1
|
Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem 2024; 19:e202400063. [PMID: 38778500 DOI: 10.1002/cmdc.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.
Collapse
Affiliation(s)
- Carola Gallo-Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos, Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
2
|
Hibert M. [Oxytocin and its receptor: molecular and therapeutic approaches]. Biol Aujourdhui 2023; 216:125-130. [PMID: 36744978 DOI: 10.1051/jbio/2022013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 02/07/2023]
Abstract
It is known since the fifties that oxytocin is a neurohormone synthesized in the brain and released in blood circulation to trigger uterus contraction during delivery. It is also involved in milk ejection during breast-feeding. Over the past 25 years, many other central and peripheral functions have been discovered, in particular for attachment between child and parents as well as between individuals and interaction between a human being and its social group. Over this period, we have studied the functional supramolecular architecture of the hormone bound to its receptor. This information was used to design pharmacological probes and drug candidates. This led to the discovery of the first non-peptide oxytocin receptor full agonist. This molecule, LIT-001, restores social interaction in an animal model of autism and paves the way for a treatment of this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Marcel Hibert
- Laboratoire d'Innovation Thérapeutique, UMR7200, Faculté de Pharmacie de Strasbourg, 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
3
|
Sikorska E, Kwiatkowska A. Micelle-bound conformations of neurohypophyseal hormone analogues modified with a Cα-disubstituted residue: NMR and molecular modelling studies. J Biomol Struct Dyn 2012; 31:748-64. [PMID: 22908889 DOI: 10.1080/07391102.2012.709459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this study, by applying a combined approach of NMR measurements and molecular modelling, the conformations and the interactions with membrane-like environment of five arginine vasopressin (AVP) or oxytocin (OT) analogues modified with Cα-disubstituted cis-1-amino-4-phenylcyclohexane-1-carboxylic acid in position 2 have been determined. In addition, the AVP analogues were prepared in N-acylated forms with various bulky acyl groups. All of the peptides studied interacted with the mixed dodecylphosphocholine:sodium dodecyl sulphate micelle, providing a model of biological membrane. A different polarities of the AVP- and OT-like peptides resulted in their different position relative to the micelle surface. Thus, the arrangement of the former was nearly perpendicular, whereas the latter was rather parallel to the micelle's surface. Moreover, the results of our studies have shown that the binding sites for antagonists may be overlapped with that for agonists, as well as it may be quite different. Nevertheless, the aromatic-aromatic contacts represent the most important interactions for antagonists, whereas the hydrophilic interactions seem to be crucial for agonists.
Collapse
Affiliation(s)
- Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952, Gdańsk, Poland.
| | | |
Collapse
|
4
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
5
|
Kutina AV, Karavashkina TA, Shakhmatova EI, Gao J, Mordvintsev DY, Kuzmin DA, Tsetlin VI, Natochin YV. Correlation of renal solute-free water reabsorption and energy of interaction of vasotocin analogs with V2 receptor. BIOL BULL+ 2011. [DOI: 10.1134/s1062359011060057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Frantz MC, Rodrigo J, Boudier L, Durroux T, Mouillac B, Hibert M. Subtlety of the Structure−Affinity and Structure−Efficacy Relationships around a Nonpeptide Oxytocin Receptor Agonist. J Med Chem 2010; 53:1546-62. [DOI: 10.1021/jm901084f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Céline Frantz
- Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP60024, 67401 Illkirch, France
| | - Jordi Rodrigo
- Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP60024, 67401 Illkirch, France
| | - Laure Boudier
- Institut de Génomique Fonctionnelle UMR CNRS 5203/INSERM U661/Université Montpellier I & II, Dept Pharmacologie Moléculaire, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle UMR CNRS 5203/INSERM U661/Université Montpellier I & II, Dept Pharmacologie Moléculaire, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle UMR CNRS 5203/INSERM U661/Université Montpellier I & II, Dept Pharmacologie Moléculaire, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Marcel Hibert
- Laboratoire d’Innovation Thérapeutique, UMR 7200 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP60024, 67401 Illkirch, France
| |
Collapse
|
7
|
Mouillac B, Manning M, Durroux T. Fluorescent agonists and antagonists for vasopressin/oxytocin G protein-coupled receptors: usefulness in ligand screening assays and receptor studies. Mini Rev Med Chem 2008; 8:996-1005. [PMID: 18782052 DOI: 10.2174/138955708785740607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different series of fluorescent agonists and antagonists have been developed and characterized for arginine-vasopressin and oxytocin G protein-coupled receptors. Both cyclic and linear peptide analogs of the neurohypophysial hormones are useful tools for investigating receptor localization and trafficking, analysing receptor structural organization, and developing new receptor-selective high-throughput ligand screening assays.
Collapse
Affiliation(s)
- B Mouillac
- CNRS, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France.
| | | | | |
Collapse
|
8
|
Glorioso N, Herrera VLM, Bagamasbad P, Filigheddu F, Troffa C, Argiolas G, Bulla E, Decano JL, Ruiz-Opazo N. Association of ATP1A1 and dear single-nucleotide polymorphism haplotypes with essential hypertension: sex-specific and haplotype-specific effects. Circ Res 2007; 100:1522-9. [PMID: 17446437 DOI: 10.1161/01.res.0000267716.96196.60] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Essential hypertension remains a major risk factor for cardiovascular and cerebrovascular diseases. As a complex multifactorial disease, elucidation of susceptibility loci remains elusive. ATP1A1 and Dear are candidate genes for 2 closely linked rat chromosome-2 blood pressure quantitative trait loci. Because corresponding human syntenic regions are on different chromosomes, investigation of ATP1A1 (chromosome [chr]-1p21) and Dear (chr-4q31.3) facilitates genetic analyses of each blood pressure quantitative trait locus in human hypertension. Here we report the association of human ATP1A1 (P<0.000005) and Dear (P<0.03) with hypertension in a relatively isolated, case/control hypertension cohort from northern Sardinia by single-nucleotide polymorphism haplotype analysis. Sex-specific haplotype analyses detected stronger association of both loci with hypertension in males than in females. Haplotype trend-regression analyses support ATP1A1 and Dear as independent susceptibility loci and reveal haplotype-specific association with hypertension and normotension, thus delineating haplotype-specific subsets of hypertension. Although investigation in other cohorts needs to be performed to determine genetic effects in other populations, haplotype subtyping already allows systematic stratification of susceptibility and, hence, clinical heterogeneity, a prerequisite for unraveling the polygenic etiology and polygene-environment interactions in essential hypertension. As hypertension susceptibility genes, coexpression of ATP1A1 and Dear in both renal tubular cells and vascular endothelium suggest a cellular pathogenic scaffold for polygenic mechanisms of hypertension, as well as the hypothesis that ATP1A1 and/or Dear could contribute to the known renal and vascular endothelial dysfunction associated with essential (polygenic) hypertension.
Collapse
Affiliation(s)
- Nicola Glorioso
- Hypertension and Cardiovascular Prevention Center, ASL n. 1-Universita di Sassari, Sassari, Sardinia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Albizu L, Balestre MN, Breton C, Pin JP, Manning M, Mouillac B, Barberis C, Durroux T. Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol Pharmacol 2006; 70:1783-91. [PMID: 16926282 DOI: 10.1124/mol.106.025684] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An increasing amount of ligand binding data on G protein-coupled receptors (GPCRs) is not compatible with the prediction of the simple mass action law. This may be related to the propensity of most GPCRs, if not all, to oligomerize. Indeed, one of the consequences of receptor oligomerization could be a possible cross-talk between the protomers, which in turn could lead to negative or positive cooperative ligand binding. We prove here that this can be demonstrated experimentally. Saturation, dissociation, and competition binding experiments were performed on vasopressin and oxytocin receptors expressed in Chinese hamster ovary or COS-7 cells. Linear, concave, and convex Scatchard plots were then obtained, depending on the ligand used. Moreover, some competition curves exhibited an increase of the radiotracer binding for low concentrations of competitors, suggesting a cooperative binding process. These data demonstrate that various vasopressin analogs display either positive or negative cooperative binding. Because positive cooperative binding cannot be explained without considering receptor as multivalent, these binding data support the concept of GPCR dimerization process. The results, which are in good accordance with the predictions of previous mathematical models, suggest that binding experiments can be used to probe the existence of receptor dimers.
Collapse
Affiliation(s)
- Laura Albizu
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique Unité Mixte Recherche 5203, 141 rue de la Cardonille, 34094 Montpellier CEDEX 5, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Surgand JS, Rodrigo J, Kellenberger E, Rognan D. A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 2006; 62:509-38. [PMID: 16294340 DOI: 10.1002/prot.20768] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The amino acid sequences of 369 human nonolfactory G-protein-coupled receptors (GPCRs) have been aligned at the seven transmembrane domain (TM) and used to extract the nature of 30 critical residues supposed--from the X-ray structure of bovine rhodopsin bound to retinal--to line the TM binding cavity of ground-state receptors. Interestingly, the clustering of human GPCRs from these 30 residues mirrors the recently described phylogenetic tree of full-sequence human GPCRs (Fredriksson et al., Mol Pharmacol 2003;63:1256-1272) with few exceptions. A TM cavity could be found for all investigated GPCRs with physicochemical properties matching that of their cognate ligands. The current approach allows a very fast comparison of most human GPCRs from the focused perspective of the predicted TM cavity and permits to easily detect key residues that drive ligand selectivity or promiscuity.
Collapse
|
11
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
12
|
Ponthieux S, Cabot J, Mouillac B, Seyer R, Barberis C, Carnazzi E. Design of Benzophenone-Containing Photoactivatable Linear Vasopressin Antagonists: Pharmacological and Photoreactive Properties. J Med Chem 2005; 48:3379-88. [PMID: 15857144 DOI: 10.1021/jm040871+] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We designed and synthesized new photoactivatable linear vasopressin analogues containing benzophenone photophores. All compounds were monitored and purified using RP-HPLC and characterized by mass spectrometry. Affinity and selectivity were determined in CHO cells expressing either human V(1a), V(1b) or V(2) receptor subtypes. Within the series, compounds 6 (PhCH(2)CO-lBpa-Phe-Gln-Asn-Arg-Pro-Arg-Tyr(3I)-NH(2)) and 9 (PhCH(2)CO-dBpa-Phe-Gln-Asn-Arg-Pro-Arg-Tyr(3I)-NH(2)), containing a benzoylphenylalanine residue (Bpa), were selected and their antagonistic properties determined (K(inact) = 1.87 and 0.35 nM, respectively). The dissociation constant of the most potent candidate (compound 9) was further calculated from saturation experiments using the (125)I derivative (K(d) = 0.07 +/- 0.01 nM). Photolabeling experiments using radioactive compound 9 as a probe were specific and UV-dependent and allowed the identification of two bands at molecular masses around 85-90 kDa and 46 kDa, respectively, as previously described by Phalipou et al., using two photoreactive linear azidopeptide antagonists. The results suggest therefore that compound 9 is a potent new tool for the accurate mapping of the human V(1a) receptor antagonist binding site.
Collapse
Affiliation(s)
- Sylvie Ponthieux
- CNRS UPR9023 and INSERM U469, IGF, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
13
|
Kaneko Y, Herrera VLM, Didishvili T, Ruiz-Opazo N. Sex-specific effects of dual ET-1/ANG II receptor (Dear) variants in Dahl salt-sensitive/resistant hypertension rat model. Physiol Genomics 2005; 20:157-64. [PMID: 15561758 DOI: 10.1152/physiolgenomics.00108.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Essential (polygenic) hypertension is a complex genetic disorder that remains a major risk factor for cardiovascular disease despite clinical advances, reiterating the need to elucidate molecular genetic mechanisms. Elucidation of susceptibility genes remains a challenge, however. Blood pressure (BP) regulatory pathways through angiotensin II (ANG II) and endothelin-1 (ET-1) receptor systems comprise a priori candidate susceptibility pathways. Here we report that the dual ET-1/ANG II receptor gene ( Dear) is structurally and functionally distinct between Dahl salt-sensitive, hypertensive (S) and salt-resistant, normotensive (R) rats. The Dahl S S44/M74 variant is identical to the previously reported Dear cDNA with equivalent affinities for both ET-1 and ANG II, in contrast to Dahl R S44P/M74T variant, which exhibits absent ANG II binding but effective ET-1 binding. The S44P substitution localizes to the ANG II-binding domain predicted by the molecular recognition theory, providing compelling support of this theory. The Dear gene maps to rat chromosome 2 and cosegregates with BP in female F2(R×S) intercross rats with highly significant linkage (LOD 3.61) accounting for 14% of BP variance, but not in male F2(R×S) intercross rats. Altogether, the data suggest the hypothesis that modification of the critical balance between ANG II and ET-1 systems through variant Dear contributes to hypertension susceptibility in female F2(R×S) intercross rats. Further investigations are necessary to corroborate genetic linkage through congenic rat studies, to investigate putative gene interactions, and to show causality by transgenesis and/or intervention. More importantly, the data reiterate the importance of sex-specific factors in hypertension susceptibility.
Collapse
Affiliation(s)
- Yuji Kaneko
- Section Molecular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
14
|
Duroux-Richard I, Vassault P, Subra G, Guichou JF, Richard E, Mouillac B, Barberis C, Marie J, Bonnafous JC. Crosslinking Photosensitized by a Ruthenium Chelate as a Tool for Labeling and Topographical Studies of G-Protein-Coupled Receptors. ACTA ACUST UNITED AC 2005; 12:15-24. [PMID: 15664511 DOI: 10.1016/j.chembiol.2004.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 09/24/2004] [Accepted: 10/07/2004] [Indexed: 11/30/2022]
Abstract
The purpose was to apply oxidative crosslinking reactions to the study of recognition and signaling mechanisms associated to G-protein-coupled receptors. Using a ruthenium chelate, Ru(bipy)(3)(2+), as photosensitizer and visible light irradiation, in the presence of ammonium persulfate, we performed fast and efficient covalent labeling of the B(2) bradykinin receptor by agonist or antagonist ligands possessing a radio-iodinated phenol moiety. The chemical and topographical specificities of these crosslinking experiments were investigated. The strategy could also be applied to the covalent labeling of the B(1) bradykinin receptor, the AT(1) angiotensin II receptor, the V(1a) vasopressin receptor and the oxytocin receptor. Interestingly, we demonstrated the possibility to covalently label the AT(1) and B(2) receptors with functionalized ligands. The potential applications of metal-chelate chemistry to receptor structural and signaling studies through intramolecular or intermolecular crosslinking are presented.
Collapse
Affiliation(s)
- Isabelle Duroux-Richard
- Centre de Biochimie Stucturale, Centre National de la Recherche Scientifique, UMR 5048, Université Montpellier 1, Institut National de la Santé et de la Recherche Médicale, U 554, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Acharjee S, Do-Rego JL, Oh DY, Oh DY, Ahn RS, Choe H, Vaudry H, Kim K, Seong JY, Kwon HB. Identification of Amino Acid Residues That Direct Differential Ligand Selectivity of Mammalian and Nonmammalian V1a Type Receptors for Arginine Vasopressin and Vasotocin. J Biol Chem 2004; 279:54445-53. [PMID: 15475353 DOI: 10.1074/jbc.m408909200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arginine vasotocin (VT) is the ortholog in all nonmammalian vertebrates of arginine vasopressin (AVP) in mammals. We have previously cloned an amphibian V1atype vasotocin receptor (VT1R) that exhibited higher sensitivity for VT than AVP, while the mammalian V1a type receptor (V1aR) responded better to AVP than VT. In the present study, we identified the amino acid residues that confer differential ligand selectivity for AVP and VT between rat V1aR and bullfrog VT1R (bfVT1R). A chimeric rat V1aR having transmembrane domain (TMD) VI to the carboxyl-terminal tail (C-tail) of bfVT1R showed a reverse ligand preference for AVP and VT, whereas a chimeric VT1R with TMD VI to the C-tail of rat V1aR showed a great increase in sensitivity for AVP. A single mutation (Ile(315(6.53)) to Thr) in TMD VI of V1aR increased the sensitivity for VT, while a single mutation (Phe(313(6.51)) to Tyr or Pro(334(7.33)) to Thr) reduced sensitivity toward AVP. Interestingly the triple mutation (Phe(313(6.51)) to Tyr, Ile(6.53) to Thr, and Pro(7.33) to Thr) of V1aR increased sensitivity to VT but greatly reduced sensitivity to AVP, behaving like bfVT1R. Further, like V1aR, a double mutant (Tyr(306(6.51)) to Phe and Thr(327(7.33)) to Pro) of bfVT1R showed an increased sensitivity to AVP. These results suggest that Phe/Tyr(6.51), Ile/Thr(6.53), and Pro/Thr(7.33) are responsible for the differential ligand selectivity between rat V1aR and bfVT1R. This information regarding the molecular interaction of VT/AVP with their receptors may have important implications for the development of novel AVP analogs.
Collapse
Affiliation(s)
- Sujata Acharjee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Derick S, Pena A, Durroux T, Wagnon J, Serradeil-Le Gal C, Hibert M, Rognan D, Guillon G. Key Amino Acids Located within the Transmembrane Domains 5 and 7 Account for the Pharmacological Specificity of the Human V1b Vasopressin Receptor. Mol Endocrinol 2004; 18:2777-89. [PMID: 15284336 DOI: 10.1210/me.2004-0124] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In mammals, the vasopressin V(1b) receptor (V(1b)-R) is known to regulate ACTH secretion and, more recently, stress and anxiety. The characterization of the molecular determinant responsible for its pharmacological selectivity was made possible by the recent discovery of the first V(1b) antagonist, SSR149415. Based upon the structure of the crystallized bovine rhodopsin, we established a three-dimensional molecular model of interaction between the human V(1b)-R (hV(1b)-R) and SSR149415. Four amino acids located in distinct transmembrane helices (fourth, fifth, and seventh) were found potentially responsible for the hV(1b)-R selectivity. To validate these assumptions, we selectively replaced the leucine 181, methionine 220, alanine 334, and serine 338 residues of hV(1a)-R by their corresponding amino acids present in the hV(1b)-R (phenylalanine 164, threonine 203, methionine 324, and asparagine 328, respectively). Four mutants, which all exhibited nanomolar affinities for vasopressin and good coupling to phospholipase C pathway, were generated. hV(1a) receptors mutated at position 220 and 334 exhibited striking increase in affinity for SSR149415 both in binding and phospholipase C assays at variance with the hV(1a)-R modified at position 181 or 338. In conclusion, this study provides the first structural features concerning the hV(1b)-R and highlights the role of few specific residues in its pharmacological selectivity.
Collapse
Affiliation(s)
- S Derick
- Institut National de la Santé et de la Recherche Médicale, Unité 469, 141 rue de la Cardonille, 34094 Montpellier, Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tahtaoui C, Balestre MN, Klotz P, Rognan D, Barberis C, Mouillac B, Hibert M. Identification of the binding sites of the SR49059 nonpeptide antagonist into the V1a vasopressin receptor using sulfydryl-reactive ligands and cysteine mutants as chemical sensors. J Biol Chem 2003; 278:40010-9. [PMID: 12869559 DOI: 10.1074/jbc.m301128200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify the binding site of the human V1a vasopressin receptor for the selective nonpeptide antagonist SR49059, we have developed a site-directed irreversible labeling strategy that combines mutagenesis of the receptor and use of sulfydryl-reactive ligands. Based on a three-dimensional model of the antagonist docked into the receptor, hypothetical ligand-receptor interactions were investigated by replacing the residues potentially involved in the binding of the antagonist into cysteines and designing analogues of SR49059 derivatized with isothiocyanate or alpha-chloroacetamide moieties. The F225C, F308C, and K128C mutants of the V1a receptor were expressed in COS-7 or Chinese hamster ovary cells, and their pharmacological properties toward SR49059 and its sulfydryl-reactive analogues were analyzed. We demonstrated that treatment of the F225C mutant with the isothiocyanate-derivative compound led to dose-dependent inhibition of the residual binding of the radio-labeled antagonist [125I]HO-LVA. This inhibition is probably the consequence of a covalent irreversible chemical modification, which is only possible when close contacts and optimal orientations exist between reactive groups created both on the ligand and the receptor. This result validated the three-dimensional model hypothesis. Thus, we propose that residue Phe225, located in transmembrane domain V, directly participates in the binding of the V1a-selective nonpeptide antagonist SR49059. This conclusion is in complete agreement with all our previous data on the definition of the agonist/antagonist binding to members of the oxytocin/vasopressin receptor family.
Collapse
Affiliation(s)
- Chouaïb Tahtaoui
- Laboratoire de Pharmacochimie de la Communication Cellulaire, UMR 7081 CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Déméné H, Granier S, Muller D, Guillon G, Dufour MN, Delsuc MA, Hibert M, Pascal R, Mendre C. Active peptidic mimics of the second intracellular loop of the V(1A) vasopressin receptor are structurally related to the second intracellular rhodopsin loop: a combined 1H NMR and biochemical study. Biochemistry 2003; 42:8204-13. [PMID: 12846569 DOI: 10.1021/bi027358n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vasopressin (VP) receptors belong to the widespread G protein-coupled receptor family. The crucial role of VP receptor intracellular loops in the coupling with the heterotrimeric G proteins was previously demonstrated by construction of a vasopressin receptor chimera. Yet, no fine structural data are available concerning the receptor molecular determinants involved in their interactions with G proteins. In this study, we synthesized both a linear and a cyclic form of the second intracellular loop (i2) of the human V(1a) vasopressin receptor isoform that is important for the interaction between the alphaq/alpha11 G protein and the receptor. These two peptides are biologically active. They specifically inhibit vasopressin binding to the V(1a) receptor, suggesting that the corresponding endogenous peptides contribute to the structure of the vasopressin binding site via intra- or intermolecular interactions with the core of the V(1a) receptor. The i2 peptide structures were determined by (1)H NMR. Both exhibit a helix and helical elements in their N- and C-terminal parts, respectively, separated by a turn imposed by a proline residue. More interestingly, the central Pro-Leu motif conserved in many GPCRs and thought to be important for coupling to G proteins can adopt different conformations. The "U" shape structure of the i2 loop is compatible with its anchoring to transmembrane domains III and IV and is very similar to the shape of bovine rhodopsin i2. Altogether, these data contribute to a better understanding of the structure of a not yet crystallized GPCR using the mimetic peptide approach.
Collapse
Affiliation(s)
- Hélène Déméné
- Centre de Biochimie Structurale, UMR 5048 CNRS-UM1/UMR 554 INSERM-UM1, 29, rue de Navacelles, 34060 Montpellier Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mouillac B, Sen T, Durroux T, Gaibelet G, Barberis C. Expression of human vasopressin and oxytocin receptors in Escherichia coli. PROGRESS IN BRAIN RESEARCH 2002; 139:163-77. [PMID: 12436934 DOI: 10.1016/s0079-6123(02)39015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
In order to produce large amounts of human vasopressin and oxytocin receptors compatible with direct structural biology approaches such as X-ray crystallography, NMR or mass spectrometry, we have expressed these neurohypophysial hormone receptors in Escherichia coli. To facilitate the level of expression, the coding sequence for the V1a vasopressin receptor and the oxytocin receptor were first optimized for bacterial expression. The resulting 'bacterial receptor cDNAs' were then subcloned into pET/T7-driven prokaryotic expression vectors. Different constructs have been prepared: each cDNA was incorporated alone or in fusion with a T7 tag sequence or a glutathione-S-transferase tag sequence at the N-terminus end. Moreover, a 6 x His tag sequence has been added at the C-terminus end for one-step purification of the receptors. Screening of BL21(DE3) and BL21(DE3)pLysS bacterial strains transformed with the different constructions was achieved by Coomassie blue-stained SDS-polyacrylamide gels and by 6 x His antibody Western blotting. Several clones were selected for purification of the receptors. Expression levels of the receptors are now encouraging and will be optimized for further structural and functional studies. Moreover, at the same time, the construction of the bacterial-optimized sequence of the V2 vasopressin receptor and its expression will be performed.
Collapse
Affiliation(s)
- Bernard Mouillac
- INSERM U469, 141 rue de la Cardonille, 34094 Montpellier, France.
| | | | | | | | | |
Collapse
|
20
|
Yahalom D, Wittelsberger A, Mierke DF, Rosenblatt M, Alexander JM, Chorev M. Identification of the principal binding site for RGD-containing ligands in the alpha(V)beta(3) integrin: a photoaffinity cross-linking study. Biochemistry 2002; 41:8321-31. [PMID: 12081480 DOI: 10.1021/bi025690t] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By superimposing data obtained by photo-cross-linking RGD-containing ligands to the human alpha(V)beta(3) integrin onto the crystal structure of the ectopic domain of this receptor (Xiong et al. (2001) Science 294, 339-345), we have identified the binding site for the RGD triad within this integrin. We synthesized three novel analogues of the 49-amino acid disintegrin, echistatin: [Bpa(21),Leu(28)]-, [Bpa(23),Leu(28)]-, and [Bpa(28)]echistatin. Each contains a photoreactive p-benzoyl-phenylalanyl (Bpa) residue in close proximity to the RGD motif which spans positions 24-26; together, the photoreactive positions flank the RGD motif. The analogues bind with high affinity to the purified recombinant alpha(V)beta(3) integrin, but very poorly to the closely related human alpha(IIb)beta(3) platelet integrin. While echistatin analogues containing Bpa in either position 23 or 28 cross-link specifically and almost exclusively to the beta(3) subunit of alpha(V)beta(3), [Bpa(21),Leu(28)]echistatin cross-links to both the alpha(V) and the beta(3) subunits, with cross-linking to the former favored. [Bpa(23),Leu(28)]echistatin cross-links 10-30 times more effectively than the other two analogues. We identified beta(3)[109-118] as the domain that encompasses the contact site for [Bpa(28)]echistatin. This domain is included in beta(3)[99-118] (Bitan et al. (2000) Biochemistry 39, 11014-11023), a previously identified contact domain for a cyclic RGD-containing heptapeptide with a benzophenone moiety in a position that is similar to the placement of the benzophenone in [Bpa(28)]echistatin relative to the RGD triad. Recently, we identified beta(3)[209-220] as the contact site for an echistatin analogue with a photoreactive group in position 45, near the C-terminus of echistatin (Scheibler et al. (2001) Biochemistry 40, 15117-14126). Taken together, these results support the hypothesis that the very high binding affinity of echistatin to alpha(V)beta(3) results from two distinct epitopes in the ligand, a site including the RGD triad and an auxiliary epitope at the C-terminus of echistatin. Combining our results from photoaffinity cross-linking studies with data now available from the recently published crystal structure of the ectopic domain of alpha(V)beta(3), we characterize the binding site for the RGD motif in this receptor.
Collapse
Affiliation(s)
- Dror Yahalom
- Bone and Mineral Metabolism Unit, Charles A. Dana and Thorndike Laboratories, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
21
|
Terrillon S, Cheng LL, Stoev S, Mouillac B, Barberis C, Manning M, Durroux T. Synthesis and characterization of fluorescent antagonists and agonists for human oxytocin and vasopressin V(1)(a) receptors. J Med Chem 2002; 45:2579-88. [PMID: 12036367 DOI: 10.1021/jm010526+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fluoresceinyl (Flu) group has been linked by an amide bond to the side chain amino group at position 8 of (a) two oxytocin (OT) antagonists, to give d(CH(2))(5)[Tyr(Me)(2),Thr(4),Orn(8)(5/6C-Flu),Tyr-NH(2)(9)]VT (Orn(8)(5/6C-Flu)OTA) (1) and desGly-NH(2),d(CH(2))(5)[D- Tyr(2),Thr(4),Orn(8)(5/6C-Flu)]VT (2), and (b) eight Lys(8) and Orn(8) analogues of potent OT agonists, to give d[Lys(8)(5/6C-Flu)]VT (3), d[Thr(4),Lys(8)(5/6C-Flu)]VT (4), [HO(1)][Lys(8)(5/6C-Flu)]VT (5), [HO(1)][Thr(4),Lys(8)(5/6C-Flu)]VT (6), d[Orn(8)(5/6C-Flu)]VT (7), d[Thr(4),Orn(8)(5/6C-Flu)]VT (8), [HO(1)][Orn(8)(5/6C-Flu)]VT (9), and [HO(1)][Thr(4),Orn(8)(5/6C-Flu)]VT (10). The tetramethylrhodamyl (Rhm) group was attached to the precursor peptide of 9 to give [HO(1)][Orn(8)(5/6C-Rhm)]VT (11). All 11 fluorescent peptides were evaluated in human OT and vasopressin V(1a) (vasoconstrictor), V(1b) (pituitary), and V(2) (antidiuretic) receptor binding and functional assays. With K(d) = 6.24, 217, >10000, and >10000 nM for the OT, V(1a), V(1b), and V(2) receptors, peptide 1 is a potent and selective fluorescent OT antagonist and may be useful for specifically labeling OT receptors while peptide 2 exhibits low affinities for all the receptors. The fluorescent peptides 3-10 are all very potent agonists for the human OT receptor. They exhibit the following K(d) values (nM) for the human OT, V(1a), V(1b), and V(2) receptors, respectively: (3) 0.29, 57, 124, >10000; (4) 1.8, 25.5, 150, >10000; (5) 0.34, 13.7, 66, nd (not determined); (6) 0.32, 17.3, 53, >10000; (7) 0.25, 107, 393, >10000; (8) 0.40, 30, 282, >10000; (9) 0.18, 12.2, 126, nd; (10) 0.17, 11.8, 87, >1000; (11) 0.092, 7.36, nd, nd. Peptide 7 exhibits both a high affinity and a high selectivity for human OT receptors. Peptides 7 and 11 were utilized to study the internalization of the OT receptor-ligand complex. Preliminary studies indicate that this process is similar to that observed for the vasopressin V(1a) receptor and differs from that observed for vasopressin V(2) receptors. Some or all of the fluorescent OT antagonists and agonists reported here are very promising new fluorescent ligands for labeling cells which express the human OT receptor and are also useful tools to follow endocytosis of the receptor-ligand complex.
Collapse
Affiliation(s)
- Sonia Terrillon
- INSERM U 469, 141 rue de la Cardonille, 34094 Montpellier CEDEX 5, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Scheibler L, Mierke DF, Bitan G, Rosenblatt M, Chorev M. Identification of a contact domain between echistatin and the integrin alpha(v)beta(3) by photoaffinity cross-linking. Biochemistry 2001; 40:15117-26. [PMID: 11735394 DOI: 10.1021/bi0109156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The integrin alpha(v)beta(3) is the major receptor mediating the attachment of osteoclasts to the extracellular matrix in bone and plays a critical role in bone resorption and bone remodeling. Most of the ligands interacting with the alpha(v)beta(3) receptor contain an Arg-Gly-Asp (RGD) motif. Recently, we have identified two small RGD peptides, containing a benzophenone moiety at either the carboxyl or amino terminus, that photo-cross-linked within the beta(3)[99-118] [Bitan, G., et al. (1999) Biochemistry 38, 3414-3420] or the beta(3)[167-171] [Bitan, G., et al. (2000) Biochemistry 39, 11014-11023] sequence, respectively, of the alpha(v)beta(3) receptor in a selective fashion. Here, we report the synthesis of a photoreactive analogue of echistatin (a 49-amino acid peptide), a potent RGD-containing antagonist of the alpha(v)beta(3) receptor both in vitro and in vivo. This bioactive analogue is substituted at position 45 with a p-benzoyl moiety (pBz(2)), located within the flexible C-terminal domain and removed 20 amino acid residues from the R(24)GD(26) triad. This C-terminal domain was reported to contribute to receptor binding affinity by acting as an auxiliary binding site. The radiolabeled (125)I-[Arg(35),Lys(45)(N(epsilon)-pBz(2))]-echistatin photo-cross-links effectively to a site within the beta(3)[209-220] sequence. Residues in this domain have been reported to be part of the metal ion-dependent adhesion site (MIDAS). Receptor fragments overlapping this domain were reported to bind to fibrinogen and block fibrinogen binding to alpha(IIb)beta(3), the platelet integrin receptor. Taken together, position 45 in echistatin, located within an auxiliary binding site in echistatin, cross-links to a site distinct from the two previously reported sites, beta(3)[99-118] and beta(3)[167-171], which cross-link to photophores flanking the RGD triad. These cross-linking data support the hypothesis that the ligand-bound conformation of the integrin beta(3) subunit differs from the known conformation of I domains.
Collapse
Affiliation(s)
- L Scheibler
- Division of Bone and Mineral Metabolism, Charles A. Dana and Thorndike Laboratories, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
23
|
Labrou NE, Bhogal N, Hurrell CR, Findlay JB. Interaction of Met297 in the seventh transmembrane segment of the tachykinin NK2 receptor with neurokinin A. J Biol Chem 2001; 276:37944-9. [PMID: 11489908 DOI: 10.1074/jbc.m106330200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the use of thiol chemistry to define specific and reversible disulfide interactions of Cys-substituted NK2 receptor mutants with analogues of neurokinin A (NKA) containing single cysteine substitutions. The NKA analogues were N-biotinylated to facilitate the rapid detection of covalent analogue-receptor interactions utilizing streptavidin reactivity. N-biotinyl-[Tyr1,Cys9]NKA, N-biotinyl-[Tyr1,Cys10]NKA were both found to reversibly disulfide bond to the NK2 receptor mutant Met297 --> Cys. This is consistent with the improved affinities of these particular analogues for the Met297 --> Cys receptor as compared with those for the wild-type and Met297 --> Leu receptors. In our three-dimensional model, Met297 occupies the equivalent position in helix 7 to the retinal binding Lys296 in rhodopsin. Binding of the NK2 receptor antagonist [3H]SR 48968 and of 125I-NKA was used to characterize additional receptor mutants. It seems that the aromatic residues Trp99 (helix 3), His198 (helix 5), Tyr266, His267, and Phe270 play an important role in NKA binding as structural determinants. The existence of overlapping SR 48968 and NKA binding sites is also evident. These data suggest that the peptide binding site of the NK2R is at least in part formed by residues buried deep within the transmembrane bundle and that this intramembranous binding domain may correspond to the binding sites for substantially smaller endogenous GPCR ligands.
Collapse
Affiliation(s)
- N E Labrou
- School of Biochemistry & Molecular Biology, The University of Leeds, Leeds, LS2 9JT United Kingdom
| | | | | | | |
Collapse
|
24
|
Carnazzi E, Aumelas A, Mouillac B, Breton C, Guillou L, Barberis C, Seyer R. Design, synthesis and pharmacological characterization of a potent radioiodinated and photoactivatable peptidic oxytocin antagonist. J Med Chem 2001; 44:3022-30. [PMID: 11520211 DOI: 10.1021/jm010125u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using a segment strategy, we have synthesized four iodinated photoactivatable cyclic peptidic ligands of oxytocin, bearing a beta-mercapto-betabeta-cyclopentamethylene propionic group (Pmp) on their N-terminus. All the syntheses were RP-HPLC monitored, and the compounds were HPLC purified. They were characterized by 1H NMR, MALDI-TOF, or FAB mass spectrometries. The affinities of Pmp-Tyr(Me)-Ile-Thr-Asn-Cys-Gly-Orn-Phe(3I,4N3)-NH2 (20), Pmp-Tyr-Ile-Thr-Asn-Cys-Gly-Orn-Phe(3I,4N3)-NH2 (21), Pmp-Tyr(Me)-Ile-Thr-Asn-Cys-Pro-Orn-Phe(3I,4N3)-NH2 (22), and Pmp-Tyr-Ile-Thr-Asn-Cys-Pro-Orn-Phe(3I,4N3)-NH2 (23) were evaluated as inhibition constants (K(i), in nM) for the human oxytocin receptor expressed in Chinese hamster ovary cells by displacement of a radioiodinated disulfide-cyclized antagonist (Elands et al. Eur. J. Pharmacol. 1987, 147, 197-207). The most potent of them, compound 22, was synthesized by another method in order to allow its radiolabeling by 125I. Its dissociation constant (K(d)) for the human oxytocin receptor, directly measured in saturation studies, was 0.25 +/- 0.04 nM, and its antagonist properties were determined by inactivation of phospholipase C, thus obtaining an inactivation constant (K(inact)) of 0.18 +/- 0.02 nM, evaluated by inositol phosphate accumulation. This compound is a very good tool for the mapping of peptidic antagonist binding sites in the human oxytocin receptor.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- CHO Cells
- Chromatography, High Pressure Liquid
- Cricetinae
- Drug Design
- Humans
- In Vitro Techniques
- Inositol Phosphates/biosynthesis
- Iodine Radioisotopes
- Magnetic Resonance Spectroscopy
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Photolysis
- Radioligand Assay
- Receptors, Oxytocin/antagonists & inhibitors
- Spectrometry, Mass, Fast Atom Bombardment
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Structure-Activity Relationship
Collapse
Affiliation(s)
- E Carnazzi
- CNRS UPR 9023 and INSERM U 469, CCIPE, 141, rue de la Cardonille, 34094 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Breton C, Chellil H, Kabbaj-Benmansour M, Carnazzi E, Seyer R, Phalipou S, Morin D, Durroux T, Zingg H, Barberis C, Mouillac B. Direct identification of human oxytocin receptor-binding domains using a photoactivatable cyclic peptide antagonist: comparison with the human V1a vasopressin receptor. J Biol Chem 2001; 276:26931-41. [PMID: 11337500 DOI: 10.1074/jbc.m102073200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding of the molecular determinants responsible for antagonist binding to the oxytocin receptor should provide important insights that facilitate rational design of potential therapeutic agents for the treatment of preterm labor. To study ligand/receptor interactions, we used a novel photosensitive radioiodinated antagonist of the human oxytocin receptor, d(CH(2))(5) [Tyr(Me)(2),Thr(4),Orn(8),Phe(3(125)I,4N(3))-NH(2)9]vasotocin. This ligand had an equivalent high affinity for human oxytocin and V(1a) vasopressin receptors expressed in Chinese hamster ovary cells. Taking advantage of this dual specificity, we conducted photoaffinity labeling experiments on both receptors. Photolabeled oxytocin and V(1a) receptors appeared as a unique protein band at 70-75 kDa and two labeled protein bands at 85-90 and 46 kDa, respectively. To identify contact sites between the antagonist and the receptors, the labeled 70-75- and the 46-kDa proteins were cleaved with CNBr and digested with Lys-C and Arg-C endoproteinases. The fragmentation patterns allowed the identification of a covalently labeled region in the oxytocin receptor transmembrane domain III consisting of the residues Leu(114)-Val(115)-Lys(116). Analysis of contact sites in the V(1a) receptor led to the identification of the homologous region consisting of the residues Val(126)-Val(127)-Lys(128). Binding domains were confirmed by mutation of several CNBr cleavage sites in the oxytocin receptor and of one Lys-C cleavage site in the V(1a) receptor. The results are in agreement with previous experimental data and three-dimensional models of agonist and antagonist binding to members of the oxytocin/vasopressin receptor family.
Collapse
Affiliation(s)
- C Breton
- U469 INSERM and the UPR 9023 CNRS, 141 rue de la Cardonille, 34094 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Modelling G-protein coupled receptors. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1380-7323(01)80010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of signal-transducing molecules known. They convey signals for light and many extracellular regulatory molecules. GPCRs have been found to be dysfunctional/dysregulated in a growing number of human diseases and have been estimated to be the targets of more than 30% of the drugs used in clinical medicine today. Thus, understanding how GPCRs function at the molecular level is an important goal of biological research. In order to understand function at this level, it is necessary to delineate the 3D structure of these receptors. Recently, the 3D structure of rhodopsin has been resolved, but in the absence of experimentally determined 3D structures of other GPCRs, a powerful approach is to construct a theoretical model for the receptor and refine it based on experimental results. Computer-generated models for many GPCRs have been constructed. In this article, we will review these studies. We will place the greatest emphasis on an iterative, bi-directional approach in which models are used to generate hypotheses that are tested by experimentation and the experimental findings are, in turn, used to refine the model. The success of this approach is due to the synergistic interaction between theory and experiment.
Collapse
Affiliation(s)
- M C Gershengorn
- Division of Molecular Medicine (M.C.G.), Department of Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
28
|
Bitan G, Scheibler L, Mierke DF, Rosenblatt M, Chorev M. Ligand-integrin alpha v beta 3 interaction determined by photoaffinity cross-linking: a challenge to the prevailing model. Biochemistry 2000; 39:11014-23. [PMID: 10998238 DOI: 10.1021/bi000877a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integrin alpha(V)beta(3) plays a crucial role in angiogenesis, apoptosis, and bone remodeling, mainly by interacting with matrix proteins through recognition of an Arg-Gly-Asp (RGD) motif. Recently, a small cyclic RGD-containing alpha(V)beta(3)-ligand possessing a C-terminal photoreactive group was photo-cross-linked within beta(3)[99-118], in the N-terminus of the beta(3) chain [Bitan G et al. (1999) Biochemistry 38, 3414-3420]. In this paper, a photoreactive group at the N-terminus of the RGD-ligand is shown to interact within beta(3)[167-171], approximately 60 residues C-terminal to the previously identified domain. On the basis of these findings, a model of the putative I-like domain of the beta(3) subunit, homologous to alpha(M)-, alpha(L)-, and alpha(2)-I-domains, reveals that the beta(3)[99-118] and beta(3)[167-171] contact sites are close to each other and are on the opposite side relative to the metal ion-dependent adhesion site (MIDAS) motif. These observations contradict the prevailing model that proposes proximity between metal- and RGD-binding sites on the I-like domain. Our data suggest that either the I-like domain structure predicted for beta(3) is incorrect, or there is no spatial proximity between the RGD-binding site and the MIDAS motif in the I-like domain. Our results indicate that the current models for ligand-receptor interaction should be revisited.
Collapse
Affiliation(s)
- G Bitan
- Division of Bone and Mineral Metabolism, Charles A. Dana and Thorndike Laboratories, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
29
|
Greenberg Z, Bisello A, Mierke DF, Rosenblatt M, Chorev M. Mapping the bimolecular interface of the parathyroid hormone (PTH)-PTH1 receptor complex: spatial proximity between Lys(27) (of the hormone principal binding domain) and leu(261) (of the first extracellular loop) of the human PTH1 receptor. Biochemistry 2000; 39:8142-52. [PMID: 10889020 DOI: 10.1021/bi000195n] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an effort to characterize the bimolecular interface between parathyroid hormone (PTH) and its human receptor PTH1-Rc (hPTH1-Rc), we previously identified two contact sites in the receptor: one for position 1 and another for position 13 (located at the ends of the principal activation domain) in PTH(1-34). The present study reports a third, novel "contact site" between hPTH1-Rc and Lys(27) of PTH(1-34). Lys(27) is located in the principal binding domain of the hormone (residues 25-34). The photoreactive PTH(1-34) analogue K27 contains a benzophenone (BP) moiety on Lys(27). The analogue binds to stably transfected HEK 293/C-21 cells (which express a high level of recombinant hPTH1-Rc) and stimulates adenylyl cyclase activity with a potency similar to PTH(1-34). In addition, (125)I-K27 cross-links effectively and specifically to the hPTH1-Rc. Enzymatic (Glu-C and Lys-C) and chemical (CNBr and BNPS-skatole) digestions of the photoconjugate between (125)I-K27 and hPTH1-Rc were performed. In addition, photoconjugates involving the bioactive mutants [L261M]- and [R262K]-hPTH1-Rc, transiently expressed in COS-7 cells, were also digested. The data obtained clearly identify L(261) or R(262) of the first extracellular loop of hPTH1-Rc as the contact site for Lys(27) in the hormone. On the basis of (i) the similarity in molecular mass between the CNBr digest of the (125)I-K27-[L261M]hPTH1-Rc conjugate and free (125)I-K27 and (ii) the failure to cross-link (125)I-K27 to a bioactive mutant receptor [L261A]hPTH1-Rc, we conclude that L(261) is the cross-linking site. These results provide the first demonstration of an interaction between the principal binding domain of PTH and the first extracellular loop of hPTH1-Rc. Revealing proximity of Lys(27) (in PTH) to L(261) (in hPTH1-Rc) provides additional insight into the nature of the ligand-receptor bimolecular interface and clearly illustrates that the extracellular loops of the receptor contribute to the specificity of the PTH-PTH1-Rc interaction. Taken together with previous studies, the new findings add important constraints on the possible positioning of the C-terminal helix of PTH (which contains the principal binding domain) relative to the first extracellular loop and the distal C-terminal helix of the large extracellular amino terminal domain of the PTH1-Rc.
Collapse
Affiliation(s)
- Z Greenberg
- Division of Bone and Mineral Metabolism, Charles A. Dana and Thorndike Laboratories, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
30
|
Cotte N, Balestre MN, Aumelas A, Mahé E, Phalipou S, Morin D, Hibert M, Manning M, Durroux T, Barberis C, Mouillac B. Conserved aromatic residues in the transmembrane region VI of the V1a vasopressin receptor differentiate agonist vs. antagonist ligand binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4253-63. [PMID: 10866830 DOI: 10.1046/j.1432-1033.2000.01472.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite their opposite effects on signal transduction, the nonapeptide hormone arginine-vasopressin (AVP) and its V1a receptor-selective cyclic peptide antagonist d(CH2)5[Tyr(Me)2]AVP display homologous primary structures, differing only at residues 1 and 2. These structural similarities led us to hypothesize that both ligands could interact with the same binding pocket in the V1a receptor. To determine receptor residues responsible for discriminating binding of agonist and antagonist ligands, we performed site-directed mutagenesis of conserved aromatic and hydrophilic residues as well as nonconserved residues, all located in the transmembrane binding pocket of the V1a receptor. Mutation of aromatic residues of transmembrane region VI (W304, F307, F308) reduced affinity for the d(CH2)5[Tyr(Me)2]AVP and markedly decreased affinity for the unrelated strongly hydrophobic V1a-selective nonpeptide antagonist SR 49059. Replacement of these aromatic residues had no effect on AVP binding, but increased AVP-induced coupling efficacy of the receptor for its G protein. Mutating hydrophilic residues Q108, K128 and Q185 in transmembrane regions II, III and IV, respectively, led to a decrease in affinity for both agonists and antagonists. Finally, the nonconserved residues T333 and A334 in transmembrane region VII, controlled the V1a/V2 binding selectivity for both nonpeptide and cyclic peptide antagonists. Thus, because conserved aromatic residues of the V1a receptor binding pocket seem essential for antagonists and do not contribute at all to the binding of agonists, we propose that these residues differentiate agonist vs. antagonist ligand binding.
Collapse
Affiliation(s)
- N Cotte
- INSERM U469, Montpellier, France; CNRS UMR 5048, INSERM U414, CBS, Faculté de Pharmacie, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chini B, Fanelli F. Molecular basis of ligand binding and receptor activation in the oxytocin and vasopressin receptor family. Exp Physiol 2000; 85 Spec No:59S-66S. [PMID: 10795907 DOI: 10.1111/j.1469-445x.2000.tb00008.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although it is now widely accepted that G-protein-coupled receptors exist in at least two allosteric states, inactive and active, and that the spontaneous equilibrium between the two is regulated by various events including the binding of specific agonists and antagonists, the molecular counterparts of these functionally different states are still poorly understood. In this paper, we review our current knowledge concerning the structure-function relationships of the oxytocin and vasopressin receptors, focusing in particular on the process of receptor activation. Using a combined approach of site-directed mutagenesis and molecular modelling, we investigated the molecular events leading to agonist-dependent and -independent receptor activation in the human oxytocin receptor. Our analysis allows us to propose that the active conformations of this receptor are characterised by similar rearrangements of its cytosolic regions that ultimately lead to the opening of a putative docking site for the G-protein. Furthermore, the dynamics of these motions are similar to that observed in the alpha1B-adrenergic receptor, thus suggesting that, although activated by different ligands, the process of receptor isomerization in these two receptors is regulated by the same cluster of highly conserved residues and that common molecular events are responsible for receptor activation in different G-protein-coupled receptors.
Collapse
Affiliation(s)
- B Chini
- CNR Cellular and Molecular Pharmacology Center, Department of Pharmacology, University of Milan, Italy.
| | | |
Collapse
|