 15651045 DOI: 10.1002/cbic.200400263] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Azotobacter vinelandii is a diazotrophic bacterium characterized by the outstanding capability of storing Mo in a special storage protein, which guarantees Mo-dependent nitrogen fixation even under growth conditions of extreme Mo starvation. The Mo storage protein is constitutively synthesized with respect to the nitrogen source and is regulated by molybdenum at an extremely low concentration level (0-50 nM). This protein was isolated as an alpha4beta4 octamer with a total molecular mass of about 240 kg mol(-1) and its shape was determined by small-angle X-ray scattering. The genes of the alpha and beta subunits were unequivocally identified; the amino acid sequences thereby determined reveal that the Mo storage protein is not related to any other known molybdoprotein. Each protein molecule can store at least 90 Mo atoms. Extended X-ray absorption fine-structure spectroscopy identified a metal-oxygen cluster bound to the Mo storage protein. The binding of Mo (biosynthesis and incorporation of the cluster) is dependent on adenosine triphosphate (ATP); Mo release is ATP-independent but pH-regulated, occurring only above pH 7.1. This Mo storage protein is the only known noniron metal storage system in the biosphere containing a metal-oxygen cluster.
Collapse
Affiliation(s)
- Dirk Fenske
- Lehrstuhl für Anorganische Chemie I, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhou ZH, Hou SY, Cao ZX, Wan HL, Ng SW. Syntheses, crystal structures and biological relevance of glycolato and S-lactato molybdates. J Inorg Biochem 2005; 98:1037-44. [PMID: 15149813 DOI: 10.1016/j.jinorgbio.2004.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 02/14/2004] [Accepted: 02/20/2004] [Indexed: 11/21/2022]
Abstract
Glycolato and S-lactato complexes containing the dioxomolybdenum(VI) moiety have been synthesized for studies on the role of the alpha-hydroxycarboxylato anion in the iron molybdenum cofactor of nitrogenase. The ligands in these complexes, vis K2[MoO2(glyc)2].H2O (H2glyc=glycolic acid, C2H4O3) (1) and (Na2[MoO2(S-lact)2])3.13H2O (H2lact=lactic acid, C3H6O3) (2) chelate through their alpha-alkoxyl and alpha-carboxyl oxygen atoms. In contrast, octanuclear K6[(MoO2)8(glyc)6(Hglyc)2].10H2O (3) formed by the reduction of the glycolato complex (1), features three different ligand binding modes: (i) non-bridging and bridging bidentate coordination of alpha-alkoxyl and alpha-carboxyl groups, and (ii) bidentate bridging using alpha-carboxyl group, leaving the alpha-alkoxyl group free. The octanuclear skeleton shows strong metal-metal interactions. The coordination modes in (1) and (2) mimic that of homocitrate to the iron molybdenum cofactor (FeMo-co) of nitrogenase. The bidentate coordination of alpha-alkoxyl and alpha-carboxyl groups shows that bond of alpha-carboxyl group to Mo is less susceptible to the oxidation state of molybdenum compared with the Mo-alpha-alkoxyl bond. This is supported by the dinuclear coordination of alpha-carboxyl group with free alpha-alkoxyl group in glycolato molybdate(V) (3).
Collapse
Affiliation(s)
- Zhao-Hui Zhou
- Department of Chemistry and State Key Laboratory for Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, PR China.
| | | | | | | | | |
Collapse
|
10
|
Rubio LM, Singer SW, Ludden PW. Purification and characterization of NafY (apodinitrogenase gamma subunit) from Azotobacter vinelandii. J Biol Chem 2004; 279:19739-46. [PMID: 14996831 PMCID: PMC1249483 DOI: 10.1074/jbc.m400965200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of an active dinitrogenase requires the synthesis and the insertion of the iron-molybdenum cofactor (FeMo-co) into a presynthesized apodinitrogenase. In Azotobacter vinelandii, NafY (also known as gamma protein) has been proposed to be a FeMo-co insertase because of its ability to bind FeMo-co and apodinitrogenase. Here we report the purification and biochemical characterization of NafY and reach the following conclusions. First, NafY is a 26-kDa monomeric protein that binds one molecule of FeMo-co with very high affinity (K(d) approximately equal to 60 nm); second, the NafY-FeMo-co complex exhibits a S = 3/2 EPR signal with features similar to the signals for extracted FeMo-co and the M center of dinitrogenase; third, site-directed mutagenesis of nafY indicates that the His(121) residue of NafY is involved in cofactor binding; and fourth, NafY binding to apodinitrogenase or to FeMo-co does not require the presence of any additional protein. In addition, we have obtained evidence that suggests the ability of NafY to bind NifB-co, an FeS cluster of unknown structure that is a biosynthetic precursor to FeMo-co.
Collapse
Affiliation(s)
| | | | - Paul W. Ludden
- ‡ To whom correspondence should be addressed: Dept. of Plant and Microbial Biology, 111 Koshland Hall, College of Natural Resources, University of California-Berkeley, Berkeley, CA 94720. Tel.: 510-643-3940; Fax: 510-642-4995; E-mail:
| |
Collapse
|
11
|
Rangaraj P, Ludden PW. Accumulation of 99Mo-containing iron-molybdenum cofactor precursors of nitrogenase on NifNE, NifH, and NifX of Azotobacter vinelandii. J Biol Chem 2002; 277:40106-11. [PMID: 12176981 DOI: 10.1074/jbc.m204581200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase was investigated using the purified in vitro FeMo-co synthesis system and 99Mo. The purified system involves the addition of all components that are known to be required for FeMo-co synthesis in their purified forms. Here, we report the accumulation of a 99Mo-containing FeMo-co precursor on NifNE. Apart from NifNE, NifH and NifX also accumulate 99Mo label. We present evidence that suggests NifH may serve as the entry point for molybdenum incorporation into the FeMo-co biosynthetic pathway. We also present evidence suggesting a role for NifX in specifying the organic acid moiety of FeMo-co.
Collapse
Affiliation(s)
- Priya Rangaraj
- Department of Biochemistry and the Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
12
|
Han J, Coucouvanis D. A new function of the (mu(3)-S) ligand in an Fe(4)S(4) cluster: synthesis and structure of the high-nuclearity Mo/Fe/S cluster, Fe(DMF)Cl(Cl(4)-cat)(2)-Mo(2)Fe(2)S(4)(PEt(3))(2)ClFe(4)S(4)(PEt(3))(3)(CO)(6)Cl. J Am Chem Soc 2001; 123:11304-5. [PMID: 11697979 DOI: 10.1021/ja0110776] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J Han
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | |
Collapse
|
13
|
Makdessi K, Andreesen JR, Pich A. Tungstate Uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J Biol Chem 2001; 276:24557-64. [PMID: 11292832 DOI: 10.1074/jbc.m101293200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Gram-positive anaerobe Eubacterium acidaminophilum contains at least two tungsten-dependent enzymes: viologen-dependent formate dehydrogenase and aldehyde dehydrogenase. (185)W-Labeled tungstate was taken up by this organism with a maximum rate of 0.53 pmol min(-)1 mg(-)1 of protein at 36 degrees C. The uptake was not affected by equimolar amounts of molybdate. The genes tupABC coding for an ABC transporter specific for tungstate were cloned in the downstream region of genes encoding a tungsten-containing formate dehydrogenase. The substrate-binding protein, TupA, of this putative transporter was overexpressed in Escherichia coli, and its binding properties toward oxyanions were determined by a native polyacrylamide gel retardation assay. Only tungstate induced a shift of TupA mobility, suggesting that only this anion was specifically bound by TupA. If molybdate and sulfate were added in high molar excess (>1000-fold), they were also slightly bound by TupA. The K(d) value for tungstate was determined to be 0.5 microm. The genes encoding the tungstate-specific ABC transporter exhibited highest similarities to putative transporters from Methanobacterium thermoautotrophicum, Haloferax volcanii, Vibrio cholerae, and Campylobacter jejuni. These five transporters represent a separate phylogenetic group of oxyanion ABC transporters as evident from analysis of the deduced amino acid sequences of the binding proteins. Downstream of the tupABC genes, the genes moeA, moeA-1, moaA, and a truncated moaC have been identified by sequence comparison of the deduced amino acid sequences. They should participate in the biosynthesis of the pterin cofactor that is present in molybdenum- and tungsten-containing enzymes except nitrogenase.
Collapse
Affiliation(s)
- K Makdessi
- Institut für Mikrobiologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle, Germany
| | | | | |
Collapse
|
14
|
Rangaraj P, Ruttimann-Johnson C, Shah VK, Ludden PW. Accumulation of 55Fe-labeled precursors of the iron-molybdenum cofactor of nitrogenase on NifH and NifX of Azotobacter vinelandii. J Biol Chem 2001; 276:15968-74. [PMID: 11279153 DOI: 10.1074/jbc.m100907200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-molybdenum cofactor (FeMo-co) biosynthesis involves the participation of several proteins. We have used (55)Fe-labeled NifB-co, the specific iron and sulfur donor to FeMo-co, to investigate the accumulation of protein-bound precursors of FeMo-co. The (55)Fe label from radiolabeled NifB-co became associated with two major protein bands when the in vitro FeMo-co synthesis reaction was carried out with the extract of an Azotobacter vinelandii mutant lacking apodinitrogenase. One of the bands, termed (55)Fe-labeled upper band, was purified and shown to be NifH by immunoblot analysis. The (55)Fe-labeled lower band was identified as NifX by N-terminal sequencing. NifX purified from an A. vinelandii nifB strain showed a different electrophoretic mobility on anoxic native gels than did NifX with the FeMo-co precursor bound.
Collapse
Affiliation(s)
- P Rangaraj
- Department of Biochemistry and Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
15
|
Siemann S, Schneider K, Behrens K, Knöchel A, Klipp W, Müller A. FeMo cofactor biosynthesis in a nifE- mutant of Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1940-52. [PMID: 11277916 DOI: 10.1046/j.1432-1327.2001.02063.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In all diazotrophic micro-organisms investigated so far, mutations in nifE, one of the genes involved in the biosynthesis of the FeMo cofactor (FeMoco), resulted in the accumulation of cofactorless inactive dinitrogenase. In this study, we have found that strains of the phototrophic non-sulfur purple bacterium Rhodobacter capsulatus with mutations in nifE, as well as in the operon harbouring the nifE gene, were capable of reducing acetylene and growing diazotrophically, although at distinctly lower rates than the wild-type strain. The diminished rates of substrate reduction were found to correlate with the decreased amounts of the dinitrogenase component (MoFe protein) expressed in R. capsulatus. The in vivo activity, as measured by the routine acetylene-reduction assay, was strictly Mo-dependent. Maximal activity was achieved under diazotrophic growth conditions and by supplementing the growth medium with molybdate (final concentration 20-50 microM). Moreover, in these strains a high proportion of ethane was produced from acetylene ( approximately 10% of ethylene) in vivo. However, in in vitro measurements with cell-free extracts as well as purified dinitrogenase, ethane production was always found to be less than 1%. The isolation and partial purification of the MoFe protein from the nifE mutant strain by Q-Sepharose chromatography and subsequent analysis by EPR spectroscopy and inductively coupled plasma MS revealed that FeMoco is actually incorporated into the protein (1.7 molecules of FeMoco per tetramer). On the basis of the results presented here, the role of NifNE in the biosynthetic pathway of the FeMoco demands reconsideration. It is shown for the first time that NifNE is not essential for biosynthesis of the cofactor, although its presence guarantees formation of a higher content of intact FeMoco-containing MoFe protein molecules. The implications of our findings for the biosynthesis of the FeMoco will be discussed.
Collapse
Affiliation(s)
- S Siemann
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie der Universität Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Copper is an essential element in all living organisms, serving as a cofactor for many important proteins and enzymes. Metallochaperone proteins deliver copper ions to specific physiological partners by direct protein-protein interactions. The Atx1-like chaperones transfer copper to intracellular copper transporters, and the CCS chaperones shuttle copper to copper,zinc superoxide dismutase. Crystallographic studies of these two copper chaperone families have provided insights into metal binding and target recognition by metallochaperones and have led to detailed molecular models for the copper transfer mechanism.
Collapse
Affiliation(s)
- A C Rosenzweig
- Departments of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
17
|
Abstract
Major advances have been made in the past year towards an understanding of the structure and chemistry of copper chaperone proteins. Three-dimensional structures of Atx1, CopZ, yCCS, and hCCSdII were determined, and reveal a remarkable structural similarity between chaperones and target proteins. In addition, biochemical studies of CCS suggested that chaperones are required in vivo because intracellular copper concentrations are extremely low and also indicated that copper transfer occurs via a direct protein-protein interaction.
Collapse
Affiliation(s)
- A C Rosenzweig
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|