1
|
Aguado ME, González-Matos M, Izquierdo M, Quintana J, Field MC, González-Bacerio J. Expression in Escherichia coli, purification and kinetic characterization of LAPLm, a Leishmania major M17-aminopeptidase. Protein Expr Purif 2021; 183:105877. [PMID: 33775769 DOI: 10.1016/j.pep.2021.105877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022]
Abstract
The Leishmania major leucyl-aminopeptidase (LAPLm), a member of the M17 family of proteases, is a potential drug target for treatment of leishmaniasis. To better characterize enzyme properties, recombinant LAPLm (rLAPLm) was expressed in Escherichia coli. A LAPLm gene was designed, codon-optimized for expression in E. coli, synthesized and cloned into the pET-15b vector. Production of rLAPLm in E. coli Lemo21(DE3), induced for 4 h at 37 °C with 400 μM IPTG and 250 μM l-rhamnose, yielded insoluble enzyme with a low proportion of soluble and active protein, only detected by an anti-His antibody-based western-blot. rLAPLm was purified in a single step by immobilized metal ion affinity chromatography. rLAPLm was obtained with a purity of ~10% and a volumetric yield of 2.5 mg per liter, sufficient for further characterization. The aminopeptidase exhibits optimal activity at pH 7.0 and a substrate preference for Leu-p-nitroanilide (appKM = 30 μM, appkcat = 14.7 s-1). Optimal temperature is 50 °C, and the enzyme is insensitive to 4 mM Co2+, Mg2+, Ca2+ and Ba2+. However, rLAPLm was activated by Zn2+, Mn2+ and Cd2+ but is insensitive towards the protease inhibitors PMSF, TLCK, E-64 and pepstatin A, being inhibited by EDTA and bestatin. Bestatin is a potent, non-competitive inhibitor of the enzyme with a Ki value of 994 nM. We suggest that rLAPLm is a suitable target for inhibitor identification.
Collapse
Affiliation(s)
- Mirtha Elisa Aguado
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 Entre I y J, Vedado, 10400, Havana, Cuba.
| | - Maikel González-Matos
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 Entre I y J, Vedado, 10400, Havana, Cuba.
| | - Maikel Izquierdo
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 Entre I y J, Vedado, 10400, Havana, Cuba.
| | - Juan Quintana
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, UK.
| | - Mark C Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, UK; Institute of Parasitology, Czech Academy of Sciences, 37005, Ceske Budejovice, Czech Republic.
| | - Jorge González-Bacerio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 #455 Entre I y J, Vedado, 10400, Havana, Cuba.
| |
Collapse
|
2
|
Torrecilhas AC, Soares RP, Schenkman S, Fernández-Prada C, Olivier M. Extracellular Vesicles in Trypanosomatids: Host Cell Communication. Front Cell Infect Microbiol 2020; 10:602502. [PMID: 33381465 PMCID: PMC7767885 DOI: 10.3389/fcimb.2020.602502] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi, Trypanosoma brucei and Leishmania (Trypanosomatidae: Kinetoplastida) are parasitic protozoan causing Chagas disease, African Trypanosomiasis and Leishmaniases worldwide. They are vector borne diseases transmitted by triatomine bugs, Tsetse fly, and sand flies, respectively. Those diseases cause enormous economic losses and morbidity affecting not only rural and poverty areas but are also spreading to urban areas. During the parasite-host interaction, those organisms release extracellular vesicles (EVs) that are crucial for the immunomodulatory events triggered by the parasites. EVs are involved in cell-cell communication and can act as important pro-inflammatory mediators. Therefore, interface between EVs and host immune responses are crucial for the immunopathological events that those diseases exhibit. Additionally, EVs from these organisms have a role in the invertebrate hosts digestive tracts prior to parasite transmission. This review summarizes the available data on how EVs from those medically important trypanosomatids affect their interaction with vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Federal University of Sao Paulo (UNIFESP), Diadema, Brazil
| | | | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | | | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
3
|
Update on relevant trypanosome peptidases: Validated targets and future challenges. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140577. [PMID: 33271348 DOI: 10.1016/j.bbapap.2020.140577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, and Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, the agents of Sleeping sickness (Human African Trypanosomiasis, HAT), as well as Trypanosoma brucei brucei, the agent of the cattle disease nagana, contain cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes are the cysteine proteases from the Clan CA, the Cathepsin L-like cruzipain and rhodesain, and the Cathepsin B-like enzymes, which have essential roles in the parasites and thus are potential targets for chemotherapy. In addition, several other proteases, present in one or both parasites, have been characterized, and some of them are also promising candidates for the developing of new drugs. Recently, new inhibitors, with good selectivity for the parasite proteasomes, have been described and are very promising as lead compounds for the development of new therapies for these neglected diseases. This article is part of a Special Issue entitled: "Play and interplay of proteases in health and disease".
Collapse
|
4
|
Motta FN, Azevedo CDS, Neves BP, Araújo CND, Grellier P, Santana JMD, Bastos IMD. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases. Biochimie 2019; 167:207-216. [DOI: 10.1016/j.biochi.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
|
5
|
Leishmanicidal therapy targeted to parasite proteases. Life Sci 2019; 219:163-181. [PMID: 30641084 DOI: 10.1016/j.lfs.2019.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/31/2022]
Abstract
Leishmaniasis is considered a serious public health problem and the current available therapy has several disadvantages, which makes the search for new therapeutic targets and alternative treatments extremely necessary. In this context, this review focuses on the importance of parasite proteases as target drugs against Leishmania parasites, as a chemotherapy approach. Initially, we discuss about the current scenario for the treatment of leishmaniasis, highlighting the main drugs used and the problems related to their use. Subsequently, we describe the inhibitors of major proteases of Leishmania already discovered, such as Compound s9 (aziridine-2,3-dicarboxylate), Compound 1c (benzophenone derivative), Au2Phen (gold complex), AubipyC (gold complex), MDL 28170 (dipeptidyl aldehyde), K11777, Hirudin, diazo-acetyl norleucine methyl ester, Nelfinavir, Saquinavir, Nelfinavir, Saquinavir, Indinavir, Saquinavir, GNF5343 (azabenzoxazole), GNF6702 (azabenzoxazole), Benzamidine and TPCK. Next, we discuss the importance of the protease gene to parasite survival and the aspects of the validation of proteases as target drugs, with emphasis on gene disruption. Then, we describe novel important strategies that can be used to support the research of new antiparasitic drugs, such as molecular modeling and nanotechnology, whose main targets are parasitic proteases. And finally, we discuss possible perspectives to improve drug development. Based on all findings, proteases could be considered potential targets against leishmaniasis.
Collapse
|
6
|
Tokai S, Bito T, Shimizu K, Arima J. Methionine residues lining the substrate pathway in prolyl oligopeptidase from Pleurotus eryngii play an important role in substrate recognition. Biosci Biotechnol Biochem 2018; 82:1107-1115. [PMID: 29623768 DOI: 10.1080/09168451.2018.1459177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Family S9 prolyl oligopeptidases (POPs) are of interest as pharmacological targets. We recently found that an S9 POP from Pleurotus eryngii showed altered substrate specificity following H2O2 treatment. Oxidation of Met203 on the non-catalytic β-propeller domain resulted in decreased activity toward non-aromatic aminoacyl-para-nitroanilides (pNAs) while maintaining its activity toward aromatic aminoacyl-pNAs. Given that the other Met residues should also be oxidized by H2O2 treatment, we constructed mutants in which all the Met residues were substituted with other amino acids. Analysis of the mutants showed that Met570 in the catalytic domain is another potent residue for the altered substrate specificity following oxidation. Met203 and Met570 lie on the surfaces of two different domains and form part of a funnel from the surface to the active center. Our findings indicate that the funnel forms the substrate pathway and plays a role in substrate recognition.
Collapse
Affiliation(s)
- Shota Tokai
- a The United Graduate School of Agricultural Sciences , Tottori University , Tottori , Japan
| | - Tomohiro Bito
- b Faculty of Agriculture, Department of Agricultural, Biological and Environmental Sciences , Tottori University , Tottori , Japan
| | - Katsuhiko Shimizu
- c Organization for Regional Industrial Academic Cooperation, Tottori University , Tottori , Japan
| | - Jiro Arima
- b Faculty of Agriculture, Department of Agricultural, Biological and Environmental Sciences , Tottori University , Tottori , Japan
| |
Collapse
|
7
|
Tokai S, Bito T, Shimizu K, Arima J. Effect of oxidation of the non-catalytic β-propeller domain on the substrate specificity of prolyl oligopeptidase from Pleurotus eryngii. Biochem Biophys Res Commun 2017; 487:356-361. [DOI: 10.1016/j.bbrc.2017.04.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|
8
|
Oligopeptidase B and B2: comparative modelling and virtual screening as searching tools for new antileishmanial compounds. Parasitology 2016; 144:536-545. [DOI: 10.1017/s0031182016002237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SUMMARYLeishmaniasis are diseases caused by parasites of the genus Leishmania and transmitted to humans by the bite of infected insects of the subfamily Phlebotominae. Current drug therapy shows high toxicity and severe adverse effects. Recently, two oligopeptidases (OPBs) were identified in Leishmania amazonensis, namely oligopeptidase B (OPB) and oligopeptidase B2 (OPB2). These OPBs could be ideal targets, since both enzymes are expressed in all parasite lifecycle and were not identified in human. This work aimed to identify possible dual inhibitors of OPB and OPB2 from L. amazonensis. The three-dimensional structures of both enzymes were built by comparative modelling and used to perform a virtual screening of ZINC database by DOCK Blaster server. It is the first time that OPB models from L. amazonensis are used to virtual screening approach. Four hundred compounds were identified as possible inhibitors to each enzyme. The top scored compounds were submitted to refinement by AutoDock program. The best results suggest that compounds interact with important residues, as Tyr490, Glu612 and Arg655 (OPB numbers). The identified compounds showed better results than antipain and drugs currently used against leishmaniasis when ADMET in silico were performed. These compounds could be explored in order to find dual inhibitors of OPB and OPB2 from L. amazonensis.
Collapse
|
9
|
Mikhailova AG, Khairullin RF, Demidyuk IV, Kostrov SV, Grinberg NV, Burova TV, Grinberg VY, Rumsh LD. Cloning, sequencing, expression, and characterization of thermostability of oligopeptidase B from Serratia proteamaculans, a novel psychrophilic protease. Protein Expr Purif 2014; 93:63-76. [DOI: 10.1016/j.pep.2013.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 11/30/2022]
|
10
|
Canning P, Rea D, Morty RE, Fülöp V. Crystal structures of Trypanosoma brucei oligopeptidase B broaden the paradigm of catalytic regulation in prolyl oligopeptidase family enzymes. PLoS One 2013; 8:e79349. [PMID: 24265767 PMCID: PMC3827171 DOI: 10.1371/journal.pone.0079349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
Oligopeptidase B cleaves after basic amino acids in peptides up to 30 residues. As a virulence factor in bacteria and trypanosomatid pathogens that is absent in higher eukaryotes, this is a promising drug target. Here we present ligand-free open state and inhibitor-bound closed state crystal structures of oligopeptidase B from Trypanosoma brucei, the causative agent of African sleeping sickness. These (and related) structures show the importance of structural dynamics, governed by a fine enthalpic and entropic balance, in substrate size selectivity and catalysis. Peptides over 30 residues cannot fit the enzyme cavity, preventing the complete domain closure required for a key propeller Asp/Glu to fix the catalytic His and Arg in the catalytically competent conformation. This size exclusion mechanism protects larger peptides and proteins from degradation. Similar bacterial prolyl endopeptidase and archael acylaminoacyl peptidase structures demonstrate this mechanism is conserved among oligopeptidase family enzymes across all three domains of life.
Collapse
Affiliation(s)
- Peter Canning
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Dean Rea
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Fukumoto J, Ismail NIM, Kubo M, Kinoshita K, Inoue M, Yuasa K, Nishimoto M, Matsuki H, Tsuji A. Possible role of inter-domain salt bridges in oligopeptidase B from Trypanosoma brucei: critical role of Glu172 of non-catalytic -propeller domain in catalytic activity and Glu490 of catalytic domain in stability of OPB. J Biochem 2013; 154:465-73. [PMID: 23946505 DOI: 10.1093/jb/mvt077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Junki Fukumoto
- Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan; Faculty of Science, Universiti Tunku Abdul Rahman, Jalam Universiti, Bandar Barat, 31900 Kampar, Perak D.R., Malaysia; and Department of Parasitology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bossard G, Cuny G, Geiger A. Secreted proteases of Trypanosoma brucei gambiense: possible targets for sleeping sickness control? Biofactors 2013; 39:407-14. [PMID: 23553721 DOI: 10.1002/biof.1100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/01/2013] [Indexed: 01/09/2023]
Abstract
Human African trypanosomiasis (HAT) is caused by trypanosomes of the species Trypanosoma brucei and belongs to the neglected tropical diseases. Presently, WHO has listed 36 countries as being endemic for sleeping sickness. No vaccine is available, and disease treatment is difficult and has life-threatening side effects. Therefore, there is a crucial need to search for new therapeutic targets against the parasite. Trypanosome excreted-secreted proteins could be promising targets, as the total secretome was shown to inhibit, in vitro, host dendritic cell maturation and their ability to induce lymphocytic allogenic responses. The secretome was found surprisingly rich in various proteins and unexpectedly rich in diverse peptidases, covering more than ten peptidase families or subfamilies. Given their abundance, one may speculate that they would play a genuine role not only in classical "housekeeping" tasks but also in pathogenesis. The paper reviews the deleterious role of proteases from trypanosomes, owing to their capacity to degrade host circulating or structural proteins, as well as proteic hormones, causing severe damage and preventing host immune response. In addition, proteases account for a number of drug targets, such drugs being used to treat severe diseases such AIDS. This review underlines the importance of secreted proteins and especially of secreted proteases as potential targets in HAT-fighting strategies. It points out the need to conduct further investigations on the specific role of each of these various proteases in order to identify those playing a central role in sleeping sickness and would be suitable for drug targeting.
Collapse
Affiliation(s)
- Géraldine Bossard
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | |
Collapse
|
13
|
Scharfstein J, Andrade D, Svensjö E, Oliveira AC, Nascimento CR. The kallikrein-kinin system in experimental Chagas disease: a paradigm to investigate the impact of inflammatory edema on GPCR-mediated pathways of host cell invasion by Trypanosoma cruzi. Front Immunol 2013; 3:396. [PMID: 23355836 PMCID: PMC3555122 DOI: 10.3389/fimmu.2012.00396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/07/2012] [Indexed: 12/12/2022] Open
Abstract
Chronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the kallikrein-kinin system. Molecular studies linked the proinflammatory phenotype of Dm28c TCTs to the synergistic activities of tGPI, a lipid anchor that functions as a Toll-like receptor 2 (TLR2) ligand, and cruzipain, a kinin-releasing cysteine protease. Analysis of the dynamics of inflammation revealed that TCTs activate innate sentinel cells via TLR2, releasing CXC chemokines, which in turn evoke neutrophil/CXCR2-dependent extravasation of plasma proteins, including high molecular weight kininogen (HK), in parasite-laden tissues. Further downstream, TCTs process surface bound HK, liberating lysyl-BK (LBK), which then propagates inflammatory edema via signaling of endothelial G-protein-coupled bradykinin B2 receptors (BK2R). Dm28 TCTs take advantage of the transient availability of infection-promoting peptides (e.g., bradykinin and endothelins) in inflamed tissues to invade cardiovascular cells via interdependent signaling of BKRs and endothelin receptors (ETRs). Herein we present a space-filling model whereby ceramide-enriched endocytic vesicles generated by the sphingomyelinase pathway might incorporate BK2R and ETRs, which then trigger Ca2+-driven responses that optimize the housekeeping mechanism of plasma membrane repair from cell wounding. The hypothesis predicts that the NF-κB-inducible BKR (BK1R) may integrate the multimolecular signaling platforms forged by ceramide rafts, as the chronic myocarditis progresses. Exploited as gateways for parasite invasion, BK2R, BK1R, ETAR, ETBR, and other G protein-coupled receptor partners may enable persistent myocardial parasitism in the edematous tissues at expense of adverse cardiac remodeling.
Collapse
Affiliation(s)
- Julio Scharfstein
- Laboratório de Imunologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
14
|
Three-Dimensional Molecular Modeling of a Diverse Range of SC Clan Serine Proteases. Mol Biol Int 2012; 2012:580965. [PMID: 23213528 PMCID: PMC3507156 DOI: 10.1155/2012/580965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 01/09/2023] Open
Abstract
Serine proteases are involved in a variety of biological processes and are classified into clans sharing structural homology. Although various three-dimensional structures of SC clan proteases have been experimentally determined, they are mostly bacterial and animal proteases, with some from archaea, plants, and fungi, and as yet no structures have been determined for protozoa. To bridge this gap, we have used molecular modeling techniques to investigate the structural properties of different SC clan serine proteases from a diverse range of taxa. Either SWISS-MODEL was used for homology-based structure prediction or the LOOPP server was used for threading-based structure prediction. The predicted models were refined using Insight II and SCRWL and validated against experimental structures. Investigation of secondary structures and electrostatic surface potential was performed using MOLMOL. The structural geometry of the catalytic core shows clear deviations between taxa, but the relative positions of the catalytic triad residues were conserved. Evolutionary divergence was also exhibited by large variation in secondary structure features outside the core, differences in overall amino acid distribution, and unique surface electrostatic potential patterns between species. Encompassing a wide range of taxa, our structural analysis provides an evolutionary perspective on SC clan serine proteases.
Collapse
|
15
|
Leishmania (L.) amazonensis peptidase activities inside the living cells and in their lysates. Mol Biochem Parasitol 2012; 184:82-9. [DOI: 10.1016/j.molbiopara.2012.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/13/2012] [Accepted: 04/27/2012] [Indexed: 11/22/2022]
|
16
|
Trypanosoma brucei: Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int J Parasitol 2012; 42:481-8. [DOI: 10.1016/j.ijpara.2012.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 01/10/2023]
|
17
|
Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Mol Biochem Parasitol 2012; 183:166-76. [PMID: 22449941 DOI: 10.1016/j.molbiopara.2012.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 12/19/2022]
Abstract
The rate of treatment failure to antileishmanial chemotherapy in Latin America is up to 64%. Parasite drug resistance contributes to an unknown proportion of treatment failures. Identification of clinically relevant molecular mechanisms responsible for parasite drug resistance is critical to the conservation of available drugs and to the discovery of novel targets to reverse the resistant phenotype. We conducted comparative proteomic-based analysis of Leishmania (Viannia) panamensis lines selected in vitro for resistance to trivalent antimony (Sb(III)) to identify factors associated with antimony resistance. Using 2-dimensional gel electrophoresis, two distinct sub-proteomes (soluble in NP-40/urea and Triton X-114, respectively) of promastigotes of WT and Sb(III)-resistant lines were generated. Overall, 9 differentially expressed putative Sb-resistance factors were detected and identified by mass spectrometry. These constituted two major groups: (a) proteins involved in general stress responses and (b) proteins with highly specific metabolic and transport functions, potentially directly contributing to the Sb-resistance mechanism. Notably, the sulfur amino acid-metabolizing enzymes S-adenosylmethionine synthetase (SAMS) and S-adenosylhomocysteine hydrolase (SAHH) were over-expressed in Sb(III)-resistant lines and Sb(III)-resistant clinical isolates. These enzymes play a central role in the upstream synthesis of precursors of trypanothione, a key molecule involved in Sb-resistance in Leishmania parasites, and suggest involvement of epigenetic regulation in response to drug exposure. These data re-enforce the importance of thiol metabolism in Leishmania Sb resistance, reveal previously unrecognized steps in the mechanism(s) of Sb tolerance, and suggest a cross-talk between drug resistance, metabolism and virulence.
Collapse
|
18
|
Mikhailova AG, Khairullin RF, Kolomijtseva GY, Rumsh LD. Oligopeptidase B from Serratia proteamaculans. III. Inhibition analysis. Specific interactions with metalloproteinase inhibitors. BIOCHEMISTRY (MOSCOW) 2012; 77:300-6. [DOI: 10.1134/s0006297912030091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Kangethe RT, Boulangé AF, Coustou V, Baltz T, Coetzer TH. Trypanosoma brucei brucei oligopeptidase B null mutants display increased prolyl oligopeptidase-like activity. Mol Biochem Parasitol 2012; 182:7-16. [DOI: 10.1016/j.molbiopara.2011.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/07/2011] [Accepted: 11/14/2011] [Indexed: 01/08/2023]
|
20
|
Mikhailova AG, Khairullin RF, Demidyuk IV, Gromova TY, Kostrov SV, Rumsh LD. Oligopeptidase B from Serratia proteamaculans. II. Enzymatic characteristics: Substrate analysis, influence of calcium ions, pH and temperature dependences. BIOCHEMISTRY (MOSCOW) 2011; 76:480-90. [DOI: 10.1134/s0006297911040122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC. Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J Biol Chem 2010; 285:39249-59. [PMID: 20926390 PMCID: PMC2998157 DOI: 10.1074/jbc.m110.156679] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/20/2010] [Indexed: 11/06/2022] Open
Abstract
Oligopeptidase B (OPB) is a serine peptidase with dibasic substrate specificity. It is found in bacteria, plants, and trypanosomatid pathogens, where it has been identified as a virulence factor and potential drug target. In this study we expressed active recombinant Leishmania major OPB and provide the first structure of an oligopeptidase B at high resolution. The crystallographic study reveals that OPB comprises two domains, a catalytic and a propeller domain, linked together by a hinge region. The structure has been determined in complex with the oligopeptide, protease-inhibitor antipain, giving detailed information on the enzyme active site and extended substrate binding pockets. It shows that Glu-621 plays a critical role in the S1 binding pocket and, along with Phe-603, is largely responsible for the enzyme substrate specificity in P1. In the S2 binding pocket, Tyr-499 was shown to be important for substrate stability. The structure also allowed an investigation into the function of residues highlighted in other studies including Glu-623, which was predicted to be involved in the S1 binding pocket but is found forming an inter-domain hydrogen bond. Additional important salt bridges/hydrogen bonds between the two domains were observed, highlighting the significance of the domain interface in OPB. This work provides a foundation for the study of the role of OPBs as virulence factors in trypanosomatids. It could facilitate the development of specific OPB inhibitors with therapeutic potential by exploiting its unique substrate recognition properties as well as providing a model for OPBs in general.
Collapse
Affiliation(s)
- Karen McLuskey
- Westchem School of Chemistry, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Swenerton RK, Zhang S, Sajid M, Medzihradszky KF, Craik CS, Kelly BL, McKerrow JH. The oligopeptidase B of Leishmania regulates parasite enolase and immune evasion. J Biol Chem 2010; 286:429-40. [PMID: 20961853 DOI: 10.1074/jbc.m110.138313] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteases are a ubiquitous group of enzymes that play key roles in the life cycle of parasites, in the host-parasite relationship, and in the pathogenesis of parasitic diseases. Furthermore, proteases are targets for the development of new anti-parasitic therapy. Protozoan parasites like Leishmania predominantly express Clan CA cysteine proteases for key life cycle functions. It was therefore unexpected to find a high level of serine protease activity expressed by Leishmania donovani. Purification of this activity followed by mass spectrometry identified oligopeptidase B (OPB; Clan SC, family S9A) as the responsible enzyme. This was confirmed by gene knock-out of OPB, which resulted in the disappearance of the detected serine protease activity of Leishmania extracts. To delineate the specific role of OPB in parasite physiology, proteomic analysis was carried out on OPB(-/-) versus wild type parasites. Four protein species were significantly elevated in OPB(-/-) parasites, and all four were identified by mass spectrometry as enolase. This increased enolase was enzymatically inactive and associated with the parasite membrane. Aside from its classic role in carbohydrate metabolism, enolase was recently found to localize to membranes, where it binds host plasminogen and functions as a virulence factor for several pathogens. As expected, there was a striking alteration in macrophage responses to Leishmania when OPB was deleted. Whereas wild type parasites elicited little, if any, response from infected macrophages, OPB(-/-) parasites induced a massive up-regulation in gene transcription. Additionally, these OPB(-/-) parasites displayed decreased virulence in the murine footpad infection model.
Collapse
Affiliation(s)
- Ryan K Swenerton
- Department of Pathology, Sandler Center for Drug Discovery, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
da Silva-López RE, dos Santos TR, Morgado-Díaz JA, Tanaka MN, de Simone SG. Serine protease activities in Leishmania (Leishmania) chagasi promastigotes. Parasitol Res 2010; 107:1151-62. [PMID: 20668879 DOI: 10.1007/s00436-010-1983-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
The present work reports the isolation, biochemical characterization, and subcellular location of serine proteases from aqueous, detergent soluble, and culture supernatant of Leishmania chagasi promastigote extracts, respectively, LCSII, LCSI, and LCSIII. The active enzyme molecular masses of LCSII were about 105, 66, and 60 kDa; of LCSI, 60 and 58 kDa; and of LCSIII, approximately 76 and 68 kDa. Optimal pH for the enzymes was 7.0 for LCSI and LCSIII and 8.5 for LCSII, and the optimal temperature for all enzymes was 37°C, using α-N-ρ-tosyl-L: -arginine methyl ester as substrate. Assay of thermal stability indicated that LCSIII is the more stable enzyme. Hemoglobin, bovine serum albumin, and ovalbumin were hydrolyzed by LCSII and LCSI but not by LCSIII. Inhibition studies suggested that enzymes belong to the serine protease class modulated by divalent cations. Rabbit antiserum against 56-kDa serine protease of Leishmania amazonensis identified proteins in all extracts of L. chagasi. Furthermore, immunocytochemistry demonstrated that serine proteases are located in flagellar pocket region and cytoplasmic vesicles of L. chagasi promastigotes. These findings indicate that L. chagasi serine proteases differ from L. amazonensis proteases and all known flagellate proteases, but display some similarities with serine proteases from other Leishmania species, suggesting a conservation of this enzymatic activity in the genus.
Collapse
Affiliation(s)
- Raquel Elisa da Silva-López
- Laboratório de Bioquímica de Proteínas e Peptídeos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
24
|
Khairullin RF, Mikhailova AG, Sebyakina TY, Lubenets NL, Ziganshin RH, Demidyuk IV, Gromova TY, Kostrov SV, Rumsh LD. Oligopeptidase B from Serratia proteamaculans. I. Determination of primary structure, isolation, and purification of wild-type and recombinant enzyme variants. BIOCHEMISTRY (MOSCOW) 2009; 74:1164-72. [DOI: 10.1134/s0006297909100137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Mohd Ismail NI, Yuasa T, Yuasa K, Nambu Y, Nisimoto M, Goto M, Matsuki H, Inoue M, Nagahama M, Tsuji A. A critical role for highly conserved Glu(610) residue of oligopeptidase B from Trypanosoma brucei in thermal stability. J Biochem 2009; 147:201-11. [PMID: 19819899 DOI: 10.1093/jb/mvp156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oligopeptidase B from Trypanosoma brucei (Tb OPB) is a virulence factor and therapeutic target in African sleeping sickness. Three glutamic acid residues at positions 607, 609 and 610 of the catalytic domain are highly conserved in the OPB subfamily. In this study, the roles of Glu(607), Glu(609) and Glu(610) in Tb OPB were investigated by site-directed mutagenesis. A striking effect on k(cat)/K(m) was obtained following mutation of Glu(607) to glutamine. In contrast, the heat stability of Tb OPB decreased markedly following the single mutation of Glu(610) to glutamine, although this mutation had significantly less effect on catalytic properties compared with the Glu(607) mutation. Although no differences were found in the tertiary and secondary structures between wild-type (WT) OPB and the E610Q mutant prior to heat treatment, the E610Q mutant is inactivated more rapidly than WT OPB following heat treatment in a manner correlating with its attendant structural changes. Trypsin digestion showed that the boundary regions between the beta-propeller and catalytic domain of the E610Q mutant are unfolded with heat treatment. It is concluded that Glu(607) is essential for the catalytic activity of Tb OPB and that Glu(610) plays a critical role in stabilization rather than catalytic activity despite their close proximity.
Collapse
Affiliation(s)
- Nor Ismaliza Mohd Ismail
- Department of Biological Science and Technology, University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bastos I, Grellier P, Martins N, Cadavid-Restrepo G, de Souza-Ault M, Augustyns K, Teixeira A, Schrével J, Maigret B, da Silveira J, Santana J. Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80), which is required for parasite entry into mammalian cells. Biochem J 2009; 388:29-38. [PMID: 15581422 PMCID: PMC1186690 DOI: 10.1042/bj20041049] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have demonstrated that the 80 kDa POP Tc80 (prolyl oligopeptidase of Trypanosoma cruzi) is involved in the process of cell invasion, since specific inhibitors block parasite entry into non-phagocytic mammalian host cells. In contrast with other POPs, POP Tc80 is capable of hydrolysing large substrates, such as fibronectin and native collagen. In this study, we present the cloning of the POPTc80 gene, whose deduced amino acid sequence shares considerable identity with other members of the POP family, mainly within its C-terminal portion that forms the catalytic domain. Southern-blot analysis indicated that POPTc80 is present as a single copy in the genome of the parasite. These results are consistent with mapping of POPTc80 to a single chromosome. The active recombinant protein (rPOP Tc80) displayed kinetic properties comparable with those of the native enzyme. Novel inhibitors were assayed with rPOP Tc80, and the most efficient ones presented values of inhibition coefficient Ki < or = 1.52 nM. Infective parasites treated with these specific POP Tc80 inhibitors attached to the surface of mammalian host cells, but were incapable of infecting them. Structural modelling of POP Tc80, based on the crystallized porcine POP, suggested that POP Tc80 is composed of an alpha/beta-hydrolase domain containing the catalytic triad Ser548-Asp631-His667 and a seven-bladed beta-propeller non-catalytic domain. Docking analysis suggests that triple-helical collagen access to the catalytic site of POP Tc80 occurs in the vicinity of the interface between the two domains.
Collapse
Affiliation(s)
- Izabela M. D. Bastos
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
| | - Philippe Grellier
- †USM 0504, Département Régulations, Développement, Diversité Moléculaire, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75231, Paris Cedex 05, France
| | - Natalia F. Martins
- ‡Embrapa, Genetic Resources and Biotechnology, CP 02372, Brasília, DF, Brazil
| | - Gloria Cadavid-Restrepo
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
| | - Marian R. de Souza-Ault
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
| | - Koen Augustyns
- §Department of Medicinal Chemistry, The University of Antwerp, Belgium
| | - Antonio R. L. Teixeira
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
| | - Joseph Schrével
- †USM 0504, Département Régulations, Développement, Diversité Moléculaire, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75231, Paris Cedex 05, France
| | - Bernard Maigret
- ∥Laboratoire de Chimie Théorique, Université de Nancy, 54506 Vandoeuvre-les-Nancy, France
| | - José F. da Silveira
- ¶Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, R. Botucatu 862, CEP 04023-062, São Paulo, SP, Brazil
| | - Jaime M. Santana
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Usuki H, Uesugi Y, Iwabuchi M, Hatanaka T. Activation of oligopeptidase B from Streptomyces griseus by thiol-reacting reagents is independent of the single reactive cysteine residue. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1673-83. [PMID: 19665591 DOI: 10.1016/j.bbapap.2009.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
Oligopeptidase B from Streptomyces griseus was cloned and characterized to clarify the substrate recognition mechanism and the role of a reactive cysteine residue in family S9 prolyl oligopeptidases (POPs). The cloned enzyme, SGR-OpdB, was annotated as a putative family S9 prolyl oligopeptidase based on its deduced amino acid sequence, in which a sole cysteine residue Cys(544) is present close to the catalytic Asp residue in the C-terminal region. The protein was identified as oligopeptidase B, a member of the subfamily S9a of the family S9 POPs, as judged by its substrate specificity and enzymatic characteristics. Its enzymatic activity was markedly enhanced by high NaCl concentration and the reducing reagents dithiothreitol (DTT) and reduced glutathione (GSH). It is particularly interesting that oxidized glutathione (GSSG) also enhanced SGR-OpdB activity. The SGR-OpdB C544A mutant was constructed and characterized to clarify the role of the putative reactive Cys residue, Cys(544). Surprisingly, the enzymatic activity of the Cys-free mutant was also markedly activated by the general thiol-reacting reagent DTT, GSH, and GSSG. To our knowledge, this is the first report of activity-enhancing effects of thiol-reacting reagents toward Cys-free enzymes. Results clarified the role of additives in inducing conformational change of SGR-OpdB into active peptidase.
Collapse
Affiliation(s)
- Hirokazu Usuki
- Research Institute for Biological Sciences (RIBS), Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan
| | | | | | | |
Collapse
|
28
|
Huson LEJ, Authié E, Boulangé AF, Goldring JPD, Coetzer THT. Modulation of the immunogenicity of the Trypanosoma congolense cysteine protease, congopain, through complexation with alpha(2)-macroglobulin. Vet Res 2009; 40:52. [PMID: 19549486 PMCID: PMC2713678 DOI: 10.1051/vetres/2009036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/19/2009] [Indexed: 11/15/2022] Open
Abstract
The protozoan parasite Trypanosoma congolense is the main causative agent of livestock trypanosomosis. Congopain, the major lysosomal cysteine proteinase of T. congolense, contributes to disease pathogenesis, and antibody-mediated inhibition of this enzyme may contribute to mechanisms of trypanotolerance. The potential of different adjuvants to facilitate the production of antibodies that would inhibit congopain activity was evaluated in the present study. Rabbits were immunised with the recombinant catalytic domain of congopain (C2), either without adjuvant, with Freund’s adjuvant or complexed with bovine or rabbit α2-macroglobulin (α2M). The antibodies were assessed for inhibition of congopain activity. Rabbits immunised with C2 alone produced barely detectable anti-C2 antibody levels and these antibodies had no effect on recombinant C2 or native congopain activity. Rabbits immunised with C2 and Freund’s adjuvant produced the highest levels of anti-C2 antibodies. These antibodies either inhibited C2 and native congopain activity to a small degree, or enhanced their activity, depending on time of production after initial immunisation. Rabbits receiving C2-α2M complexes produced moderate levels of anti-C2 antibodies and these antibodies consistently showed the best inhibition of C2 and native congopain activity of all the antibodies, with maximum inhibition of 65%. Results of this study suggest that antibodies inhibiting congopain activity could be raised in livestock with a congopain catalytic domain-α2M complex. This approach improves the effectiveness of the antigen as an anti-disease vaccine candidate for African trypanosomosis.
Collapse
Affiliation(s)
- Laura Elizabeth Joan Huson
- School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal (Pietermaritzburg campus), Private Bag X01, Scottsville, 3209, South Africa
| | | | | | | | | |
Collapse
|
29
|
Usuki H, Uesugi Y, Iwabuchi M, Hatanaka T. Putative “acylaminoacyl” peptidases from Streptomyces griseus and S. coelicolor display “aminopeptidase” activities with distinct substrate specificities and sensitivities to reducing reagent. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:468-75. [DOI: 10.1016/j.bbapap.2008.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/28/2022]
|
30
|
Host-parasite interactions in trypanosomiasis: on the way to an antidisease strategy. Infect Immun 2009; 77:1276-84. [PMID: 19168735 DOI: 10.1128/iai.01185-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
da Silva-Lopez RE, Morgado-Díaz JA, dos Santos PT, Giovanni-De-Simone S. Purification and subcellular localization of a secreted 75 kDa Trypanosoma cruzi serine oligopeptidase. Acta Trop 2008; 107:159-67. [PMID: 18599007 DOI: 10.1016/j.actatropica.2008.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 05/20/2008] [Accepted: 05/22/2008] [Indexed: 11/17/2022]
Abstract
An extracellular serine peptidase was purified 460-fold from Trypanosoma cruzi epimastigotes culture supernatant with (NH(4))(2)SO(4) precipitation followed by affinity chromatography aprotinin-agarose and continuous elution electrophoresis, yielding a total recovery of 65%. The molecular mass of the active enzyme estimated by reducing and non-reducing SDS-PAGE was about 75kDa. The optimal pH and temperature of this glycosylated peptidase were 8.0 and 37 degrees C using alpha-N-rho-tosyl-L-arginine-methyl ester (L-TAME) as substrate. The enzyme did not hydrolyze polypeptide substrates but was active against short peptide substrates containing arginine at the P1 site, in both ester and amide bonds. The peptidase was inhibited by TPCK and TCLK but not by other protease inhibitors suggesting that the enzyme belongs to the serine peptidase class. Interestingly, the enzyme seems to demonstrate some metal dependence since its activity was reduced by 1,10-phenanthroline, calcium and zinc ions. Rabbit anti-T. cruzi extracellular serine peptidase antiserum was used to show that the enzyme was restricted to intracellular structures, including the flagellar pocket, plasma membrane and cytoplasmic vesicles resembling reservosomes. These results suggest that the serine oligopeptidase is secreted into the extracellular environment through the flagellar pocket and the intracellular location could suggest its participation in certain proteolysis events in reservosomes. These findings show that this peptidase is a novel T. cruzi serine oligopeptidase, which differs not only from other peptidases described in the same parasite but also in other species of Trypanosoma.
Collapse
|
32
|
Oligopeptidase B: A processing peptidase involved in pathogenesis. Biochimie 2008; 90:336-44. [DOI: 10.1016/j.biochi.2007.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 10/25/2007] [Indexed: 11/20/2022]
|
33
|
Oligopeptidase B from Leishmania amazonensis: molecular cloning, gene expression analysis and molecular model. Parasitol Res 2008; 101:865-75. [PMID: 18074461 DOI: 10.1007/s00436-007-0630-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Serine oligopeptidases of trypanosomatids are emerging as important virulence factors and therapeutic targets in trypanosome infections. A complete open reading frame of oligopeptidase B from Leishmania amazonensis was amplified with polymerase chain reaction with gradient annealing temperatures using primers designed for the oligopeptidase B gene from L. major. The 2,196-bp fragment coded for a protein of 731 amino acids with a predicted molecular mass of 83.49 KDa. The encoded protein (La_OpB) shares a 90% identity with oligopeptidases of L. major and L. infantum, 84% with L. braziliensis, and approximately 62% identity with Trypanosoma peptidases. The oligopeptidase B gene is expressed in all cycle stages of L. amazonensis. The three dimensional model of La_OpB was obtained by homology modeling based on the structure of prolyl oligopeptidases. We mapped a La_OpB model that presents a greater negative charge than prolyl oligopeptidases; our results suggest a difference in the S2 subsite when compared to oligopeptidases B from Trypanosoma and bacterial oligopeptidases B. The La_OpB model serves as a starting point for its exploration as a potential target source for a rational chemotherapy.
Collapse
|
34
|
Gamboa D, Van Eys G, Victoir K, Torres K, Adaui V, Arevalo J, Dujardin JC. Putative markers of infective life stages in Leishmania (Viannia) braziliensis. Parasitology 2007; 134:1689-98. [PMID: 17897481 DOI: 10.1017/s003118200700306x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene expression is known to vary significantly during the Leishmania life-cycle. Its monitoring might allow identification of molecular changes associated with the infective stages (metacyclics and amastigotes) and contribute to the understanding of the complex host-parasite relationships. So far, very few studies have been done on Leishmania (Viannia) braziliensis, one of the most pathogenic species. Such studies require, first of all, reference molecular markers. In the present work, we applied differential display analysis (DD analysis) in order to identify transcripts that might be (i) candidate markers of metacyclics and intracellular amastigotes of L. (V.) braziliensis or (ii) potential controls, i.e. constitutively expressed. In total, 48 DNA fragments gave reliable sequencing data, 29 of them being potential markers of infective stages and 12 potential controls. Eight sequences could be identified with reported genes. Validation of the results of DD analysis was done for 4 genes (2 differentially expressed and 2 controls) by quantitative real-time PCR. The infective insect stage-specific protein (meta 1) was more expressed in metacyclic-enriched preparations. The oligopeptidase b showed a higher expression in amastigotes. Two genes, glucose-6-phosphate dehydrogenase and a serine/threonine protein kinase, were found to be similarly expressed in the different biological samples.
Collapse
Affiliation(s)
- D Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, A.P. 4314, Lima 100, Peru
| | | | | | | | | | | | | |
Collapse
|
35
|
de Matos Guedes HL, Carneiro MPD, Gomes DCDO, Rossi-Bergmanmn B, Giovanni de Simone S. Oligopeptidase B from L. amazonensis: molecular cloning, gene expression analysis and molecular model. Parasitol Res 2007; 101:853-63. [PMID: 17530480 DOI: 10.1007/s00436-007-0552-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/17/2007] [Indexed: 11/25/2022]
Abstract
Serine oligopeptidases of trypanosomatids are emerging as important virulence factors and therapeutic targets in trypanosome infections. A complete open reading frame of oligopeptidase B from Leishmania amazonensis was amplified with polymerase chain reaction with gradient annealing temperatures using primers designed for the oligopeptidase B gene from L. major. The 2,196-bp fragment coded for a protein of 731 amino acids with a predicted molecular mass of 83.49 KDa. The encoded protein (La_OpB) shares a 90% identity with oligopeptidases of L. major and L. infantum, 84% with L. braziliensis, and approximately 62 identity with Trypanosoma peptidases. The oligopeptidase B gene is expressed in all cycle stages of L. amazonensis. The three dimensional model of La_OpB was obtained by homology modeling based on the structure of prolyl oligopeptidases. We mapped a La_OpB model that presents a greater negative charge than prolyl oligopeptidases; our results suggest a difference in the S2 subsite when compared to oligopeptidases B from Trypanosoma and bacterial oligopeptidases B. The La_OpB model serves as a starting point for its exploration as a potential target source for a rational chemotherapy.
Collapse
Affiliation(s)
- Herbert Leonel de Matos Guedes
- Laboratório de Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
36
|
Morty RE, Bulau P, Pellé R, Wilk S, Abe K. Pyroglutamyl peptidase type I from Trypanosoma brucei: a new virulence factor from African trypanosomes that de-blocks regulatory peptides in the plasma of infected hosts. Biochem J 2006; 394:635-45. [PMID: 16248854 PMCID: PMC1383713 DOI: 10.1042/bj20051593] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptidases of parasitic protozoans are emerging as novel virulence factors and therapeutic targets in parasitic infections. A trypanosome-derived aminopeptidase that exclusively hydrolysed substrates with Glp (pyroglutamic acid) in P1 was purified 9248-fold from the plasma of rats infected with Trypanosoma brucei brucei. The enzyme responsible was cloned from a T. brucei brucei genomic DNA library and identified as type I PGP (pyroglutamyl peptidase), belonging to the C15 family of cysteine peptidases. We showed that PGP is expressed in all life cycle stages of T. brucei brucei and is expressed in four other blood-stream-form African trypanosomes. Trypanosome PGP was optimally active and stable at bloodstream pH, and was insensitive to host plasma cysteine peptidase inhibitors. Native purified and recombinant hyper-expressed trypanosome PGP removed the N-terminal Glp blocking groups from TRH (thyrotrophin-releasing hormone) and GnRH (gonadotropin-releasing hormone) with a k(cat)/K(m) value of 0.5 and 0.1 s(-1) x microM(-1) respectively. The half-life of TRH and GnRH was dramatically reduced in the plasma of trypanosome-infected rats, both in vitro and in vivo. Employing an activity-neutralizing anti-trypanosome PGP antibody, and pyroglutamyl diazomethyl ketone, a specific inhibitor of type I PGP, we demonstrated that trypanosome PGP is entirely responsible for the reduced plasma half-life of TRH, and partially responsible for the reduced plasma half-life of GnRH in a rodent model of African trypanosomiasis. The abnormal degradation of TRH and GnRH, and perhaps other neuropeptides N-terminally blocked with a pyroglutamyl moiety, by trypanosome PGP, may contribute to some of the endocrine lesions observed in African trypanosomiasis.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University Hospital Giessen and Marburg, Aulweg 123, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
37
|
Rea D, Hazell C, Andrews NW, Morty RE, Fülöp V. Expression, purification and preliminary crystallographic analysis of oligopeptidase B from Trypanosoma brucei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:808-10. [PMID: 16880564 PMCID: PMC2242912 DOI: 10.1107/s1744309106027874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 07/18/2006] [Indexed: 11/22/2022]
Abstract
Recombinant oligopeptidase B from T. brucei has been prepared and crystallized. Data were collected to 2.7 Å. Heavy-atom soaks and preparation of selenomethionine-substituted protein are in progress for structure determination by MAD or MIR. African sleeping sickness, also called trypanosomiasis, is a significant cause of morbidity and mortality in sub-Saharan Africa. Peptidases from Trypanosoma brucei, the causative agent, include the serine peptidase oligopeptidase B, a documented virulence factor and therapeutic target. Determination of the three-dimensional structure of oligopeptidase B is desirable to facilitate the development of novel inhibitors. Oligopeptidase B was overexpressed in Escherichia coli as an N-terminally hexahistidine-tagged fusion protein, purified using metal-affinity chromatography and crystallized using the hanging-drop vapour-diffusion technique in 7%(w/v) polyethylene glycol 6000, 1 M LiCl, 0.1 M bis-tris propane pH 7.5. Diffraction data to 2.7 Å resolution were collected using synchrotron radiation. The crystals belong to space group P3121 or P3221, with unit-cell parameters a = b = 124.5, c = 249.9 Å. A complete data set to 2.7 Å was collected using synchrotron radiation.
Collapse
Affiliation(s)
- Dean Rea
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
| | - Carole Hazell
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
| | - Norma W. Andrews
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Rory E. Morty
- Department of Internal Medicine, University of Giessen Medical Centre, Aulweg 123 (Room 6-11), D-35392 Giessen, Germany
| | - Vilmos Fülöp
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
- Correspondence e-mail:
| |
Collapse
|
38
|
Yan JB, Wang GQ, Du P, Zhu DX, Wang MW, Jiang XY. High-level expression and purification of Escherichia coli oligopeptidase B. Protein Expr Purif 2006; 47:645-50. [PMID: 16515865 DOI: 10.1016/j.pep.2006.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/21/2006] [Accepted: 01/23/2006] [Indexed: 10/25/2022]
Abstract
Oligopeptidase B (OpdB) of Escherichia coli, previously called protease II, has a trypsin-like specificity, cleaving peptides at lysine and arginine residues and belongs to the prolyl oligopeptidase family of new serine peptidases. In this study, we report the fusion expression of E. coli oligopeptidase B with an N-terminal histidine tag using pET28a as the expression vector. Although most of the recombinant OpdB was produced as inclusion bodies, the solubility of the recombinant protease increased significantly when the expression temperature shifted from 37 to 30 degrees C. Recombinant OpdB (approximately 10 mg) could be purified from the soluble fraction of the crude extract of 1L log-phase E. coli culture containing 1.5 g wet bacterial cells. The purified OpdB has a molecular weight of approximately 80 kDa and a specific activity of 4.8 x 10(4) U/mg. OpdB could also be purified from the inclusion bodies with a lower yield. The recombinant enzyme was very stable under 40 degrees C. By comparison of the substrate specificity of the purified OpdB with that of OpdA, another trypsin-like protease in E. coli, we found that Boc-Glu-Lys-Lys-MCA is a specific substrate for E. coli OpdB. We also found that compared to OpdA, OpdB is much more sensitive to GMCHA-OPh(t)Bu, a synthetic trypsin inhibitor that can retard the growth of E. coli.
Collapse
Affiliation(s)
- Jian-Bin Yan
- Department of Biochemistry and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Tsuji A, Yoshimoto T, Yuasa K, Matsuda Y. Protamine: a unique and potent inhibitor of oligopeptidase B. J Pept Sci 2006; 12:65-71. [PMID: 15948139 DOI: 10.1002/psc.683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oligopeptidase B is a serine endopeptidase found in prokaryotes, unicellular eukaryotes and higher plants. The enzyme has been shown recently to play a central role in the pathogenesis of several parasitic diseases such as African trypanosomiasis, and to be a potential therapeutic target. This study reports that protamine, a basic peptide rich in arginine, is a potent inhibitor at the nanomolar level of oligopeptidase B from E. coli and wheat. Protamines 1B, 2C, 3A and TP17 displayed similar inhibitory activities and were capable of binding strongly to oligopeptidase B without proteolytic cleavage. The concentration of protamine needed for 50% inhibition (IC50) of oligopeptidase B was 10(4)-fold lower than the IC50 of trypsin. Oligopeptidase B was highly sensitive to inhibition by protamines even in the presence of serum (IC50, 1 microM). These data indicate that protamines might provide information useful for the design of more specific synthetic oligopeptidase B inhibitors.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Department of Biological Science and Technology, The faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima, Tokushima 770-8506, Japan.
| | | | | | | |
Collapse
|
40
|
Morty RE, Vadász I, Bulau P, Dive V, Oliveira V, Seeger W, Juliano L. Tropolysin, a New Oligopeptidase from African Trypanosomes†,‡. Biochemistry 2005; 44:14658-69. [PMID: 16262265 DOI: 10.1021/bi051035k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligopeptidases are emerging as important pathogenic factors and therapeutic targets in trypanosome infections. We describe here the purification, cloning, and biochemical analysis of a new oligopeptidase from two pathogenic African trypanosomes. This oligopeptidase, which we have called tropolysin (encoded by the trn gene), represents an evolutionarily distant member of the M3A subfamily of metallopeptidases, ancestral to thimet oligopeptidase, neurolysin, and saccharolysin. The trn gene was present as a single copy per haploid genome, was expressed in both the mammalian and insect stages of the parasite life cycle, and encoded an 84 kDa protein. Both purified and hyperexpressed tropolysin hydrolyzed bradykinin-derived fluorogenic peptide substrates at restricted sites, with an alkaline pH optimum, and were activated by dithiothreitol and reduced glutathione and by divalent metal cations, in the order Zn(2+) > Co(2+) > Mn(2+). Under oxidizing conditions, tropolysin reversibly formed inactive multimers. Tropolysin exhibited a preference for acidic amino acid side chains in P(4), hydrophobic side chains in P(3), and hydrophobic or large uncharged side chains in P(1), P(1)', and P(3)', while the S(2)' site was unselective. Highly charged residues were not tolerated in P(1)'. Tropolysin was responsible for the bulk of the kinin-degrading activity in trypanosome lysates, potently (k(cat) approximately 119 s(-)(1)) inactivated the vasoactive kinins bradykinin and kallidin, and generated angiotensin(1-7) from angiotensin I. This hydrolysis both abolished the capacity of bradykinin to stimulate the bradykinin B(2) receptor and abrogated bradykinin prohypotensive properties in vivo, raising the possibility that tropolysin may play a role in the dysregulated kinin metabolism observed in the plasma of trypanosome-infected hosts.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University Hospital Giessen, Aulweg 123, D-35392 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Morty RE, Shih AY, Fülöp V, Andrews NW. Identification of the reactive cysteine residues in oligopeptidase B from Trypanosoma brucei. FEBS Lett 2005; 579:2191-6. [PMID: 15811340 DOI: 10.1016/j.febslet.2005.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 03/07/2005] [Accepted: 03/07/2005] [Indexed: 11/28/2022]
Abstract
Oligopeptidase B (OpdB) from Trypanosoma brucei is a candidate therapeutic target in African trypanosomiasis. OpdB is an atypical serine peptidase, since activity is inhibited by thiol-blocking reagents and enhanced by reducing agents. We have identified C256 as the reactive cysteine residue that mediates OpdB inhibition by N-ethylmaleimide and iodoacetic acid. Modeling studies suggest that C256 adducts occlude the P(1) substrate-binding site, preventing substrate binding. We further demonstrate that C559 and C597 are responsible for the thiol-enhancement of OpdB activity. These studies may facilitate the development of specific OpdB inhibitors with therapeutic potential, by exploiting these unique properties of this enzyme.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University of Giessen School of Medicine, Aulweg 123 (Room 6-11), D-35392 Giessen, Germany.
| | | | | | | |
Collapse
|
42
|
Morty RE, Pellé R, Vadász I, Uzcanga GL, Seeger W, Bubis J. Oligopeptidase B from Trypanosoma evansi. J Biol Chem 2005; 280:10925-37. [PMID: 15644339 DOI: 10.1074/jbc.m410066200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine oligopeptidases of trypanosomatids are emerging as important virulence factors and therapeutic targets in trypanosome infections. We report here the isolation and characterization of oligopeptidase B (OpdB) and its corresponding gene from Trypanosoma evansi, a pathogen of significant veterinary importance. The T. evansi opdB gene was present as a single copy per haploid genome containing an open reading frame of 2148 bp encoding a protein of 80.664 kDa. Purified OpdB hydrolyzed substrates with basic residues in P1 (k(cat)/K(m) for carbobenzyloxy-L-arginyl-L-arginyl-7-amido-4-methylcoumarin, 337 s(-1) x microm(-1)) and exhibited potent arginyl carboxypeptidase activity (k(cat)/K(m) for Val-Lys-Arg Arg-OH, 231 s(-1) x mM(-1)). While not secreted, T. evansi released OpdB into the plasma of infected hosts where it retained catalytic activity. Plasma OpdB levels correlated with blood parasitemia. In vitro, OpdB cleaved the peptide hormone atrial natriuretic factor (ANF) at four sites: Arg3 Arg4, Arg4 Ser5, Arg11 Ile12, and Arg27 Tyr28, thereby abrogating smooth muscle relaxant and prohypotensive properties of ANF. Circulating plasma ANF levels in T. evansi-infected rats were depressed from 130 to 8 pg x ml(-1), and plasma ANF levels inversely correlated with plasma OpdB activity. The in vitro half-life of ANF in rat plasma was reduced 300-fold in plasma from T. evansi-infected rodents, which contains high levels of OpdB activity. Addition of OpdB inhibitors to cell-free plasma from infected rodents significantly abrogated this ANF hydrolysis. Furthermore the in vivo ANF half-life was reduced 5-fold in T. evansi-infected rats. Thus, we propose a role for OpdB in peptide hormone dysregulation in trypanosomiasis, specifically in generating the depressed plasma levels of ANF in mammals infected with T. evansi.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University of Giessen Medical Centre, Aulweg 123 (Raum 6-11), D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Fernandes LC, Bastos IMD, Lauria-Pires L, Rosa ACO, Teixeira ARL, Grellier P, Schrével J, Santana JM. Specific human antibodies do not inhibit Trypanosoma cruzi oligopeptidase B and cathepsin B, and immunoglobulin G enhances the activity of trypomastigote-secreted oligopeptidase B. Microbes Infect 2005; 7:375-84. [PMID: 15784182 DOI: 10.1016/j.micinf.2004.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/26/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
Trypanosoma cruzi expresses oligopeptidase B and cathepsin B that have important functions in the interaction with mammalian host cells. In this study, we demonstrated that sera from both chagasic rabbits and humans have specific antibodies to highly purified native oligopeptidase B and cathepsin B. Levels of antibodies to cathepsin B were higher than those observed to oligopeptidase B by absorbance values recorded upon ELISA. We next showed that 90% and 30% of sera from individuals with mucocutaneous leishmaniasis have antibodies that recognize oligopeptidase B and cathepsin B as antigens, respectively. In addition, 55% and 40% of sera from kala-azar patients have antibodies to oligopeptidase B and cathepsin B, respectively. Sera from malaria patients did not recognize the proteases as antigens. Despite high levels of specific antibodies, sera from T. cruzi-infected patients did not inhibit the activities of either oligopeptidase B or cathepsin B. Furthermore, sera or IgG purified from either infected or non-infected individuals enhanced the enzymatic activity of the secreted oligopeptidase B. Oligopeptidase B secreted by trypomastigotes and cathepsin B released upon parasite lysis retain their enzymatic activities and may be associated with Chagas' disease pathogenesis by hydrolyzing host proteins and inducing host immune responses.
Collapse
Affiliation(s)
- Luciana C Fernandes
- Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970 Brasília, DF, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hemerly JP, Oliveira V, Del Nery E, Morty RE, Andrews NW, Juliano MA, Juliano L. Subsite specificity (S3, S2, S1', S2' and S3') of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity. Biochem J 2003; 373:933-9. [PMID: 12737623 PMCID: PMC1223545 DOI: 10.1042/bj20030342] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 05/02/2003] [Accepted: 05/09/2003] [Indexed: 11/17/2022]
Abstract
We characterized the extended substrate binding site of recombinant oligopeptidase B enzymes from Trypanosoma cruzi (Tc-OP) and Trypanosoma brucei (Tb-OP), evaluating the specificity of their S3, S2, S1', S2' and S3' subsites. Five series of internally quenched fluorescent peptides based on the substrate Abz-AGGRGAQ-EDDnp [where Abz is o -aminobenzoic acid and EDDnp is N -(2,4-dinitrophenyl)ethylenediamine] were designed to contain amino acid residues with side chains of a minimum size, and each residue position of this substrate was modified. Synthetic peptides of different lengths derived from the human kininogen sequence were also examined, and peptides of up to 17 amino acids were found to be hydrolysed by Tc-OP and Tb-OP. These two oligopeptidases were essentially arginyl hydrolases, since for all peptides examined the only cleavage site was the Arg-Xaa bond. We also demonstrated that Tc-OP and Tb-OP have a very specific carboxypeptidase activity for basic amino acids, which depends on the presence of at least of a pair of basic amino acids at the C-terminal end of the substrate. The peptide with triple Arg residues (Abz-AGRRRAQ-EDDnp) was an efficient substrate for Tc-OP and Tb-OP: the Arg-Ala peptide bond was cleaved first and then two C-terminal Arg residues were successively removed. The S1' subsite seems to be an important determinant of the specificity of both enzymes, showing a preference for Tyr, Ser, Thr and Gln as hydrogen donors. The presence of these amino acids at P1' resulted in substrates that were hydrolysed with K (m) values in the sub-micromolar range. Taken together, this work supports the view that oligopeptidase B is a specialized protein-processing enzyme with a specific carboxypeptidase activity. Excellent substrates were obtained for Tb-OP and Tc-OP (Abz-AMRRTISQ-EDDnp and Abz-AHKRYSHQ-EDDnp respectively), which were hydrolysed with remarkably high k (cat) and low K (m) values.
Collapse
Affiliation(s)
- Jefferson P Hemerly
- Department of Biophysics, Escola Paulista de Medicina, Rua Três de Maio 100, São Paulo SP 04044-020, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Proteases from a variety of protozoan parasites have been characterized at the molecular and cellular levels, and the many roles that proteases play in these organisms are coming into focus. Central roles have been proposed for proteases in diverse processes such as host cell invasion and egress, encystation, excystation, catabolism of host proteins, differentiation, cell cycle progression, cytoadherence, and both stimulation and evasion of host immune responses. Detailed structural and functional characterization of parasite proteases has led to novel insights into the workings of these fascinating catalytic machines. The possibility of developing selective inhibitors of key proteases of pathogenic parasites into novel chemotherapeutic strategies is being vigorously explored.
Collapse
Affiliation(s)
- Michael Klemba
- Departments of Medicine and Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
46
|
Morty RE, Morehead J. Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. J Biol Chem 2002; 277:26057-65. [PMID: 12006595 DOI: 10.1074/jbc.m202779200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminopeptidases are emerging as exciting novel drug targets and vaccine candidates in parasitic infections. In this study, we describe for the first time an aminopeptidase from three highly pathogenic Leishmania species. Intronless genes encoding a leucyl aminopeptidase (lap) were cloned from Leishmania amazonensis, Leishmania donovani, and Leishmania major, which encoded 60-kDa proteins that displayed homology to leucyl aminopeptidases from Gram-negative bacteria, plants, and mammals. The lap genes were present as a single copy in each genome, and lap mRNA was detected by reverse transcription-PCR in all life-cycle stages of L. amazonensis. Lap assembled into catalytically competent 360-kDa hexamers and demonstrated potent amidolytic activity against synthetic aminopeptidase substrates containing leucine, methionine, and cysteine residues, representing the most restricted substrate specificity of any leucyl aminopeptidase described to date. Optimal activity was observed against L-leucyl-7-amido-4-methylcoumarin (k(cat)/K(m) approximately 63 s(-1) x mm(-1)) with a pH optimum of 8.5. Leishmania Lap activity was inhibited by metal ion chelators and enhanced by divalent manganese, cobalt, and nickel cations, although only zinc was detected in the purified Lap by inductively coupled plasma atomic emission spectroscopy, indicating that zinc is the natural Lap cofactor. Activity was potently inhibited by bestatin and apstatin in a slow binding competitive fashion, with K(i)* values of 3 and 44 nm, respectively. Actinonin was a tight binding competitive inhibitor (K(i) approximately 1 nm), whereas arphamenine A (K(i) approximately 70 microm) and L-leucinol (K(i) approximately 100 microm) were non-tight binding competitive inhibitors. Lap was not secreted by Leishmania in vitro and was localized to the parasite cytosol.
Collapse
Affiliation(s)
- Rory E Morty
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA.
| | | |
Collapse
|
47
|
Morty RE, Fülöp V, Andrews NW. Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. J Bacteriol 2002; 184:3329-37. [PMID: 12029050 PMCID: PMC135088 DOI: 10.1128/jb.184.12.3329-3337.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Accepted: 03/26/2002] [Indexed: 01/27/2023] Open
Abstract
Oligopeptidase B (OpdB) is a serine peptidase broadly distributed among unicellular eukaryotes, gram-negative bacteria, and spirochetes which has emerged as an important virulence factor and potential therapeutic target in infectious diseases. We report here the cloning and expression of the opdB homologue from Salmonella enterica serovar Typhimurium and demonstrate that it exhibits amidolytic activity exclusively against substrates with basic residues in P(1). While similar to its eukaryotic homologues in terms of substrate specificity, Salmonella OpdB differs significantly in catalytic power and inhibition and activation properties. In addition to oligopeptide substrates, restricted proteolysis of histone proteins was observed, although no cleavage was seen at or near residues that had been posttranslationally modified or at defined secondary structures. This supports the idea that the catalytic site of OpdB may be accessible only to unstructured oligopeptides, similar to the closely related prolyl oligopeptidase (POP). Salmonella OpdB was employed as a model enzyme to define determinants of substrate specificity that distinguish OpdB from POP, which hydrolyzes substrates exclusively at proline residues. Using site-directed mutagenesis, nine acidic residues that are conserved in OpdBs but absent from POPs were converted to their corresponding residues in POP. In this manner, we identified a pair of glutamic acid residues, Glu(576) and Glu(578), that define P(1) specificity and direct OpdB cleavage C terminal to basic residues. We have also identified a second pair of residues, Asp(460) and Asp(462), that may be involved in defining P(2) specificity and thus direct preferential cleavage by OpdB after pairs of basic residues.
Collapse
Affiliation(s)
- Rory E Morty
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | |
Collapse
|
48
|
Juhász T, Szeltner Z, Renner V, Polgár L. Role of the oxyanion binding site and subsites S1 and S2 in the catalysis of oligopeptidase B, a novel target for antimicrobial chemotherapy. Biochemistry 2002; 41:4096-106. [PMID: 11900553 DOI: 10.1021/bi016016z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligopeptidase B is a member of a novel serine peptidase family, found in Gram-negative bacteria and trypanosomes. The enzyme is involved in host cell invasion, and thus, it is an important target for drug design. Oligopeptidase B is specific for substrates with a pair of basic residues at positions P1 and P2. The sensitivity of substrates to high ionic strength suggests that the arginines interact with the carboxylate ions of the enzyme. On the basis of a three-dimensional model, two carboxyl dyads (Asp460 and Asp462 and Glu576 and Glu578) can be assigned as binding sites for arginines P1 and P2, respectively. The dyads are involved in several events: (i) substrate binding, (ii) substrate inhibition at high substrate concentrations (different inhibitory mechanisms were demonstrated with substrates bearing one and two arginine residues), (iii) enzyme activation at millimolar CaCl2 concentrations with substrates having one arginine, and (iv) interaction of Ca2+ with the dyads which simplified the complex pH dependence curves. Titration with a product-like inhibitor revealed the pK(a) of the carboxyl group that perturbed the pH-kcat/Km profiles. The OH group of Tyr452 is part of the oxyanion binding site, which stabilizes the transition state of the reaction. Its role studied with the Tyr452Phe variant indicates that (i) the catalytic contribution of the OH group depends on the substrate and (ii) the catalysis is, unusually, an entropy-driven process at physiological temperature. The NH group of the scissile peptide bond accounts for the deviation of the reaction from the Eyring plot above 25 degrees C, and for abolishing potential nonproductive binding.
Collapse
Affiliation(s)
- Tünde Juhász
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, Budapest H-1518, Hungary
| | | | | | | |
Collapse
|
49
|
Abstract
African trypanosomes cross the blood-brain barrier, but how they do so remains an area of speculation. We propose that proteases, such as the trypanopains and oligopeptidases that are released by trypanosomes, could mediate in this process. The trypanosomes also possess cell-surface-associated acid phosphatases that could play a role in invasion similar to that in advancing cancer cells. Such enzymes, perhaps acting in concert, have the potential to cause tissue degradation and ease the passage of the trypanosomes through various tissues in the host, including the blood-brain barrier.
Collapse
Affiliation(s)
- John D Lonsdale-Eccles
- Center for Biophysical Sciences and Engineering, University of Alabama, Birmingham, AL 35294, USA
| | | |
Collapse
|
50
|
Grellier P, Vendeville S, Joyeau R, Bastos IM, Drobecq H, Frappier F, Teixeira AR, Schrével J, Davioud-Charvet E, Sergheraert C, Santana JM. Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. J Biol Chem 2001; 276:47078-86. [PMID: 11598112 DOI: 10.1074/jbc.m106017200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma cruzi is an intracellular protozoan parasite able to invade a wide variety of mammalian cells. To have access to the target organs/cells, the parasite must cross the basal laminae and the extracellular matrix (ECM). We previously characterized an 80-kDa proteinase (Tc80) secreted by the infective trypomastigotes that hydrolyzes native collagens and might be involved in infection by degrading ECM components. Here, we present evidence indicating a role for Tc80 in the invasion of nonphagocytic cells. Tc80 was classified as a member of the prolyl oligopeptidase (POP) family of serine proteases and was also found to hydrolyze fibronectin. Selective inhibitors for POP Tc80 were synthesized that blocked parasite entry into cells. Blockage occurred when trypomastigotes were preincubated with irreversible inhibitors but not after host cell preincubation, and the blockage correlated with inhibition of POP Tc80 activity in treated parasites. These data and the enzyme location inside a vesicular compartment close to the flagellar pocket, a specialized domain in endocytosis/exocytosis, strongly suggest a role for POP Tc80 in the maturation of parasite protein(s) and/or, after secretion, in a local action on parasite or host cell/ECM components required for invasion.
Collapse
Affiliation(s)
- P Grellier
- Laboratoire de Biologie Parasitaire, Muséum National d'Histoire Naturelle, FR CNRS 63, 61 rue Buffon, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|