1
|
Wiechmann S, Saupp E, Schilling D, Heinzlmeir S, Schneider G, Schmid RM, Combs SE, Kuster B, Dobiasch S. Radiosensitization by Kinase Inhibition Revealed by Phosphoproteomic Analysis of Pancreatic Cancer Cells. Mol Cell Proteomics 2020; 19:1649-1663. [PMID: 32651227 PMCID: PMC8014995 DOI: 10.1074/mcp.ra120.002046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/22/2020] [Indexed: 01/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers and known for its extensive genetic heterogeneity, high therapeutic resistance, and strong variation in intrinsic radiosensitivity. To understand the molecular mechanisms underlying radioresistance, we screened the phenotypic response of 38 PDAC cell lines to ionizing radiation. Subsequent phosphoproteomic analysis of two representative sensitive and resistant lines led to the reproducible identification of 7,800 proteins and 13,000 phosphorylation sites (p-sites). Approximately 700 p-sites on 400 proteins showed abundance changes after radiation in all cell lines regardless of their phenotypic sensitivity. Apart from recapitulating known radiation response phosphorylation markers such as on proteins involved in DNA damage repair, the analysis uncovered many novel members of a radiation-responsive signaling network that was apparent only at the level of protein phosphorylation. These regulated p-sites were enriched in potential ATM substrates and in vitro kinase assays corroborated 10 of these. Comparing the proteomes and phosphoproteomes of radiosensitive and -resistant cells pointed to additional tractable radioresistance mechanisms involving apoptotic proteins. For instance, elevated NADPH quinine oxidoreductase 1 (NQO1) expression in radioresistant cells may aid in clearing harmful reactive oxygen species. Resistant cells also showed elevated phosphorylation levels of proteins involved in cytoskeleton organization including actin dynamics and focal adhesion kinase (FAK) activity and one resistant cell line showed a strong migration phenotype. Pharmacological inhibition of the kinases FAK by Defactinib and of CHEK1 by Rabusertib showed a statistically significant sensitization to radiation in radioresistant PDAC cells. Together, the presented data map a comprehensive molecular network of radiation-induced signaling, improves the understanding of radioresistance and provides avenues for developing radiotherapeutic strategies.
Collapse
Affiliation(s)
- Svenja Wiechmann
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; German Cancer Consortium, Munich, Germany; German Cancer Center, Heidelberg, Germany
| | - Elena Saupp
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany; Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Roland M Schmid
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Stephanie E Combs
- German Cancer Consortium, Munich, Germany; German Cancer Center, Heidelberg, Germany; Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany; Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; German Cancer Consortium, Munich, Germany; German Cancer Center, Heidelberg, Germany; Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Sophie Dobiasch
- German Cancer Consortium, Munich, Germany; German Cancer Center, Heidelberg, Germany; Department of Radiation Oncology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany; Institute of Radiation Medicine, Department of Radiation Sciences, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
2
|
Li Z, Chen Y, Tang M, Li Y, Zhu WG. Regulation of DNA damage-induced ATM activation by histone modifications. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42764-019-00004-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Dilworth D, Gong F, Miller K, Nelson CJ. FKBP25 participates in DNA double-strand break repair. Biochem Cell Biol 2019; 98:42-49. [PMID: 30620620 PMCID: PMC7457334 DOI: 10.1139/bcb-2018-0328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
FK506-binding proteins (FKBPs) alter the conformation of proteins via cis-trans isomerization of prolyl-peptide bonds. While this activity can be demonstrated in vitro, the intractability of detecting prolyl isomerization events in cells has limited our understanding of the biological processes regulated by FKBPs. Here we report that FKBP25 is an active participant in the repair of DNA double-strand breaks (DSBs). FKBP25 influences DSB repair pathway choice by promoting homologous recombination (HR) and suppressing single-strand annealing (SSA). Consistent with this observation, cells depleted of FKBP25 form fewer Rad51 repair foci in response to etoposide and ionizing radiation, and they are reliant on the SSA repair factor Rad52 for viability. We find that FKBP25’s catalytic activity is required for promoting DNA repair, which is the first description of a biological function for this enzyme activity. Consistent with the importance of the FKBP catalytic site in HR, rapamycin treatment also impairs homologous recombination, and this effect is at least in part independent of mTor. Taken together these results identify FKBP25 as a component of the DNA DSB repair pathway.
Collapse
Affiliation(s)
- David Dilworth
- The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Fade Gong
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712 USA
| | - Kyle Miller
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712 USA
| | - Christopher J Nelson
- The Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
4
|
Li Z, Li Y, Tang M, Peng B, Lu X, Yang Q, Zhu Q, Hou T, Li M, Liu C, Wang L, Xu X, Zhao Y, Wang H, Yang Y, Zhu WG. Destabilization of linker histone H1.2 is essential for ATM activation and DNA damage repair. Cell Res 2018; 28:756-770. [PMID: 29844578 PMCID: PMC6028381 DOI: 10.1038/s41422-018-0048-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Linker histone H1 is a master regulator of higher order chromatin structure, but its involvement in the DNA damage response and repair is unclear. Here, we report that linker histone H1.2 is an essential regulator of ataxia telangiectasia mutated (ATM) activation. We show that H1.2 protects chromatin from aberrant ATM activation through direct interaction with the ATM HEAT repeat domain and inhibition of MRE11-RAD50-NBS1 (MRN) complex-dependent ATM recruitment. Upon DNA damage, H1.2 undergoes rapid PARP1-dependent chromatin dissociation through poly-ADP-ribosylation (PARylation) of its C terminus and further proteasomal degradation. Inhibition of H1.2 displacement by PARP1 depletion or an H1.2 PARylation-dead mutation compromises ATM activation and DNA damage repair, thus leading to impaired cell survival. Taken together, our findings suggest that linker histone H1.2 functions as a physiological barrier for ATM to target the chromatin, and PARylation-mediated active H1.2 turnover is required for robust ATM activation and DNA damage repair.
Collapse
Affiliation(s)
- Zhiming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yinglu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Bin Peng
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Xiaopeng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Qiaoyan Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qian Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Tianyun Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Meiting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chaohua Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Haiying Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yang Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Cao LL, Wei F, Du Y, Song B, Wang D, Shen C, Lu X, Cao Z, Yang Q, Gao Y, Wang L, Zhao Y, Wang H, Yang Y, Zhu WG. ATM-mediated KDM2A phosphorylation is required for the DNA damage repair. Oncogene 2015; 35:301-13. [DOI: 10.1038/onc.2015.81] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/21/2015] [Accepted: 02/22/2015] [Indexed: 12/25/2022]
|
6
|
Lin ZP, Ratner ES, Whicker ME, Lee Y, Sartorelli AC. Triapine disrupts CtIP-mediated homologous recombination repair and sensitizes ovarian cancer cells to PARP and topoisomerase inhibitors. Mol Cancer Res 2014; 12:381-393. [PMID: 24413181 DOI: 10.1158/1541-7786.mcr-13-0480] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
UNLABELLED PARP inhibitors exploit synthetic lethality to target epithelial ovarian cancer (EOC) with hereditary BRCA mutations and defects in homologous recombination repair (HRR). However, such an approach is limited to a small subset of EOC patients and compromised by restored HRR due to secondary mutations in BRCA genes. Here, it was demonstrated that triapine, a small-molecule inhibitor of ribonucleotide reductase, enhances the sensitivity of BRCA wild-type EOC cells to the PARP inhibitor olaparib and the topoisomerase II inhibitor etoposide. Triapine abolishes olaparib-induced BRCA1 and Rad51 foci, and disrupts the BRCA1 interaction with the Mre11-Rad50-Nbs1 (MRN) complex in BRCA1 wild-type EOC cells. It has been shown that phosphorylation of CtIP (RBBP8) is required for the interaction with BRCA1 and with MRN to promote DNA double-strand break (DSB) resection during S and G(2) phases of the cell cycle. Mechanistic studies within reveal that triapine inhibits cyclin-dependent kinase (CDK) activity and blocks olaparib-induced CtIP phosphorylation through Chk1 activation. Furthermore, triapine abrogates etoposide-induced CtIP phosphorylation and DSB resection as evidenced by marked attenuation of RPA32 phosphorylation. Concurrently, triapine obliterates etoposide-induced BRCA1 foci and sensitizes BRCA1 wild-type EOC cells to etoposide. Using a GFP-based HRR assay, it was determined that triapine suppresses HRR activity induced by an I-SceI-generated DSB. These results suggest that triapine augments the sensitivity of BRCA wild-type EOC cells to drug-induced DSBs by disrupting CtIP-mediated HRR. IMPLICATIONS These findings provide a strong rationale for combining triapine with PARP or topoisomerase inhibitors to target HRR-proficient EOC cells.
Collapse
Affiliation(s)
- Z Ping Lin
- Department of Pharmacology, Yale Cancer Center,Yale University School of Medicine, New Haven, Connecticut
| | - Elena S Ratner
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Yale Cancer Center,Yale University School of Medicine, New Haven, Connecticut
| | - Margaret E Whicker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Yale Cancer Center,Yale University School of Medicine, New Haven, Connecticut
| | - Yashang Lee
- Department of Internal Medicine, Section of Nephrology, Yale Cancer Center,Yale University School of Medicine, New Haven, Connecticut
| | - Alan C Sartorelli
- Department of Pharmacology, Yale Cancer Center,Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Gaur S, Chen L, Yang L, Wu X, Un F, Yen Y. Inhibitors of mTOR overcome drug resistance from topoisomerase II inhibitors in solid tumors. Cancer Lett 2011; 311:20-8. [PMID: 21764510 DOI: 10.1016/j.canlet.2011.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/01/2011] [Accepted: 06/12/2011] [Indexed: 01/24/2023]
Abstract
The present study was performed to investigate the possible role of mTOR inhibitors in restoring chemosensitivity to adriamycin/cisplatin and elucidate the underlying mechanism. Combining adriamycin/cisplatin with torisel synergistically inhibited the cell proliferation in human oropharyngeal carcinoma cell line KB and its multidrug-resistant subclone KB/7D. Combining adriamycin and torisel inhibited the phosphorylation of 4EBP-1 and p70S6K, the proteins involved in mTOR pathway, increased expression of γH2AX indicative of DNA damage, triggered cell cycle arrest at G2/M and apoptosis. We conclude that chromatin decondensation by DNA damage provided an easy access for torisel to block the translation of proteins essential for DNA repair thereby restoring the chemosensitivity.
Collapse
Affiliation(s)
- Shikha Gaur
- Department of Molecular Pharmacology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hamilton C, Hayward RL, Gilbert N. Global chromatin fibre compaction in response to DNA damage. Biochem Biophys Res Commun 2011; 414:820-5. [PMID: 22020103 PMCID: PMC3459090 DOI: 10.1016/j.bbrc.2011.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 11/19/2022]
Abstract
DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation (γH2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and γH2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by linker histones. We suggest that following DSB formation, although there is localised chromatin unfolding to facilitate repair, the bulk genome becomes rapidly compacted protecting cells from further damage.
Collapse
Affiliation(s)
- Charlotte Hamilton
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Richard L. Hayward
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR, UK
- Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Nick Gilbert
- Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR, UK
- Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR, UK
- Corresponding author at: Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
9
|
Raghuram N, Carrero G, Th’ng J, Hendzel MJ. Molecular dynamics of histone H1This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:189-206. [DOI: 10.1139/o08-127] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The histone H1 family of nucleoproteins represents an important class of structural and architectural proteins that are responsible for maintaining and stabilizing higher-order chromatin structure. Essential for mammalian cell viability, they are responsible for gene-specific regulation of transcription and other DNA-dependent processes. In this review, we focus on the wealth of information gathered on the molecular kinetics of histone H1 molecules using novel imaging techniques, such as fluorescence recovery after photobleaching. These experiments have shed light on the effects of H1 phosphorylation and core histone acetylation in influencing chromatin structure and dynamics. We also delineate important concepts surrounding the C-terminal domain of H1, such as the intrinsic disorder hypothesis, and how it affects H1 function. Finally, we address the biochemical mechanisms behind low-affinity H1 binding.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Gustavo Carrero
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - John Th’ng
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Michael J. Hendzel
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
10
|
Grattarola M, Borghi C, Emionite L, Lulli P, Chessa L, Vergani L. Modifications of nuclear architecture and chromatin organization in ataxia telangiectasia cells are coupled to changes of gene transcription. J Cell Biochem 2006; 99:1148-64. [PMID: 16795050 DOI: 10.1002/jcb.20895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ataxia telangiectasia (AT) is a rare genetic disorder caused by mutations of ATM gene. ATM kinase is a "master controller" of DNA-damage response and signal transducer of external stimuli. The complex role of ATM may explain the pleiotropic phenotype characteristic of AT syndrome, only partially. In our hypothesis, the multi-faceted phenotype of AT patients might depend on specific chromatin reorganization, which then reflects on the cellular transcription. We analyzed three lymphoblastoid cell-lines isolated from AT patients and one healthy control. The three-dimensional reconstruction disclosed marked changes of nuclear morphology and architecture in AT cells. When chromatin condensation was analyzed by differential scanning calorimetry, a remodeling was observed at the level of fiber folding and nucleosome conformation. Despite the structural differences, chromatin did not exhibit modifications of the average acetylation status in comparison to the control. Moreover, AT cells presented significant alterations in the transcription of genes involved in cell-cycle regulation and stress response. In AT3RM cells, the average chromatin decondensation went with the upregulation of c-fos, c-jun, and c-myc and downregulation of metallothioneins, p21 and p53. AT9RM and AT44RM cells were instead characterized by an increased chromatin condensation and presented a different transcription unbalance. Whereas in AT44RM all the considered genes were downregulated, in AT3RM the three oncogenes and metallothioneins were upregulated, but p53 and p21 were downregulated.
Collapse
Affiliation(s)
- Myriam Grattarola
- Department of Biophysical Sciences and Techologies M.&O.-Biophysical Division, University of Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Dong Z, Tomkinson AE. ATM mediates oxidative stress-induced dephosphorylation of DNA ligase IIIalpha. Nucleic Acids Res 2006; 34:5721-279. [PMID: 17040896 PMCID: PMC1694025 DOI: 10.1093/nar/gkl705] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Among the three mammalian genes encoding DNA ligases, only the LIG3 gene does not have a homolog in lower eukaryotes. In somatic mammalian cells, the nuclear form of DNA ligase IIIalpha forms a stable complex with the DNA repair protein XRCC1 that is also found only in higher eukaryotes. Recent studies have shown that XRCC1 participates in S phase-specific DNA repair pathways independently of DNA ligase IIIalpha and is constitutively phosphorylated by casein kinase II. In this study we demonstrate that DNA ligase IIIalpha, unlike XRCC1, is phosphorylated in a cell cycle-dependent manner. Specifically, DNA ligase IIIalpha is phosphorylated on Ser123 by the cell division cycle kinase Cdk2 beginning early in S phase and continuing into M phase. Interestingly, treatment of S phase cells with agents that cause oxygen free radicals induces the dephosphorylation of DNA ligase IIIalpha. This oxidative stress-induced dephosphorylation of DNA ligase IIIalpha is dependent upon the ATM (ataxia-telangiectasia mutated) kinase and appears to involve inhibition of Cdk2 and probably activation of a phosphatase.
Collapse
Affiliation(s)
| | - Alan E. Tomkinson
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of MedicineBaltimore, MD 21201-1509, USA
- To whom correspondence should be addressed. Radiation Oncology Research Laboratory, Department of Radiation Oncology, and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201-1509, USA. Tel: +1 410 706 2365; Fax: +1 410 706 3000;
| |
Collapse
|
12
|
Guo C, Mi J, Brautigan DL, Larner JM. ATM regulates ionizing radiation-induced disruption of HDAC1:PP1:Rb complexes. Cell Signal 2006; 19:504-10. [PMID: 17008050 DOI: 10.1016/j.cellsig.2006.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/11/2006] [Accepted: 08/13/2006] [Indexed: 01/03/2023]
Abstract
Ionizing radiation elicits signaling events that coordinate DNA repair and interruption of cell cycle progression. We previously demonstrated that ionizing radiation (IR) of cells activates nuclear protein phosphatase-1 (PP1) by promoting dephosphorylation of Thr320, an inhibitory site in the enzyme and that the ATM kinase is required for this response. We sought to identify potential targets of IR-activated PP1. Untreated and IR-treated Jurkat cells were labeled with (32)P orthophosphate, and nuclear extracts were subjected to microcystin affinity chromatography to recover phosphatase complexes that were analyzed by 2D-PAGE and mass spectrometry. Several proteins associated with protein phosphatases demonstrated a significant decrease in (32)P intensity following IR, and one of these was identified as HDAC1. Co-immunoprecipitation revealed complexes containing PP1 with HDAC1 and Rb in cell extracts. In response to IR, there was an ATM-dependent activation of PP1, dephosphorylation of HDAC1, dissociation of HDAC1-PP1-Rb complexes and increased HDAC1 activity. These results suggest that IR regulates HDAC1 phosphorylation and activity through ATM-dependent activation of PP1.
Collapse
Affiliation(s)
- Changyue Guo
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville, VA 22908, United States
| | | | | | | |
Collapse
|
13
|
Takahagi M, Tatsumi K. Aggregative organization enhances the DNA end-joining process that is mediated by DNA-dependent protein kinase. FEBS J 2006; 273:3063-75. [PMID: 16759233 DOI: 10.1111/j.1742-4658.2006.05317.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The occurrence of DNA double-strand breaks in the nucleus provokes in its structural organization a large-scale alteration whose molecular basis is still mostly unclear. Here, we show that double-strand breaks trigger preferential assembly of nucleoproteins in human cellular fractions and that they mediate the separation of large protein-DNA aggregates from aqueous solution. The interaction among the aggregative nucleoproteins presents a dynamic condition that allows the effective interaction of nucleoproteins with external molecules like free ATP and facilitates intrinsic DNA end-joining activity. This aggregative organization is functionally coacervate-like. The key component is DNA-dependent protein kinase (DNA-PK), which can be characterized as a DNA-specific aggregation factor as well as a nuclear scaffold/matrix-interactive factor. In the context of aggregation, the kinase activity of DNA-PK is essential for efficient DNA end-joining. The massive and functional concentration of nucleoproteins on DNA in vitro may represent a possible status of nuclear dynamics in vivo, which probably includes the DNA-PK-dependent response to multiple double-strand breaks.
Collapse
Affiliation(s)
- Masahiko Takahagi
- Research Center for Radiation Safety, National Institute of Radiological Sciences, Chiba, Japan
| | | |
Collapse
|
14
|
Klingler-Hoffmann M, Barth H, Richards J, König N, Kinzel V. Downregulation of protein phosphatase 2A activity in HeLa cells at the G2-mitosis transition and unscheduled reactivation induced by 12-O-tetradecanoyl phorbol-13-acetate (TPA). Eur J Cell Biol 2005; 84:719-32. [PMID: 16180310 DOI: 10.1016/j.ejcb.2005.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In the cell cycle the transition from G2 phase to cell division (M) is strictly controlled by protein phosphorylation-dephosphorylation reactions effected by several protein kinases and phosphatases. Although much indirect and direct evidence point to a key role of protein phosphatase 2A (PP2A) at the G2/M transition, the control of the enzyme activity prior to and after the transition are not fully clarified. Using synchronized HeLa cells we determined the PP2A activity (i.e. the increment sensitive to inhibition by 2nM okadaic acid) in immunoprecipitates obtained with antibodies raised against a conserved peptide sequence (residues 169-182, Ab(169/182)) of the PP2A catalytic subunit (PP2A C). Two different substrates were offered: the phospho-peptide KR(p)TIRR and histone H1 phosphorylated by means of the cyclin-dependent protein kinase p34(cdc2). The results indicate that in HeLa cells the specific activity of PP2A towards both substrates goes through a minimum in late G2 phase and stays low until metaphase. Treatment of G2 cells with TPA (10(-7) M) caused a reactivation of the downregulated PP2A activity within 20 min, i.e. the same time frame within which TPA was shown earlier to block HeLa cells at the transition from G2 to mitosis [Kinzel et al., 1988. Cancer Res. 48, 1759-1762]. Activation of PP2A was also induced by TPA in mitotic cells. The low activity of PP2A in mitotic cells was accompanied by a strong reaction of mitotic PP2A C with anti-P-Tyr antibodies in Western blots, which was reversed by treatment of mitotic cells with TPA. The results suggest that the activity of cellular PP2A requires downregulation for the transition from G2 phase to mitosis. Unscheduled reactivation of PP2A induced by TPA in late G2 phase appears to inhibit the progress into mitosis.
Collapse
Affiliation(s)
- Manuela Klingler-Hoffmann
- Former Department of Pathochemistry, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
15
|
Kysela B, Chovanec M, Jeggo PA. Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase IV-dependent ligation in the presence of histone H1. Proc Natl Acad Sci U S A 2005; 102:1877-82. [PMID: 15671175 PMCID: PMC548527 DOI: 10.1073/pnas.0401179102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA nonhomologous end-joining in vivo requires the DNA-dependent protein kinase (DNA-PK) and DNA ligase IV/XRCC4 (LX) complexes. Here, we have examined the impact of histone octamers and linker histone H1 on DNA end-joining in vitro. Packing of the DNA substrate into dinucleosomes does not significantly inhibit ligation by LX. However, LX ligation activity is substantially reduced by the incorporation of linker histones. This inhibition is independent of the presence of core histone octamers and cannot be restored by addition of Ku alone but can be partially rescued by DNA-PK. The kinase activity of DNA-PK is essential for the recovery of end-joining. DNA-PK efficiently phosphorylates histone H1. Phosphorylated histone H1 has a reduced affinity for DNA and a decreased capacity to inhibit end-joining. Our findings raise the possibility that DNA-PK may act as a linker histone kinase by phosphorylating linker histones in the vicinity of a DNA break and coupling localized histone H1 release from DNA ends, with the recruitment of LX to carry out double-stranded ligation. Thus, by using histone H1-bound DNA as a template, we have reconstituted the end-joining step of DNA nonhomologous end-joining in vitro with a requirement for DNA-PK.
Collapse
Affiliation(s)
- Boris Kysela
- Genome Damage and Stability Center, University of Sussex, Brighton BN1 9RQ, United Kingdom
| | | | | |
Collapse
|
16
|
Zhang L, Jia G, Li WM, Guo RF, Cui JT, Yang L, Lu YY. Alteration of the ATM gene occurs in gastric cancer cell lines and primary tumors associated with cellular response to DNA damage. Mutat Res 2004; 557:41-51. [PMID: 14706517 DOI: 10.1016/j.mrgentox.2003.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ataxia telangiectasia mutated (ATM) is the gene mutated in the genetic disorder ataxia telangiectasia (AT), the symptoms of which include sensitivity to radiation and an increased risk of cancer. ATM is a kinase involved in activating the appropriate damage-response pathway, leading to either cell-cycle arrest or apoptosis, and is therefore a key checkpoint molecule in regulating cell-cycle response to DNA damage and responsible for maintenance of genome integrity. However, little is known about the association of ATM mutations with human gastric cancer (HGC). In order to determine the mutation and mRNA expression changes of the ATM gene in HGC, we performed analyses by denaturing high-performance liquid chromatography (DHPLC), DNA sequencing and RT-PCR technique on 13 human gastric tumor cell lines and 30 cases of fresh tumor specimens matched normal tissue. We compared the potential effect of the ATM gene mutation and cell behavior including cell-cycle arrest and induction of apoptosis in the tumor cell lines MGC803 and BGC823 with and without ionizing radiation (IR) exposure. Our data show that frequent variations were observed at 10 exons and 2 cDNA fragments which covered 8 other exons of the ATM gene as 5 out of 13 on the cell lines (38.5%) and 2 out of 30 cases in the tissue specimens (6.7%). All point mutations were confirmed as base substitutions (5982T-C; 6620A-G; 8684G-G/A; 9389C-G) and deletions (1079delC) by use of DNA sequencing. Among the mutations, one was reported previously in breast cancer, the other five have not yet been reported. The expression of ATM was significantly lower in five cell lines (MGC803; MKN45; SGC7901; GES and SUN-1) than in two others (BGC823 and RF48). G2/M cell-cycle arrest and apoptosis were observed in ATM-deficient MGC803 cells challenged with IR. A transient up-regulation of p53 occurred 1h post-IR in BGC823 cells but not in MGC803 cells. Our findings suggest that ATM mutations might be a pathogenic factor for an increased risk of gastric cancer, and the dysfunction of ATM may lead to a hypersensitivity to ionizing radiation in gastric cancer cells, possibly by a p53-dependent pathway.
Collapse
Affiliation(s)
- Lian Zhang
- Beijing Molecular Oncology Laboratory, School of Oncology, Beijing Institute for Cancer Research, Peking University, 1 Da-Hong-Luo-Chang Street, Western District, Beijing 100034, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Schultz LB, Chehab NH, Malikzay A, DiTullio RA, Stavridi ES, Halazonetis TD. The DNA damage checkpoint and human cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:489-98. [PMID: 12760066 DOI: 10.1101/sqb.2000.65.489] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- L B Schultz
- Wistar Institute, Graduate Program in Biomedical Sciences, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
18
|
Pan-Hammarström Q, Dai S, Zhao Y, van Dijk-Härd IF, Gatti RA, Børresen-Dale AL, Hammarström L. ATM is not required in somatic hypermutation of VH, but is involved in the introduction of mutations in the switch mu region. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3707-16. [PMID: 12646636 DOI: 10.4049/jimmunol.170.7.3707] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class switch recombination (CSR) and somatic hypermutation (SHM) are mechanistically related processes that share common key factors such as activation-induced cytidine deaminase. We have previously shown a role for ATM (mutated in ataxia-telangiectasia) in CSR. In this paper we show that the frequency, distribution, and nature of base pair substitutions in the Ig variable (V) heavy chain genes in ataxia-telangiectasia patients are largely similar to those in normal donors, suggesting a normal SHM process. Characterization of the third complementarity-determining region in B cells from ataxia-telangiectasia patients also shows a normal V(D)J recombination process. SHM-like mutations could be identified in the switch (S) mu region (up to several hundred base pairs upstream of the S mu -S(alpha) breakpoints) in normal in vivo switched human B cells. In the absence of ATM, mutations can still be found in this region, but at less than half the frequency of that in normal donors. The latter mutations are mainly due to transitions (86% compared with 58% in controls) and are biased to A or T nucleotides. An ATM-dependent mechanism, different from that generating SHM in V genes, is therefore likely to be involved in introducing SHM-like mutations in the S region. ATM may thus be one of the factors that is not shared by the CSR and SHM processes.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Division of Clinical Immunology, IMPI, Karolinska Institute at Huddinge Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Guo CY, Brautigan DL, Larner JM. Ionizing radiation activates nuclear protein phosphatase-1 by ATM-dependent dephosphorylation. J Biol Chem 2002; 277:41756-61. [PMID: 12202491 DOI: 10.1074/jbc.m207519200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ionizing radiation (IR) is known to activate multiple signaling pathways, resulting in diverse stress responses including apoptosis, cell cycle arrest, and gene induction. IR-activated cell cycle checkpoints are regulated by Ser/Thr phosphorylation, so we tested to see if protein phosphatases were targets of an IR-activated damage-sensing pathway. Jurkat cells were subjected to IR or sham radiation followed by brief (32)P metabolic labeling. Nuclear extracts were subjected to microcystin affinity chromatography to recover phosphatases, and the proteins were analyzed by two-dimensional gel electrophoresis. Protein sequencing revealed that the microcystin-bound proteins with the greatest reduction in (32)P intensity following IR were the alpha and delta isoforms of protein phosphatase 1 (PP1). Both of these PP1 isoforms contain an Arg-Pro-Ile/Val-Thr-Pro-Pro-Arg sequence near the C terminus, a known site of phosphorylation by Cdc/Cdk kinases, and phosphorylation attenuates phosphatase activity. In wild-type Jurkat cells or ataxia telangiectasia (AT) cells that are stably transfected with full-length ATM kinase, IR resulted in net dephosphorylation of this site in PP1 and produced activation of PP1. However, in AT cells that are deficient in ATM, IR failed to induce dephosphorylation or activation of PP1. IR-induced PP1 activation in the nucleus may be a critical component in an ATM-mediated pathway controlling checkpoint activation.
Collapse
Affiliation(s)
- Chang Y Guo
- Department of Radiation Oncology, University of Virginia Health System, Charlottesville 22908, USA
| | | | | |
Collapse
|
20
|
Guo CY, Brautigan DL, Larner JM. ATM-dependent dissociation of B55 regulatory subunit from nuclear PP2A in response to ionizing radiation. J Biol Chem 2002; 277:4839-44. [PMID: 11723136 DOI: 10.1074/jbc.m110092200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ionizing radiation (IR) is known to activate multiple cell cycle checkpoints that are thought to enhance the ability of cells to respond to DNA damage. Protein phosphatase 2A (PP2A) has been implicated in IR-induced activation of checkpoints; therefore, Jurkat cells were exposed to an activating dose of IR or sham treatment as control, and nuclear extracts were analyzed for PP2A by Mono Q anion exchange chromatography and microcystin affinity chromatography. PP2A exists in eukaryotic cells both as a heterodimer consisting of a 65-kDa scaffolding subunit (A) plus a 36-kDa catalytic subunit (C) and as ABC heterotrimers, containing one of a variety of regulatory (B) subunits. Here we show that IR produces a transient and reversible reduction in the amount of nuclear AB55C heterotrimer without affecting the AB'C heterotrimer or AC heterodimer. In ataxia telangiectasia-mutated (ATM)-deficient cells the amount of nuclear PP2A heterotrimer relative to heterodimer was not reduced by radiation, but the radiation response was restored by transfection of these cells with plasmids encoding ATM. Wortmannin, an inhibitor of kinases such as phosphatidylinositol 3-kinase, also prevented the IR-induced reduction in nuclear PP2A heterotrimer. The changes in nuclear PP2A occurred without a noticeable difference in the carboxyl-terminal methylation of the C subunit, which is known to influence association with B subunits. We conclude a novel ATM-dependent mechanism is regulating association of B55 subunits with nuclear PP2A in response to IR.
Collapse
Affiliation(s)
- Chang Y Guo
- Department of Radiation Oncology University of Virginia Health Science System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
21
|
Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 2001; 276:42462-7. [PMID: 11571274 DOI: 10.1074/jbc.c100466200] [Citation(s) in RCA: 1423] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A very early step in the response of mammalian cells to DNA double-strand breaks is the phosphorylation of histone H2AX at serine 139 at the sites of DNA damage. Although the phosphatidylinositol 3-kinases, DNA-PK (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated), and ATR (ATM and Rad3-related), have all been implicated in H2AX phosphorylation, the specific kinase involved has not yet been identified. To definitively identify the specific kinase(s) that phosphorylates H2AX in vivo, we have utilized DNA-PKcs-/- and Atm-/- cell lines and mouse embryonic fibroblasts. We find that H2AX phosphorylation and nuclear focus formation are normal in DNA-PKcs-/- cells and severely compromised in Atm-/- cells. We also find that ATM can phosphorylate H2AX in vitro and that ectopic expression of ATM in Atm-/- fibroblasts restores H2AX phosphorylation in vivo. The minimal H2AX phosphorylation in Atm-/- fibroblasts can be abolished by low concentrations of wortmannin suggesting that DNA-PK, rather than ATR, is responsible for low levels of H2AX phosphorylation in the absence of ATM. Our results clearly establish ATM as the major kinase involved in the phosphorylation of H2AX and suggest that ATM is one of the earliest kinases to be activated in the cellular response to double-strand breaks.
Collapse
Affiliation(s)
- S Burma
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
22
|
Bhattacharjee RN, Banks GC, Trotter KW, Lee HL, Archer TK. Histone H1 phosphorylation by Cdk2 selectively modulates mouse mammary tumor virus transcription through chromatin remodeling. Mol Cell Biol 2001; 21:5417-25. [PMID: 11463824 PMCID: PMC87264 DOI: 10.1128/mcb.21.16.5417-5425.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional activation of the mouse mammary tumor virus (MMTV) promoter by ligand-bound glucocorticoid receptor (GR) is transient. Previously, we demonstrated that prolonged hormone exposure results in displacement of the transcription factor nuclear factor 1 (NF1) and the basal transcription complex from the promoter, the dephosphorylation of histone H1, and the establishment of a repressive chromatin structure. We have explored the mechanistic link between histone H1 dephosphorylation and silencing of the MMTV promoter by describing the putative kinase responsible for H1 phosphorylation. Both in vitro kinase assays and in vivo protein expression studies suggest that in hormone-treated cells the ability of cdk2 to phosphorylate histone H1 is decreased and the cdk2 inhibitory p21 protein level is increased. To address the role of cdk2 and histone H1 dephosphorylation in the silencing of the MMTV promoter, we used potent cdk2 inhibitors, Roscovitine and CVT-313, to generate an MMTV promoter which is associated predominantly with the dephosphorylated form of histone H1. Both Roscovitine and CVT-313 block phosphorylation of histone H1 and, under these conditions, the GR is unable to remodel chromatin, recruit transcription factors to the promoter, or stimulate MMTV mRNA accumulation. These results suggest a model where cdk2-directed histone H1 phosphorylation is a necessary condition to permit GR-mediated chromatin remodeling and activation of the MMTV promoter in vivo.
Collapse
Affiliation(s)
- R N Bhattacharjee
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario N6A 4L6, Canada
| | | | | | | | | |
Collapse
|
23
|
Abstract
In response to DNA damage, cell-cycle checkpoints integrate cell-cycle control with DNA repair. The idea that checkpoint controls are an integral component of normal cell-cycle progression has arisen as a result of studies in Drosophila and mice. In addition, an appreciation that DNA damage arises as a natural consequence of cellular metabolism, including DNA replication itself, has influenced thinking regarding the nature of checkpoint pathways.
Collapse
Affiliation(s)
- N C Walworth
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
24
|
Abstract
As its name suggests, the ATM--'ataxia-telangiectasia, mutated'--gene is responsible for the rare disorder ataxia-telangiectasia. Patients show various abnormalities, mainly in their responses to DNA damage, but also in other cellular processes. Although it is hard to understand how a single gene product is involved in so many physiological processes, a clear picture is starting to emerge.
Collapse
Affiliation(s)
- M B Kastan
- Department of Hematology-Oncology, Saint Jude Children's Research Hospital, D1034, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
25
|
Scherthan H, Jerratsch M, Dhar S, Wang YA, Goff SP, Pandita TK. Meiotic telomere distribution and Sertoli cell nuclear architecture are altered in Atm- and Atm-p53-deficient mice. Mol Cell Biol 2000; 20:7773-83. [PMID: 11003672 PMCID: PMC86364 DOI: 10.1128/mcb.20.20.7773-7783.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ataxia telangiectasia mutant (ATM) protein is an intrinsic part of the cell cycle machinery that surveys genomic integrity and responses to genotoxic insult. Individuals with ataxia telangiectasia as well as Atm(-/-) mice are predisposed to cancer and are infertile due to spermatogenesis disruption during first meiotic prophase. Atm(-/-) spermatocytes frequently display aberrant synapsis and clustered telomeres (bouquet topology). Here, we used telomere fluorescent in situ hybridization and immunofluorescence (IF) staining of SCP3 and testes-specific histone H1 (H1t) to spermatocytes of Atm- and Atm-p53-deficient mice and investigated whether gonadal atrophy in Atm-null mice is associated with stalling of telomere motility in meiotic prophase. SCP3-H1t IF revealed that most Atm(-/-) p53(-/-) spermatocytes degenerated during late zygotene, while a few progressed to pachytene and diplotene and some even beyond metaphase II, as indicated by the presence of a few round spermatids. In Atm(-/-) p53(-/-) meiosis, the frequency of spermatocytes I with bouquet topology was elevated 72-fold. Bouquet spermatocytes with clustered telomeres were generally void of H1t signals, while mid-late pachytene and diplotene Atm(-/-) p53(-/-) spermatocytes displayed expression of H1t and showed telomeres dispersed over the nuclear periphery. Thus, it appears that meiotic telomere movements occur independently of ATM signaling. Atm inactivation more likely leads to accumulation of spermatocytes I with bouquet topology by slowing progression through initial stages of first meiotic prophase and an ensuing arrest and demise of spermatocytes I. Sertoli cells (SECs), which contribute to faithful spermatogenesis, in the Atm mutants were found to frequently display numerous heterochromatin and telomere clusters-a nuclear topology which resembles that of immature SECs. However, Atm(-/-) SECs exhibited a mature vimentin and cytokeratin 8 intermediate filament expression signature. Upon IF with ATM antibodies, we observed ATM signals throughout the nuclei of human and mouse SECs, spermatocytes I, and haploid round spermatids. ATM but not H1t was absent from elongating spermatid nuclei. Thus, ATM appears to be removed from spermatid nuclei prior to the occurrence of DNA nicks which emanate as a consequence of nucleoprotamine formation.
Collapse
Affiliation(s)
- H Scherthan
- University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Kratzmeier M, Albig W, Hanecke K, Doenecke D. Rapid dephosphorylation of H1 histones after apoptosis induction. J Biol Chem 2000; 275:30478-86. [PMID: 10874037 DOI: 10.1074/jbc.m003956200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H1 histones are involved in the formation of higher order chromatin structures and in the modulation of gene expression. Changes in chromatin structure are a characteristic initial feature of apoptosis. We therefore have investigated the histone H1 pattern of the human leukemic cell line HL60 undergoing programmed cell death, as induced by topoisomerase I inhibition. Histone H1 proteins were isolated and analyzed by high performance liquid chromatography and capillary zone electrophoresis. DNA fragmentation after apoptosis induction was monitored by agarose gel electrophoresis. The patterns of the three H1 histone subtypes extractable from apoptotic HL60 cells significantly differed from those of control cells in showing a decrease of phosphorylated H1 subtypes and an increase of the respective dephosphorylated forms. This dephosphorylation of H1 histones could be observed already 45 min after apoptosis induction and preceded internucleosomal DNA cleavage by approximately 2 h. We conclude that during apoptotic DNA fragmentation, the H1 histones become rapidly dephosphorylated by a yet unknown protein phosphatase.
Collapse
Affiliation(s)
- M Kratzmeier
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
27
|
Abstract
The ATM protein kinase is the product of the gene responsible for the pleiotropic recessive disorder ataxia-telangiectasia. ATM-deficient cells show enhanced sensitivity and greatly reduced responses to genotoxic agents that generate DNA double strand breaks (DSBs), such as ionizing radiation and radiomimetic chemicals, but exhibit normal responses to DNA adducts and base modifications induced by other agents. Therefore, DSBs are most likely the predominant signal for the activation of ATM-mediated pathways. Identification of the ATM gene triggered extensive research aimed at elucidating the numerous functions of its large multifaceted protein product. While ATM has both nuclear and cytoplasmic functions, this review will focus on its roles in the nucleus where it plays a central role in the very early stages of damage detection and serves as a master controller of cellular responses to DSBs. By activating key regulators of multiple signal transduction pathways, ATM mediates the efficient induction of a signaling network responsible for repair of the damage, and for cellular recovery and survival.
Collapse
Affiliation(s)
- G Rotman
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
28
|
Kim GD, Choi YH, Dimtchev A, Jeong SJ, Dritschilo A, Jung M. Sensing of ionizing radiation-induced DNA damage by ATM through interaction with histone deacetylase. J Biol Chem 1999; 274:31127-30. [PMID: 10531300 DOI: 10.1074/jbc.274.44.31127] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ATM gene is mutated in individuals with ataxia telangiectasia, a human genetic disease characterized by extreme sensitivity to radiation. The ATM protein acts as a sensor of radiation-induced cellular damage and contributes to cell cycle regulation, signal transduction, and DNA repair; however, the mechanisms underlying these functions of ATM remain largely unknown. Binding and immunoprecipitation assays have now shown that ATM interacts with the histone deacetylase HDAC1 both in vitro and in vivo, and that the extent of this association is increased after exposure of MRC5CV1 human fibroblasts to ionizing radiation. Histone deacetylase activity was also detected in immunoprecipitates prepared from these cells with antibodies to ATM, and this activity was blocked by the histone deacetylase inhibitor trichostatin A. These results suggest a previously unanticipated role for ATM in the modification of chromatin components in response to ionizing radiation.
Collapse
Affiliation(s)
- G D Kim
- Department of Radiation Medicine, Division of Radiation Research, Vincent T. Lombardi Cancer Center, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | | | | | | | | | |
Collapse
|