1
|
Cong H, Li C, Wang Y, Zhang Y, Ma D, Li L, Jiang J. The Mechanism of Transcription Factor Swi6 in Regulating Growth and Pathogenicity of Ceratocystis fimbriata: Insights from Non-Targeted Metabolomics. Microorganisms 2023; 11:2666. [PMID: 38004677 PMCID: PMC10673406 DOI: 10.3390/microorganisms11112666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Ceratocystis fimbriata (C. fimbriata) is a notorious pathogenic fungus that causes sweet potato black rot disease. The APSES transcription factor Swi6 in fungi is located downstream of the cell wall integrity (CWI)-mitogen-activated protein kinase (MAPK) signaling pathway and has been identified to be involved in cell wall integrity and virulence in several filamentous pathogenic fungi. However, the specific mechanisms by which Swi6 regulates the growth and pathogenicity of plant pathogenic fungi remain elusive. In this study, the SWI6 deletion mutants and complemented strains of C. fimbriata were generated. Deletion of Swi6 in C. fimbriata resulted in aberrant growth patterns. Pathogenicity assays on sweet potato storage roots revealed a significant decrease in virulence in the mutant. Non-targeted metabolomic analysis using LC-MS identified a total of 692 potential differentially accumulated metabolites (PDAMs) in the ∆Cfswi6 mutant compared to the wild type, and the results of KEGG enrichment analysis demonstrated significant enrichment of PDAMs within various metabolic pathways, including amino acid metabolism, lipid metabolism, nucleotide metabolism, GPI-anchored protein synthesis, and ABC transporter metabolism. These metabolic pathways were believed to play a crucial role in mediating the growth and pathogenicity of C. fimbriata through the regulation of CWI. Firstly, the deletion of the SWI6 gene led to abnormal amino acid and lipid metabolism, potentially exacerbating energy storage imbalance. Secondly, significant enrichment of metabolites related to GPI-anchored protein biosynthesis implied compromised cell wall integrity. Lastly, disruption of ABC transport protein metabolism may hinder intracellular transmembrane transport. Importantly, this study represents the first investigation into the potential regulatory mechanisms of SWI6 in plant filamentous pathogenic fungi from a metabolic perspective. The findings provide novel insights into the role of SWI6 in the growth and virulence of C. fimbriata, highlighting its potential as a target for controlling this pathogen.
Collapse
Affiliation(s)
- Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Daifu Ma
- Chinese Academy of Agricultural Sciences Sweet Potato Research Institute, Xuzhou 221131, China;
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (H.C.); (C.L.); (Y.W.); (Y.Z.)
| |
Collapse
|
2
|
Yue J, Huang R, Lan Z, Xiao B, Luo Z. Abnormal glycosylation in glioma: related changes in biology, biomarkers and targeted therapy. Biomark Res 2023; 11:54. [PMID: 37231524 DOI: 10.1186/s40364-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Glioma is a rapidly growing and aggressive primary malignant tumor of the central nervous system that can diffusely invade the brain tissue around, and the prognosis of patients is not significantly improved by traditional treatments. One of the most general posttranslational modifications of proteins is glycosylation, and the abnormal distribution of this modification in gliomas may shed light on how it affects biological behaviors of glioma cells, including proliferation, migration, and invasion, which may be produced by regulating protein function, cell-matrix and cell‒cell interactions, and affecting receptor downstream pathways. In this paper, from the perspective of regulating protein glycosylation changes and abnormal expression of glycosylation-related proteins (such as glycosyltransferases in gliomas), we summarize how glycosylation may play a crucial role in the discovery of novel biomarkers and new targeted treatment options for gliomas. Overall, the mechanistic basis of abnormal glycosylation affecting glioma progression remains to be more widely and deeply explored, which not only helps to inspire researchers to further explore related diagnostic and prognostic markers but also provides ideas for discovering effective treatment strategies and improving glioma patient survival and prognosis.
Collapse
Affiliation(s)
- Juan Yue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, 100730, Beijing, China
| | - Zehao Lan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China.
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China.
| |
Collapse
|
3
|
Lin Q, Pei L, Zhao Z, Zhuang X, Qin H. Glycoprotein α-Subunit of Glucosidase II (GIIα) is a novel prognostic biomarker correlated with unfavorable outcome of urothelial carcinoma. BMC Cancer 2022; 22:817. [PMID: 35879690 PMCID: PMC9316353 DOI: 10.1186/s12885-022-09884-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Urothelial carcinoma (UC) is among the most prevalent malignancies. The muscle-invasive bladder cancer (MIBC) shows an invasive feature and has poor prognosis, while the non-muscle invasive bladder cancer (NMIBC) shows a better prognosis as compared with the MIBC. However, a significant proportion (10%–30%) of NMIBC cases progress to MIBC. Identification of efficient biomarkers for the prediction of the course of UC remains challenging nowadays. Recently, there is an emerging study showed that post-translational modifications (PTMs) by glycosylation is an important process correlated with tumor angiogenesis, invasion and metastasis. Herein, we reported a data-driven discovery and experimental validation of GANAB, a key regulator of glycosylation, as a novel prognostic marker in UC. Methods In the present study, we conducted immunohistochemistry (IHC) assay to evaluate the correlation between the expression levels of GANAB protein and the prognosis of UC in our cohort of 107 samples using whole slide image (WSI) analysis. In vitro experiments using RNAi were also conducted to investigate the biological functions of GANAB in UC cell lines. Results We observed that positive GANAB protein expression was significantly correlated with poor prognosis of UC in our cohort, with p-value of 0.0017 in Log-rank test. Notably, tumor cells at the invasive front of the tumor margin showed stronger GANAB expression than the tumor cells inside the tumor body in UCs. We further validated that the elevated expression levels of GANAB were significantly correlated with high grade tumors (p-values of 1.72 × 10–10), advanced stages (6.47 × 10–6), and elevated in luminal molecular subtypes. Moreover, knocking-down GANAB using RNAi in UM-UC-3 and T24 cells inhibited cell proliferation and migration in vitro. Knockdown of GANAB resulted in cell cycle arrest at G1 phase. We demonstrated that GANAB mediated HIF1A and ATF6 transcriptional activation in the ER stress signaling, and regulated the gene expression of cell cycle-related transcriptional factors E2F7 and FOXM1. Conclusions The elevated expression of GANAB is a novel indicator of poorer prognosis of UC. Our data suggests that GANAB is not only a new and promising prognostic biomarker for UC, but also may provide important cues for the development of PTM-based therapeutics for UC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09884-8.
Collapse
Affiliation(s)
- Qiongqiong Lin
- Department of Pathology, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Pei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Zhiguang Zhao
- Department of Pathology, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoping Zhuang
- Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China. .,Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
5
|
The in silico characterization of neutral alpha-glucosidase C (GANC) and its evolution from GANAB. Gene X 2020; 726:144192. [DOI: 10.1016/j.gene.2019.144192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 07/26/2019] [Accepted: 10/20/2019] [Indexed: 11/21/2022] Open
|
6
|
PRKCSH contributes to tumorigenesis by selective boosting of IRE1 signaling pathway. Nat Commun 2019; 10:3185. [PMID: 31320625 PMCID: PMC6639383 DOI: 10.1038/s41467-019-11019-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive mechanism that aims at restoring ER homeostasis under severe environmental stress. Malignant cells are resistant to environmental stress, which is largely due to an activated UPR. However, the molecular mechanisms by which different UPR branches are selectively controlled in tumor cells are not clearly understood. Here, we provide evidence that PRKCSH, previously known as glucosidase II beta subunit, functions as a regulator for selective activation of the IRE1α branch of UPR. PRKCSH boosts ER stress–mediated autophosphorylation and oligomerization of IRE1α through mutual interaction. PRKCSH contributes to the induction of tumor-promoting factors and to tumor resistance to ER stress. Increased levels of PRKCSH in various tumor tissues are positively correlated with the expression of XBP1-target genes. Taken together, our data provide a molecular rationale for selective activation of the IRE1α branch in tumors and adaptation of tumor cells to severe environmental stress. Cancer cells utilise the unfolded protein response (UPR) to adapt to environmental and ER stress. Here, the authors show that the glycosidase II beta subunit, PRKSCH, protects cancer cells from ER stress, by interacting with IRE1α and activating the IRE1α-XBP1 branch of the UPR.
Collapse
|
7
|
Gallo GL, Valko A, Aramburu SI, Etchegaray E, Völker C, Parodi AJ, D'Alessio C. Abrogation of glucosidase I-mediated glycoprotein deglucosylation results in a sick phenotype in fission yeasts: Model for the human MOGS-CDG disorder. J Biol Chem 2018; 293:19957-19973. [PMID: 30389790 DOI: 10.1074/jbc.ra118.004844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/30/2018] [Indexed: 11/06/2022] Open
Abstract
Glucosidase I (GI) removes the outermost glucose from protein-linked Glc3Man9GlcNAc2 (G3M9) in the endoplasmic reticulum (ER). Individuals with congenital disorders of glycosylation MOGS-CDG bear mutations in the GI-encoding gene (gls1). Although GI absence has been reported to produce lethality in Schizosaccharomyces pombe yeasts, here we obtained two viable Δgls1 mutants, one with a very sick but not lethal phenotype (Δgls1-S) and the other with a healthier one (Δgls1-H). The sick strain displayed only G3M9 as an ER protein-linked oligosaccharide, whereas the healthier strain had both G3M9 and Man9GlcNAc2 The lipid-linked oligosaccharide patterns of the two strains revealed that the most abundantly formed glycans were G3M9 in Δgls1-S and Glc2Man9GlcNAc2 in Δgls1-H, suggesting reduced Alg10p glucosyltransferase activity in the Δgls1-H strain. A mutation in the alg10 + gene was indeed observed in this strain. Our results indicated that abrogated G3M9 deglucosylation was responsible for the severe defects observed in Δgls1-S cells. Further studies disclosed that the defects could not be ascribed to disruption of glycoprotein entrance into calnexin-folding cycles, inhibition of the oligosaccharyltransferase by transfer reaction products, or reduced proteasomal degradation of misfolded glycoproteins. Lack of triglucosylated glycoprotein deglucosylation neither significantly prevented glycan elongation in the Golgi nor modified the overall cell wall monosaccharide composition. Nevertheless, it resulted in a distorted cell wall and in the absence of underlying ER membranes. Furthermore, Golgi expression of human endomannosidase partially restored normal growth in Δgls1-S cells. We propose that accumulation of G3M9-bearing glycoproteins is toxic and at least partially responsible for defects observed in MOGS-CDG.
Collapse
Affiliation(s)
- Giovanna L Gallo
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Ayelén Valko
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Sofía I Aramburu
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Emiliana Etchegaray
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Christof Völker
- the Institute of Biochemistry and Molecular Biology Medical Faculty, University of Bonn, 53115 Bonn, Germany, and
| | - Armando J Parodi
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine
| | - Cecilia D'Alessio
- From the Fundación Instituto Leloir-IIBBA, CONICET, Buenos Aires C1405BWE, Argentine,; the Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentine.
| |
Collapse
|
8
|
Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 2016; 147:269-284. [DOI: 10.1007/s00418-016-1513-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 02/03/2023]
|
9
|
Li M, Liu X, Liu Z, Sun Y, Liu M, Wang X, Zhang H, Zheng X, Zhang Z. Glycoside Hydrolase MoGls2 Controls Asexual/Sexual Development, Cell Wall Integrity and Infectious Growth in the Rice Blast Fungus. PLoS One 2016; 11:e0162243. [PMID: 27607237 PMCID: PMC5015852 DOI: 10.1371/journal.pone.0162243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/21/2016] [Indexed: 11/18/2022] Open
Abstract
N-linked glycosylation is a way of glycosylation for newly synthesized protein, which plays a key role in the maturation and transport of proteins. Glycoside hydrolases (GHs) are essential in this process, and are involved in processing of N-linked glycoproteins or degradation of carbohydrate structures. Here, we identified and characterized MoGls2 in Magnaporthe oryzae, which is a yeast glucosidase II homolog Gls2 and is required for trimming the final glucose in N-linked glycans and normal cell wall synthesis. Target deletion of MoGLS2 in M. oryzae resulted in a reduced mycelial growth, an increased conidial production, delayed conidial germination and loss the ability of sexual reproduction. Pathogenicity assays revealed that the ΔMogls2 mutant showed significantly decreased in virulence and infectious growth. Further studies showed that the mutant was less sensitive to salt and osmotic stress, and increased sensitivity to cell wall stresses. Additionally, the ΔMogls2 mutant showed a defect in cell wall integrity. Our results indicate that MoGls2 is a key protein for the growth and development of M. oryzae, involving in the regulation of asexual/sexual development, stress response, cell wall integrity and infectious growth.
Collapse
Affiliation(s)
- Mengying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhixi Liu
- Agricultural Bureau of Ningxiang County, Changsha 410600, China
| | - Yi Sun
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaoli Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
- * E-mail:
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
10
|
Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, Edwards ME, Madsen CD, Mauritz SR, Banks CJ, Baheti S, Reddy B, Herrero JI, Bañales JM, Hogan MC, Tasic V, Watnick TJ, Chapman AB, Vigneau C, Lavainne F, Audrézet MP, Ferec C, Le Meur Y, Torres VE, Harris PC, Harris PC. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am J Hum Genet 2016; 98:1193-1207. [PMID: 27259053 DOI: 10.1016/j.ajhg.2016.05.004] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (∼85% and ∼15% of resolved cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD) with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%-10% of ADPKD-affected and ∼50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB, encoding glucosidase II subunit α (GIIα). Because PRKCSH encodes GIIβ, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD. Analysis of GANAB-null cells showed an absolute requirement of GIIα for maturation and surface and ciliary localization of the ADPKD proteins (PC1 and PC2), and reduced mature PC1 was seen in GANAB(+/-) cells. PC1 surface localization in GANAB(-/-) cells was rescued by wild-type, but not mutant, GIIα. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most likely driven by defects in PC1 maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Levy-Ontman O, Fisher M, Shotland Y, Tekoah Y, Malis Arad S. Insight into glucosidase II from the red marine microalga Porphyridium sp. (Rhodophyta). JOURNAL OF PHYCOLOGY 2015; 51:1075-87. [PMID: 26987003 DOI: 10.1111/jpy.12341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/29/2015] [Indexed: 05/21/2023]
Abstract
N-glycosylation of proteins is one of the most important post-translational modifications that occur in various organisms, and is of utmost importance for protein function, stability, secretion, and loca-lization. Although the N-linked glycosylation pathway of proteins has been extensively characterized in mammals and plants, not much information is available regarding the N-glycosylation pathway in algae. We studied the α 1,3-glucosidase glucosidase II (GANAB) glycoenzyme in a red marine microalga Porphyridium sp. (Rhodophyta) using bioinformatic and biochemical approaches. The GANAB-gene was found to be highly conserved evolutionarily (compo-sed of all the common features of α and β subunits) and to exhibit similar motifs consistent with that of homolog eukaryotes GANAB genes. Phylogenetic analysis revealed its wide distribution across an evolutionarily vast range of organisms; while the α subunit is highly conserved and its phylogenic tree is similar to the taxon evolutionary tree, the β subunit is less conserved and its pattern somewhat differs from the taxon tree. In addition, the activity of the red microalgal GANAB enzyme was studied, including functional and biochemical characterization using a bioassay, indicating that the enzyme is similar to other eukaryotes ortholog GANAB enzymes. A correlation between polysaccharide production and GANAB activity, indicating its involvement in polysaccharide biosynthesis, is also demonstrated. This study represents a valuable contribution toward understanding the N-glycosylation and polysaccharide biosynthesis pathways in red microalgae.
Collapse
Affiliation(s)
- Oshrat Levy-Ontman
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, 8410001, Israel
| | - Merav Fisher
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Yoram Shotland
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, 8410001, Israel
| | - Yoram Tekoah
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Protalix Biotherapeutics, Carmiel, 2161401, Israel
| | - Shoshana Malis Arad
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
12
|
D'Alessio C, Dahms NM. Glucosidase II and MRH-domain containing proteins in the secretory pathway. Curr Protein Pept Sci 2015; 16:31-48. [PMID: 25692846 DOI: 10.2174/1389203716666150213160438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/25/2014] [Accepted: 11/13/2014] [Indexed: 12/24/2022]
Abstract
N-glycosylation in the endoplasmic reticulum (ER) consists of the transfer of a preassembled glycan conserved among species (Glc3Man9GlcNAc2) from a lipid donor to a consensus sequence within a nascent protein that is entering the ER. The protein-linked glycans are then processed by glycosidases and glycosyltransferases in the ER producing specific structures that serve as signalling molecules for the fate of the folding glycoprotein: to stay in the ER during the folding process, to be retrotranslocated to the cytosol for proteasomal degradation if irreversibly misfolded, or to pursue transit through the secretory pathway as a mature glycoprotein. In the ER, each glycan signalling structure is recognized by a specific lectin. A domain similar to that of the mannose 6-phosphate receptors (MPRs) has been identified in several proteins of the secretory pathway. These include the beta subunit of glucosidase II (GII), a key enzyme in the early processing of the transferred glycan that removes middle and innermost glucoses and is involved in quality control of glycoprotein folding in the ER (QC), the lectins OS-9 and XTP3-B, proteins involved in the delivery of ER misfolded proteins to degradation (ERAD), the gamma subunit of the Golgi GlcNAc-1-phosphotransferase, an enzyme involved in generating the mannose 6-phosphate (M6P) signal for sorting acidic hydrolases to lysosomes, and finally the MPRs that deliver those hydrolytic enzymes to the lysosome. Each of the MRH-containing proteins recognizes a different signalling N-glycan structure. Three-dimensional structures of some of the MRH domains have been solved, providing the basis to understand recognition mechanisms.
Collapse
Affiliation(s)
| | - Nancy M Dahms
- Laboratory of Glycobiology, Fundación Instituto Leloir - Instituto de Investigaciones Bioquimicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina, and School of Sciences, University of Buenos Aires, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells. PLoS One 2015; 10:e0132439. [PMID: 26176704 PMCID: PMC4503536 DOI: 10.1371/journal.pone.0132439] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/16/2015] [Indexed: 02/02/2023] Open
Abstract
Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary’s bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary’s anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed.
Collapse
|
14
|
Anji A, Miller H, Raman C, Phillips M, Ciment G, Kumari M. Expression of α-subunit of α-glucosidase II in adult mouse brain regions and selected organs. J Neurosci Res 2014; 93:82-93. [PMID: 25131991 DOI: 10.1002/jnr.23470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/22/2014] [Accepted: 07/16/2014] [Indexed: 01/14/2023]
Abstract
α-Glucosidase II (GII), a resident of endoplasmic reticulum (ER) and an important enzyme in the folding of nascent glycoproteins, is heterodimeric, consisting of α (GIIα) and β (GIIβ) subunits. The catalytic GIIα subunit, with the help of mannose 6-phosphate receptor homology domain of GIIβ, sequentially hydrolyzes two α1-3-linked glucose residues in the second step of N-linked oligosaccharide-mediated protein folding. The soluble GIIα subunit is retained in the ER through its interaction with the HDEL-containing GIIβ subunit. N-glycosylation and correct protein folding are crucial for protein stability and trafficking and cell surface expression of several proteins in the brain. Alterations in N-glycosylation lead to abnormalities in neuronal migration and mental retardation, various neurodegenerative diseases, and invasion of malignant gliomas. Inhibitors of GII are used to inhibit cell proliferation and migration in a variety of different pathologies, such as viral infection, cancer, and diabetes. Despite the widespread use of GIIα inhibitory drugs and the role of GIIα in brain function, little is known about its expression in brain and other tissues. Here, we report generation of a highly specific chicken antibody to the GIIα subunit and its characterization by Western blotting and immunoprecipitation using cerebral cortical extracts. By using this antibody, we showed that the GIIα protein is highly expressed in testis, kidney, and lung, with the lowest amount in heart. GIIα polypeptide levels in whole brain were comparable to those in spleen. However, a higher expression of GIIα protein was detected in the cerebral cortex, reflecting its continuous requirement in correct folding of cell surface proteins.
Collapse
Affiliation(s)
- Antje Anji
- Department of Anatomy and Physiology, CVM, Kansas State University, Manhattan, Kansas
| | | | | | | | | | | |
Collapse
|
15
|
Xiong Y, Coradetti ST, Li X, Gritsenko MA, Clauss T, Petyuk V, Camp D, Smith R, Cate JHD, Yang F, Glass NL. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation. Fungal Genet Biol 2014; 72:21-33. [PMID: 24881580 DOI: 10.1016/j.fgb.2014.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 12/15/2022]
Abstract
Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ)-based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium vs sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Samuel T Coradetti
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xin Li
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | | | - Therese Clauss
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vlad Petyuk
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David Camp
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard Smith
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jamie H D Cate
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, CA, USA
| | - Feng Yang
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
16
|
Olson LJ, Orsi R, Alculumbre SG, Peterson FC, Stigliano ID, Parodi AJ, D'Alessio C, Dahms NM. Structure of the lectin mannose 6-phosphate receptor homology (MRH) domain of glucosidase II, an enzyme that regulates glycoprotein folding quality control in the endoplasmic reticulum. J Biol Chem 2013; 288:16460-16475. [PMID: 23609449 DOI: 10.1074/jbc.m113.450239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Here we report for the first time the three-dimensional structure of a mannose 6-phosphate receptor homology (MRH) domain present in a protein with enzymatic activity, glucosidase II (GII). GII is involved in glycoprotein folding in the endoplasmic reticulum. GII removes the two innermost glucose residues from the Glc3Man9GlcNAc2 transferred to nascent proteins and the glucose added by UDP-Glc:glycoprotein glucosyltransferase. GII is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit. GIIβ participates in the endoplasmic reticulum localization of GIIα and mediates in vivo enhancement of N-glycan trimming by GII through its C-terminal MRH domain. We determined the structure of a functional GIIβ MRH domain by NMR spectroscopy. It adopts a β-barrel fold similar to that of other MRH domains, but its binding pocket is the most shallow known to date as it accommodates a single mannose residue. In addition, we identified a conserved residue outside the binding pocket (Trp-409) present in GIIβ but not in other MRHs that influences GII glucose trimming activity.
Collapse
Affiliation(s)
- Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ramiro Orsi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Solana G Alculumbre
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Ivan D Stigliano
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Armando J Parodi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
| | - Cecilia D'Alessio
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina; School of Sciences, University of Buenos Aires, C1428EHA Buenos Aires, Argentina.
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
17
|
Kimmig P, Diaz M, Zheng J, Williams CC, Lang A, Aragón T, Li H, Walter P. The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis. eLife 2012; 1:e00048. [PMID: 23066505 PMCID: PMC3470409 DOI: 10.7554/elife.00048] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/23/2012] [Indexed: 01/19/2023] Open
Abstract
The unfolded protein response (UPR) monitors the protein folding capacity of the endoplasmic reticulum (ER). In all organisms analyzed to date, the UPR drives transcriptional programs that allow cells to cope with ER stress. The non-conventional splicing of Hac1 (yeasts) and XBP1 (metazoans) mRNA, encoding orthologous UPR transcription activators, is conserved and dependent on Ire1, an ER membrane-resident kinase/endoribonuclease. We found that the fission yeast Schizosaccharomyces pombe lacks both a Hac1/XBP1 ortholog and a UPR-dependent-transcriptional-program. Instead, Ire1 initiates the selective decay of a subset of ER-localized-mRNAs that is required to survive ER stress. We identified Bip1 mRNA, encoding a major ER-chaperone, as the sole mRNA cleaved upon Ire1 activation that escapes decay. Instead, truncation of its 3' UTR, including loss of its polyA tail, stabilized Bip1 mRNA, resulting in increased Bip1 translation. Thus, S. pombe uses a universally conserved stress-sensing machinery in novel ways to maintain homeostasis in the ER.DOI:http://dx.doi.org/10.7554/eLife.00048.001.
Collapse
Affiliation(s)
- Philipp Kimmig
- Department of Biochemistry and Biophysics , University of California, San Francisco , San Francisco , United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Robledo-Ortiz CI, Flores-Carreón A, Hernández-Cervantes A, Álvarez-Vargas A, Lee KK, Díaz-Jiménez DF, Munro CA, Cano-Canchola C, Mora-Montes HM. Isolation and functional characterization of Sporothrix schenckii ROT2, the encoding gene for the endoplasmic reticulum glucosidase II. Fungal Biol 2012; 116:910-8. [DOI: 10.1016/j.funbio.2012.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022]
|
19
|
De Pourcq K, Tiels P, Van Hecke A, Geysens S, Vervecken W, Callewaert N. Engineering Yarrowia lipolytica to produce glycoproteins homogeneously modified with the universal Man3GlcNAc2 N-glycan core. PLoS One 2012; 7:e39976. [PMID: 22768188 PMCID: PMC3386995 DOI: 10.1371/journal.pone.0039976] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/30/2012] [Indexed: 11/18/2022] Open
Abstract
Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as “generally recognized as safe.” Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man3GlcNAc2 structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man5GlcNAc2 and GlcMan5GlcNAc2 glycans, and to a lesser extent with Glc2Man5GlcNAc2 glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man3GlcNAc2 structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man3GlcNAc2), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.
Collapse
Affiliation(s)
- Karen De Pourcq
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Petra Tiels
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- L-Probe, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Annelies Van Hecke
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Geysens
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Oxyrane Belgium, Ghent, Belgium
| | - Wouter Vervecken
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Oxyrane Belgium, Ghent, Belgium
| | - Nico Callewaert
- Unit for Medical Biotechnology, Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- L-Probe, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
20
|
Purification and partial biochemical characterization of a membrane-bound type II-like α-glucosidase from the yeast morphotype of Sporothrix schenckii. Antonie van Leeuwenhoek 2011; 101:313-22. [DOI: 10.1007/s10482-011-9636-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/22/2011] [Indexed: 01/13/2023]
|
21
|
Chiu CC, Lin CY, Lee LY, Chen YJ, Lu YC, Wang HM, Liao CT, Chang JTC, Cheng AJ. Molecular chaperones as a common set of proteins that regulate the invasion phenotype of head and neck cancer. Clin Cancer Res 2011; 17:4629-41. [PMID: 21642380 DOI: 10.1158/1078-0432.ccr-10-2107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The goal of this study was to establish a common set of molecules that regulate cell invasion in head and neck cancer (HNC). EXPERIMENTAL DESIGN Five invasive sublines derived from HNC cell lines were established using the Matrigel selection method. Proteomic technology, MetaCore algorithm, and reverse transcriptase-PCR methods were used to search for molecules that contribute to the invasion phenotype. Cellular functional analyses and clinical association studies were applied to examine the significance of the molecules. RESULTS Fifty-two proteins were identified in more than two of the four independent proteomic experiments, including 10 (19%) molecular chaperones. Seven chaperones were confirmed to be differentially expressed in five sublines, Hsp90α, Hsp90β, Hsp90-B1/Gp96, Hsp70-A5/Grp78, and HYOU1, that upregulate, whereas Hsp60 and glucosidase-α neutral AB (GANAB) downregulate. Four molecules were further investigated. In all cell lines, knockdown of Hsp60 or GANAB and silencing of Gp96 or Grp78 considerably enhanced or reduced cell migration and invasion, respectively. Clinical association studies consistently revealed that low levels of Hsp60 or GANAB and high levels of Gp96 or Grp78 are significantly associated with advanced cancer (P < 0.001 to P = 0.047, respectively, for the four molecules) and poor survival (P < 0.001 to P = 0.025, respectively, for the four molecules). CONCLUSION Our study defined molecular chaperones as a common set of proteins that regulate the invasion phenotype of HNC. Loss of the tumor suppression function of Hsp60 or GANAB and acquisition of the oncogenic function of Gp96 or Grp78 contribute to aggressive cancers. These molecules may serve as prognostic markers and targets for cancer drug development.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Department of Medical Biotechnology, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stigliano ID, Alculumbre SG, Labriola CA, Parodi AJ, D'Alessio C. Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo. Mol Biol Cell 2011; 22:1810-23. [PMID: 21471007 PMCID: PMC3103398 DOI: 10.1091/mbc.e11-01-0019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A decrease in N-glycan mannose content significantly diminishes in vivo glucosidase II–mediated deglucosylation rates but does not affect in vivo UDP-glucose:glycoprotein glucosyltransferase–mediated glucosylation, thus increasing the possibility of displaying monoglucosylated structures able to interact with calnexin/calreticulin for longer time periods. Glucosidase II (GII) sequentially removes the two innermost glucose residues from the glycan (Glc3Man9GlcNAc2) transferred to proteins. GII also participates in cycles involving the lectin/chaperones calnexin (CNX) and calreticulin (CRT) as it removes the single glucose unit added to folding intermediates and misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase (UGGT). GII is a heterodimer in which the α subunit (GIIα) bears the active site, and the β subunit (GIIβ) modulates GIIα activity through its C-terminal mannose 6-phosphate receptor homologous (MRH) domain. Here we report that, as already described in cell-free assays, in live Schizosaccharomyces pombe cells a decrease in the number of mannoses in the glycan results in decreased GII activity. Contrary to previously reported cell-free experiments, however, no such effect was observed in vivo for UGGT. We propose that endoplasmic reticulum α-mannosidase–mediated N-glycan demannosylation of misfolded/slow-folding glycoproteins may favor their interaction with the lectin/chaperone CNX present in S. pombe by prolonging the half-lives of the monoglucosylated glycans (S. pombe lacks CRT). Moreover, we show that even N-glycans bearing five mannoses may interact in vivo with the GIIβ MRH domain and that the N-terminal GIIβ G2B domain is involved in the GIIα–GIIβ interaction. Finally, we report that protists that transfer glycans with low mannose content to proteins have nevertheless conserved the possibility of displaying relatively long-lived monoglucosylated glycans by expressing GIIβ MRH domains with a higher specificity for glycans with high mannose content.
Collapse
Affiliation(s)
- Ivan D Stigliano
- Laboratory of Glycobiology, Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, C1405BWE, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
23
|
Congenital fibrocystic liver diseases. Best Pract Res Clin Gastroenterol 2010; 24:573-84. [PMID: 20955960 DOI: 10.1016/j.bpg.2010.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 02/07/2023]
Abstract
Fibrocystic diseases affecting the liver and often also other organs like the kidneys are a clinically and genetically heterogeneous group of disorders that may present in utero or remain clinically silent into late adulthood. During recent years, substantial progress has been made in unravelling the aetiology with primary cilia playing a central pathogenic role in many if not all of these diseases. The fibrocystogenic process shares some common features including proliferation and dilatation of epithelial bile ducts with concomitant abnormal apoptosis, fluid secretion and extracellular matrix deposition. In this review, we summarise clinical and diagnostic aspects, mechanisms of hepatic cystogenesis, and recent knowledge on potential therapies for these conditions.
Collapse
|
24
|
von Numers N, Survila M, Aalto M, Batoux M, Heino P, Palva ET, Li J. Requirement of a homolog of glucosidase II beta-subunit for EFR-mediated defense signaling in Arabidopsis thaliana. MOLECULAR PLANT 2010; 3:740-750. [PMID: 20457640 DOI: 10.1093/mp/ssq017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
EFR is a plasma-membrane resident receptor responsible for recognition of microbial elongation factor Tu (EF-Tu) and thus triggering plant innate immunity to fend off phytopathogens. Functional EFR must be subject to the endoplasmic reticulum quality control (ERQC) machinery for the correct folding and proper assembly in order to reach its final destination. Genetic studies have demonstrated that ERD2b, a counterpart of the yeast or mammalian HDEL receptor ERD2 for retaining proteins in the endoplasmic reticulum (ER) lumen, is required for EFR function in plants (Li et al., 2009). In this study, we characterized the Arabidopsis glucosidase II beta-subunit via the HDEL motif against the non-redundant protein database. Data mining also revealed that the glucosidase II beta-subunit gene has a highly similar expression pattern to ERD2b and the other known ERQC components involved in EFR biogenesis. Importantly, the T-DNA insertion lines of the glucosidase II beta-subunit gene showed that EFR-controlled responses were substantially reduced or completely blocked in these mutants. The responses include seedling growth inhibition, induction of marker genes, MAP kinase activation, and callose deposition, triggered by peptide elf18, a full mimic of EF-Tu. Taken together, our data indicate a requirement of the glucosidase II beta-subunit for EFR function.
Collapse
Affiliation(s)
- Nina von Numers
- Division of Genetics, Department of Biosciences, Viikki Biocenter, University of Helsinki, POB 56, FIN-00014, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
25
|
Janssen MJ, Waanders E, Woudenberg J, Lefeber DJ, Drenth JPH. Congenital disorders of glycosylation in hepatology: the example of polycystic liver disease. J Hepatol 2010; 52:432-40. [PMID: 20138683 DOI: 10.1016/j.jhep.2009.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic liver disease (PCLD) is a rare progressive disorder characterized by an increased liver volume due to many (>20) fluid-filled cysts of biliary origin. Disease causing mutations in PRKCSH or SEC63 are found in approximately 25% of the PCLD patients. Both gene products function in the endoplasmic reticulum, however, the molecular mechanism behind cyst formation remains to be elucidated. As part of the translocon complex, SEC63 plays a role in protein import into the ER and is implicated in the export of unfolded proteins to the cytoplasm during ER-associated degradation (ERAD). PRKCSH codes for the beta-subunit of glucosidase II (hepatocystin), which cleaves two glucose residues of Glc(3)Man(9)GlcNAc(2) N-glycans on proteins. Hepatocystin is thereby directly involved in the protein folding process by regulating protein binding to calnexin/calreticulin in the ER. A separate group of genetic diseases affecting protein N-glycosylation in the ER is formed by the congenital disorders of glycosylation (CDG). In distinct subtypes of this autosomal recessive multisystem disease specific liver symptoms have been reported that overlap with PCLD. Recent research revealed novel insights in PCLD disease pathology such as the absence of hepatocystin from cyst epithelia indicating a two-hit model for PCLD cystogenesis. This opens the way to speculate about a recessive mechanism for PCLD pathophysiology and shared molecular pathways between CDG and PCLD. In this review we will discuss the clinical-genetic features of PCLD and CDG as well as their biochemical pathways with the aim to identify novel directions of research into cystogenesis.
Collapse
Affiliation(s)
- Manoe J Janssen
- Department of Gastroenterology and Hepatology, Institute for Genetic & Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Mora-Montes HM, Ponce-Noyola P, Villagómez-Castro JC, Gow NA, Flores-Carreón A, López-Romero E. Protein glycosylation in Candida. Future Microbiol 2010; 4:1167-83. [PMID: 19895219 DOI: 10.2217/fmb.09.88] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Candidiasis is a significant cause of invasive human mycosis with associated mortality rates that are equivalent to, or worse than, those cited for most cases of bacterial septicemia. As a result, considerable efforts are being made to understand how the fungus invades host cells and to identify new targets for fungal chemotherapy. This has led to an increasing interest in Candida glycobiology, with an emphasis on the identification of enzymes essential for glycoprotein and adhesion metabolism, and the role of N- and O-linked glycans in host recognition and virulence. Here, we refer to studies dealing with the identification and characterization of enzymes such as dolichol phosphate mannose synthase, dolichol phosphate glucose synthase and processing glycosidases and synthesis, structure and recognition of mannans and discuss recent findings in the context of Candida albicans pathogenesis.
Collapse
|
27
|
D'Alessio C, Caramelo JJ, Parodi AJ. UDP-GlC:glycoprotein glucosyltransferase-glucosidase II, the ying-yang of the ER quality control. Semin Cell Dev Biol 2010; 21:491-9. [PMID: 20045480 DOI: 10.1016/j.semcdb.2009.12.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 12/22/2022]
Abstract
The N-glycan-dependent quality control of glycoprotein folding prevents endoplasmic to Golgi exit of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones that recognize monoglucosylated polymannose glycans, a lectin-associated oxidoreductase acting on monoglucosylated glycoproteins, a glucosyltransferase that creates monoglucosytlated epitopes in protein-linked glycans and a glucosidase that removes the glucose units added by the glucosyltransferase. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded species or in not completely assembled complexes. The glucosidase is a dimeric heterodimer composed of a catalytic subunit and an additional one that is partially responsible for the ER localization of the enzyme and for the enhancement of the deglucosylation rate as its mannose 6-phosphate receptor homologous domain presents the substrate to the catalytic site. This review deals with our present knowledge on the glucosyltransferase and the glucosidase.
Collapse
Affiliation(s)
- Cecilia D'Alessio
- Laboratory of Glycobiology, Fundación Instituto Leloir, Avda. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | | | | |
Collapse
|
28
|
Torossi T, Guhl B, Roth J, Ziak M. Endomannosidase undergoes phosphorylation in the Golgi apparatus. Glycobiology 2009; 20:55-61. [PMID: 19759276 DOI: 10.1093/glycob/cwp142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glucose residues from N-linked oligosaccharides are removed by glucosidases I and II in the endoplasmic reticulum (ER) or by the alternate endomannosidase pathway in the Golgi apparatus. Our morphological analysis demonstrates that recombinant rat endomannosidase exhibited a cis- and medial-Golgi localization alike the endogenous enzyme and its ER to Golgi transport is COP II mediated. Recombinant endomannosidase undergoes a posttranslational modification, which is not related to N-or O-glycosylation. A shift in molecular mass of recombinant endomannosidase was observed upon phosphatase digestion but not for ER-retained CHO cell endomannosidase. Furthermore, immunoprecipitation of (35)S- and (33)P-labeled endomannosidase expressed in CHO-K1 cells suggests that recombinant endomannosidase undergoes phosphorylation. Substitution of the single cytoplasmic threonine residue of rat endomannosidase by either an alanine or valine residue resulted in the same posttranslational modification alike the wild-type enzyme. The subcellular localization and the in vivo activity of the mutant endomannosidase were not affected. Thus, endomannosidase phosphorylation is occurring in luminal sequences. Modification was prevented when endomannosidase was synthesized using reticulocyte lysates in the presence of canine microsomes. Treatment of cells with brefeldin A blocked the posttranslational modification of endomannosidase, suggesting that phosphorylation is occurring in the Golgi apparatus, the residence of endomannosidase.
Collapse
Affiliation(s)
- Tania Torossi
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zurich, CH-8091 Zurich, Switzerland
| | | | | | | |
Collapse
|
29
|
Hu D, Kamiya Y, Totani K, Kamiya D, Kawasaki N, Yamaguchi D, Matsuo I, Matsumoto N, Ito Y, Kato K, Yamamoto K. Sugar-binding activity of the MRH domain in the ER alpha-glucosidase II beta subunit is important for efficient glucose trimming. Glycobiology 2009; 19:1127-35. [PMID: 19625484 DOI: 10.1093/glycob/cwp104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glucosidase II (GII) is a glycan-processing enzyme that trims two alpha1,3-linked glucose residues from N-glycan on newly synthesized glycoproteins. Trimming of the first alpha1,3-linked glucose from Glc(2)Man(9)GlcNAc(2) (G2M9) is important for a glycoprotein to interact with calnexin/calreticulin (CNX/CRT), and cleavage of the innermost glucose from Glc(1)Man(9)GlcNAc(2) (G1M9) sets glycoproteins free from the CNX/CRT cycle and allows them to proceed to the Golgi apparatus. GII is a heterodimeric complex consisting of a catalytic alpha subunit (GIIalpha) and a tightly associated beta subunit (GIIbeta) that contains a mannose 6-phosphate receptor homology (MRH) domain. A recent study has suggested a possible involvement of the MRH domain of GIIbeta (GIIbeta-MRH) in the glucose trimming process via its putative sugar-binding activity. However, it remains unknown whether GIIbeta-MRH possesses sugar-binding activity and, if so, what role this activity plays in the function of GII. Here, we demonstrate that human GIIbeta-MRH binds to high-mannose-type glycans. Frontal affinity chromatography revealed that GIIbeta-MRH binds most strongly to the glycans with the alpha1,2-linked mannobiose structure. GII with the mutant GIIbeta that lost the sugar-binding activity of GIIbeta-MRH hydrolyzes p-nitrophenyl-alpha-glucopyranoside, but the capacity to remove glucose residues from G1M9 and G2M9 is significantly decreased. Our results clearly demonstrate the capacity of the GIIbeta-MRH to bind high-mannose-type glycans and its importance in efficient glucose trimming of N-glycans.
Collapse
Affiliation(s)
- Dan Hu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stigliano ID, Caramelo JJ, Labriola CA, Parodi AJ, D'Alessio C. Glucosidase II beta subunit modulates N-glycan trimming in fission yeasts and mammals. Mol Biol Cell 2009; 20:3974-84. [PMID: 19605557 DOI: 10.1091/mbc.e09-04-0316] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Glucosidase II (GII) plays a key role in glycoprotein biogenesis in the endoplasmic reticulum (ER). It is responsible for the sequential removal of the two innermost glucose residues from the glycan (Glc(3)Man(9)GlcNAc(2)) transferred to Asn residues in proteins. GII participates in the calnexin/calreticulin cycle; it removes the single glucose unit added to folding intermediates and misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. GII is a heterodimer whose alpha subunit (GIIalpha) bears the glycosyl hydrolase active site, whereas its beta subunit (GIIbeta) role is controversial and has been reported to be involved in GIIalpha ER retention and folding. Here, we report that in the absence of GIIbeta, the catalytic subunit GIIalpha of the fission yeast Schizosaccharomyces pombe (an organism displaying a glycoprotein folding quality control mechanism similar to that occurring in mammalian cells) folds to an active conformation able to hydrolyze p-nitrophenyl alpha-d-glucopyranoside. However, the heterodimer is required to efficiently deglucosylate the physiological substrates Glc(2)Man(9)GlcNAc(2) (G2M9) and Glc(1)Man(9)GlcNAc(2) (G1M9). The interaction of the mannose 6-phosphate receptor homologous domain present in GIIbeta and mannoses in the B and/or C arms of the glycans mediates glycan hydrolysis enhancement. We present evidence that also in mammalian cells GIIbeta modulates G2M9 and G1M9 trimming.
Collapse
Affiliation(s)
- Ivan D Stigliano
- Laboratories of Glycobiology and Structural Cell Biology, Fundación Instituto Leloir, Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
31
|
Watanabe T, Totani K, Matsuo I, Maruyama JI, Kitamoto K, Ito Y. Genetic analysis of glucosidase II beta-subunit in trimming of high-mannose-type glycans. Glycobiology 2009; 19:834-40. [PMID: 19395677 DOI: 10.1093/glycob/cwp061] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucosidase II (G-II) is a glycoprotein-processing enzyme that successively cleaves two alpha1,3-linked glucose residues from N-linked oligosaccharides in the endoplasmic reticulum. G-II is a heterodimer whose alpha-subunit contains a glycosidase active site, but the function(s) of the beta-subunit remain poorly defined. We report here an in vivo enzymatic analysis using gene disruptants lacking either the G-II alpha- or beta-subunit in the filamentous fungus Aspergillus oryzae. Using synthetic oligosaccharides as probes, G-II activity of the membranous fraction of the gene disruptants was investigated. The fraction lacking the beta-subunit retained hydrolytic activity toward p-nitrophenyl alpha-D-glucopyranoside but was inactive toward both Glc(2)Man(9)GlcNAc(2) and Glc(1)Man(9)GlcNAc(2). When the fraction containing the beta-subunit was added to the one including the alpha-subunit, the glucosidase activity was restored. These results suggested that the beta-subunit confers the substrate specificity toward di- and monoglucosylated glycans on the glucose-trimming activity of the alpha-subunit.
Collapse
|
32
|
Termine DJ, Moremen KW, Sifers RN. The mammalian UPR boosts glycoprotein ERAD by suppressing the proteolytic downregulation of ER mannosidase I. J Cell Sci 2009; 122:976-84. [PMID: 19258393 DOI: 10.1242/jcs.037291] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secretory pathway provides a physical route through which only correctly folded gene products are delivered to the eukaryotic cell surface. The efficiency of endoplasmic reticulum (ER)-associated degradation (ERAD), which orchestrates the clearance of structurally aberrant proteins under basal conditions, is boosted by the unfolded protein response (UPR) as one of several means to relieve ER stress. However, the underlying mechanism that links the two systems in higher eukaryotes has remained elusive. Herein, the results of transient expression, RNAi-mediated knockdown and functional studies demonstrate that the transcriptional elevation of EDEM1 boosts the efficiency of glycoprotein ERAD through the formation of a complex that suppresses the proteolytic downregulation of ER mannosidase I (ERManI). The results of site-directed mutagenesis indicate that this capacity does not require that EDEM1 possess inherent mannosidase activity. A model is proposed in which ERManI, by functioning as a downstream effector target of EDEM1, represents a checkpoint activation paradigm by which the mammalian UPR coordinates the boosting of ERAD.
Collapse
Affiliation(s)
- Daniel J Termine
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
33
|
Soussilane P, Soussillane P, D'Alessio C, Paccalet T, Fitchette AC, Parodi AJ, Williamson R, Plasson C, Faye L, Gomord V. N-glycan trimming by glucosidase II is essential for Arabidopsis development. Glycoconj J 2008; 26:597-607. [PMID: 18972207 DOI: 10.1007/s10719-008-9201-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 12/01/2022]
Abstract
Glucosidase II, one of the early N-glycan processing enzymes and a major player in the glycoprotein folding quality control, has been described as a soluble heterodimer composed of alpha and beta subunits. Here we present the first characterization of a plant glucosidase II alpha subunit at the molecular level. Expression of the Arabidopsis alpha subunit restored N-glycan maturation capacity in Schizosaccharomyces pombe alpha- or alphabeta-deficient mutants, but with a lower efficiency in the last case. Inactivation of the alpha subunit in a temperature sensitive Arabidopsis mutant blocked N-glycan processing after a first trimming by glucosidase I and strongly affected seedling development.
Collapse
Affiliation(s)
- Pravina Soussilane
- CNRS, UMR 6037, IFRMP 23, Bâtiment Biologie Extension, Faculté des Sciences, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Julio J Caramelo
- Fundación Instituto Leloir and the Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | | |
Collapse
|
35
|
Totani K, Ihara Y, Matsuo I, Ito Y. Effects of Macromolecular Crowding on Glycoprotein Processing Enzymes. J Am Chem Soc 2008; 130:2101-7. [DOI: 10.1021/ja077570k] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
How sugars convey information on protein conformation in the endoplasmic reticulum. Semin Cell Dev Biol 2007; 18:732-42. [PMID: 17997334 DOI: 10.1016/j.semcdb.2007.09.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 07/24/2007] [Accepted: 09/05/2007] [Indexed: 11/21/2022]
Abstract
The N-glycan-dependent quality control of glycoprotein folding prevents endoplasmic reticulum to Golgi exit of folding intermediates, irreparably misfolded glycoproteins and not completely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones that recognize monoglucosylated polymannose glycans, a lectin-associated oxidoreductase acting on monoglucosylated glycoproteins, a glucosyltransferase and a glucosidase that creates monoglucosylated epitopes in glycans transferred in protein N-glycosylation or removes the glucose units added by the glucosyltransferase. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded species or in not completely assembled complexes. The purpose of the review is to describe the most significant recent findings on the mechanism of glycoprotein folding and assembly quality control and to discuss the main still unanswered questions.
Collapse
|
37
|
Cruciat CM, Hassler C, Niehrs C. The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition. J Biol Chem 2006; 281:12986-93. [PMID: 16531414 DOI: 10.1074/jbc.m511872200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kremen1 and 2 (Krm1/2) are coreceptors for Dickkopf1 (Dkk1), an antagonist of Wnt/beta-catenin signaling, and play a role in head induction during early Xenopus development. In a proteomic approach we identified Erlectin, a novel protein that interacts with Krm2. Erlectin (XTP3-B) is member of a protein family containing mannose 6-phosphate receptor homology (MRH-, or PRKCSH-) domains implicated in N-glycan binding. Like other members of the MRH family, Erlectin is a luminal resident protein of the endoplasmic reticulum. It contains two MRH domains, of which one is essential for Krm2 binding, and this interaction is abolished by Krm2 deglycosylation. The overexpression of Erlectin inhibits transport of Krm2 to the cell surface. Analysis of its embryonic expression pattern in Xenopus reveals that Erlectin is member of the endoplasmic reticulum synexpression group. Erlectin morpholino antisense injection leads to head and axial defects during organogenesis stages in Xenopus embryos. The results indicate that Erlectin functions in N-glycan recognition in the endoplasmic reticulum, suggesting that it may regulate glycoprotein traffic.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Department of Molecular Embryology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
38
|
Wilkinson BM, Purswani J, Stirling CJ. Yeast GTB1 Encodes a Subunit of Glucosidase II Required for Glycoprotein Processing in the Endoplasmic Reticulum. J Biol Chem 2006; 281:6325-33. [PMID: 16373354 DOI: 10.1074/jbc.m510455200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucosidase II is essential for sequential removal of two glucose residues from N-linked glycans during glycoprotein biogenesis in the endoplasmic reticulum. The enzyme is a heterodimer whose alpha-subunit contains the glycosyl hydrolase active site. The function of the beta-subunit has yet to be defined, but mutations in the human gene have been linked to an autosomal dominant form of polycystic liver disease. Here we report the identification and characterization of a Saccharomyces cerevisiae gene, GTB1, encoding a polypeptide with 21% sequence similarity to the beta-subunit of human glucosidase II. The Gtb1 protein was shown to be a soluble glycoprotein (96-102 kDa) localized to the endoplasmic reticulum lumen where it was present in a complex together with the yeast alpha-subunit homologue Gls2p. Surprisingly, we found that Deltagtb1 mutant cells were specifically defective in the processing of monoglucosylated glycans. Thus, although Gls2p is sufficient for cleavage of the penultimate glucose residue, Gtb1p is essential for cleavage of the final glucose. Our data demonstrate that Gtb1p is required for normal glycoprotein biogenesis and reveal that the final two glucose-trimming steps in N-glycan processing are mechanistically distinct.
Collapse
Affiliation(s)
- Barrie M Wilkinson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
39
|
Reyes F, Marchant L, Norambuena L, Nilo R, Silva H, Orellana A. AtUTr1, a UDP-glucose/UDP-galactose transporter from Arabidopsis thaliana, is located in the endoplasmic reticulum and up-regulated by the unfolded protein response. J Biol Chem 2006; 281:9145-51. [PMID: 16467298 DOI: 10.1074/jbc.m512210200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folding of glycoproteins in the endoplasmic reticulum (ER) depends on a quality control mechanism mediated by the calnexin/calreticulin cycle. During this process, continuous glucose trimming and UDP-glucose-dependent re-glucosylation of unfolded glycoproteins takes place. To ensure proper folding, increases in misfolded proteins lead to up-regulation of the components involved in quality control through a process known as the unfolded protein response (UPR). Reglucosylation is catalyzed by the ER lumenal located enzyme UDP-glucose glycoprotein glucosyltransferase, but as UDP-glucose is synthesized in the cytosol, a UDP-glucose transporter is required in the calnexin/calreticulin cycle. Even though such a transporter has been hypothesized, no protein playing this role in the ER yet has been identified. Here we provide evidence that AtUTr1, a UDP-galactose/glucose transporter from Arabidopsis thaliana, responds to stimuli that trigger the UPR increasing its expression around 9-fold. The accumulation of AtUTr1 transcript is accompanied by an increase in the level of the AtUTr1 protein. Moreover, subcellular localization studies indicate that AtUTr1 is localized in the ER of plant cells. We reasoned that an impairment in AtUTr1 expression should perturb the calnexin/calreticulin cycle leading to an increase in misfolded protein and triggering the UPR. Toward that end, we analyzed an AtUTr1 insertional mutant and found an up-regulation of the ER chaperones BiP and calnexin, suggesting that these plants may be constitutively activating the UPR. Thus, we propose that in A. thaliana, AtUTr1 is the UDP-glucose transporter involved in quality control in the ER.
Collapse
Affiliation(s)
- Francisca Reyes
- Plant Cell Biology Millennium Nucleus, Graduate School, Faculty of Sciences, University of Chile, Casilla 653, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
40
|
Schirawski J, Böhnert HU, Steinberg G, Snetselaar K, Adamikowa L, Kahmann R. Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis. THE PLANT CELL 2005; 17:3532-43. [PMID: 16272431 PMCID: PMC1315386 DOI: 10.1105/tpc.105.036285] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We identified a nonpathogenic strain of Ustilago maydis by tagging mutagenesis. The affected gene, glucosidase1 (gas1), displays similarity to catalytic alpha-subunits of endoplasmic reticulum (ER) glucosidase II. We have shown that Gas1 localizes to the ER and complements the temperature-sensitive phenotype of a Saccharomyces cerevisiae mutant lacking ER glucosidase II. gas1 deletion mutants were normal in growth and mating but were more sensitive to calcofluor and tunicamycin. Mutant infection hyphae displayed significant alterations in the distribution of cell wall material and were able to form appressoria and penetrate the plant surface but arrested growth in the epidermal cell layer. Electron microscopy analysis revealed that the plant-fungal interface between mutant hyphae and the plant plasma membrane was altered compared with the interface of penetrating wild-type hyphae. This may indicate that gas1 mutants provoke a plant response.
Collapse
Affiliation(s)
- Jan Schirawski
- Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Proteins following the secretory pathway acquire their proper tertiary and in certain cases also quaternary structures in the endoplasmic reticulum (ER). Incompletely folded species are retained in the ER and eventually degraded. One of the molecular mechanisms by which cells achieve this conformational sorting is based on monoglucosylated N-glycans (Glc1Man5-9GlcNAc2) present on nascent glycoproteins in the ER. This chapter discusses two of the steps that regulate the abundance of such N-glycan structures, including glycoprotein deglucosylation (by glucosidase II) and reglucosylation (by the UDP-Glc:glycoprotein glucosyltransferase), as well as an overview of methods to evaluate the N-glycans prevalent during glycoprotein biogenesis in the ER.
Collapse
Affiliation(s)
- E Sergio Trombetta
- Department of Cell Biology, Yale University School of Medicine, P.O. Box 208002, New Haven, CT 06520-8002, USA.
| | | |
Collapse
|
42
|
Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttilä M, Contreras R. Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 2005; 71:2910-24. [PMID: 15932985 PMCID: PMC1151825 DOI: 10.1128/aem.71.6.2910-2924.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We describe isolation and characterization of the gene encoding the glucosidase II alpha subunit (GIIalpha) of the industrially important fungus Trichoderma reesei. This subunit is the catalytic part of the glucosidase II heterodimeric enzyme involved in the structural modification within the endoplasmic reticulum (ER) of N-linked oligosaccharides present on glycoproteins. The gene encoding GIIalpha (gls2alpha) in the hypercellulolytic strain Rut-C30 contains a frameshift mutation resulting in a truncated gene product. Based on the peculiar monoglucosylated N-glycan pattern on proteins produced by the strain, we concluded that the truncated protein can still hydrolyze the first alpha-1,3-linked glucose residue but not the innermost alpha-1,3-linked glucose residue from the Glc2Man9GlcNAc2 N-glycan ER structure. Transformation of the Rut-C30 strain with a repaired T. reesei gls2alpha gene changed the glycosylation profile significantly, decreasing the amount of monoglucosylated structures and increasing the amount of high-mannose N-glycans. Full conversion to high-mannose carbohydrates was not obtained, and this was probably due to competition between the endogenous mutant subunit and the introduced wild-type GIIalpha protein. Since glucosidase II is also involved in the ER quality control of nascent polypeptide chains, its transcriptional regulation was studied in a strain producing recombinant tissue plasminogen activator (tPA) and in cultures treated with the stress agents dithiothreitol (DTT) and brefeldin A (BFA), which are known to block protein transport and to induce the unfolded protein response. While the mRNA levels were clearly upregulated upon tPA production or BFA treatment, no such enhancement was observed after DTT addition.
Collapse
Affiliation(s)
- Steven Geysens
- Fundamental and Applied Molecular Biology, Department for Molecular Biomedical Research, Ghent University and VIB (Flemish Interuniversity Institute for Biotechnology), Ghent-Zwijnaarde, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Movsichoff F, Castro OA, Parodi AJ. Characterization of Schizosaccharomyces pombe ER alpha-mannosidase: a reevaluation of the role of the enzyme on ER-associated degradation. Mol Biol Cell 2005; 16:4714-24. [PMID: 16079177 PMCID: PMC1237077 DOI: 10.1091/mbc.e05-03-0246] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It has been postulated that creation of Man8GlcNAc2 isomer B (M8B) by endoplasmic reticulum (ER) alpha-mannosidase I constitutes a signal for driving irreparably misfolded glycoproteins to proteasomal degradation. Contrary to a previous report, we were able to detect in vivo (but not in vitro) an extremely feeble ER alpha-mannosidase activity in Schizosaccharomyces pombe. The enzyme yielded M8B on degradation of Man9GlcNAc2 and was inhibited by kifunensin. Live S. pombe cells showed an extremely limited capacity to demannosylate Man9GlcNAc2 present in misfolded glycoproteins even after a long residence in the ER. In addition, no preferential degradation of M8B-bearing species was detected. Nevertheless, disruption of the alpha-mannosidase encoding gene almost totally prevented degradation of a misfolded glycoprotein. This and other conflicting reports may be best explained by assuming that the role of ER mannosidase on glycoprotein degradation is independent of its enzymatic activity. The enzyme, behaving as a lectin binding polymannose glycans of varied structures, would belong together with its enzymatically inactive homologue Htm1p/Mnl1p/EDEM, to a transport chain responsible for delivering irreparably misfolded glycoproteins to proteasomes. Kifunensin and 1-deoxymannojirimycin, being mannose homologues, would behave as inhibitors of the ER mannosidase or/and Htm1p/Mnl1p/EDEM putative lectin properties.
Collapse
Affiliation(s)
- Federico Movsichoff
- Laboratory of Glycobiology, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | | | | |
Collapse
|
44
|
Michalak M. Endoplasmic reticulum quality control and congenital pathology. J Appl Biomed 2005. [DOI: 10.32725/jab.2005.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
45
|
Deprez P, Gautschi M, Helenius A. More Than One Glycan Is Needed for ER Glucosidase II to Allow Entry of Glycoproteins into the Calnexin/Calreticulin Cycle. Mol Cell 2005; 19:183-95. [PMID: 16039588 DOI: 10.1016/j.molcel.2005.05.029] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/04/2005] [Accepted: 05/27/2005] [Indexed: 10/25/2022]
Abstract
Nascent and newly synthesized glycoproteins enter the calnexin (Cnx)/calreticulin (Crt) cycle when two out of three glucoses in the core N-linked glycans have been trimmed sequentially by endoplasmic reticulum (ER) glucosidases I (GI) and II (GII). By analyzing arrested glycopeptides in microsomes, we found that GI removed the outermost glucose immediately after glycan addition. However, although GII associated with singly glycosylated nascent chains, trimming of the second glucose only occurred efficiently when a second glycan was present in the chain. Consistent with a requirement for multiple glycans to activate GII, pancreatic RNase in live cells needed more than one glycan to enter the Cnx/Crt cycle. Thus, whereas GI trimming occurs as an automatic extension of glycosylation, trimming by GII is a regulated process. By adjusting the number and location of glycans, glycoproteins can instruct the cell to engage them in an individually determined folding and quality control pathway.
Collapse
Affiliation(s)
- Paola Deprez
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | | | | |
Collapse
|
46
|
Jones D, Mehlert A, Ferguson MAJ. The N-glycan glucosidase system in Trypanosoma brucei. Biochem Soc Trans 2005; 32:766-8. [PMID: 15494010 DOI: 10.1042/bst0320766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reactions involving removal and addition of glucose to N-glycans in the ER (endoplasmic reticulum) are performed in higher eukaryotes by glucosidases I and II and the UDP-glucose:glycoprotein glucosyltransferase respectively. Monoglucosylated N-glycan structures have been implicated in glycoprotein folding or ER quality control. Components of the system appear across a range of organisms; however, the precise combination differs between organisms. We have identified putative components of the system in the protozoal organism Trypanosoma brucei by local alignment searching. The function of one of these components, a glucosidase II alpha-subunit homologue, has been confirmed by phenotyping a null mutant, and an ectopic expression cell line. A combination of MS, methylation linkage analysis, exoglycosidase digestion and partial acetolysis have been used to characterize three novel N-glycan structures on the variant surface glycoprotein of the null mutant. On the basis of our results, we propose that two N-glycan precursors are available for transfer to variant surface glycoprotein (variant 221) in the ER of T. brucei; only one of these precursors is glucosylated after transfer.
Collapse
Affiliation(s)
- D Jones
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | | | |
Collapse
|
47
|
Abstract
There have been remarkable advances in research on polycystic liver and kidney diseases recently, covering cloning of new genes, refining disease classifications, and advances in understanding more about the molecular pathology of these diseases. Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary disease affecting kidneys. It affects 1/400 to 1/1000 live births and accounts for 5% of the end stage renal disease in the United States and Europe, and is caused by gene defects in the PKD1 or PKD2 genes. Compared to ADPKD, polycystic liver disease (PCLD) is a milder disease and does not lower life expectancy. Both diseases are usually adult-onset diseases. Defects in genes, which code the hepatocystin and SEC63 proteins, have just recently been found to cause PCLD. It now seems that ADPKD is caused by malfunction of the primary cilia, a cell organ sensing fluid movement, and that PCLD is a sequel from defects in protein processing. Autosomal recessive polycystic kidney disease (ARPKD) belongs to a group of congenital hepatorenal fibrocystic syndromes. All ARPKD patients have a gene defect in a gene called PKHD1, the protein product of which localizes to primary cilia. We summarize the present clinical and molecular knowledge of these diseases in this review.
Collapse
Affiliation(s)
- Esa Tahvanainen
- University of Helsinki, Department of Medical Genetics, Raisiontie 11A3, 00280 Helsinki, Finland.
| | | | | | | |
Collapse
|
48
|
Abstract
From a process involved in cell wall synthesis in archaea and some bacteria, N-linked glycosylation has evolved into the most common covalent protein modification in eukaryotic cells. The sugars are added to nascent proteins as a core oligosaccharide unit, which is then extensively modified by removal and addition of sugar residues in the endoplasmic reticulum (ER) and the Golgi complex. It has become evident that the modifications that take place in the ER reflect a spectrum of functions related to glycoprotein folding, quality control, sorting, degradation, and secretion. The glycans not only promote folding directly by stabilizing polypeptide structures but also indirectly by serving as recognition "tags" that allow glycoproteins to interact with a variety of lectins, glycosidases, and glycosyltranferases. Some of these (such as glucosidases I and II, calnexin, and calreticulin) have a central role in folding and retention, while others (such as alpha-mannosidases and EDEM) target unsalvageable glycoproteins for ER-associated degradation. Each residue in the core oligosaccharide and each step in the modification program have significance for the fate of newly synthesized glycoproteins.
Collapse
Affiliation(s)
- Ari Helenius
- Institute of Biochemistry1 Swiss Federal Institute of Technology Zurich, Zurich 8093, Switzerland.
| | | |
Collapse
|
49
|
Torre-Bouscoulet ME, López-Romero E, Balcázar-Orozco R, Calvo-Méndez C, Flores-Carreón A. Partial purification and biochemical characterization of a soluble α-glucosidase II-like activity fromCandida albicans. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09637.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Conte I, Labriola C, Cazzulo JJ, Docampo R, Parodi AJ. The interplay between folding-facilitating mechanisms in Trypanosoma cruzi endoplasmic reticulum. Mol Biol Cell 2003; 14:3529-40. [PMID: 12972544 PMCID: PMC196547 DOI: 10.1091/mbc.e03-04-0228] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 05/15/2003] [Accepted: 05/22/2003] [Indexed: 11/11/2022] Open
Abstract
Lectin (calreticulin [CRT])-N-glycan-mediated quality control of glycoprotein folding is operative in trypanosomatid protozoa but protein-linked monoglucosylated N-glycans are exclusively formed in these microorganisms by UDP-Glc:glycoprotein glucosyltransferase (GT)-dependent glucosylation. The gene coding for this enzyme in the human pathogen Trypanosoma cruzi was identified and sequenced. Even though several of this parasite glycoproteins have been identified as essential components of differentiation and mammalian cell invasion processes, disruption of both GT-encoding alleles did not affect cell growth rate of epimastigote form parasites and only partially affected differentiation and mammalian cell invasion. The cellular content of one of the already identified T. cruzi glycoprotein virulence factors (cruzipain, a lysosomal proteinase) only showed a partial (5-20%) decrease in GT null mutants in spite of the fact that >90% of all cruzipain molecules interacted with CRT during their folding process in wild-type cells. Although extremely mild cell lysis and immunoprecipitation procedures were used, no CRT-cruzipain interaction was detected in GT null mutants but secretion of the proteinase was nevertheless delayed because of a lengthened interaction with Grp78/BiP probably caused by the detected induction of this chaperone in GT null mutants. This result provides a rationale for the absence of a more drastic consequence of GT absence. It was concluded that T. cruzi endoplasmic reticulum folding machinery presents an exquisite plasticity that allows the parasite to surmount the absence of the glycoprotein-specific folding facilitation mechanism.
Collapse
Affiliation(s)
- Ianina Conte
- Institute for Biotechnological Research, University of San Martin, CC30, (1650) San Martin, Argentina
| | | | | | | | | |
Collapse
|