1
|
Liu FF, Wang M, Ma GH, Kulinich A, Liu L, Voglmeir J. Characterization of Solitalea canadensis α-mannosidase with specific activity towards α1,3-Mannosidic linkages. Carbohydr Res 2024; 538:109100. [PMID: 38555657 DOI: 10.1016/j.carres.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
A recombinant exo-α-mannosidase from Solitalea canadensis (Sc3Man) has been characterized to exhibit strict specificity for hydrolyzing α1,3-mannosidic linkages located at the non-reducing end of glycans containing α-mannose. Enzymatic characterization revealed that Sc3Man operates optimally at a pH of 5.0 and at a temperature of 37 °C. The enzymatic activity was notably enhanced twofold in the presence of Ca2+ ions, emphasizing its potential dependency on this metal ion, while Cu2+ and Zn2+ ions notably impaired enzyme function. Sc3Man was able to efficiently cleave the terminal α1,3 mannose residue from various high-mannose N-glycan structures and from the model glycoprotein RNase B. This work not only expands the categorical scope of bacterial α-mannosidases, but also offers new insight into the glycan metabolism of S. canadensis, highlighting the enzyme's utility for glycan analysis and potential biotechnological applications.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Meng Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guan-Hua Ma
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Anna Kulinich
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
2
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Cruz Marino T, Leblanc J, Pratte A, Tardif J, Thomas MJ, Fortin CA, Girard L, Bouchard L. Portrait of autosomal recessive diseases in the French-Canadian founder population of Saguenay-Lac-Saint-Jean. Am J Med Genet A 2023; 191:1145-1163. [PMID: 36786328 DOI: 10.1002/ajmg.a.63147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
The population of the Saguenay-Lac-Saint-Jean (SLSJ) region, located in the province of Quebec, Canada, is recognized as a founder population, where some rare autosomal recessive diseases show a high prevalence. Through the clinical and molecular study of 82 affected individuals from 60 families, this study outlines 12 diseases identified as recurrent in SLSJ. Their carrier frequency was estimated with the contribution of 1059 healthy individuals, increasing the number of autosomal recessive diseases with known carrier frequency in this region from 14 to 25. We review the main clinical and molecular features previously reported for these disorders. Five of the studied diseases have a potential lethal effect and three are associated with intellectual deficiency. Therefore, we believe that the provincial program for carrier screening should be extended to include these eight disorders. The high-carrier frequency, together with the absence of consanguinity in most of these unrelated families, suggest a founder effect and genetic drift for the 12 recurrent variants. We recommend further studies to validate this hypothesis, as well as to extend the present study to other regions in the province of Quebec, since some of these disorders could also be present in other French-Canadian families.
Collapse
Affiliation(s)
- Tania Cruz Marino
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada
| | - Josianne Leblanc
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada
| | - Annabelle Pratte
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada
| | - Jessica Tardif
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada
| | | | - Carol-Ann Fortin
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Quebec, Canada
| | - Lysanne Girard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Quebec, Canada
| | - Luigi Bouchard
- Department of Laboratory Medicine, CIUSSS Saguenay-Lac-St-Jean, Quebec, Canada.,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences (FMHS), Université de Sherbrooke, Quebec, Canada
| |
Collapse
|
4
|
Mohammadzadeh N, Zhang N, Branton WG, Zghidi-Abouzid O, Cohen EA, Gelman BB, Estaquier J, Kong L, Power C. The HIV Restriction Factor Profile in the Brain Is Associated with the Clinical Status and Viral Quantities. Viruses 2023; 15:316. [PMID: 36851531 PMCID: PMC9962287 DOI: 10.3390/v15020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
HIV-encoded DNA, RNA and proteins persist in the brain despite effective antiretroviral therapy (ART), with undetectable plasma and cerebrospinal fluid viral RNA levels, often in association with neurocognitive impairments. Although the determinants of HIV persistence have garnered attention, the expression and regulation of antiretroviral host restriction factors (RFs) in the brain for HIV and SIV remain unknown. We investigated the transcriptomic profile of antiretroviral RF genes by RNA-sequencing with confirmation by qRT-PCR in the cerebral cortex of people who are uninfected (HIV[-]), those who are HIV-infected without pre-mortem brain disease (HIV[+]), those who are HIV-infected with neurocognitive disorders (HIV[+]/HAND) and those with neurocognitive disorders with encephalitis (HIV[+]/HIVE). We observed significant increases in RF expression in the brains of HIV[+]/HIVE in association with the brain viral load. Machine learning techniques identified MAN1B1 as a key gene that distinguished the HIV[+] group from the HIV[+] groups with HAND. Analyses of SIV-associated RFs in brains from SIV-infected Chinese rhesus macaques with different ART regimens revealed diminished RF expression among ART-exposed SIV-infected animals, although ART interruption resulted in an induced expression of several RF genes including OAS3, RNASEL, MX2 and MAN1B1. Thus, the brain displays a distinct expression profile of RFs that is associated with the neurological status as well as the brain viral burden. Moreover, ART interruption can influence the brain's RF profile, which might contribute to disease outcomes.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Na Zhang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - William G. Branton
- Department of Medicine (Neurology) University of Alberta, 6-11 Heritage Medical Research Centre, Edmonton, AB T6G 2R3, Canada
| | - Ouafa Zghidi-Abouzid
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Eric A. Cohen
- Institut de Recherches Cliniques de Montreal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jerome Estaquier
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Linglong Kong
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Medicine (Neurology) University of Alberta, 6-11 Heritage Medical Research Centre, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
5
|
Yang R, Chen Z, Hu P, Zhang S, Luo G. Two-stage fermentation enhanced single-cell protein production by Yarrowia lipolytica from food waste. BIORESOURCE TECHNOLOGY 2022; 361:127677. [PMID: 35878768 DOI: 10.1016/j.biortech.2022.127677] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The resource utilization of food waste is crucial, and single-cell protein (SCP) is attracting much attention due to its high value. This study aimed to convert food waste to SCP by Yarrowia lipolytica. It was found the chemical oxygen demand (COD) removal rate 77 ± 1.70% was achieved at 30 g COD/L with the protein content of biomass only 24.1 ± 0.4% w/w biomass dry weight (BDW) in one-stage fermentation system. However, the protein content was significantly increased to 38.8 ± 0.2% w/w BDW with the COD removal rate 85.5 ± 0.7% by a two-stage fermentation process, where the food waste was firstly anaerobically fermented to volatile fatty acids and then converted to SCP with Yarrowia lipolytica. Transcriptomic analysis showed that the expression of SCP-producing genes including ATP citrate (pro-S)-lyase and fumarate hydratase class II were up-regulated in the two-stage transformation, resulting in more organic degradation for SCP synthesis.
Collapse
Affiliation(s)
- Rui Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Peng Hu
- Shanghai GTL Biotech Co., Ltd., 1688 North Guoquan Road, Shanghai 200438, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Viruses Hijack ERAD to Regulate Their Replication and Propagation. Int J Mol Sci 2022; 23:ijms23169398. [PMID: 36012666 PMCID: PMC9408921 DOI: 10.3390/ijms23169398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is highly conserved in yeast. Recent studies have shown that ERAD is also ubiquitous and highly conserved in eukaryotic cells, where it plays an essential role in maintaining endoplasmic reticulum (ER) homeostasis. Misfolded or unfolded proteins undergo ERAD. They are recognized in the ER, retrotranslocated into the cytoplasm, and degraded by proteasomes after polyubiquitin. This may consist of several main steps: recognition of ERAD substrates, retrotranslocation, and proteasome degradation. Replication and transmission of the virus in the host is a process of a “game” with the host. It can be assumed that the virus has evolved various mechanisms to use the host’s functions for its replication and transmission, including ERAD. However, until now, it is still unclear how the host uses ERAD to deal with virus infection and how the viruses hijack the function of ERAD to obtain a favorable niche or evade the immune clearance of the host. Recent studies have shown that viruses have also evolved mechanisms to use various processes of ERAD to promote their transmission. This review describes the occurrence of ERAD and how the viruses hijack the function of ERAD to spread by affecting the homeostasis and immune response of the host, and we will focus on the role of E3 ubiquitin ligase.
Collapse
|
7
|
Ghenea S, Chiritoiu M, Tacutu R, Miranda-Vizuete A, Petrescu SM. Targeting EDEM protects against ER stress and improves development and survival in C. elegans. PLoS Genet 2022; 18:e1010069. [PMID: 35192599 PMCID: PMC8912907 DOI: 10.1371/journal.pgen.1010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 03/10/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
EDEM-1, EDEM-2 and EDEM-3 are key players for the quality control of newly synthesized proteins in the endoplasmic reticulum (ER) by accelerating disposal and degradation of misfolded proteins through ER Associated Degradation (ERAD). Although many previous studies reported the role of individual ERAD components especially in cell-based systems, still little is known about the consequences of ERAD dysfunction under physiological and ER stress conditions in the context of a multicellular organism. Here we report the first individual and combined characterization and functional interplay of EDEM proteins in Caenorhabditis elegans using single, double, and triple mutant combinations. We found that EDEM-2 has a major role in the clearance of misfolded proteins from ER under physiological conditions, whereas EDEM-1 and EDEM-3 roles become prominent under acute ER stress. In contrast to SEL-1 loss, the loss of EDEMs in an intact organism induces only a modest ER stress under physiological conditions. In addition, chronic impairment of EDEM functioning attenuated both XBP-1 activation and up-regulation of the stress chaperone GRP78/BiP, in response to acute ER stress. We also show that pre-conditioning to EDEM loss in acute ER stress restores ER homeostasis and promotes survival by activating ER hormesis. We propose a novel role for EDEM in fine-tuning the ER stress responsiveness that affects ER homeostasis and survival. ER stress and UPRER malfunctions have been implicated in the pathogenesis of neurodegeneration, metabolic and inflammatory diseases as well as tumor progression and diabetes, whereby disturbed ER homeostasis negatively influences the pathology of the disease. Under ER stress conditions, the cells either activate UPRER-dependent cytoprotective mechanisms when ER stress is at subtoxic levels or, in case of an excessive ER stress, the cytotoxic response stimulates cell death. Here, we used Caenorhabditis elegans to study the cellular responses to ER stress at organismal level. We show that EDEMs respond differently to ER stress stimuli, and moreover, EDEMs deficiencies activate an XBP-1 independent adaptive program to promote organism survival under acute ER stress. Corroborated with the fact that loss of EDEM-2 and EDEM-3 induces resistance to acute ER stress in an intact organism, our data implicate EDEM proteins in a broader response to ER stress than previously established, which opens a new avenue for understanding the regulation of ER stress with implications for clinical and therapeutic investigations.
Collapse
Affiliation(s)
- Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- * E-mail: (SG); (SMP)
| | - Marioara Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robi Tacutu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Romanian Academy, Bucharest, Romania
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Stefana Maria Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- * E-mail: (SG); (SMP)
| |
Collapse
|
8
|
Kuribara T, Totani K. Oligomannose-Type Glycan Processing in the Endoplasmic Reticulum and Its Importance in Misfolding Diseases. BIOLOGY 2022; 11:biology11020199. [PMID: 35205066 PMCID: PMC8869290 DOI: 10.3390/biology11020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Glycans play many roles in biological processes. For instance, they mediate cell–cell interaction, viral infection, and protein folding of glycoproteins. Glycoprotein folding in the endoplasmic reticulum (ER) is closely related to the onset of diseases such as misfolding diseases caused by accumulation of misfolded proteins in the ER. In this review, we focused on oligomannose-type glycan processing in the ER, which has central roles in glycoprotein folding in the ER, and we summarise relationship between oligomannose-type glycan processing and misfolding diseases arising from the disruption of ER homeostasis. Abstract Glycoprotein folding plays a critical role in sorting glycoprotein secretion and degradation in the endoplasmic reticulum (ER). Furthermore, relationships between glycoprotein folding and several diseases, such as type 2 diabetes and various neurodegenerative disorders, are indicated. Patients’ cells with type 2 diabetes, and various neurodegenerative disorders induce ER stress, against which the cells utilize the unfolded protein response for protection. However, in some cases, chronic and/or massive ER stress causes critical damage to cells, leading to the onset of ER stress-related diseases, which are categorized into misfolding diseases. Accumulation of misfolded proteins may be a cause of ER stress, in this respect, perturbation of oligomannose-type glycan processing in the ER may occur. A great number of studies indicate the relationships between ER stress and misfolding diseases, while little evidence has been reported on the connection between oligomannose-type glycan processing and misfolding diseases. In this review, we summarize alteration of oligomannose-type glycan processing in several ER stress-related diseases, especially misfolding diseases and show the possibility of these alteration of oligomannose-type glycan processing as indicators of diseases.
Collapse
|
9
|
Li H, Sun S. Protein Aggregation in the ER: Calm behind the Storm. Cells 2021; 10:cells10123337. [PMID: 34943844 PMCID: PMC8699410 DOI: 10.3390/cells10123337] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
As one of the largest organelles in eukaryotic cells, the endoplasmic reticulum (ER) plays a vital role in the synthesis, folding, and assembly of secretory and membrane proteins. To maintain its homeostasis, the ER is equipped with an elaborate network of protein folding chaperones and multiple quality control pathways whose cooperative actions safeguard the fidelity of protein biogenesis. However, due to genetic abnormalities, the error-prone nature of protein folding and assembly, and/or defects or limited capacities of the protein quality control systems, nascent proteins may become misfolded and fail to exit the ER. If not cleared efficiently, the progressive accumulation of misfolded proteins within the ER may result in the formation of toxic protein aggregates, leading to the so-called “ER storage diseases”. In this review, we first summarize our current understanding of the protein folding and quality control networks in the ER, including chaperones, unfolded protein response (UPR), ER-associated protein degradation (ERAD), and ER-selective autophagy (ER-phagy). We then survey recent research progress on a few ER storage diseases, with a focus on the role of ER quality control in the disease etiology, followed by a discussion on outstanding questions and emerging concepts in the field.
Collapse
Affiliation(s)
- Haisen Li
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
10
|
Okamoto N, Ohto T, Enokizono T, Wada Y, Kohmoto T, Imoto I, Haga Y, Seino J, Suzuki T. Siblings with MAN1B1-CDG Showing Novel Biochemical Profiles. Cells 2021; 10:cells10113117. [PMID: 34831340 PMCID: PMC8618856 DOI: 10.3390/cells10113117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital disorders of glycosylation (CDG), inherited metabolic diseases caused by defects in glycosylation, are characterized by a high frequency of intellectual disability (ID) and various clinical manifestations. Two siblings with ID, dysmorphic features, and epilepsy were examined using mass spectrometry of serum transferrin, which revealed a CDG type 2 pattern. Whole-exome sequencing showed that both patients were homozygous for a novel pathogenic variant of MAN1B1 (NM_016219.4:c.1837del) inherited from their healthy parents. We conducted a HPLC analysis of sialylated N-linked glycans released from total plasma proteins and characterized the α1,2-mannosidase I activity of the lymphocyte microsome fraction. The accumulation of monosialoglycans was observed in MAN1B1-deficient patients, indicating N-glycan-processing defects. The enzymatic activity of MAN1B1 was compromised in patient-derived lymphocytes. The present patients exhibited unique manifestations including early-onset epileptic encephalopathy and cerebral infarction. They also showed coagulation abnormalities and hypertransaminasemia. Neither sibling had truncal obesity, which is one of the characteristic features of MAN1B1-CDG.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan
- Department of Molecular Medicine, Research Institute, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
- Correspondence:
| | - Tatsuyuki Ohto
- Department of Pediatrics, Tsukuba University Faculty of Medicine, Tsukuba 305-8576, Japan; (T.O.); (T.E.)
| | - Takashi Enokizono
- Department of Pediatrics, Tsukuba University Faculty of Medicine, Tsukuba 305-8576, Japan; (T.O.); (T.E.)
| | - Yoshinao Wada
- Department of Molecular Medicine, Research Institute, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Tomohiro Kohmoto
- Division of Molecular Genetics, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; (T.K.); (I.I.)
- Department of Human Genetics, Graduate School of Biomedical Science, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Issei Imoto
- Division of Molecular Genetics, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan; (T.K.); (I.I.)
- Department of Human Genetics, Graduate School of Biomedical Science, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Yoshimi Haga
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako 351-0198, Japan; (Y.H.); (J.S.); (T.S.)
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Junichi Seino
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako 351-0198, Japan; (Y.H.); (J.S.); (T.S.)
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako 351-0198, Japan; (Y.H.); (J.S.); (T.S.)
| |
Collapse
|
11
|
George G, Ninagawa S, Yagi H, Furukawa JI, Hashii N, Ishii-Watabe A, Deng Y, Matsushita K, Ishikawa T, Mamahit YP, Maki Y, Kajihara Y, Kato K, Okada T, Mori K. Purified EDEM3 or EDEM1 alone produces determinant oligosaccharide structures from M8B in mammalian glycoprotein ERAD. eLife 2021; 10:70357. [PMID: 34698634 PMCID: PMC8570694 DOI: 10.7554/elife.70357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
Sequential mannose trimming of N-glycan, from M9 to M8B and then to oligosaccharides exposing the α1,6-linked mannosyl residue (M7A, M6, and M5), facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). We previously showed that EDEM2 stably disulfide-bonded to the thioredoxin domain-containing protein TXNDC11 is responsible for the first step (George et al., 2020). Here, we show that EDEM3 and EDEM1 are responsible for the second step. Incubation of pyridylamine-labeled M8B with purified EDEM3 alone produced M7 (M7A and M7C), M6, and M5. EDEM1 showed a similar tendency, although much lower amounts of M6 and M5 were produced. Thus, EDEM3 is a major α1,2-mannosidase for the second step from M8B. Both EDEM3 and EDEM1 trimmed M8B from a glycoprotein efficiently. Our confirmation of the Golgi localization of MAN1B indicates that no other α1,2-mannosidase is required for gpERAD. Accordingly, we have established the entire route of oligosaccharide processing and the enzymes responsible.
Collapse
Affiliation(s)
- Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Ying Deng
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Matsushita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yugoviandi P Mamahit
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Kemme L, Grüneberg M, Reunert J, Rust S, Park J, Westermann C, Wada Y, Schwartz O, Marquardt T. Translational balancing questioned: Unaltered glycosylation during disulfiram treatment in mannosyl-oligosaccharide alpha-1,2-mannnosidase-congenital disorders of glycosylation (MAN1B1-CDG). JIMD Rep 2021; 60:42-55. [PMID: 34258140 PMCID: PMC8260486 DOI: 10.1002/jmd2.12213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022] Open
Abstract
MAN1B1-CDG is a multisystem disorder caused by mutations in MAN1B1, encoding the endoplasmic reticulum mannosyl-oligosaccharide alpha-1,2-mannnosidase. A defect leads to dysfunction within the degradation of misfolded glycoproteins. We present two additional patients with MAN1B1-CDG and a resulting defect in endoplasmic reticulum-associated protein degradation. One patient (P2) is carrying the previously undescribed p.E663K mutation. A therapeutic trial in patient 1 (P1) using disulfiram with the rationale to generate an attenuation of translation and thus a balanced, restored ER glycoprotein synthesis failed. No improvement of the transferrin glycosylation profile was seen.
Collapse
Affiliation(s)
- Lisa Kemme
- University Children's Hospital MünsterMuensterGermany
| | | | | | - Stephan Rust
- University Children's Hospital MünsterMuensterGermany
| | - Julien Park
- University Children's Hospital MünsterMuensterGermany
- Department of Clinical Sciences, NeurosciencesUmeå UniversityUmeåSweden
| | - Cordula Westermann
- Gerhard‐Domagk‐Institute of PathologyUniversity Hospital MuensterMuensterGermany
| | - Yoshinao Wada
- Osaka Medical Center and Research Institute for Maternal and Child HealthOsakaJapan
| | | | | |
Collapse
|
13
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
14
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
15
|
Nitta K, Kuribara T, Totani K. Synthetic trisaccharides reveal discrimination of endo-glycosidic linkages by exo-acting α-1,2-mannosidases in the endoplasmic reticulum. Org Biomol Chem 2021; 19:4137-4145. [PMID: 33876795 DOI: 10.1039/d1ob00428j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tri-antennary Man9GlcNAc2 glycan on the surface of endoplasmic reticulum (ER) glycoproteins functions as a glycoprotein secretion or degradation signal after regioselective cleavage of the terminal α-1,2-mannose residue of each branch. Four α-1,2-mannosidases-ER mannosidase I, ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1), EDEM2, and EDEM3-are involved in the production of these signal glycans. Although selective production of signal glycans is important in determining the fate of glycoproteins, the branch-discrimination abilities of the α-1,2-mannosidases are not well understood. A structural feature of the Man9GlcNAc2 glycan is that all terminal glycosidic linkages of the three branches are of the α-1,2 type, while the adjacent inner glycosidic linkages are different. In this study, we examined whether the α-1,2-mannosidases showed branch specificity by discriminating between different inner glycosides. Four trisaccharides with different glycosidic linkages [Manα1-2Manα1-2Man (natural A-branch), Manα1-2Manα1-3Man (natural B-branch), Manα1-2Manα1-6Man (natural C-branch), and Manα1-2Manα1-4Man (unnatural D-branch)] were synthesized and used to evaluate the hypothesis. When synthesizing these oligosaccharides, highly stereoselective glycosylation was achieved with a high yield in each case by adding a weak base or tuning the polarity of the mixed solvent. Enzymatic hydrolysis of the synthetic trisaccharides by a mouse liver ER fraction containing the target enzymes showed that the ER α-1,2-mannosidases had clear specificity for the trisaccharides in the order of A-branch > B-branch > C-branch ≈ D-branch. Various competitive experiments have revealed for the first time that α-1,2-mannosidase with inner glycoside specificity is present in the ER. Our findings suggest that exo-acting ER α-1,2-mannosidases can discriminate between endo-glycosidic linkages.
Collapse
Affiliation(s)
- Kyohei Nitta
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo, 180-8633, Japan.
| | - Taiki Kuribara
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo, 180-8633, Japan.
| | - Kiichiro Totani
- Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo, 180-8633, Japan.
| |
Collapse
|
16
|
Kuribara T, Usui R, Totani K. Glycan structure-based perspectives on the entry and release of glycoproteins in the calnexin/calreticulin cycle. Carbohydr Res 2021; 502:108273. [PMID: 33713911 DOI: 10.1016/j.carres.2021.108273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
N-glycans are attached to newly synthesised polypeptides and are involved in the folding, secretion, and degradation of N-linked glycoproteins. In particular, the calnexin/calreticulin cycle, which is the central mechanism of the entry and release of N-linked glycoproteins depending on the folding sates, has been well studied. In addition to biological studies on the calnexin/calreticulin cycle, several studies have revealed complementary roles of in vitro chemistry-based research in the structure-based understanding of the cycle. In this mini-review, we summarise chemistry-based results and highlight their importance for further understanding of the cycle.
Collapse
Affiliation(s)
- Taiki Kuribara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachiMusashino-shi, Tokyo, 180-8633, Japan
| | - Ruchio Usui
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachiMusashino-shi, Tokyo, 180-8633, Japan
| | - Kiichiro Totani
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachiMusashino-shi, Tokyo, 180-8633, Japan.
| |
Collapse
|
17
|
Kang JA, Jeon YJ. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Int J Mol Sci 2021; 22:ijms22042078. [PMID: 33669844 PMCID: PMC7923238 DOI: 10.3390/ijms22042078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin–proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
18
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
19
|
Abstract
N-glycosylation is a highly conserved glycan modification, and more than 7000 proteins are N-glycosylated in humans. N-glycosylation has many biological functions such as protein folding, trafficking, and signal transduction. Thus, glycan modification to proteins is profoundly involved in numerous physiological and pathological processes. The N-glycan precursor is biosynthesized in the endoplasmic reticulum (ER) from dolichol phosphate by sequential enzymatic reactions to generate the dolichol-linked oligosaccharide composed of 14 sugar residues, Glc3Man9GlcNAc2. The oligosaccharide is then en bloc transferred to the consensus sequence N-X-S/T (X represents any amino acid except proline) of nascent proteins. Subsequently, the N-glycosylated nascent proteins enter the folding step, in which N-glycans contribute largely to attaining the correct protein fold by recruiting the lectin-like chaperones, calnexin, and calreticulin. Despite the N-glycan-dependent folding process, some glycoproteins do not fold correctly, and these misfolded glycoproteins are destined to degradation by proteasomes in the cytosol. Properly folded proteins are transported to the Golgi, and N-glycans undergo maturation by the sequential reactions of glycosidases and glycosyltransferases, generating complex-type N-glycans. N-Acetylglucosaminyltransferases (GnT-III, GnT-IV, and GnT-V) produce branched N-glycan structures, affording a higher complexity to N-glycans. In this chapter, we provide an overview of the biosynthetic pathway of N-glycans in the ER and Golgi.
Collapse
|
20
|
Yoo JY, Ko KS, Vu BN, Lee YE, Yoon SH, Pham TT, Kim JY, Lim JM, Kang YJ, Hong JC, Lee KO. N-acetylglucosaminyltransferase II Is Involved in Plant Growth and Development Under Stress Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:761064. [PMID: 34804097 PMCID: PMC8596550 DOI: 10.3389/fpls.2021.761064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 05/04/2023]
Abstract
Alpha-1,6-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase [EC 2.4.1.143, N-acetylglucosaminyltransferase II (GnTII)] catalyzes the transfer of N-acetylglucosamine (GlcNAc) residue from the nucleotide sugar donor UDP-GlcNAc to the α1,6-mannose residue of the di-antennary N-glycan acceptor GlcNAc(Xyl)Man3(Fuc)GlcNAc2 in the Golgi apparatus. Although the formation of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan is known to be associated with GnTII activity in Arabidopsis thaliana, its physiological significance is still not fully understood in plants. To address the physiological importance of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan, we examined the phenotypic effects of loss-of-function mutations in GnTII in the presence and absence of stress, and responsiveness to phytohormones. Prolonged stress induced by tunicamycin (TM) or sodium chloride (NaCl) treatment increased GnTII expression in wild-type Arabidopsis (ecotype Col-0) but caused severe developmental damage in GnTII loss-of-function mutants (gnt2-1 and gnt2-2). The absence of the 6-arm GlcNAc residue in the N-glycans in gnt2-1 facilitated the TM-induced unfolded protein response, accelerated dark-induced leaf senescence, and reduced cytokinin signaling, as well as susceptibility to cytokinin-induced root growth inhibition. Furthermore, gnt2-1 and gnt2-2 seedlings exhibited enhanced N-1-naphthylphthalamic acid-induced inhibition of tropic growth and development. Thus, GnTII's promotion of the 6-arm GlcNAc addition to N-glycans is important for plant growth and development under stress conditions, possibly via affecting glycoprotein folding and/or distribution.
Collapse
Affiliation(s)
- Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Jinju, South Korea
| | - Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Jinju, South Korea
| | - Bich Ngoc Vu
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Jinju, South Korea
- Division of Applied Life Sciences (BK4 Program), Jinju, South Korea
| | - Young Eun Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Jinju, South Korea
- Division of Applied Life Sciences (BK4 Program), Jinju, South Korea
| | - Seok Han Yoon
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Jinju, South Korea
- Division of Applied Life Sciences (BK4 Program), Jinju, South Korea
| | - Thao Thi Pham
- Department of Chemistry, Changwon National University, Changwon, South Korea
| | - Ji-Yeon Kim
- Department of Chemistry, Changwon National University, Changwon, South Korea
| | - Jae-Min Lim
- Department of Chemistry, Changwon National University, Changwon, South Korea
| | - Yang Jae Kang
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Jinju, South Korea
- Division of Life Science, Jinju, South Korea
- Division of Bio & Medical Bigdata (BK4 Program), Gyeongsang National University, Jinju, South Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Jinju, South Korea
- Division of Applied Life Sciences (BK4 Program), Jinju, South Korea
- Division of Life Science, Jinju, South Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Jinju, South Korea
- Division of Applied Life Sciences (BK4 Program), Jinju, South Korea
- Division of Life Science, Jinju, South Korea
- *Correspondence: Kyun Oh Lee,
| |
Collapse
|
21
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
22
|
The cytoplasmic tail of human mannosidase Man1b1 contributes to catalysis-independent quality control of misfolded alpha1-antitrypsin. Proc Natl Acad Sci U S A 2020; 117:24825-24836. [PMID: 32958677 DOI: 10.1073/pnas.1919013117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The failure of polypeptides to achieve conformational maturation following biosynthesis can result in the formation of protein aggregates capable of disrupting essential cellular functions. In the secretory pathway, misfolded asparagine (N)-linked glycoproteins are selectively sorted for endoplasmic reticulum-associated degradation (ERAD) in response to the catalytic removal of terminal alpha-linked mannose units. Remarkably, ER mannosidase I/Man1b1, the first alpha-mannosidase implicated in this conventional N-glycan-mediated process, can also contribute to ERAD in an unconventional, catalysis-independent manner. To interrogate this functional dichotomy, the intracellular fates of two naturally occurring misfolded N-glycosylated variants of human alpha1-antitrypsin (AAT), Null Hong Kong (NHK), and Z (ATZ), in Man1b1 knockout HEK293T cells were monitored in response to mutated or truncated forms of transfected Man1b1. As expected, the conventional catalytic system requires an intact active site in the Man1b1 luminal domain. In contrast, the unconventional system is under the control of an evolutionarily extended N-terminal cytoplasmic tail. Also, N-glycans attached to misfolded AAT are not required for accelerated degradation mediated by the unconventional system, further demonstrating its catalysis-independent nature. We also established that both systems accelerate the proteasomal degradation of NHK in metabolic pulse-chase labeling studies. Taken together, these results have identified the previously unrecognized regulatory capacity of the Man1b1 cytoplasmic tail and provided insight into the functional dichotomy of Man1b1 as a component in the mammalian proteostasis network.
Collapse
|
23
|
Abstract
In consistent with other membrane-bound and secretory proteins, immune checkpoint proteins go through a set of modifications in the endoplasmic reticulum (ER) to acquire their native functional structures before they function at their destinations. There are various ER-resident chaperones and enzymes synergistically regulate and catalyze the glycosylation, folding and transporting of proteins. The whole processing is under the surveillance of ER quality control system which allows the correctly folded proteins to exit from the ER with the help of coat proteinII(COPII) coated vesicles, while retains the rest of terminally misfolded ones in the ER and then eliminates them via ER-associated degradation (ERAD) or ER-to-lysosomes-associated degradation (ERLAD). The dysfunction of the ER causes ER stress which triggers unfolded protein response (UPR) to restore ER proteostasis. Unsolvable prolonged ER stress ultimately results in cell death. This chapter reviews the process that proteins undergo in the ER, and the glycosylation, folding and degradation of immune checkpoint proteins as well as the associated potential immunotherapies to date.
Collapse
|
24
|
Tax G, Lia A, Santino A, Roversi P. Modulation of ERQC and ERAD: A Broad-Spectrum Spanner in the Works of Cancer Cells? JOURNAL OF ONCOLOGY 2019; 2019:8384913. [PMID: 31662755 PMCID: PMC6791201 DOI: 10.1155/2019/8384913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Endoplasmic reticulum glycoprotein folding quality control (ERQC) and ER-associated degradation (ERAD) preside over cellular glycoprotein secretion and maintain steady glycoproteostasis. When cells turn malignant, cancer cell plasticity is affected and supported either by point mutations, preferential isoform selection, altered expression levels, or shifts to conformational equilibria of a secreted glycoprotein. Such changes are crucial in mediating altered extracellular signalling, metabolic behavior, and adhesion properties of cancer cells. It is therefore conceivable that interference with ERQC and/or ERAD can be used to selectively damage cancers. Indeed, inhibitors of the late stages of ERAD are already in the clinic against cancers such as multiple myeloma. Here, we review recent advances in our understanding of the complex relationship between glycoproteostasis and cancer biology and discuss the potential of ERQC and ERAD modulators for the selective targeting of cancer cell plasticity.
Collapse
Affiliation(s)
- Gábor Tax
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| | - Andrea Lia
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R. Unit of Lecce, via Monteroni, I-73100 Lecce, Italy
| | - Pietro Roversi
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 7RH, UK
| |
Collapse
|
25
|
A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nat Commun 2019; 10:3701. [PMID: 31420549 PMCID: PMC6697737 DOI: 10.1038/s41467-019-11686-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
The Arabidopsis ER-α-mannosidase I (MNS3) generates an oligomannosidic N-glycan structure that is characteristically found on ER-resident glycoproteins. The enzyme itself has so far not been detected in the ER. Here, we provide evidence that in plants MNS3 exclusively resides in the Golgi apparatus at steady-state. Notably, MNS3 remains on dispersed punctate structures when subjected to different approaches that commonly result in the relocation of Golgi enzymes to the ER. Responsible for this rare behavior is an amino acid signal motif (LPYS) within the cytoplasmic tail of MNS3 that acts as a specific Golgi retention signal. This retention is a means to spatially separate MNS3 from ER-localized mannose trimming steps that generate the glycan signal required for flagging terminally misfolded glycoproteins for ERAD. The physiological importance of the very specific MNS3 localization is demonstrated here by means of a structurally impaired variant of the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1. The Arabidopsis ER-α-mannosidase I MNS3 generates N-glycan structures typical of ER-resident glycoproteins. Here Schoberer et al. identify a novel motif that anchors MNS3 to the cis-Golgi, spatially separating MNS3 from ER-localized mannose trimming associated with the ER-associated degradation pathway.
Collapse
|
26
|
Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Genes (Basel) 2019; 10:genes10080557. [PMID: 31344897 PMCID: PMC6722924 DOI: 10.3390/genes10080557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
The light sensing outer segments of photoreceptors (PRs) are renewed every ten days due to their high photoactivity, especially of the cones during daytime vision. This demands a tremendous amount of energy, as well as a high turnover of their main biosynthetic compounds, membranes, and proteins. Therefore, a refined proteostasis network (PN), regulating the protein balance, is crucial for PR viability. In many inherited retinal diseases (IRDs) this balance is disrupted leading to protein accumulation in the inner segment and eventually the death of PRs. Various studies have been focusing on therapeutically targeting the different branches of the PR PN to restore the protein balance and ultimately to treat inherited blindness. This review first describes the different branches of the PN in detail. Subsequently, insights are provided on how therapeutic compounds directed against the different PN branches might slow down or even arrest the appalling, progressive blinding conditions. These insights are supported by findings of PN modulators in other research disciplines.
Collapse
|
27
|
Beitari S, Wang Y, Liu SL, Liang C. HIV-1 Envelope Glycoprotein at the Interface of Host Restriction and Virus Evasion. Viruses 2019; 11:v11040311. [PMID: 30935048 PMCID: PMC6521621 DOI: 10.3390/v11040311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
Abstract
Without viral envelope proteins, viruses cannot enter cells to start infection. As the major viral proteins present on the surface of virions, viral envelope proteins are a prominent target of the host immune system in preventing and ultimately eliminating viral infection. In addition to the well-appreciated adaptive immunity that produces envelope protein-specific antibodies and T cell responses, recent studies have begun to unveil a rich layer of host innate immune mechanisms restricting viral entry. This review focuses on the exciting progress that has been made in this new direction of research, by discussing various known examples of host restriction of viral entry, and diverse viral countering strategies, in particular, the emerging role of viral envelope proteins in evading host innate immune suppression. We will also highlight the effective cooperation between innate and adaptive immunity to achieve the synergistic control of viral infection by targeting viral envelope protein and checking viral escape. Given that many of the related findings were made with HIV-1, we will use HIV-1 as the model virus to illustrate the basic principles and molecular mechanisms on host restriction targeting HIV-1 envelope protein.
Collapse
Affiliation(s)
- Saina Beitari
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
| | - Yimeng Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Shan-Lu Liu
- Center for Retrovirus Research, Department of Veterinary Biosciences, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Chen Liang
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
28
|
Profiling Optimal Conditions for Capturing EDEM Proteins Complexes in Melanoma Using Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:155-167. [PMID: 31347047 DOI: 10.1007/978-3-030-15950-4_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum (ER) resident and secretory proteins that fail to reach their native conformation are selected for degradation through the ER-Associated Degradation (ERAD) pathway. The ER degradation-enhancing alpha-mannosidase-like proteins (EDEMs) were shown to be involved in this pathway but their precise role is still under investigation. Mass spectrometry analysis has contributed significantly to the characterization of protein complexes in the last years. The recent advancements in instrumentation, especially within resolution and speed can provide unique insights concerning the molecular architecture of protein-protein interactions in systems biology. Previous reports have suggested that several protein complexes in ERAD are sensitive to the extraction conditions. Indeed, whilst EDEM proteins can be recovered in most detergents, some of their partners are not solubilized, which further emphasizes the importance of the experimental setup. Here, we define such dynamic interactions of EDEM proteins by employing offline protein fractionation, nanoLC-MS/MS and describe how mass spectrometry can contribute to the characterization of such complexes, particularly within a disease context like melanoma.
Collapse
|
29
|
Moon HW, Han HG, Jeon YJ. Protein Quality Control in the Endoplasmic Reticulum and Cancer. Int J Mol Sci 2018; 19:E3020. [PMID: 30282948 PMCID: PMC6213883 DOI: 10.3390/ijms19103020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/22/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is an essential compartment of the biosynthesis, folding, assembly, and trafficking of secretory and transmembrane proteins, and consequently, eukaryotic cells possess specialized machineries to ensure that the ER enables the proteins to acquire adequate folding and maturation for maintaining protein homeostasis, a process which is termed proteostasis. However, a large variety of physiological and pathological perturbations lead to the accumulation of misfolded proteins in the ER, which is referred to as ER stress. To resolve ER stress and restore proteostasis, cells have evolutionary conserved protein quality-control machineries of the ER, consisting of the unfolded protein response (UPR) of the ER, ER-associated degradation (ERAD), and autophagy. Furthermore, protein quality-control machineries of the ER play pivotal roles in the control of differentiation, progression of cell cycle, inflammation, immunity, and aging. Therefore, severe and non-resolvable ER stress is closely associated with tumor development, aggressiveness, and response to therapies for cancer. In this review, we highlight current knowledge in the molecular understanding and physiological relevance of protein quality control of the ER and discuss new insights into how protein quality control of the ER is implicated in the pathogenesis of cancer, which could contribute to therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Hye Won Moon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea.
| |
Collapse
|
30
|
Jin ZC, Kitajima T, Dong W, Huang YF, Ren WW, Guan F, Chiba Y, Gao XD, Fujita M. Genetic disruption of multiple α1,2-mannosidases generates mammalian cells producing recombinant proteins with high-mannose-type N-glycans. J Biol Chem 2018; 293:5572-5584. [PMID: 29475941 DOI: 10.1074/jbc.m117.813030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/04/2018] [Indexed: 12/27/2022] Open
Abstract
Recombinant therapeutic proteins are becoming very important pharmaceutical agents for treating intractable diseases. Most biopharmaceutical proteins are produced in mammalian cells because this ensures correct folding and glycosylation for protein stability and function. However, protein production in mammalian cells has several drawbacks, including heterogeneity of glycans attached to the produced protein. In this study, we established cell lines with high-mannose-type N-linked, low-complexity glycans. We first knocked out two genes encoding Golgi mannosidases (MAN1A1 and MAN1A2) in HEK293 cells. Single knockout (KO) cells did not exhibit changes in N-glycan structures, whereas double KO cells displayed increased high-mannose-type and decreased complex-type glycans. In our effort to eliminate the remaining complex-type glycans, we found that knocking out a gene encoding the endoplasmic reticulum mannosidase I (MAN1B1) in the double KO cells reduced most of the complex-type glycans. In triple KO (MAN1A1, MAN1A2, and MAN1B1) cells, Man9GlcNAc2 and Man8GlcNAc2 were the major N-glycan structures. Therefore, we expressed two lysosomal enzymes, α-galactosidase-A and lysosomal acid lipase, in the triple KO cells and found that the glycans on these enzymes were sensitive to endoglycosidase H treatment. The N-glycan structures on recombinant proteins expressed in triple KO cells were simplified and changed from complex types to high-mannose types at the protein level. Our results indicate that the triple KO HEK293 cells are suitable for producing recombinant proteins, including lysosomal enzymes with high-mannose-type N-glycans.
Collapse
Affiliation(s)
- Ze-Cheng Jin
- From the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Toshihiko Kitajima
- From the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weijie Dong
- the College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China, and
| | - Yi-Fan Huang
- From the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Wei Ren
- From the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feng Guan
- From the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yasunori Chiba
- the Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Xiao-Dong Gao
- From the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China,
| | - Morihisa Fujita
- From the Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China,
| |
Collapse
|
31
|
Abstract
Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.
Collapse
Affiliation(s)
- Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Madhu Rai
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| |
Collapse
|
32
|
Berner N, Reutter KR, Wolf DH. Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin-Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path. Annu Rev Biochem 2018; 87:751-782. [PMID: 29394096 DOI: 10.1146/annurev-biochem-062917-012749] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin-proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.
Collapse
Affiliation(s)
- Nicole Berner
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Karl-Richard Reutter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| | - Dieter H Wolf
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany; , ,
| |
Collapse
|
33
|
Yoo YS, Han HG, Jeon YJ. Unfolded Protein Response of the Endoplasmic Reticulum in Tumor Progression and Immunogenicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2969271. [PMID: 29430279 PMCID: PMC5752989 DOI: 10.1155/2017/2969271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a pivotal regulator of folding, quality control, trafficking, and targeting of secreted and transmembrane proteins, and accordingly, eukaryotic cells have evolved specialized machinery to ensure that the ER enables these proteins to acquire adequate folding and maturation in the presence of intrinsic and extrinsic insults. This adaptive capacity of the ER to intrinsic and extrinsic perturbations is important for maintaining protein homeostasis, which is termed proteostasis. Failure in adaptation to these perturbations leads to accumulation of misfolded or unassembled proteins in the ER, which is termed ER stress, resulting in the activation of unfolded protein response (UPR) of the ER and the execution of ER-associated degradation (ERAD) to restore homeostasis. Furthermore, both of the two axes play key roles in the control of tumor progression, inflammation, immunity, and aging. Therefore, understanding UPR of the ER and subsequent ERAD will provide new insights into the pathogenesis of many human diseases and contribute to therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Yoon Seon Yoo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| |
Collapse
|
34
|
Genetic Defects Underlie the Non-syndromic Autosomal Recessive Intellectual Disability (NS-ARID). Open Life Sci 2017. [DOI: 10.1515/biol-2017-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIntellectual disability (ID) is a neurodevelopmental disorder which appears frequently as the result of genetic mutations and may be syndromic (S-ID) or non-syndromic (NS-ID). ID causes an important economic burden, for patient's family, health systems, and society. Identifying genes that cause S-ID can easily be evaluated due to the clinical symptoms or physical anomalies. However, in the case of NS-ID due to the absence of co-morbid features, the latest molecular genetic techniques can be used to understand the genetic defects that underlie it. Recent studies have shown that non-syndromic autosomal recessive (NS-ARID) is extremely heterogeneous and contributes much more than X-linked ID. However, very little is known about the genes and loci involved in NS-ARID relative to X-linked ID, and whose complete genetic etiology remains obscure. In this review article, the known genetic etiology of NS-ARID and possible relationships between genes and the associated molecular pathways of their encoded proteins has been reviewed which will enhance our understanding about the underlying genes and mechanisms in NS-ARID.
Collapse
|
35
|
Kuribara T, Hirano M, Speciale G, Williams SJ, Ito Y, Totani K. Selective Manipulation of Discrete Mannosidase Activities in the Endoplasmic Reticulum by Using Reciprocally Selective Inhibitors. Chembiochem 2017; 18:1027-1035. [DOI: 10.1002/cbic.201700081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Taiki Kuribara
- Department of Materials and Life Science Seikei University 3-3-1 Kichijoji-kitamachi, Musashino Tokyo 180–8633 Japan
| | - Makoto Hirano
- Department of Materials and Life Science Seikei University 3-3-1 Kichijoji-kitamachi, Musashino Tokyo 180–8633 Japan
| | - Gaetano Speciale
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne 30 Flemington Road Parkville VIC 3010 Australia
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute University of Melbourne 30 Flemington Road Parkville VIC 3010 Australia
| | - Yukishige Ito
- Synthetic Cellular Chemistry Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kiichiro Totani
- Department of Materials and Life Science Seikei University 3-3-1 Kichijoji-kitamachi, Musashino Tokyo 180–8633 Japan
| |
Collapse
|
36
|
Totani K, Yamaya K, Hirano M, Ito Y. Influence of aglycone structures on N -glycan processing reactions in the endoplasmic reticulum. Carbohydr Res 2017; 439:16-22. [DOI: 10.1016/j.carres.2016.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
|
37
|
Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway. Proc Natl Acad Sci U S A 2016; 113:E7890-E7899. [PMID: 27856750 DOI: 10.1073/pnas.1611213113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maturation of Asn-linked oligosaccharides in the eukaryotic secretory pathway requires the trimming of nascent glycan chains to remove all glucose and several mannose residues before extension into complex-type structures on the cell surface and secreted glycoproteins. Multiple glycoside hydrolase family 47 (GH47) α-mannosidases, including endoplasmic reticulum (ER) α-mannosidase I (ERManI) and Golgi α-mannosidase IA (GMIA), are responsible for cleavage of terminal α1,2-linked mannose residues to produce uniquely trimmed oligomannose isomers that are necessary for ER glycoprotein quality control and glycan maturation. ERManI and GMIA have similar catalytic domain structures, but each enzyme cleaves distinct residues from tribranched oligomannose glycan substrates. The structural basis for branch-specific cleavage by ERManI and GMIA was explored by replacing an essential enzyme-bound Ca2+ ion with a lanthanum (La3+) ion. This ion swap led to enzyme inactivation while retaining high-affinity substrate interactions. Cocrystallization of La3+-bound enzymes with Man9GlcNAc2 substrate analogs revealed enzyme-substrate complexes with distinct modes of glycan branch insertion into the respective enzyme active-site clefts. Both enzymes had glycan interactions that extended across the entire glycan structure, but each enzyme engaged a different glycan branch and used different sets of glycan interactions. Additional mutagenesis and time-course studies of glycan cleavage probed the structural basis of enzyme specificity. The results provide insights into the enzyme catalytic mechanisms and reveal structural snapshots of the sequential glycan cleavage events. The data also indicate that full steric access to glycan substrates determines the efficiency of mannose-trimming reactions that control the conversion to complex-type structures in mammalian cells.
Collapse
|
38
|
Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 2016; 147:269-284. [DOI: 10.1007/s00418-016-1513-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 02/03/2023]
|
39
|
Frabutt DA, Zheng YH. Arms Race between Enveloped Viruses and the Host ERAD Machinery. Viruses 2016; 8:v8090255. [PMID: 27657106 PMCID: PMC5035969 DOI: 10.3390/v8090255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Enveloped viruses represent a significant category of pathogens that cause serious diseases in animals. These viruses express envelope glycoproteins that are singularly important during the infection of host cells by mediating fusion between the viral envelope and host cell membranes. Despite low homology at protein levels, three classes of viral fusion proteins have, as of yet, been identified based on structural similarities. Their incorporation into viral particles is dependent upon their proper sub-cellular localization after being expressed and folded properly in the endoplasmic reticulum (ER). However, viral protein expression can cause stress in the ER, and host cells respond to alleviate the ER stress in the form of the unfolded protein response (UPR); the effects of which have been observed to potentiate or inhibit viral infection. One important arm of UPR is to elevate the capacity of the ER-associated protein degradation (ERAD) pathway, which is comprised of host quality control machinery that ensures proper protein folding. In this review, we provide relevant details regarding viral envelope glycoproteins, UPR, ERAD, and their interactions in host cells.
Collapse
Affiliation(s)
- Dylan A Frabutt
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | - Yong-Hui Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
40
|
How Polyomaviruses Exploit the ERAD Machinery to Cause Infection. Viruses 2016; 8:v8090242. [PMID: 27589785 PMCID: PMC5035956 DOI: 10.3390/v8090242] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
To infect cells, polyomavirus (PyV) traffics from the cell surface to the endoplasmic reticulum (ER) where it hijacks elements of the ER-associated degradation (ERAD) machinery to penetrate the ER membrane and reach the cytosol. From the cytosol, the virus transports to the nucleus, enabling transcription and replication of the viral genome that leads to lytic infection or cellular transformation. How PyV exploits the ERAD machinery to cross the ER membrane and access the cytosol, a decisive infection step, remains enigmatic. However, recent studies have slowly unraveled many aspects of this process. These emerging insights should advance our efforts to develop more effective therapies against PyV-induced human diseases.
Collapse
|
41
|
Fluorogenic probes reveal a role of GLUT4 N-glycosylation in intracellular trafficking. Nat Chem Biol 2016; 12:853-9. [PMID: 27547921 DOI: 10.1038/nchembio.2156] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/03/2016] [Indexed: 02/04/2023]
Abstract
Glucose transporter 4 (GLUT4) is an N-glycosylated protein that maintains glucose homeostasis by regulating the protein translocation. To date, it has been unclear whether the N-glycan of GLUT4 contributes to its intracellular trafficking. Here, to clarify the role of the N-glycan, we developed fluorogenic probes that label cytoplasmic and plasma-membrane proteins for multicolor imaging of GLUT4 translocation. One of the probes, which is cell impermeant, selectively detected exocytosed GLUT4. Using this probe, we verified the 'log' of the trafficking, in which N-glycan-deficient GLUT4 was transiently translocated to the cell membrane upon insulin stimulation and was rapidly internalized without retention on the cell membrane. The results strongly suggest that the N-glycan functions in the retention of GLUT4 on the cell membrane. This study showed the utility of the fluorogenic probes and indicated that this imaging tool will be applicable for research on various membrane proteins that show dynamic changes in localization.
Collapse
|
42
|
Abstract
Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
43
|
Xu C, Ng DTW. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 2015; 16:742-52. [PMID: 26465718 DOI: 10.1038/nrm4073] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane-bound and soluble proteins of the secretory pathway are commonly glycosylated in the endoplasmic reticulum. These adducts have many biological functions, including, notably, their contribution to the maturation of glycoproteins. N-linked glycans are of oligomeric structure, forming configurations that provide blueprints to precisely instruct the folding of protein substrates and the quality control systems that scrutinize it. O-linked mannoses are simpler in structure and were recently found to have distinct functions in protein quality control that do not require the complex structure of N-linked glycans. Together, recent studies reveal the breadth and sophistication of the roles of these glycan-directed modifications in protein biogenesis.
Collapse
Affiliation(s)
- Chengchao Xu
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Davis T W Ng
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Duke University-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
44
|
Zhou T, Frabutt DA, Moremen KW, Zheng YH. ERManI (Endoplasmic Reticulum Class I α-Mannosidase) Is Required for HIV-1 Envelope Glycoprotein Degradation via Endoplasmic Reticulum-associated Protein Degradation Pathway. J Biol Chem 2015. [PMID: 26205822 DOI: 10.1074/jbc.m115.675207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported that the mitochondrial translocator protein (TSPO) induces HIV-1 envelope (Env) degradation via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway, but the mechanism was not clear. Here we investigated how the four ER-associated glycoside hydrolase family 47 (GH47) α-mannosidases, ERManI, and ER-degradation enhancing α-mannosidase-like (EDEM) proteins 1, 2, and 3, are involved in the Env degradation process. Ectopic expression of these four α-mannosidases uncovers that only ERManI inhibits HIV-1 Env expression in a dose-dependent manner. In addition, genetic knock-out of the ERManI gene MAN1B1 using CRISPR/Cas9 technology disrupts the TSPO-mediated Env degradation. Biochemical studies show that HIV-1 Env interacts with ERManI, and between the ERManI cytoplasmic, transmembrane, lumenal stem, and lumenal catalytic domains, the catalytic domain plays a critical role in the Env-ERManI interaction. In addition, functional studies show that inactivation of the catalytic sites by site-directed mutagenesis disrupts the ERManI activity. These studies identify ERManI as a critical GH47 α-mannosidase in the ER-associated protein degradation pathway that initiates the Env degradation and suggests that its catalytic domain and enzymatic activity play an important role in this process.
Collapse
Affiliation(s)
- Tao Zhou
- From the Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, 150001, China, BEACON Center for the Study of Evolution in Action and Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Dylan A Frabutt
- BEACON Center for the Study of Evolution in Action and Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Yong-Hui Zheng
- From the Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, 150001, China, BEACON Center for the Study of Evolution in Action and Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
45
|
Słomińska-Wojewódzka M, Sandvig K. The Role of Lectin-Carbohydrate Interactions in the Regulation of ER-Associated Protein Degradation. Molecules 2015; 20:9816-46. [PMID: 26023941 PMCID: PMC6272441 DOI: 10.3390/molecules20069816] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023] Open
Abstract
Proteins entering the secretory pathway are translocated across the endoplasmic reticulum (ER) membrane in an unfolded form. In the ER they are restricted to a quality control system that ensures correct folding or eventual degradation of improperly folded polypeptides. Mannose trimming of N-glycans on newly synthesized proteins plays an important role in the recognition and sorting of terminally misfolded glycoproteins for ER-associated protein degradation (ERAD). In this process misfolded proteins are retrotranslocated into the cytosol, polyubiquitinated, and eventually degraded by the proteasome. The mechanism by which misfolded glycoproteins are recognized and recruited to the degradation machinery has been extensively studied during last decade. In this review, we focus on ER degradation-enhancing α-mannosidase-like protein (EDEM) family proteins that seem to play a key role in the discrimination between proteins undergoing a folding process and terminally misfolded proteins directed for degradation. We describe interactions of EDEM proteins with other components of the ERAD machinery, as well as with various protein substrates. Carbohydrate-dependent interactions together with N-glycan-independent interactions seem to regulate the complex process of protein recognition and direction for proteosomal degradation.
Collapse
Affiliation(s)
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
46
|
Benyair R, Ogen-Shtern N, Lederkremer GZ. Glycan regulation of ER-associated degradation through compartmentalization. Semin Cell Dev Biol 2015; 41:99-109. [DOI: 10.1016/j.semcdb.2014.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022]
|
47
|
Benyair R, Ogen-Shtern N, Mazkereth N, Shai B, Ehrlich M, Lederkremer GZ. Mammalian ER mannosidase I resides in quality control vesicles, where it encounters its glycoprotein substrates. Mol Biol Cell 2014; 26:172-84. [PMID: 25411339 PMCID: PMC4294666 DOI: 10.1091/mbc.e14-06-1152] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ER mannosidase I (ERManI) was found recently in the Golgi. This result is found to arise artificially from membrane disturbance in immunofluorescence methods. ERManI is located in novel vesicles to which substrates traffic and that converge at the ER-derived quality control compartment under ER stress. Endoplasmic reticulum α1,2 mannosidase I (ERManI), a central component of ER quality control and ER-associated degradation (ERAD), acts as a timer enzyme, modifying N-linked sugar chains of glycoproteins with time. This process halts glycoprotein folding attempts when necessary and targets terminally misfolded glycoproteins to ERAD. Despite the importance of ERManI in maintenance of glycoprotein quality control, fundamental questions regarding this enzyme remain controversial. One such question is the subcellular localization of ERManI, which has been suggested to localize to the ER membrane, the ER-derived quality control compartment (ERQC), and, surprisingly, recently to the Golgi apparatus. To try to clarify this controversy, we applied a series of approaches that indicate that ERManI is located, at the steady state, in quality control vesicles (QCVs) to which ERAD substrates are transported and in which they interact with the enzyme. Both endogenous and exogenously expressed ERManI migrate at an ER-like density on iodixanol gradients, suggesting that the QCVs are derived from the ER. The QCVs are highly mobile, displaying dynamics that are dependent on microtubules and COP-II but not on COP-I vesicle machinery. Under ER stress conditions, the QCVs converge in a juxtanuclear region, at the ERQC, as previously reported. Our results also suggest that ERManI is turned over by an active autophagic process. Of importance, we found that membrane disturbance, as is common in immunofluorescence methods, leads to an artificial appearance of ERManI in a Golgi pattern.
Collapse
Affiliation(s)
- Ron Benyair
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Navit Ogen-Shtern
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niv Mazkereth
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ben Shai
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z Lederkremer
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
48
|
Ninagawa S, Okada T, Sumitomo Y, Kamiya Y, Kato K, Horimoto S, Ishikawa T, Takeda S, Sakuma T, Yamamoto T, Mori K. EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. ACTA ACUST UNITED AC 2014; 206:347-56. [PMID: 25092655 PMCID: PMC4121980 DOI: 10.1083/jcb.201404075] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
All three mammalian EDEM family members possess mannosidase activity and are necessary for glycoprotein degradation, but EDEM2 performs a unique, rate-limiting, first mannose trimming step upstream of EDEM1 and EDEM3. Glycoproteins misfolded in the endoplasmic reticulum (ER) are subjected to ER-associated glycoprotein degradation (gpERAD) in which Htm1-mediated mannose trimming from the oligosaccharide Man8GlcNAc2 to Man7GlcNAc2 is the rate-limiting step in yeast. In contrast, the roles of the three Htm1 homologues (EDEM1/2/3) in mammalian gpERAD have remained elusive, with a key controversy being whether EDEMs function as mannosidases or as lectins. We therefore conducted transcription activator-like effector nuclease–mediated gene knockout analysis in human cell line and found that all endogenous EDEMs possess mannosidase activity. Mannose trimming from Man8GlcNAc2 to Man7GlcNAc2 is performed mainly by EDEM3 and to a lesser extent by EDEM1. Most surprisingly, the upstream mannose trimming from Man9GlcNAc2 to Man8GlcNAc2 is conducted mainly by EDEM2, which was previously considered to lack enzymatic activity. Based on the presence of two rate-limiting steps in mammalian gpERAD, we propose that mammalian cells double check gpERAD substrates before destruction by evolving EDEM2, a novel-type Htm1 homologue that catalyzes the first mannose trimming step from Man9GlcNAc2.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, and Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8502, Japan Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, and Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshiki Sumitomo
- Department of Biophysics, Graduate School of Science, and Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8502, Japan
| | - Yukiko Kamiya
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Satoshi Horimoto
- Department of Biophysics, Graduate School of Science, and Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8502, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, and Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8502, Japan
| | - Shunichi Takeda
- Department of Biophysics, Graduate School of Science, and Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, and Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
49
|
Byun H, Gou Y, Zook A, Lozano MM, Dudley JP. ERAD and how viruses exploit it. Front Microbiol 2014; 5:330. [PMID: 25071743 PMCID: PMC4080680 DOI: 10.3389/fmicb.2014.00330] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/16/2014] [Indexed: 01/09/2023] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a universally important process among eukaryotic cells. ERAD is necessary to preserve cell integrity since the accumulation of defective proteins results in diseases associated with neurological dysfunction, cancer, and infections. This process involves recognition of misfolded or misassembled proteins that have been translated in association with ER membranes. Recognition of ERAD substrates leads to their extraction through the ER membrane (retrotranslocation or dislocation), ubiquitination, and destruction by cytosolic proteasomes. This review focuses on ERAD and its components as well as how viruses use this process to promote their replication and to avoid the immune response.
Collapse
Affiliation(s)
- Hyewon Byun
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Yongqiang Gou
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Adam Zook
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Mary M Lozano
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
50
|
Tatara Y, Yoshida T, Ichishima E. A Single Free Cysteine Residue and Disulfide Bond Contribute to the Thermostability ofAspergillus saitoi1,2-α-Mannosidase. Biosci Biotechnol Biochem 2014; 69:2101-8. [PMID: 16306691 DOI: 10.1271/bbb.69.2101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aspergillus saitoi 1,2-alpha-mannosidase contains three conserved cysteine residues (Cys334, Cys363, and Cys443). We showed that Cys334 and Cys363 are involved in a disulfide bond, and that Cys443 contains a free thiol group. The cysteines were not essential for the activity analyzed by site-directed mutagenesis and kinetics. The substitution at each cysteine residue greatly destabilized the enzyme. The T(m) values of WT, C443A, C443G, C443S, and C443T were 55.8, 51.9, 50.2, 50.0, and 52.8 degrees C respectively. The specific activity of these mutants was almost equal to that of WT. Introducing Asp, Leu, Met, or Val at position 443 caused partial denaturation, although the enzymes had some activity. C443F, C443I, C443N, and C443Y were not secreted. These results suggest that the hydrophilic and large side chain causes the destabilization. Molecular modelling showed that the Cys443 residue is buried and surrounded by a hydrophobic environment. Cys334 and Cys363 form a disulfide bond, and Cys443 is involved in a hydrophobic interaction to stabilize the enzyme.
Collapse
Affiliation(s)
- Yota Tatara
- Laboratory of Molecular Enzymology, Graduate School of Bioengineering, Soka University, Tokyo, Japan
| | | | | |
Collapse
|