1
|
Ohmine I, Saito S. Dynamical Behavior of Water; Fluctuation, Reactions and Phase Transitions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Iwao Ohmine
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
2
|
Koeppe B, Tolstoy PM, Guo J, Denisov GS, Limbach HH. Combined NMR and UV-Vis Spectroscopic Studies of Models for the Hydrogen Bond System in the Active Site of Photoactive Yellow Protein: H-Bond Cooperativity and Medium Effects. J Phys Chem B 2021; 125:5874-5884. [PMID: 34060830 DOI: 10.1021/acs.jpcb.0c09923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intramolecular hydrogen bonds in aprotic media were studied by combined (simultaneous) NMR and UV-vis spectroscopy. The species under investigation were anionic and featured single or coupled H-bonds between, for example, carboxylic groups and phenolic oxygen atoms (COO···H···OC)-, among phenolic oxygen atoms (CO···H···OC)-, and hydrogen bond chains between a carboxylic group and two phenolic oxygen atoms (COO···H···(OC)···H···OC)-. The last anion may be regarded as a small molecule model for the hydrogen bond system in the active site of wild-type photoactive yellow protein (PYP) while the others mimic the corresponding H-bonds in site-selective mutants. Proton positions in isolated hydrogen bonds and hydrogen bond chains were assessed by calculations for vacuum conditions and spectroscopically for the two media, CD2Cl2 and the liquefied gas mixture CDClF2/CDF3 at low temperatures. NMR parameters allow for the estimation of time-averaged H-bond geometries, and optical spectra give additional information about geometry distributions. Comparison of the results from the various systems revealed the effects of the formation of hydrogen bond chains and changes of medium conditions on the geometry of individual H-bonds. In particular, the proton in a hydrogen bond to a carboxylic group shifts from the phenolic oxygen atom in the system COO-···H-OC to the carboxylic group in COO-H···(OC)-···H-OC as a result of hydrogen bond formation to the additional phenolic donor. Increase in medium polarity may, however, induce the conversion of a structure of a type COO-H···(OC)-···H-OC to the type COO-···H-(OC)···H-OC. Application of these results obtained from the model systems to PYP suggests that both cooperative effects within the hydrogen bond chain and a low-polarity protein environment are prerequisites for the stabilization of negative charge on the cofactor and hence for the spectral tuning of the photoreceptor.
Collapse
Affiliation(s)
- Benjamin Koeppe
- J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Peter M Tolstoy
- Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Gleb S Denisov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | | |
Collapse
|
3
|
Kim S, Nakasone Y, Takakado A, Yamazaki Y, Kamikubo H, Terazima M. Wavelength-Dependent Photoreaction of PYP from Rhodobacter capsulatus. Biochemistry 2020; 59:4810-4821. [DOI: 10.1021/acs.biochem.0c00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suhyang Kim
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akira Takakado
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichi Yamazaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Hironari Kamikubo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Yang C, Kim TW, Kim Y, Choi J, Lee SJ, Ihee H. Kinetics of the E46Q mutant of photoactive yellow protein investigated by transient grating spectroscopy. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Yang C, Kim SO, Kim Y, Yun SR, Choi J, Ihee H. Photocycle of Photoactive Yellow Protein in Cell-Mimetic Environments: Molecular Volume Changes and Kinetics. J Phys Chem B 2017; 121:769-779. [PMID: 28058827 DOI: 10.1021/acs.jpcb.6b13076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using various spectroscopic techniques such as UV-visible spectroscopy, circular dichroism spectroscopy, NMR spectroscopy, small-angle X-ray scattering, transient grating, and transient absorption techniques, we investigated how cell-mimetic environments made by crowding influence the photocycle of photoactive yellow protein (PYP) in terms of the molecular volume change and kinetics. Upon addition of molecular crowding agents, the ratio of the diffusion coefficient of the blue-shifted intermediate (pB) to that of the ground species (pG) significantly changes from 0.92 and approaches 1.0. This result indicates that the molecular volume change accompanied by the photocycle of PYP in molecularly crowded environments is much smaller than that which occurs in vitro and that the pB intermediate under crowded environments favors a compact conformation due to the excluded volume effect. The kinetics of the photocycle of PYP in cell-mimetic environments is greatly decelerated by the dehydration, owing to the interaction between the protein and small crowding agents, but is barely affected by the excluded volume effect. The results lead to the inference that the signaling transducer of PYP may not necessarily utilize the conformational change of PYP to sense the signaling state.
Collapse
Affiliation(s)
- Cheolhee Yang
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - Seong Ok Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - Yonggwan Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - So Ri Yun
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - Jungkweon Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science , Daejeon 305-701, Republic of Korea.,Department of Chemistry, KAIST , Daejeon 305-701, Republic of Korea
| |
Collapse
|
6
|
Cho HS, Schotte F, Dashdorj N, Kyndt J, Henning R, Anfinrud PA. Picosecond Photobiology: Watching a Signaling Protein Function in Real Time via Time-Resolved Small- and Wide-Angle X-ray Scattering. J Am Chem Soc 2016; 138:8815-23. [PMID: 27305463 DOI: 10.1021/jacs.6b03565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The capacity to respond to environmental changes is crucial to an organism's survival. Halorhodospira halophila is a photosynthetic bacterium that swims away from blue light, presumably in an effort to evade photons energetic enough to be genetically harmful. The protein responsible for this response is believed to be photoactive yellow protein (PYP), whose chromophore photoisomerizes from trans to cis in the presence of blue light. We investigated the complete PYP photocycle by acquiring time-resolved small and wide-angle X-ray scattering patterns (SAXS/WAXS) over 10 decades of time spanning from 100 ps to 1 s. Using a sequential model, global analysis of the time-dependent scattering differences recovered four intermediates (pR0/pR1, pR2, pB0, pB1), the first three of which can be assigned to prior time-resolved crystal structures. The 1.8 ms pB0 to pB1 transition produces the PYP signaling state, whose radius of gyration (Rg = 16.6 Å) is significantly larger than that for the ground state (Rg = 14.7 Å) and is therefore inaccessible to time-resolved protein crystallography. The shape of the signaling state, reconstructed using GASBOR, is highly anisotropic and entails significant elongation of the long axis of the protein. This structural change is consistent with unfolding of the 25 residue N-terminal domain, which exposes the β-scaffold of this sensory protein to a potential binding partner. This mechanistically detailed description of the complete PYP photocycle, made possible by time-resolved crystal and solution studies, provides a framework for understanding signal transduction in proteins and for assessing and validating theoretical/computational approaches in protein biophysics.
Collapse
Affiliation(s)
- Hyun Sun Cho
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Friedrich Schotte
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Naranbaatar Dashdorj
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - John Kyndt
- College of Science and Technology, Bellevue University , Bellevue, Nebraska 68005, United States
| | - Robert Henning
- Center for Advanced Radiation Sources, University of Chicago , Chicago, Illinois 60637, United States
| | - Philip A Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Wei L, Wang H, Chen X, Fang W, Wang H. A comprehensive study of isomerization and protonation reactions in the photocycle of the photoactive yellow protein. Phys Chem Chem Phys 2014; 16:25263-72. [DOI: 10.1039/c4cp03495c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A comprehensive picture of the overall photocycle was obtained to reveal a wide range of structural signals in the photoactive yellow protein.
Collapse
Affiliation(s)
- Lili Wei
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing, China
| | - Hongjuan Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing, China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing, China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education
- Department of Chemistry
- Beijing Normal University
- Beijing, China
| | - Haobin Wang
- Department of Chemistry and Biochemistry
- New Mexico State University
- Las Cruces, USA
| |
Collapse
|
8
|
Koeppe B, Guo J, Tolstoy PM, Denisov GS, Limbach HH. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy. J Am Chem Soc 2013; 135:7553-66. [PMID: 23607931 DOI: 10.1021/ja400611x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heteroconjugated hydrogen-bonded anions A···H···X(-) of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-vis and (1)H/(13)C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the (13)C chemical shifts of the phenolic residues of A···H···X(-), referenced to the corresponding values of A···H···A(-), constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the (13)C chemical shifts. A combined analysis of UV-vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts toward the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarity and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this difference is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.
Collapse
Affiliation(s)
- Benjamin Koeppe
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Hellingwerf KJ, Hendriks J, Gensch T. On the Configurational and Conformational Changes in Photoactive Yellow Protein that Leads to Signal Generation in Ectothiorhodospira halophila. J Biol Phys 2013; 28:395-412. [PMID: 23345784 DOI: 10.1023/a:1020360505111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photoactive Yellow Protein (PYP), a phototaxis photoreceptor from Ectothiorhodospira halophila, is a small water-soluble protein that iscrystallisable and excellently photo-stable. It can be activated with light(λ(max)= 446 nm), to enter a series of transientintermediates that jointly form the photocycle of this photosensor protein.The most stable of these transient states is the signalling state forphototaxis, pB.The spatial structure of the ground state of PYP, pG and the spectralproperties of the photocycle intermediates have been very well resolved.Owing to its excellent chemical- and photochemical stability, also the spatialstructure of its photocycle intermediates has been characterised with X-raydiffraction and multinuclear NMR spectroscopy. Surprisingly, the resultsobtained showed that their structure is dependent on the molecular contextin which they are formed. Therefore, a large range of diffraction-,scattering- and spectroscopic techniques is now being employed to resolvein detail the dynamical changes of the structure of PYP while it progressesthrough its photocycle. This approach has led to considerable progress,although some techniques still result in mutually inconsistent conclusionsregarding aspects of the structure of particular intermediates.Recently, significant progress has also been made with simulations withmolecular dynamics analyses of the initial events that occur in PYP uponphoto activation. The great challenge in this field is to eventually obtainagreement between predicted dynamical alterations in PYP structure, asobtained with the MD approach and the actually measured dynamicalchanges in its structure as evolving during photocycle progression.
Collapse
|
10
|
Hospes M, Hendriks J, Hellingwerf KJ. Tryptophan fluorescence as a reporter for structural changes in photoactive yellow protein elicited by photo-activation. Photochem Photobiol Sci 2013. [DOI: 10.1039/c2pp25222h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Proc Natl Acad Sci U S A 2012; 109:19256-61. [PMID: 23132943 DOI: 10.1073/pnas.1210938109] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand how signaling proteins function, it is crucial to know the time-ordered sequence of events that lead to the signaling state. We recently developed on the BioCARS 14-IDB beamline at the Advanced Photon Source the infrastructure required to characterize structural changes in protein crystals with near-atomic spatial resolution and 150-ps time resolution, and have used this capability to track the reversible photocycle of photoactive yellow protein (PYP) following trans-to-cis photoisomerization of its p-coumaric acid (pCA) chromophore over 10 decades of time. The first of four major intermediates characterized in this study is highly contorted, with the pCA carbonyl rotated nearly 90° out of the plane of the phenolate. A hydrogen bond between the pCA carbonyl and the Cys69 backbone constrains the chromophore in this unusual twisted conformation. Density functional theory calculations confirm that this structure is chemically plausible and corresponds to a strained cis intermediate. This unique structure is short-lived (∼600 ps), has not been observed in prior cryocrystallography experiments, and is the progenitor of intermediates characterized in previous nanosecond time-resolved Laue crystallography studies. The structural transitions unveiled during the PYP photocycle include trans/cis isomerization, the breaking and making of hydrogen bonds, formation/relaxation of strain, and gated water penetration into the interior of the protein. This mechanistically detailed, near-atomic resolution description of the complete PYP photocycle provides a framework for understanding signal transduction in proteins, and for assessing and validating theoretical/computational approaches in protein biophysics.
Collapse
|
12
|
Hospes M, Ippel JH, Boelens R, Hellingwerf KJ, Hendriks J. Binding of Hydrogen-Citrate to Photoactive Yellow Protein Is Affected by the Structural Changes Related to Signaling State Formation. J Phys Chem B 2012; 116:13172-82. [DOI: 10.1021/jp306891s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marijke Hospes
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Johannes H. Ippel
- Bijvoet Center for Biomolecular
Research, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Rolf Boelens
- Bijvoet Center for Biomolecular
Research, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Klaas J. Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| | - Johnny Hendriks
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences and Netherlands Institute for Systems Biology, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Lincoln CN, Fitzpatrick AE, van Thor JJ. Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein. Phys Chem Chem Phys 2012; 14:15752-64. [PMID: 23090503 DOI: 10.1039/c2cp41718a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The quantum yield of photoisomerisation of the photoactive yellow protein (PYP) strongly depends on peak power and wavelength with femtosecond optical excitation. Using systematic power titrations and addition of second order dispersion resulting in 140, 300 and 600 fs pulse durations, the one and multi-photon cross-sections at 400, 450 and 490 nm have been assessed from transient absorption spectroscopy and additionally the Z-scan technique. Applying a target model that incorporates photoselection theory, estimates for the cross-sections for stimulated emission and absorption of the first excited state, the amount of ultrafast internal conversion and the underlying species associated dynamics have been determined. The final quantum yields for photoisomerisation were found to be 0.06, 0.14-0.19 and 0.02 for excitation wavelengths 400, 450 and 490 nm and found to increase with increasing pulse durations. Transient absorption measurements and Z-scan measurements at 450 nm, coinciding with the maximum wavelength of the ground state absorption, indicate that the photochemical quantum yield is intrinsically limited by an ultrafast internal conversion reaction as well as by stimulated emission cross-section. With excitation at 400 nm photoisomerisation quantum yield is further significantly limited by competing multi-photon excitation into excited state absorption at 385 nm previously proposed to result in photoionisation. With excitation at 490 nm the photoisomerisation quantum yield is predominantly limited further by the significantly higher stimulated emission cross-section compared to ground state cross-section as well as multi-photon processes. In addition to photoionisation, a second product of multi-photon excitation is identified and characterised by an induced absorption at 500 nm and a time constant of 2 ps for relaxation. With power densities up to 138 GW cm(-2) the measurements have not provided indication for coherent multi-photon absorption of PYP. In the saturation regime with 450 nm excitation, the limit for the photoisomerisation quantum yield was found to be 0.14-0.19 and the excited state absorption cross-section 6.1 × 10(-17) cm(2) or 0.36 times the ground state cross-section of 1.68 × 10(-16) cm(2) per molecule. This places a fundamental restriction on the maximum populations and sample penetration that may be achieved for instance in femtosecond pump-probe experiments with molecular crystals of PYP.
Collapse
Affiliation(s)
- Craig N Lincoln
- Imperial College London, Division of Molecular Biosciences, South Kensington campus, SW7 2AZ, London, UK
| | | | | |
Collapse
|
14
|
pH dependence of the photoactive yellow protein photocycle investigated by time-resolved crystallography. Biophys J 2012; 102:325-32. [PMID: 22339869 DOI: 10.1016/j.bpj.2011.11.4021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022] Open
Abstract
Visualizing the three-dimensional structures of a protein during its biological activity is key to understanding its mechanism. In general, protein structure and function are pH-dependent. Changing the pH provides new insights into the mechanisms that are involved in protein activity. Photoactive yellow protein (PYP) is a signaling protein that serves as an ideal model for time-dependent studies on light-activated proteins. Its photocycle is studied extensively under different pH conditions. However, the structures of the intermediates remain unknown until time-resolved crystallography is employed. With the newest beamline developments, a comprehensive time series of Laue data can now be collected from a single protein crystal. This allows us to vary the pH. Here we present the first structure, to our knowledge, of a short-lived protein-inhibitor complex formed in the pB state of the PYP photocycle at pH 4. A water molecule that is transiently stabilized in the chromophore active site prevents the relaxation of the chromophore back to the trans configuration. As a result, the dark-state recovery is slowed down dramatically. At pH 9, PYP stops cycling through the pB state altogether. The electrostatic environment in the chromophore-binding site is the likely reason for this altered kinetics at different pH values.
Collapse
|
15
|
Schmidt M, Šrajer V, Purwar N, Tripathi S. The kinetic dose limit in room-temperature time-resolved macromolecular crystallography. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:264-73. [PMID: 22338689 PMCID: PMC3284346 DOI: 10.1107/s090904951105549x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/23/2011] [Indexed: 05/16/2023]
Abstract
Protein X-ray structures are determined with ionizing radiation that damages the protein at high X-ray doses. As a result, diffraction patterns deteriorate with the increased absorbed dose. Several strategies such as sample freezing or scavenging of X-ray-generated free radicals are currently employed to minimize this damage. However, little is known about how the absorbed X-ray dose affects time-resolved Laue data collected at physiological temperatures where the protein is fully functional in the crystal, and how the kinetic analysis of such data depends on the absorbed dose. Here, direct evidence for the impact of radiation damage on the function of a protein is presented using time-resolved macromolecular crystallography. The effect of radiation damage on the kinetic analysis of time-resolved X-ray data is also explored.
Collapse
Affiliation(s)
- M Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | | | | | | |
Collapse
|
16
|
|
17
|
Boggio-Pasqua M, Burmeister CF, Robb MA, Groenhof G. Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations. Phys Chem Chem Phys 2012; 14:7912-28. [DOI: 10.1039/c2cp23628a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
On the involvement of single-bond rotation in the primary photochemistry of photoactive yellow protein. Biophys J 2011; 101:1184-92. [PMID: 21889456 DOI: 10.1016/j.bpj.2011.06.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/09/2011] [Accepted: 06/17/2011] [Indexed: 11/21/2022] Open
Abstract
Prior experimental observations, as well as theoretical considerations, have led to the proposal that C(4)-C(7) single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid chromophore, (5-hydroxy indan-(1E)-ylidene)acetic acid, in which rotation across the C(4)-C(7) single bond has been locked with an ethane bridge, and we reconstituted the apo form of the wild-type protein and its R52A derivative with this chromophore analog. In PYP reconstituted with the rotation-locked chromophore, 1), absorption spectra of ground and intermediate states are slightly blue-shifted; 2), the quantum yield of photochemistry is ∼60% reduced; 3), the excited-state dynamics of the chromophore are accelerated; and 4), dynamics of the thermal recovery reaction of the protein are accelerated. A significant finding was that the yield of the transient ground-state intermediate in the early phase of the photocycle was considerably higher in the rotation-locked samples than in the corresponding samples reconstituted with p-coumaric acid. In contrast to theoretical predictions, the initial photocycle dynamics of PYP were observed to be not affected by the charge of the amino acid residue at position 52, which was varied by 1), varying the pH of the sample between 5 and 10; and 2), site-directed mutagenesis to construct R52A. These results imply that C(4)-C(7) single-bond rotation in PYP is not an alternative to C(7)=C(8) double-bond rotation, in case the nearby positive charge of R52 is absent, but rather facilitates, presumably with a compensatory movement, the physiological Z/E isomerization of the blue-light-absorbing chromophore.
Collapse
|
19
|
Kamiya M, Ohmine I. A Molecular Dynamics Study for the Structure Determination of the Signaling State in the Photocycle of Photoactive Yellow Protein. J Phys Chem B 2010; 114:6594-600. [DOI: 10.1021/jp910018d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Motoshi Kamiya
- Chemistry Department, Nagoya University, 1, Furocho, Chikusa-ku, Nagoya, Japan 464-8602, and Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano Nishihiraku-machi, Sakyo-ku, Kyoto, Japan 606-8103
| | - Iwao Ohmine
- Chemistry Department, Nagoya University, 1, Furocho, Chikusa-ku, Nagoya, Japan 464-8602, and Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4, Takano Nishihiraku-machi, Sakyo-ku, Kyoto, Japan 606-8103
| |
Collapse
|
20
|
Vreede J, Juraszek J, Bolhuis PG. Predicting the reaction coordinates of millisecond light-induced conformational changes in photoactive yellow protein. Proc Natl Acad Sci U S A 2010; 107:2397-402. [PMID: 20133754 PMCID: PMC2823881 DOI: 10.1073/pnas.0908754107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the dynamics of large-scale conformational changes in proteins still poses a challenge for molecular simulations. We employ transition path sampling of explicit solvent molecular dynamics trajectories to obtain atomistic insight in the reaction network of the millisecond timescale partial unfolding transition in the photocycle of the bacterial sensor photoactive yellow protein. Likelihood maximization analysis predicts the best model for the reaction coordinates of each substep as well as tentative transition states, without further simulation. We find that the unfolding of the alpha-helical region 43-51 is followed by sequential solvent exposure of both Glu46 and the chromophore. Which of these two residues is exposed first is correlated with the presence of a salt bridge that is part of the N-terminal domain. Additional molecular dynamics simulations indicate that the exposure of the chromophore does not result in a productive pathway. We discuss several possibilities for experimental validation of these predictions. Our results open the way for studying millisecond conformational changes in other medium-sized (signaling) proteins.
Collapse
Affiliation(s)
- Jocelyne Vreede
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
21
|
Hendriks J, Hellingwerf KJ. pH Dependence of the Photoactive Yellow Protein Photocycle Recovery Reaction Reveals a New Late Photocycle Intermediate with a Deprotonated Chromophore. J Biol Chem 2009; 284:5277-88. [DOI: 10.1074/jbc.m805904200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
22
|
Vreede J, Hellingwerf KJ, Bolhuis PG. Helix formation is a dynamical bottleneck in the recovery reaction of Photoactive Yellow Protein. Proteins 2008; 72:136-49. [PMID: 18214984 DOI: 10.1002/prot.21902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bacterial sensor Photoactive Yellow Protein (PYP) signals the presence of blue light by undergoing a series of conformational changes. We present atomistic Parallel Tempering (Replica Exchange Molecular Dynamics) simulations of conformational changes occurring during the photo-cycle of PYP. First, we study the signaling state formation of PYP in detail. Our previous simulations have shown that the formation of the signaling state is characterized by the solvent exposure of both the chromophore and Glu46 (Vreede J, Crielaard W, Hellingwerf KJ, Bolhuis PG. Biophys J, 2005;8:3525-3535). Subsequent NMR results agreed with this prediction, but as these experiments were performed on an N-terminally truncated mutant, a simulation of this mutant would further substantiate our previous results. Here, we compare simulations of the truncated PYP to the NMR structures, as well as to the wild type predictions. This comparison also gives some insight into the role of the N-terminal domain of PYP, which restricts the movement of the chromophore binding pocket (CBP) in the wild type. Second, we report simulations of the recovery of the receptor state from the signaling state. While we did not observe complete refolding of the protein, we did observe transient interactions between residues of the CBP occurring when the chromophore is in a trans configuration. Using simulations that sample anomalous exposure of the chromophore in the receptor state, we were able to sample chromophore re-entry into its binding pocket. While the involved time scales prohibit drawing definitive conclusions even when using parallel tempering, we nevertheless propose that the formation of a helix in the CBP is essential for a successful recovery of the receptor state, and forms a kinetic barrier in this process.
Collapse
Affiliation(s)
- Jocelyne Vreede
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
23
|
Hoersch D, Otto H, Cusanovich MA, Heyn MP. Distinguishing chromophore structures of photocycle intermediates of the photoreceptor PYP by transient fluorescence and energy transfer. J Phys Chem B 2008; 112:9118-25. [PMID: 18605685 DOI: 10.1021/jp801174z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cinnamoyl chromophore is the light-activated switch of the photoreceptor photoactive yellow protein (PYP) and isomerizes during the functional cycle. The fluorescence of W119, the only tryptophan of PYP, is quenched by energy transfer to the chromophore. This depends on the chromophore's transition dipole moment orientation and spectrum, both of which change during the photocycle. The transient fluorescence of W119 thus serves as a sensitive kinetic monitor of the chromophore's structure and orientation and was used for the first time to investigate the photocycle kinetics. From these data and measurements of the ps-fluorescence decay with background illumination (470 nm) we determined the fluorescence lifetimes of W119 in the I(1) and I (1') intermediates. Two coexisting distinct chromophore structures were proposed for the I(1) photointermediate from time-resolved X-ray diffraction ( Ihee, H., et al. Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 7145 ): one with two hydrogen bonds to E46 and Y42, and a second with only one H-bond to Y42 and a different orientation. Only for the first of these is the calculated fluorescence lifetime of 0.22 ns in good agreement with the observed one of 0.26 ns. The second structure has a predicted lifetime of 0.71 ns. Thus, we conclude that in solution only the first I(1) structure occurs. The high resolution structure of the I(1') intermediate, the decay product of I(1) at alkaline pH, is still unknown. We predict from the observed lifetime of 1.3 ns that the chromophore structure of I(1') is quite similar to that of the I(2) intermediate, and I(1') should thus be considered as the alkaline (deprotonated) form of I(2).
Collapse
Affiliation(s)
- Daniel Hoersch
- Biophysics Group, Department of Physics, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
24
|
Kumauchi M, Hara MT, Stalcup P, Xie A, Hoff WD. Identification of Six New Photoactive Yellow ProteinsDiversity and StructureFunction Relationships in a Bacterial Blue Light Photoreceptor. Photochem Photobiol 2008; 84:956-69. [DOI: 10.1111/j.1751-1097.2008.00335.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Imamoto Y, Kataoka M. Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily. Photochem Photobiol 2007; 83:40-9. [PMID: 16939366 DOI: 10.1562/2006-02-28-ir-827] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The alpha/beta fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | | |
Collapse
|
26
|
Leenders EJM, Guidoni L, Röthlisberger U, Vreede J, Bolhuis PG, Meijer EJ. Protonation of the chromophore in the photoactive yellow protein. J Phys Chem B 2007; 111:3765-73. [PMID: 17388542 DOI: 10.1021/jp067158b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photoactive yellow protein (PYP) acts as a light sensor to its bacterial host: it responds to light by changing shape. After excitation by blue light, PYP undergoes several transformations, to partially unfold into its signaling state. One of the crucial steps in this photocycle is the protonation of p-coumaric acid after excitation and isomerization of this chromophore. Experimentalists still debate on the nature of the proton donor and on whether it donates the hydrogen directly or indirectly. To obtain better knowledge of the mechanism, we studied this proton transfer using Car-Parrinello molecular dynamics, classical molecular dynamics, and computer simulations combining these two methods (quantum mechanics/molecular mechanics, QMMM). The simulations reproduce the chromophore structure and hydrogen-bond network of the protein measured by X-ray crystallography and NMR. When the chromophore is protonated, it leaves the assumed proton donor, glutamic acid 46, with a negative charge in a hydrophobic environment. We show that the stabilization of this charge is a very important factor in the mechanism of protonation. Protonation frequently occurs in simplified ab initio simulations of the chromophore binding pocket in vacuum, where amino acids can easily hydrogen bond to Glu46. When the complete protein environment is incorporated in a QMMM simulation on the complete protein, no proton transfer is observed within 14 ps. The hydrogen-bond rearrangements in this time span are not sufficient to stabilize the new protonation state. Force field molecular dynamics simulations on a much longer time scale have shown which internal rearrangements of the protein are needed. Combining these simulations with more QMMM calculations enabled us to check the stability of protonation states and clarify the initial requirements for the proton transfer in PYP.
Collapse
Affiliation(s)
- Elske J M Leenders
- Van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Karp DA, Gittis AG, Stahley MR, Fitch CA, Stites WE, García-Moreno E B. High apparent dielectric constant inside a protein reflects structural reorganization coupled to the ionization of an internal Asp. Biophys J 2007; 92:2041-53. [PMID: 17172297 PMCID: PMC1861777 DOI: 10.1529/biophysj.106.090266] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Accepted: 10/13/2006] [Indexed: 11/18/2022] Open
Abstract
The dielectric properties of proteins are poorly understood and difficult to describe quantitatively. This limits the accuracy of methods for structure-based calculation of electrostatic energies and pK(a) values. The pK(a) values of many internal groups report apparent protein dielectric constants of 10 or higher. These values are substantially higher than the dielectric constants of 2-4 measured experimentally with dry proteins. The structural origins of these high apparent dielectric constants are not well understood. Here we report on structural and equilibrium thermodynamic studies of the effects of pH on the V66D variant of staphylococcal nuclease. In a crystal structure of this protein the neutral side chain of Asp-66 is buried in the hydrophobic core of the protein and hydrated by internal water molecules. Asp-66 titrates with a pK(a) value near 9. A decrease in the far UV-CD signal was observed, concomitant with ionization of this aspartic acid, and consistent with the loss of 1.5 turns of alpha-helix. These data suggest that the protein dielectric constant needed to reproduce the pK(a) value of Asp-66 with continuum electrostatics calculations is high because the dielectric constant has to capture, implicitly, the energetic consequences of the structural reorganization that are not treated explicitly in continuum calculations with static structures.
Collapse
Affiliation(s)
- Daniel A Karp
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kamiya M, Saito S, Ohmine I. Proton Transfer and Associated Molecular Rearrangements in the Photocycle of Photoactive Yellow Protein: Role of Water Molecular Migration on the Proton Transfer Reaction. J Phys Chem B 2007; 111:2948-56. [PMID: 17388419 DOI: 10.1021/jp066256u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of the proton transfer and the concomitant molecular structural and hydrogen bond rearrangements after the photoisomerization of the chromophore in the photocycle of photoactive yellow protein are theoretically investigated by using the QM/MM method and molecular dynamics calculations. The free energy surface along this proton-transfer process is determined. This work suggests the important role of the water molecular migration into the moiety of chromophore, which facilitates proton transfer by the hydrogen bond rearrangement and the hydration of the pB' state.
Collapse
Affiliation(s)
- Motoshi Kamiya
- Chemistry Department, Nagoya University, 1 Furocho, Chikusaku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
29
|
Joshi CP, Borucki B, Otto H, Meyer TE, Cusanovich MA, Heyn MP. Photocycle and photoreversal of photoactive yellow protein at alkaline pH: kinetics, intermediates, and equilibria. Biochemistry 2006; 45:7057-68. [PMID: 16752896 DOI: 10.1021/bi0517335] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the habitat of Halorhodospira halophila is distinctly alkaline, we investigated the kinetics and intermediates of the photocycle and photoreversal of the photoreceptor photoactive yellow protein (PYP) from pH 8 to 11. SVD analysis of the transient absorption time traces in a broad wavelength range (330-510 nm) shows the presence of three spectrally distinct species (I1, I1', and I2') at pH 10. The spectrum of I1' was obtained in two different ways. The maximal absorption is at 425 nm. I1' probably has a deprotonated chromophore and may be regarded as the alkaline form of I2'. At pH 10, the I1 intermediate decays in approximately 330 micros in part to I1' before I1 and I1' decay further to I2' in approximately 1 ms. From the rise of I2' (approximately 1 ms) to the end of the photocycle, the three intermediates (I1, I1', and I2') remain in equilibrium and decay together to P in approximately 830 ms. Assuming that the spectra of I1, I1', and I2' are pH-independent, their time courses were determined. On the millisecond to second time scale, they are in a pH-dependent equilibrium with a pKa of approximately 9.9. With an increase in pH, the I1 and I1' populations increase at the expense of the amount of I2'. The apparent rate constant for the recovery of P slows with an increase in pH with a pKa of approximately 9.7. The equal pH dependence of this rate and the equilibrium concentrations follows, if we assume that the equilibration rates between the intermediates are much faster than the recovery rate and that the recovery occurs from I2'. The pKa of approximately 9.9 is assigned to the deprotonation of the phenol of the surface-exposed chromophore in the I1'-I2' equilibrium. The I1-I1' equilibrium is pH-independent. Photoreversal experiments at pH 10 with the second flash at 355 nm indicate the presence of only one I2-like intermediate, which we assign on the basis of its lambda(max) value to I2'. After the rapid unresolved photoisomerization to I2'(trans), the reversal pathway back to P involves two sequential steps (60 micros and 3 ms). The amplitude spectra show that I1'(trans) and I1(trans) intermediates participate in this reversal.
Collapse
Affiliation(s)
- Chandra P Joshi
- Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Borucki B, Joshi CP, Otto H, Cusanovich MA, Heyn MP. The transient accumulation of the signaling state of photoactive yellow protein is controlled by the external pH. Biophys J 2006; 91:2991-3001. [PMID: 16829563 PMCID: PMC1578485 DOI: 10.1529/biophysj.106.086645] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The signaling state of the photoreceptor photoactive yellow protein is the long-lived intermediate I(2)'. The pH dependence of the equilibrium between the transient photocycle intermediates I(2) and I(2)' was investigated. The formation of I(2)' from I(2) is accompanied by a major conformational change. The kinetics and intermediates of the photocycle and of the photoreversal were measured by transient absorption spectroscopy from pH 4.6 to 8.4. Singular value decomposition (SVD) analysis of the data at pH 7 showed the presence of three spectrally distinguishable species: I(1), I(2), and I(2)'. Their spectra were determined using the extrapolated difference method. I(2) and I(2)' have electronic absorption spectra, with maxima at 370 +/- 5 and 350 +/- 5 nm, respectively. Formation of the signaling state is thus associated with a change in the environment of the protonated chromophore. The time courses of the I(1), I(2), and I(2)' intermediates were determined from the wavelength-dependent transient absorbance changes at each pH, assuming that their spectra are pH-independent. After the formation of I(2)' ( approximately 2 ms), these three intermediates are in equilibrium and decay together to the initial dark state. The equilibrium between I(2) and I(2)' is pH dependent with a pK(a) of 6.4 and with I(2)' the main species above this pK(a). Measurements of the pH dependence of the photoreversal kinetics with a second flash of 355 nm at a delay of 20 ms confirm this pK(a) value. I(2) and I(2)' are photoreversed with reversal times of approximately 55 micros and several hundred microseconds, respectively. The corresponding signal amplitudes are pH dependent with a pK(a) of approximately 6.1. Photoreversal from I(2)' dominates above the pK(a). The transient accumulation of I(2)', the active state of photoactive yellow protein, is thus controlled by the proton concentration. The rate constant k(3) for the recovery to the initial dark state also has a pK(a) of approximately 6.3. This equality of the equilibrium and kinetic pK(a) values is not accidental and suggests that k(3) is proportional to [I(2)'].
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
31
|
Borucki B, Kyndt JA, Joshi CP, Otto H, Meyer TE, Cusanovich MA, Heyn MP. Effect of salt and pH on the activation of photoactive yellow protein and gateway mutants Y98Q and Y98F. Biochemistry 2006; 44:13650-63. [PMID: 16229455 DOI: 10.1021/bi050991z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the photocycle of mutants Y98Q and Y98F of the photoactive yellow protein (PYP) from Halorhodospira halophila. Y98 is located in the beta4-beta5 loop and is thought to interact with R52 in the alpha3-alpha4 loop thereby stabilizing this region. Y98 is conserved in all known PYP species, except in Ppr and Ppd where it is replaced by F. We find that replacement of Y98 by F has no significant effect on the photocycle kinetics. However, major changes were observed with the Y98Q mutant. Our results indicate a requirement for an aromatic ring at position 98, especially for recovery and a normal I1/I2 equilibrium. The ring of Y98 could stabilize the beta4-beta5 loop. Alternatively, the Y98 ring could transiently interact with the isomerized chromophore ring, thereby stabilizing the I2 intermediate in the I1/I2 equilibrium. For Y98Q, the decay of the signaling state I2' was slowed by a factor of approximately 40, and the rise of the I2 and I2' intermediates was slowed by a factor of 2-3. Moreover, the I1 intermediate is in a pH-dependent equilibrium with I2/I2' with the ratio of the I1 and I2 populations close to one at pH 7 and 50 mM KCl. From pH 5.5 to 8, the equilibrium shifts toward I1, with a pKa of approximately 6.3. Above pH 8, the populations of I1 and I2/I2' decrease due to an equilibrium between I1 and an additional species I1' which absorbs at approximately 425 nm (pKa approximately 9.8) and which we believe to be an I2-like form with a surface-exposed deprotonated chromophore. The I1/I2/I2' equilibrium was found to be strongly dependent on the KCl concentration, with salt stabilizing the signaling state I2' up to 600 mM KCl. This salt-induced transition to I2' was analyzed and interpreted as ion binding to a specific site. Moreover, from analysis of the amplitude spectra, we conclude that KCl exerts its major effect on the I2 to I2' transition, i.e., the global conformational change leading to the signaling state I2' and the exposure of a hydrophobic surface patch. In wild type and Y98F, the I1/I2 equilibrium is more on the side of I2/I2' as compared to Y98Q but is also salt-dependent at pH 7. The I2 to I2' transition appears to be controlled by an ionic lock, possibly involving the salt bridge between K110 on the beta-scaffold and E12 on the N-terminal cap. Salt binding would break the salt bridge and weaken the interaction between the two domains, facilitating the release of the N-terminal domain from the beta-scaffold in the formation of I2'.
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Shimizu N, Imamoto Y, Harigai M, Kamikubo H, Yamazaki Y, Kataoka M. pH-dependent Equilibrium between Long Lived Near-UV Intermediates of Photoactive Yellow Protein. J Biol Chem 2006; 281:4318-25. [PMID: 16368695 DOI: 10.1074/jbc.m506403200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The long lived intermediate (signaling state) of photoactive yellow protein (PYP(M)), which is formed in the photocycle, was characterized at various pHs. PYP(M) at neutral pH was in equilibrium between two spectroscopically distinct states. Absorption maxima of the acidic form (PYP(M)(acid)) and alkaline form (PYP(M)(alkali)) were located at 367 and 356 nm, respectively. Equilibrium was represented by the Henderson-Hasselbalch equation, in which apparent pK(a) was 6.4. Content of alpha- and/or beta-structure of PYP(M)(acid) was significantly greater than PYP(M)(alkali) as demonstrated by the molar ellipticity at 222 nm. In addition, changes in amide I and II modes of beta-structure in the difference Fourier transform infrared spectra for formation of PYP(M)(acid) was smaller than that of PYP(M)(alkali). The vibrational mode at 1747 cm(-1) of protonated Glu-46 was found as a small band for PYP(M)(acid) but not for PYP(M)(alkali), suggesting that Glu-46 remains partially protonated in PYP(M)(acid), whereas it is fully deprotonated in PYP(M)(alkali). Small angle x-ray scattering measurements demonstrated that the radius of gyration of PYP(M)(acid) was 15.7 Angstroms, whereas for PYP(M)(alkali) it was 16.2 Angstroms. These results indicate that PYP(M)(acid) assumes a more ordered and compact structure than PYP(M)(alkali). Binding of citrate shifts this equilibrium toward PYP(M)(alkali). UV-visible absorption spectra and difference infrared spectra of the long lived intermediate formed from E46Q mutant was consistent with those of PYP(M)(acid), indicating that the mutation shifts this equilibrium toward PYP(M)(acid). Alterations in the nature of PYP(M) by pH, citrate, and mutation of Glu-46 are consistently explained by the shift of the equilibrium between PYP(M)(acid) and PYP(M)(alkali).
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Borucki B. Proton transfer in the photoreceptors phytochrome and photoactive yellow protein. Photochem Photobiol Sci 2006; 5:553-66. [PMID: 16761084 DOI: 10.1039/b603846h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Light-induced activation of the photoreceptors phytochrome and photoactive yellow protein (PYP) is accompanied by protonation changes of the respective chromophores and key residues in the protein moiety. For both systems, proton exchange with the external medium could be observed with pH electrode measurements and with UV-visible absorption spectroscopy using appropriate pH indicator dyes. From these signals, the stoichiometry of proton release and uptake, respectively, was determined by different calibration procedures which will be presented and discussed. Kinetic information on these processes is only available from time-resolved measurements with pH indicator dyes. Vibrational spectroscopy methods such as Fourier transform infrared spectroscopy and resonance Raman scattering provided information on the protonation state of individual functional groups suggesting that internal proton transfer processes are involved as well. Deuterium kinetic isotope effects that occurred in the Pr --> Pfr phototransformation of the bacteriophytochromes Cph1 and Agp1 were consistent with proton transfer reactions as rate-limiting steps. In contrast, the apparent rate constants in the photocycle of PYP exhibited only small kinetic isotope effects that could not be interpreted conclusively. Possible mechanisms of proton transfer in the activation of phytochrome and PYP will be discussed.
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
34
|
Imamoto Y, Harigai M, Kataoka M. Direct observation of the pH-dependent equilibrium between L-like and M intermediates of photoactive yellow protein. FEBS Lett 2005; 577:75-80. [PMID: 15527764 DOI: 10.1016/j.febslet.2004.09.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/22/2004] [Accepted: 09/22/2004] [Indexed: 10/26/2022]
Abstract
Equilibrium between the photoproducts of photoactive yellow protein (PYP), present in a millisecond time scale, was studied. The near-UV intermediate of PYP (PYPM) was red-shifted by alkalization due to the deprotonation of the chromophore (pKa=10.2). In addition, a small amount of red-shifted intermediate coexisted with PYPM. Its spectral shape in the visible region agreed with that of PYPL, the precursor of PYPM. The fraction of PYPL-like product was maximal at pH 10. It decays with a rate constant identical to that of PYPM. These results indicate that PYPL-like product is in pH-dependent equilibrium with PYPM and deprotonated PYPM.
Collapse
Affiliation(s)
- Yasushi Imamoto
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | | | | |
Collapse
|
35
|
Vreede J, Crielaard W, Hellingwerf KJ, Bolhuis PG. Predicting the signaling state of photoactive yellow protein. Biophys J 2005; 88:3525-35. [PMID: 15722437 PMCID: PMC1305499 DOI: 10.1529/biophysj.104.055103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a bacterial blue light sensor the photoactive yellow protein (PYP) undergoes conformational changes upon signal transduction. The absorption of a photon triggers a series of events that are initially localized around the protein chromophore, extends to encompass the whole protein within microseconds, and leads to the formation of the transient pB signaling state. We study the formation of this signaling state pB by molecular simulation and predict its solution structure. Conventional straightforward molecular dynamics is not able to address this formation process due to the long (microsecond) timescales involved, which are (partially) caused by the presence of free energy barriers between the metastable states. To overcome these barriers, we employed the parallel tempering (or replica exchange) method, thus enabling us to predict qualitatively the formation of the PYP signaling state pB. In contrast to the receptor state pG of PYP, the characteristics of this predicted pB structure include a wide open chromophore-binding pocket, with the chromophore and Glu(46) fully solvent-exposed. In addition, loss of alpha-helical structure occurs, caused by the opening motion of the chromophore-binding pocket and the disruptive interaction of the negatively charged Glu(46) with the backbone atoms in the hydrophobic core of the N-terminal cap. Recent NMR experiments agree very well with these predictions.
Collapse
Affiliation(s)
- Jocelyne Vreede
- Swammerdam Institute for Life Sciences, and van 't Hoff Institute of Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Derix NM, Wechselberger RW, van der Horst MA, Hellingwerf KJ, Boelens R, Kaptein R, van Nuland NAJ. Lack of negative charge in the E46Q mutant of photoactive yellow protein prevents partial unfolding of the blue-shifted intermediate. Biochemistry 2004; 42:14501-6. [PMID: 14661962 DOI: 10.1021/bi034877x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The long-lived light-induced intermediate (pB) of the E46Q mutant (glutamic acid is replaced by glutamine at position 46) of photoactive yellow protein (PYP) has been investigated by NMR spectroscopy. The ground state of this mutant is very similar to that of wild-type PYP (WT), whereas the pB state, formed upon illumination, appears to be much more structured in E46Q than in WT. The differences are most striking in the N-terminal domain of the protein. In WT, the side-chain carboxylic group of E46 is known to donate its proton to the chromophore upon illumination. The absence of the carboxylic group near the chromophore in the E46Q mutant prohibits the formation of a negative charge at this position upon formation of pB. This prevents the partial unfolding of the mutant, as evidenced from NMR chemical shift comparison and proton/deuterium (H/D) exchange studies.
Collapse
Affiliation(s)
- Nocky M Derix
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Borucki B, Otto H, Joshi CP, Gasperi C, Cusanovich MA, Devanathan S, Tollin G, Heyn MP. pH Dependence of the photocycle kinetics of the E46Q mutant of photoactive yellow protein: protonation equilibrium between I1 and I2 intermediates, chromophore deprotonation by hydroxyl uptake, and protonation relaxation of the dark state. Biochemistry 2003; 42:8780-90. [PMID: 12873139 DOI: 10.1021/bi034315d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of the photocycle of PYP and its mutants E46Q and E46A were investigated as a function of pH. E46 is the putative donor of the chromophore which becomes protonated in the I(2) intermediate. For E46Q we find that I(2) is in a pH-dependent equilibrium with its precursor I(1)' with a pK(a) of 8.15 and n = 1. From this result and from experiments with pH indicator dyes, we conclude that in the I(1)' to I(2) transition one proton is taken up from the external medium. The pK(a) of 8.15 is that of the surface-exposed chromophore in the equilibrium between I(1)' and I(2) and is close to that of the phenolate group of p-hydroxycinnamic acid. The pH-dependent I(1)'/I(2) equilibrium with associated H(+) uptake is reminiscent of the M(I)/M(II) equilibrium in the formation of the signaling state of rhodopsin. Well above this pK(a) no I(2) is formed and I(1)' returns in a pH-independent manner to the initial state P. The decay rate for the return to P via I(2) is between pH 4 and pH 8, exactly proportional to the hydroxide concentration (first order), and the deprotonation of the chromophore in this transition occurs by hydroxide uptake. Well above the pK(a) of 8.15 the apparent rate constant for the return to P is constant due to the branching from I(1)'. Complementary measurements with the pH indicator dye cresol red at pH 8.3 show that the remaining PYP molecules that still cycle via I(2) take up one proton in the formation of I(2). Together, these observations provide compelling evidence that during the photocycle the chromophore in E46Q is protonated and deprotonated from the external medium. For the yellow form of the mutant E46A the apparent rate constant for the return to P is also linear in [OH(-)] below about pH 8.3 and constant above about pH 9.5, with a pK(a) value of 8.8 for I(1)', suggesting a similar mechanism of chromophore protonation/deprotonation as in E46Q. For wild type qualitatively similar observations were made: the amplitude of I(2) decreased at alkaline pH, I(1)' and I(2) were in equilibrium, and I(1)' decayed together with the return to P. Chromophore hydrolysis prevented, however, an accurate determination of the pK(a) of I(1)'. We estimate that its value is above 11. The ground state P is in the dark in a pH-dependent equilibrium with a low-pH bleached form P(bl) with protonated chromophore. The pK(a) values for these equilibria are 4.8 and 7.9 for E46Q and E46A, respectively. When the pH is close to these pK(a)'s, the kinetics of the photocycle contains additional components in the millisecond time range. Using pH-jump stopped-flow experiments, we show that these contributions are due to the relaxation of the P/P(bl) equilibrium which is perturbed by the rapid decrease in the P concentration caused by the flash excitation of P. The condition for the occurrence of this effect is that the relaxation time of the P/P(bl) equilibrium is faster than the photocycle time.
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dugave C, Demange L. Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem Rev 2003; 103:2475-532. [PMID: 12848578 DOI: 10.1021/cr0104375] [Citation(s) in RCA: 763] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christophe Dugave
- CEA/Saclay, Département d'Ingénierie et d'Etudes des Protéines (DIEP), Bâtiment 152, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
39
|
Vreede J, van der Horst MA, Hellingwerf KJ, Crielaard W, van Aalten DMF. PAS domains. Common structure and common flexibility. J Biol Chem 2003; 278:18434-9. [PMID: 12639952 DOI: 10.1074/jbc.m301701200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAS (PER-ARNT-SIM) domains are a family of sensor protein domains involved in signal transduction in a wide range of organisms. Recent structural studies have revealed that these domains contain a structurally conserved alpha/beta-fold, whereas almost no conservation is observed at the amino acid sequence level. The photoactive yellow protein, a bacterial light sensor, has been proposed as the PAS structural prototype yet contains an N-terminal helix-turn-helix motif not found in other PAS domains. Here we describe the atomic resolution structure of a photoactive yellow protein deletion mutant lacking this motif, revealing that the PAS domain is indeed able to fold independently and is not affected by the removal of these residues. Computer simulations of currently known PAS domain structures reveal that these domains are not only structurally conserved but are also similar in their conformational flexibilities. The observed motions point to a possible common mechanism for communicating ligand binding/activation to downstream transducer proteins.
Collapse
Affiliation(s)
- Jocelyne Vreede
- Department of Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1018WV, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Cusanovich MA, Meyer TE. Photoactive yellow protein: a prototypic PAS domain sensory protein and development of a common signaling mechanism. Biochemistry 2003; 42:4759-70. [PMID: 12718516 DOI: 10.1021/bi020690e] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael A Cusanovich
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
41
|
Chen E, Gensch T, Gross AB, Hendriks J, Hellingwerf KJ, Kliger DS. Dynamics of protein and chromophore structural changes in the photocycle of photoactive yellow protein monitored by time-resolved optical rotatory dispersion. Biochemistry 2003; 42:2062-71. [PMID: 12590594 DOI: 10.1021/bi020577o] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dynamics of the PYP photocycle have been studied using time-resolved optical rotatory dispersion (TRORD) spectroscopy in the visible and far-UV spectral regions to probe the changes in the chromophore configuration and the protein secondary structure, respectively. The changes in the secondary structure in PYP upon photoisomerization of the chromophore can be described by two exponential lifetimes of 2 +/- 0.8 and 650 +/- 100 ms that correspond to unfolding and refolding processes, respectively. The TRORD experiments that follow the dynamics of the chromophore report three exponential components, with lifetimes of 10 +/- 3 micros, 1.5 +/- 0.5 ms, and 515 +/- 110 ms. A comparison of the kinetic behaviors of the chromophore and protein shows that during the decay of pR(465) an initial relaxation that is localized to the chromophore hydrophobic pocket precedes the formation of the chromophore and protein structures found in pB(355). In contrast, the protein and chromophore processes occur with similar time constants during inactivation of the signaling state.
Collapse
Affiliation(s)
- Eefei Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hendriks J, van Stokkum IHM, Hellingwerf KJ. Deuterium isotope effects in the photocycle transitions of the photoactive yellow protein. Biophys J 2003; 84:1180-91. [PMID: 12547797 PMCID: PMC1302693 DOI: 10.1016/s0006-3495(03)74932-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Photoactive Yellow Protein (PYP) from Halorhodospira halophila (formerly Ectothiorhodospira halophila) is increasingly used as a model system. As such, a thorough understanding of the photocycle of PYP is essential. In this study we have combined information from pOH- (or pH-) dependence and (kinetic) deuterium isotope effects to elaborate on existing photocycle models. For several characteristics of PYP we were able to make a distinction between pH- and pOH-dependence, a nontrivial distinction when comparing data from samples dissolved in H(2)O and D(2)O. It turns out that most characteristics of PYP are pOH-dependent. We confirmed the existence of a pB' intermediate in the pR to pB transition of the photocycle. In addition, we were able to show that the pR to pB' transition is reversible, which explains the previously observed biexponential character of the pR-to-pB photocycle step. Also, the absorption spectrum of pB' is slightly red-shifted with respect to pB. The recovery of the pG state is accompanied by an inverse kinetic deuterium isotope effect. Our interpretation of this is that before the chromophore can be isomerized, it is deprotonated by a hydroxide ion from solution. From this we propose a new photocycle intermediate, pB(deprot), from which pG is recovered and which is in equilibrium with pB. This is supported in our data through the combination of the observed pOH and pH dependence, together with the kinetic deuterium isotope effect.
Collapse
Affiliation(s)
- Johnny Hendriks
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
43
|
Hellingwerf KJ, Hendriks J, Gensch T. Photoactive Yellow Protein, A New Type of Photoreceptor Protein: Will This “Yellow Lab” Bring Us Where We Want to Go? J Phys Chem A 2003. [DOI: 10.1021/jp027005y] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Klaas J. Hellingwerf
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institute of Biological Information Processing 1, Research Centre Jülich, D-52425 Jülich, Germany
| | - Johnny Hendriks
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institute of Biological Information Processing 1, Research Centre Jülich, D-52425 Jülich, Germany
| | - Thomas Gensch
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, and Institute of Biological Information Processing 1, Research Centre Jülich, D-52425 Jülich, Germany
| |
Collapse
|
44
|
Borucki B, Devanathan S, Otto H, Cusanovich MA, Tollin G, Heyn MP. Kinetics of proton uptake and dye binding by photoactive yellow protein in wild type and in the E46Q and E46A mutants. Biochemistry 2002; 41:10026-37. [PMID: 12146967 DOI: 10.1021/bi0256227] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the kinetics of proton uptake and release by photoactive yellow protein (PYP) from Ectothiorhodospira halophila in wild type and the E46Q and E46A mutants by transient absorption spectroscopy with the pH-indicator dyes bromocresol purple or cresol red in unbuffered solution. In parallel, we investigated the kinetics of chromophore protonation as monitored by the rise and decay of the blue-shifted state I(2) (lambda(max) = 355 nm). For wild type the proton uptake kinetics is synchronized with the fast phase of I(2) formation (tau = 500 micros at pH 6.2). The transient absorption signal from the dye also contains a slower component which is not due to dye deprotonation but is caused by dye binding to a hydrophobic patch that is transiently exposed in the structurally changed and partially unfolded I(2) intermediate. This conclusion is based on the wavelength, pH, and concentration dependence of the dye signal and on dye measurements in the presence of buffer. SVD analysis, moreover, indicates the presence of two components in the dye signal: protonation and dye binding. The dye binding has a rise time of about 4 ms and is coupled kinetically with a transition between two I(2) intermediates. In the mutant E46Q, which lacks the putative internal proton donor E46, the formation of I(2) is accelerated, but the proton uptake kinetics remains kinetically coupled to the fast phase of I(2) formation (tau = 100 micros at pH 6.3). For this mutant the protein conformational change, as monitored by the dye binding, occurs with about the same time constant as in wild type but with reduced amplitude. In the alkaline form of the mutant E46A the formation of the I(2)-like intermediate is even faster as is the proton uptake (tau = 20 micros at pH 8.3). No dye binding occurred in E46A, suggesting the absence of a conformational change. In all of the systems proton release is synchronized with the decay of I(2). Our results support mechanisms in which the chromophore of PYP is protonated directly from the external medium rather than by the internal donor E46.
Collapse
Affiliation(s)
- Berthold Borucki
- Biophysics Group, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Groenhof G, Lensink MF, Berendsen HJC, Mark AE. Signal transduction in the photoactive yellow protein. II. Proton transfer initiates conformational changes. Proteins 2002; 48:212-9. [PMID: 12112690 DOI: 10.1002/prot.10135] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular dynamics simulation techniques, together with semiempirical PM3 calculations, have been used to investigate the effect of photoisomerization of the 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. In this bacteria, exposure to blue light leads to a negative photoactic response. The calculations suggest that the isomerization does not directly destabilize the protein. However, because of the isomerization, a proton transfer from a glutamic acid residue (Glu46) to the phenolate oxygen atom of the chromophore becomes energetically favorable. The proton transfer initiates conformational changes within the protein, which are in turn believed to lead to signaling.
Collapse
Affiliation(s)
- Gerrit Groenhof
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
46
|
Groenhof G, Lensink MF, Berendsen HJC, Snijders JG, Mark AE. Signal transduction in the photoactive yellow protein. I. Photon absorption and the isomerization of the chromophore. Proteins 2002; 48:202-11. [PMID: 12112689 DOI: 10.1002/prot.10136] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Molecular dynamics simulation techniques together with time-dependent density functional theory calculations have been used to investigate the effect of photon absorption by a 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. The calculations suggest that the protein not only modifies the absorption spectrum of the chromophore but also regulates the subsequent isomerization of the chromophore by stabilizing the isomerization transition state. Although signaling from PYP is thought to involve partial unfolding of the protein, the mechanical effects accompanying isomerization do not appear to directly destabilize the protein.
Collapse
Affiliation(s)
- Gerrit Groenhof
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Hendriks J, Gensch T, Hviid L, van Der Horst MA, Hellingwerf KJ, van Thor JJ. Transient exposure of hydrophobic surface in the photoactive yellow protein monitored with Nile Red. Biophys J 2002; 82:1632-43. [PMID: 11867475 PMCID: PMC1301961 DOI: 10.1016/s0006-3495(02)75514-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study we have investigated binding of the fluorescent hydrophobicity probe Nile Red to the photoactive yellow protein (PYP), to characterize the exposure and accessibility of hydrophobic surface upon formation of the signaling state of this photoreceptor protein. Binding of Nile Red, reflected by a large blue shift and increase in fluorescence quantum yield of the Nile Red emission, is observed exclusively when PYP resides in its signaling state. N-terminal truncation of the protein allows assignment of the region surrounding the chromophore as the site where Nile Red binds to PYP. We also observed a pH dependence of the affinity of Nile Red for pB, which we propose is caused by pH dependent differences of the structure of the signaling state. From a comparative analysis of the kinetics of Nile Red binding and transient absorption changes in the visible region we can conclude that protonation of the chromophore precedes the exposure of a hydrophobic surface near the chromophore binding site, upon formation of the signaling state. Furthermore, the data presented here favor the view that the signaling state is structurally heterogeneous.
Collapse
Affiliation(s)
- Johnny Hendriks
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences (SILS), BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
van Aalten DMF, Haker A, Hendriks J, Hellingwerf KJ, Joshua-Tor L, Crielaard W. Engineering photocycle dynamics. Crystal structures and kinetics of three photoactive yellow protein hinge-bending mutants. J Biol Chem 2002; 277:6463-8. [PMID: 11714713 DOI: 10.1074/jbc.m109313200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystallographic and spectroscopic analyses of three hinge-bending mutants of the photoactive yellow protein are described. Previous studies have identified Gly(47) and Gly(51) as possible hinge points in the structure of the protein, allowing backbone segments around the chromophore to undergo large concerted motions. We have designed, crystallized, and solved the structures of three mutants: G47S, G51S, and G47S/G51S. The protein dynamics of these mutants are significantly affected. Transitions in the photocycle, measured with laser induced transient absorption spectroscopy, show rates up to 6-fold different from the wild type protein and show an additive effect in the double mutant. Compared with the native structure, no significant conformational differences were observed in the structures of the mutant proteins. We conclude that the structural and dynamic integrity of the region around these mutations is of crucial importance to the photocycle and suggest that the hinge-bending properties of Gly(51) may also play a role in PAS domain proteins where it is one of the few conserved residues.
Collapse
Affiliation(s)
- Daan M F van Aalten
- W. M. Keck Structural Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | | | | | | | | | |
Collapse
|
49
|
van Thor JJ, Borucki B, Crielaard W, Otto H, Lamparter T, Hughes J, Hellingwerf KJ, Heyn MP. Light-induced proton release and proton uptake reactions in the cyanobacterial phytochrome Cph1. Biochemistry 2001; 40:11460-71. [PMID: 11560494 DOI: 10.1021/bi002651d] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The P(r) to P(fr) transition of recombinant Synechocystis PCC 6803 phytochrome Cph1 and its N-terminal sensor domain Cph1Delta2 is accompanied by net acidification in unbuffered solution. The extent of this net photoreversible proton release was measured with a conventional pH electrode and increased from less than 0.1 proton released per P(fr) formed at pH 9 to between 0.6 (Cph1) and 1.1 (Cph1Delta2) H(+)/P(fr) at pH 6. The kinetics of the proton release were monitored at pH 7 and pH 8 using flash-induced transient absorption measurements with the pH indicator dye fluorescein. Proton release occurs with time constants of approximately 4 and approximately 20 ms that were also observed in parallel measurements of the photocycle (tau(3) and tau(4)). The number of transiently released protons per P(fr) formed is about one. This H(+) release phase is followed by a proton uptake phase of a smaller amplitude that has a time constant of approximately 270 ms (tau(5)) and is synchronous with the formation of P(fr). The acidification observed in the P(r) to P(fr) transition with pH electrodes is the net effect of these two sequential protonation changes. Flash-induced transient absorption measurements were carried out with Cph1 and Cph1Delta2 at pH 7 and pH 8. Global analysis indicated the presence of five kinetic components (tau(1)-tau(5): 5 and 300 micros and 3, 30, and 300 ms). Whereas the time constants were approximately pH independent, the corresponding amplitude spectra (B(1), B(3), and B(5)) showed significant pH dependence. Measurements of the P(r)/P(fr) photoequilibrium indicated that it is pH independent in the range of 6.5-9.0. Analysis of the pH dependence of the absorption spectra from 6.5 to 9.0 suggested that the phycocyanobilin chromophore deprotonates at alkaline pH in both P(r) and P(fr) with an approximate pK(a) of 9.5. The protonation state of the chromophore at neutral pH is therefore the same in both P(r) and P(fr). The light-induced deprotonation and reprotonation of Cph1 at neutral pH are thus due to pK(a) changes in the protein moiety, which are linked to conformational transitions occurring around 4 and 270 ms after photoexcitation. These transient structural changes may be relevant for signal transduction by this cyanobacterial phytochrome.
Collapse
Affiliation(s)
- J J van Thor
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
van der Horst MA, van Stokkum IH, Crielaard W, Hellingwerf KJ. The role of the N-terminal domain of photoactive yellow protein in the transient partial unfolding during signalling state formation. FEBS Lett 2001; 497:26-30. [PMID: 11376657 DOI: 10.1016/s0014-5793(01)02427-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is shown that the N-terminal domain of photoactive yellow protein (PYP), which appears relatively independently folded in the ground state of the protein, plays a key role in the transient unfolding during signalling state formation: genetic truncation of the N-terminal domain of PYP significantly decreases the extent of cooperativity of the titration curve that describes chromophore protonation in the ground state of PYP, which is in agreement with the notion that the N-terminal domain is linked through a hydrogen-bonding network with the chromophore-containing domain of the protein. Furthermore, deletion of the N-terminal domain completely abolishes the non-linearity of the Arrhenius plot of the rate of ground state recovery.
Collapse
Affiliation(s)
- M A van der Horst
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, Biocentrum, University of Amsterdam, Nieuwe Achtergracht 166,1018 WV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|