1
|
Hart NR. Paradoxes: Cholesterol and Hypoxia in Preeclampsia. Biomolecules 2024; 14:691. [PMID: 38927094 PMCID: PMC11201883 DOI: 10.3390/biom14060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in preeclampsia. Those affected by preeclampsia and their offspring experience increased lifetime risks of CVD. At the systemic level, preeclampsia is characterized by increased cellular, membrane, and blood levels of cholesterol; however, cholesterol-dependent signaling, such as canonical Wnt/βcatenin, Hedgehog, and endothelial nitric oxide synthase, is downregulated indicating a cholesterol deficit with the upregulation of cholesterol synthesis and efflux. Hypoxia-related signaling in preeclampsia also appears to be paradoxical with increased Hypoxia-Inducible Factors in the placenta but measurably increased oxygen in maternal blood in placental villous spaces. This review addresses the molecular mechanisms by which excessive systemic cholesterol and deficient cholesterol-dependent signaling may arise from the effects of dietary lipid variance and environmental membrane modifiers causing the cellular hypoxia that characterizes preeclampsia.
Collapse
Affiliation(s)
- Nancy R Hart
- PeaceHealth St. Joseph Medical Center, Bellingham, WA 98225, USA
| |
Collapse
|
2
|
Guo L, Nan Y, Yao L. Association between atherogenic indexes and erectile dysfunction: a cross-sectional analysis of the National Health and Nutrition Examination Survey 2001-2004. Int Urol Nephrol 2024:10.1007/s11255-024-04050-4. [PMID: 38625648 DOI: 10.1007/s11255-024-04050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Elevated blood lipids are considered a risk factor for atherosclerosis, which can lead to erectile dysfunction. This study aimed to explore the relationship between the atherogenic index of plasma (AIP), atherogenic coefficient (AC), Castelli's risk index-I (CRI-I), Castelli's risk index-II (CRI-II), and erectile dysfunction. METHODS Based on the National Health and Nutrition Examination Survey (NHANES) data from 2001-2004, multivariable-adjusted logistic regression models were used to evaluate the association between AIP, AC, CRI-I, and CRI-II with ED. Smooth curve fitting was employed to assess the linear association. RESULTS A total of 1806 male participants with complete data were enrolled in the study. In Model 1, those in the highest tertile of AIP had a 49% increased risk of ED compared to the lowest tertile (OR 1.49; 95% CI 1.15-1.91 p = 0.0021). After adjusting for the variables of age, race, education, body mass index, and poverty income ratio (PIR), significant positive correlations were found between ED and AIP, with each 1-unit increase in AIP associated with a 65% increase in the risk of developing ED (OR 1.65; 95% CI 1.03-2.64 p = 0.0361). CONCLUSIONS AIP is positively associated with the development of ED in US adults. More prospective cohort studies are needed to confirm the link between AIP and ED.
Collapse
Affiliation(s)
- Lange Guo
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yukui Nan
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Lizhong Yao
- Department of Urology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
3
|
Wu TC, Hsu BG, Kuo CH, Wang CH, Tsai JP. Serum Angiopoietin-like Protein 3 Levels Are Associated with Endothelial Function in Patients with Maintenance Hemodialysis. Life (Basel) 2023; 14:18. [PMID: 38276267 PMCID: PMC10817501 DOI: 10.3390/life14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Angiopoietin-like protein 3 (ANGPTL3) plays an important role in lipid and lipoprotein trafficking and metabolism and is positively correlated with cardiovascular disease. Our objective was to evaluate the association between serum ANGPTL3 levels and endothelial function in patients on maintenance hemodialysis (MHD). We enrolled 116 patients on MHD and obtained their blood test results from their medical records. Using a noninvasive digital thermal monitor, we determined the vascular reactivity index (VRI) as a measure of endothelial function. Serum ANGPTL3 concentration was measured by a commercial-enzyme-linked immunosorbent assay. Vascular reactivity was classified as poor in 17 (14.7%) patients, intermediate (1.0 ≤ VRI < 2.0) in 50 (43.1%) patients, and high (VRI ≥ 2.0) in 49 (42.2%) patients. Serum levels of ANGPTL3 (p < 0.001) and alkaline phosphatase (ALP, p = 0.025) increased significantly as the VRI decreased. The log-transformed serum ALP (log-ALP, r = -0.187, p = 0.045) and log-ANGPTL3 (r = -0.319, p < 0.001) showed a negative correlation with the VRI on univariate linear regression analysis. A significant negative correlation was found between log-ANGPTL3 and VRI (p < 0.001) on multivariate stepwise linear regression analysis. The findings of our investigation showed that, in patients with MHD, the ANGPTL3 concentration had a negative correlation with the VRI.
Collapse
Affiliation(s)
- Tzu-Chiang Wu
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-C.W.); (B.-G.H.); (C.-H.K.); (C.-H.W.)
| | - Bang-Gee Hsu
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-C.W.); (B.-G.H.); (C.-H.K.); (C.-H.W.)
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chiu-Huang Kuo
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-C.W.); (B.-G.H.); (C.-H.K.); (C.-H.W.)
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chih-Hsien Wang
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan; (T.-C.W.); (B.-G.H.); (C.-H.K.); (C.-H.W.)
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| |
Collapse
|
4
|
Lee WE, Besnier M, Genetzakis E, Tang O, Kott KA, Vernon ST, Gray MP, Grieve SM, Kassiou M, Figtree GA. High-Throughput Measure of Mitochondrial Superoxide Levels as a Marker of Coronary Artery Disease to Accelerate Drug Translation in Patient-Derived Endothelial Cells Using Opera Phenix ® Technology. Int J Mol Sci 2023; 25:22. [PMID: 38203193 PMCID: PMC10779289 DOI: 10.3390/ijms25010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Improved human-relevant preclinical models of coronary artery disease (CAD) are needed to improve translational research and drug discovery. Mitochondrial dysfunction and associated oxidative stress contribute to endothelial dysfunction and are a significant factor in the development and progression of CAD. Endothelial colony-forming cells (ECFCs) can be derived from peripheral blood mononuclear cells (PBMCs) and offer a unique potentially personalised means for investigating new potential therapies targeting important components of vascular function. We describe the application of the high-throughput and confocal Opera Phenix® High-Content Screening System to examine mitochondrial superoxide (mROS) levels, mitochondrial membrane potential, and mitochondrial area in both established cell lines and patient-derived ECFCs simultaneously. Unlike traditional plate readers, the Opera Phenix® is an imaging system that integrates automated confocal microscopy, precise fluorescent detection, and multi-parameter algorithms to visualize and precisely quantify targeted biological processes at a cellular level. In this study, we measured mROS production in human umbilical vein endothelial cells (HUVECs) and patient-derived ECFCs using the mROS production probe, MitoSOXTM Red. HUVECs exposed to oxidized low-density lipoprotein (oxLDL) increased mROS levels by 47.7% (p < 0.0001). A pooled group of patient-derived ECFCs from participants with CAD (n = 14) exhibited 30.9% higher mROS levels compared to patients with no CAD when stimulated with oxLDL (n = 14; p < 0.05). When tested against a small group of candidate compounds, this signal was attenuated by PKT-100 (36.22% reduction, p = 0.03), a novel P2X7 receptor antagonist. This suggests the P2X7 receptor as a valid target against excess mROS levels. As such, these findings highlight the potential of the MitoSOX-Opera Phenix technique to be used for drug discovery efforts in CAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia (M.K.)
| |
Collapse
|
5
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
6
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
7
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
8
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
9
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
10
|
Time-Restricted Feeding Improved Vascular Endothelial Function in a High-Fat Diet-Induced Obesity Rat Model. Vet Sci 2022; 9:vetsci9050217. [PMID: 35622745 PMCID: PMC9147025 DOI: 10.3390/vetsci9050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity, where there is enhancement of stored body fat in adipose tissues, is associated with cardiovascular complications that are mainly related to atherosclerosis. Time-restricted feeding (TRF) is a form of restricted eating aimed at reducing weight in obese subjects. The present study aims to investigate changes in vascular endothelial function, endothelial nitric oxide synthase (eNOS), and protein kinase B (Akt) protein expressions with TRF in obese and normal rats. Male Sprague Dawley rats were divided into two normal and three obese groups; obesity was induced in the obese groups by feeding with a high-fat diet (HFD) for six weeks. After six weeks, rats were equally divided into five groups (n = 7 per group): Normal group (NR) which continued on a standard diet for six more weeks, normal group switched to TRF with a standard diet for six weeks (NR + TRFSD), obese group (OR) which continued on HFD for six more weeks, obese group switched to TRF of HFD (OR + TRFHFD), and obese group switched to TRF of a standard diet (OR + TRFSD). TRF was practiced for six weeks, after which the rats were sacrificed. Aortic endothelium-dependent and endothelium-independent relaxations and contractions were assessed using the organ bath. Aortic eNOS and Akt protein expressions were determined using immunoblotting. Fasting blood glucose, body weight, body mass index (BMI), serum lipid profile, Lee’s index, serum insulin levels, and sensitivity (HOMA-IR) were also measured. Endothelium-dependent relaxation was significantly impaired, while endothelium-dependent contraction increased in obese rats compared to that in normal rats. Both obese groups which underwent TRF with a HFD and standard diet improved their impairments in endothelium-dependent relaxation and reduced endothelium-dependent contraction; these were associated with increased expressions of aortic eNOS and Akt protein. Both obese groups with TRF reduced body weight, BMI, Lee’s index, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and improved insulin sensitivity. TRF improved endothelium-dependent relaxation and reduced endothelium-dependent contraction, thus attenuating endothelial dysfunction in obese rats. These were associated with increased aortic eNOS and Akt protein expressions.
Collapse
|
11
|
Tian Y, Fopiano KA, Patel VS, Feher A, Bagi Z. Role of Caveolae in the Development of Microvascular Dysfunction and Hyperglycemia in Type 2 Diabetes. Front Physiol 2022; 13:825018. [PMID: 35250626 PMCID: PMC8894849 DOI: 10.3389/fphys.2022.825018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
In type 2 diabetes (T2D) microvascular dysfunction can interfere with tissue glucose uptake thereby contributing to the development of hyperglycemia. The cell membrane caveolae orchestrate signaling pathways that include microvascular control of tissue perfusion. In this study, we examined the role of caveolae in the regulation of microvascular vasomotor function under the condition of hyperglycemia in T2D patients and rodent models. Human coronary arterioles were obtained during cardiac surgery from T2D patients, with higher perioperative glucose levels, and from normoglycemic, non-diabetic controls. The coronary arteriole responses to pharmacological agonists bradykinin and acetylcholine were similar in T2D and non-diabetic patients, however, exposure of the isolated arteries to methyl-β-cyclodextrin (mβCD), an agent known to disrupt caveolae, reduced vasodilation to bradykinin selectively in T2D subjects and converted acetylcholine-induced vasoconstriction to dilation similarly in the two groups. Dilation to the vascular smooth muscle acting nitric oxide donor, sodium nitroprusside, was not affected by mβCD in either group. Moreover, mβCD reduced endothelium-dependent arteriolar dilation to a greater extent in hyperglycemic and obese db/db mice than in the non-diabetic controls. Mechanistically, when fed a high-fat diet (HFD), caveolin-1 knockout mice, lacking caveolae, exhibited a significantly reduced endothelium-dependent arteriolar dilation, both ex vivo and in vivo, which was accompanied by significantly higher serum glucose levels, when compared to HFD fed wild type controls. Thus, in T2D arterioles the role of caveolae in regulating endothelium-dependent arteriole dilation is altered, which appears to maintain vasodilation and mitigate the extent of hyperglycemia. While caveolae play a unique role in microvascular vasomotor regulation, under the condition of hyperglycemia arterioles from T2D subjects appear to be more susceptible for caveolae disruption-associated vasomotor dysfunction and impaired glycemic control.
Collapse
Affiliation(s)
- Yanna Tian
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Vijay S. Patel
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Attila Feher
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
12
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
13
|
HDL and Endothelial Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:27-47. [DOI: 10.1007/978-981-19-1592-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Luk C, Haywood NJ, Bridge KI, Kearney MT. Paracrine Role of the Endothelium in Metabolic Homeostasis in Health and Nutrient Excess. Front Cardiovasc Med 2022; 9:882923. [PMID: 35557517 PMCID: PMC9086712 DOI: 10.3389/fcvm.2022.882923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 02/02/2023] Open
Abstract
The vascular endothelium traditionally viewed as a simple physical barrier between the circulation and tissue is now well-established as a key organ mediating whole organism homeostasis by release of a portfolio of anti-inflammatory and pro-inflammatory vasoactive molecules. Healthy endothelium releases anti-inflammatory signaling molecules such as nitric oxide and prostacyclin; in contrast, diseased endothelium secretes pro-inflammatory signals such as reactive oxygen species, endothelin-1 and tumor necrosis factor-alpha (TNFα). Endothelial dysfunction, which has now been identified as a hallmark of different components of the cardiometabolic syndrome including obesity, type 2 diabetes and hypertension, initiates and drives the progression of tissue damage in these disorders. Recently it has become apparent that, in addition to vasoactive molecules, the vascular endothelium has the potential to secrete a diverse range of small molecules and proteins mediating metabolic processes in adipose tissue (AT), liver, skeletal muscle and the pancreas. AT plays a pivotal role in orchestrating whole-body energy homeostasis and AT dysfunction, characterized by local and systemic inflammation, is central to the metabolic complications of obesity. Thus, understanding and targeting the crosstalk between the endothelium and AT may generate novel therapeutic opportunities for the cardiometabolic syndrome. Here, we provide an overview of the role of the endothelial secretome in controlling the function of AT. The endothelial-derived metabolic regulatory factors are grouped and discussed based on their physical properties and their downstream signaling effects. In addition, we focus on the therapeutic potential of these regulatory factors in treating cardiometabolic syndrome, and discuss areas of future study of potential translatable and clinical significance. The vascular endothelium is emerging as an important paracrine/endocrine organ that secretes regulatory factors in response to nutritional and environmental cues. Endothelial dysfunction may result in imbalanced secretion of these regulatory factors and contribute to the progression of AT and whole body metabolic dysfunction. As the vascular endothelium is the first responder to local nutritional changes and adipocyte-derived signals, future work elucidating the changes in the endothelial secretome is crucial to improve our understanding of the pathophysiology of cardiometabolic disease, and in aiding our development of new therapeutic strategies to treat and prevent cardiometabolic syndrome.
Collapse
Affiliation(s)
- Cheukyau Luk
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Katherine I Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Hebbel RP, Vercellotti GM. Multiple inducers of endothelial NOS (eNOS) dysfunction in sickle cell disease. Am J Hematol 2021; 96:1505-1517. [PMID: 34331722 PMCID: PMC9292023 DOI: 10.1002/ajh.26308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
A characteristic aspect of the robust, systemic inflammatory state in sickle cell disease is dysfunction of endothelial nitric oxide synthase (eNOS). We identify 10 aberrant endothelial cell inputs, present in the specific sickle context, that are known to have the ability to cause eNOS dysfunction. These are: endothelial arginase depletion, asymmetric dimethylarginine, complement activation, endothelial glycocalyx degradation, free fatty acids, inflammatory mediators, microparticles, oxidized low density lipoproteins, reactive oxygen species, and Toll‐like receptor 4 signaling ligands. The effect of true eNOS dysfunction on clinical testing using flow‐mediated dilation can be simulated by two known examples of endothelial dysfunction mimicry (hemoglobin consumption of NO; and oxidation of smooth muscle cell soluble guanylate cyclase). This lends ambiguity to interpretation of such clinical testing. The presence of these multiple perturbing factors argues that a therapeutic approach targeting only a single injurious endothelial input (or either example of mimicry) would not be sufficiently efficacious. This would seem to argue for identifying therapeutics that directly protect eNOS function or application of multiple therapeutic approaches.
Collapse
Affiliation(s)
- Robert P. Hebbel
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| | - Gregory M. Vercellotti
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| |
Collapse
|
16
|
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021; 22:11545. [PMID: 34768974 PMCID: PMC8584259 DOI: 10.3390/ijms222111545] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease's development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
17
|
Akhmedov A, Sawamura T, Chen CH, Kraler S, Vdovenko D, Lüscher TF. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1): a crucial driver of atherosclerotic cardiovascular disease. Eur Heart J 2021; 42:1797-1807. [PMID: 36282110 DOI: 10.1093/eurheartj/ehaa770] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs), specifically lipid-driven atherosclerotic CVDs, remain the number one cause of death worldwide. The lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a scavenger receptor that promotes endothelial dysfunction by inducing pro-atherogenic signalling and plaque formation via the endothelial uptake of oxidized LDL (oxLDL) and electronegative LDL, contributes to the initiation, progression, and destabilization of atheromatous plaques, eventually leading to the development of myocardial infarction and certain forms of stroke. In addition to its expression in endothelial cells, LOX-1 is expressed in macrophages, cardiomyocytes, fibroblasts, dendritic cells, lymphocytes, and neutrophils, further implicating this receptor in multiple aspects of atherosclerotic plaque formation. LOX-1 holds promise as a novel diagnostic and therapeutic target for certain CVDs; therefore, understanding the molecular structure and function of LOX-1 is of critical importance. In this review, we highlight the latest scientific findings related to LOX-1, its ligands, and their roles in the broad spectrum of CVDs. We describe recent findings from basic research, delineate their translational value, and discuss the potential of LOX-1 as a novel target for the prevention, diagnosis, and treatment of related CVDs.
Collapse
Affiliation(s)
- Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Shinshu University 3-1-1, Asahi, Matsumoto 390-8621, Japan
| | - Chu-Huang Chen
- Vascular and Medical Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistreet 12, Schlieren 8952, Switzerland.,Royal Brompton and Harefield Hospitals, Sydney Street, London SW3 6NP, UK.,National Heart and Lung Institute, Imperial College, Dovehause Street, London SW3 6LY, UK
| |
Collapse
|
18
|
Xu ZH, Xu HX, Jiang S, Xu QF, Ding K, Zhang DX, Guan Y, Zhao ST. Effect of high-density lipoprotein on penile erection: A cross-sectional study. Andrologia 2021; 53:e13979. [PMID: 33774838 DOI: 10.1111/and.13979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown that elevated levels of high-density lipoprotein (HDL) could inhibit penile erection, but the relationship between HDL and the erection of the penile tip or base has not been extensively researched. We investigated the effects of HDL on erection of the penile tip and base through a cross-sectional study of 113 patients with erectile dysfunction, using a cut-off score of ≤21 on the International Index of Erectile Function-5. The following patient data were collected: nocturnal penile tumescence; blood pressure; platelet count; platelet distribution width; mean platelet volume; plateletcrit; and levels of serum glucose, total cholesterol, triglyceride, HDL, and low-density lipoprotein. Univariate and multivariate analyses were used to assess the association between HDL levels and the erection of the penile tip and base. We confirmed that HDL had a beneficial effect on penile erectile function. We also found that when the HDL level exceeded the normal range, the change in HDL had a significant effect on the penile base. In addition, our study did not find any relationship between platelet parameters and erection of the penile tip or penile base.
Collapse
Affiliation(s)
- Zhi-He Xu
- School of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Jinan, China.,Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | | | - Shan Jiang
- School of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Jinan, China
| | - Qin-Feng Xu
- School of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Jinan, China
| | - Kun Ding
- School of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Jinan, China
| | - Dong-Xiang Zhang
- School of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Jinan, China
| | - Yong Guan
- School of Medicine, Shandong University, Jinan, China.,Department of Urology, Shandong Provincial Hospital, Jinan, China
| | | |
Collapse
|
19
|
Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova EV, Orekhov AN. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front Pharmacol 2021; 11:613780. [PMID: 33510639 PMCID: PMC7836017 DOI: 10.3389/fphar.2020.613780] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular pathologies maintain the leading position in mortality worldwide. Atherosclerosis is a chronic disease that can result in a variety of serious complications, such as myocardial infarction, stroke, and cardiovascular disease. Inflammation and lipid metabolism alterations play a crucial role in atherogenesis, but the details of relationships and causality of these fundamental processes remain not clear. The oxidation of LDL was considered the main atherogenic modification of LDL within the vascular wall for decades. However, recent investigations provided a growing body of evidence in support of the multiple LDL modification theory. It suggests that LDL particles undergo numerous modifications that change their size, density, and chemical properties within the blood flow and vascular wall. Oxidation is the last stage in this cascade resulting in the atherogenic properties. Moreover, recent investigations have discovered that oxLDL may have both anti-inflammatory and pro-inflammatory properties. Oxidized LDL can trigger inflammation through the activation of macrophages and other cells. After all, oxidized LDL is still a promising object for further investigations that have the potential to clarify the unknown parts of the atherogenic process. In this review, we discuss the role of oxLDL in atherosclerosis development on different levels.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Nikita G Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander M Markin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Dmitry A Kashirskikh
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elena V Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
20
|
Interactions of different lipoproteins with supported phospholipid raft membrane (SPRM) patterns to understand similar in-vivo processes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183535. [PMID: 33358851 DOI: 10.1016/j.bbamem.2020.183535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 11/21/2022]
Abstract
To better understand how lipoproteins interact and enter endothelium and participate in cellular processes, we investigated preferential lipid partitioning of triglyceride rich lipoproteins (TGRL), chylomicrons (CM), low density lipoproteins (LDL), very low density lipoproteins (VLDL) and their lipolysis products using supported phospholipid raft membrane (SPRM) patterns. We prepared SPRM patterns with Texas red labeled phospholipid patterns and Marina blue labeled raft patterns and added Atto-520 labeled lipoproteins (TGRL, CM, VLDL, LDL) and their lipolysis products in separate experiments and characterized these interactions using fluorescence microscopy. We observed that VLDL and LDL preferentially interacted with raft patterns. In contrast the TGRL and lipolysed products of TGRL interacted with both the patterns, slightly elevated preference for raft patterns and CM and its lipolysis products showed greater affinity to phospholipid patterns. The clear preference of VLDL and LDL for raft patterns suggests that these lipoproteins associate with cholesterol and sphingomyelin rich lipid micro-domains during their early interactions with endothelial cells, leading to atherosclerosis.
Collapse
|
21
|
The effects of regular aerobic exercise training on blood nitric oxide levels and oxidized LDL and the role of eNOS intron 4a/b polymorphism. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165913. [PMID: 32795498 DOI: 10.1016/j.bbadis.2020.165913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/03/2020] [Accepted: 07/31/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nitric oxide (NO), oxidized LDL (OxLDL) and endothelial nitric oxide synthase intron 4a/b polymorphism (eNOSP) are related to atherosclerosis (AS). The present study investigated the effects of regular aerobic exercise training on the mentioned risk factors as well as blood lipids and lipoproteins (BLLPs) and the role of eNOSP, which is unclear. METHODS The study was participated by 46 well trained male soccer referees as the athletic group (AG, age; 23.26 ± 2.84 years) and 43 sedentary controls (CG, age; 23.16 ± 3.28 years). Yoyo intermittent endurance (Yoyo IE-2 test) was performed to measure aerobic endurance levels of the participants. Serum NO, eNOS and oxidized LDL (OxLDL) levels (by ELISA method) and total oxidant /antioxidant status ratio (/TOS/TAS) as oxidative stress (OS) index (OSI) and BLLPs levels were determined. eNOSP was identified from genomic DNA samples with VNTR analysis. RESULTS There is no significant difference between AG and CG including the genotype groups for NO, eNOS and BLLPs and eNOSP has no role. However, AG's NO (29%, p > .05) and TAS levels were significantly higher (p = .001) than those of CG, whereas OSI (p = .001) and OxLDL (p = .011) values were significantly lower. On the other hand, NO value of the athletic bb group was 29% higher compared with the control and the a carrier (aC = aa + ab) group. CONCLUSIONS These findings suggest that regular aerobic exercise improves blood NO levels and antioxidant capacity, while decreasing OS levels including OxLDL, but not eNOS and BLLPs in the athletes. Although the polymorphism does not have a modifying effect on these effects, bb genotype group may benefit more from training for NO than aC group due to genetic tendency.
Collapse
|
22
|
Luchetti F, Crinelli R, Nasoni MG, Benedetti S, Palma F, Fraternale A, Iuliano L. LDL receptors, caveolae and cholesterol in endothelial dysfunction: oxLDLs accomplices or victims? Br J Pharmacol 2020; 178:3104-3114. [PMID: 32986849 DOI: 10.1111/bph.15272] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/29/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidized LDLs (oxLDLs) and oxysterols play a key role in endothelial dysfunction and the development of atherosclerosis. The loss of vascular endothelium function negatively impacts vasomotion, cell growth, adhesiveness and barrier functions. While for some of these disturbances, a reasonable explanation can be provided from a mechanistic standpoint, for many others, the molecular mediators that are involved are unknown. Caveolae, specific plasma membrane domains, have recently emerged as targets and mediators of oxLDL-induced endothelial dysfunction. Caveolae and their associated protein caveolin-1 (Cav-1) are involved in oxLDLs/LDLs transcytosis, mainly through the scavenger receptor class B type 1 (SR-B1 or SCARB1). In contrast, oxLDLs endocytosis is mediated by the lectin-like oxidized LDL receptor 1 (LOX-1), whose activity depends on an intact caveolae system. In addition, LOX-1 regulates the expression of Cav-1 and vice versa. On the other hand, oxLDLs may affect cholesterol plasma membrane content/distribution thus influencing caveolae architecture, Cav-1 localization and the associated signalling. Overall, the evidence indicate that caveolae have both active and passive roles in oxLDL-induced endothelial cell dysfunction. First, as mediators of lipid uptake and transfer in the subendothelial space and, later, as targets of changes in composition/dynamics of plasma membrane lipids resulting from increased levels of circulating oxLDLs. Gaining a better understanding of how oxLDLs interact with endothelial cells and modulate caveolae-mediated signalling pathways, leading to endothelial dysfunction, is crucial to find new targets for intervention to tackle atherosclerosis and the related clinical entities. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesco Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Luigi Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies Vascular Biology, Atherothrombosis & Mass Spectrometry, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
23
|
Clinacanthus nutans Leaves Extract Reverts Endothelial Dysfunction in Type 2 Diabetes Rats by Improving Protein Expression of eNOS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7572892. [PMID: 32879653 PMCID: PMC7448219 DOI: 10.1155/2020/7572892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is associated with endothelial dysfunction; it causes progressive vascular damage resulting from an impaired endothelium-dependent vasorelaxation. In the diabetes state, presence of hyperglycemia and insulin resistance predisposes to endothelial dysfunction. Clinacanthus nutans, widely used as a traditional medicine for diabetes is reported to have hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory properties. However, the possibility of C. nutans affecting the vascular endothelial function in diabetes remains unclear. This study was aimed at evaluating the effects of C. nutans methanolic leaves extract (CNME) on endothelial function in a type 2 diabetes (T2DM) rat model. Sixty male Sprague-Dawley rats were divided into five groups (n = 12 per group): nondiabetic control, nondiabetic treated with four weeks of CNME (500 mg/kg/daily), untreated diabetic rats, diabetic treated with metformin (300 mg/kg/daily), and diabetic treated with CNME (500 mg/kg/daily). T2DM was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) to rats fed with high-fat diet (HFD). Endothelial-dependent and endothelial-independent relaxations and contractions of the thoracic aorta were determined using the organ bath. Aortic endothelial nitric oxide synthase (eNOS) expression was determined using Western blotting. Endothelial-dependent relaxation was reduced in diabetic rats. Both diabetic groups treated with CNME or metformin significantly improved the impairment in endothelium-dependent vasorelaxation; this was associated with increased expression of aortic eNOS protein. CNME- and metformin-treated groups also reduced aortic endothelium-dependent and aortic endothelium-independent contractions in diabetics. Both of these diabetic-treated groups also reduced blood glucose levels and increased body weight compared to the untreated diabetic group. In conclusion, C. nutans improves endothelial-dependent vasodilatation and reduces endothelial-dependent contraction, thus ameliorating endothelial dysfunction in diabetic rats. This may occur due to its effect on increasing eNOS protein expression.
Collapse
|
24
|
Chen B, Zhao Q, Xu T, Yu L, Zhuo L, Yang Y, Xu Y. BRG1 Activates PR65A Transcription to Regulate NO Bioavailability in Vascular Endothelial Cells. Front Cell Dev Biol 2020; 8:774. [PMID: 32903816 PMCID: PMC7443572 DOI: 10.3389/fcell.2020.00774] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial cells contribute to the pathogenesis of cardiovascular diseases by producing and disseminating angiocrine factors. Nitric oxide (NO), catalyzed by endothelial NO synthase (eNOS), is one of the prototypical angiocrine factors. eNOS activity is modulated by site-specific phosphorylation. We have previously shown that endothelial-specific knockdown of BRG1 in Apoe–/– mice attenuates the development of atherosclerosis, in which eNOS-dependent NO catalysis plays an antagonizing role. Here we report that attenuation of atherogenesis in mice by BRG1 knockdown was accompanied by partial restoration of NO biosynthesis by 44% in the arteries and a simultaneous up-regulation of eNOS serine 1177 phosphorylation by 59%. Indeed, BRG1 depletion or inhibition ameliorated oxLDL-induced loss of NO bioavailability and eNOS phosphorylation in cultured endothelial cells. Further analysis revealed that BRG1 regulated eNOS phosphorylation and NO synthesis by activating the transcription of protein phosphatase 2A (PP2A) structural subunit a (encoded by PR65A). BRG1 interacted with ETS1, was recruited by ETS1 to the PR65A promoter, and cooperated with ETS1 to activate PR65A transcription. Finally, depletion of ETS1, similar to BRG1, repressed PR65A induction, normalized eNOS phosphorylation, and rescued NO biosynthesis in endothelial cells treated with oxLDL. In conclusion, our data characterize a novel transcriptional cascade that regulates NO bioavailability in vascular endothelial cells.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Qianwen Zhao
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tongchang Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
25
|
Roumeliotis S, Mallamaci F, Zoccali C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J Clin Med 2020; 9:jcm9082359. [PMID: 32718053 PMCID: PMC7465707 DOI: 10.3390/jcm9082359] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The vascular endothelium is a dynamic, functionally complex organ, modulating multiple biological processes, including vascular tone and permeability, inflammatory responses, thrombosis, and angiogenesis. Endothelial dysfunction is a threat to the integrity of the vascular system, and it is pivotal in the pathogenesis of atherosclerosis and cardiovascular disease. Reduced nitric oxide (NO) bioavailability is a hallmark of chronic kidney disease (CKD), with this disturbance being almost universal in patients who reach the most advanced phase of CKD, end-stage kidney disease (ESKD). Low NO bioavailability in CKD depends on several mechanisms affecting the expression and the activity of endothelial NO synthase (eNOS). Accumulation of endogenous inhibitors of eNOS, inflammation and oxidative stress, advanced glycosylation products (AGEs), bone mineral balance disorders encompassing hyperphosphatemia, high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23), and low levels of the active form of vitamin D (1,25 vitamin D) and the anti-ageing vasculoprotective factor Klotho all impinge upon NO bioavailability and are critical to endothelial dysfunction in CKD. Wide-ranging multivariate interventions are needed to counter endothelial dysfunction in CKD, an alteration triggering arterial disease and cardiovascular complications in this high-risk population.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Francesca Mallamaci
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
| | - Carmine Zoccali
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
- Correspondence: ; Tel.: +39-340-73540-62
| |
Collapse
|
26
|
Zaric B, Obradovic M, Trpkovic A, Banach M, Mikhailidis DP, Isenovic ER. Endothelial Dysfunction in Dyslipidaemia: Molecular Mechanisms and Clinical Implications. Curr Med Chem 2020; 27:1021-1040. [DOI: 10.2174/0929867326666190903112146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
The endothelium consists of a monolayer of Endothelial Cells (ECs) which form
the inner cellular lining of veins, arteries, capillaries and lymphatic vessels. ECs interact with
the blood and lymph. The endothelium fulfils functions such as vasodilatation, regulation of
adhesion, infiltration of leukocytes, inhibition of platelet adhesion, vessel remodeling and
lipoprotein metabolism. ECs synthesize and release compounds such as Nitric Oxide (NO),
metabolites of arachidonic acid, Reactive Oxygen Species (ROS) and enzymes that degrade
the extracellular matrix. Endothelial dysfunction represents a phenotype prone to atherogenesis
and may be used as a marker of atherosclerotic risk. Such dysfunction includes impaired
synthesis and availability of NO and an imbalance in the relative contribution of endothelialderived
relaxing factors and contracting factors such as endothelin-1 and angiotensin. This
dysfunction appears before the earliest anatomic evidence of atherosclerosis and could be an
important initial step in further development of atherosclerosis. Endothelial dysfunction was
historically treated with vitamin C supplementation and L-arginine supplementation. Short
term improvement of the expression of adhesion molecule and endothelial function during
antioxidant therapy has been observed. Statins are used in the treatment of hyperlipidaemia, a
risk factor for cardiovascular disease. Future studies should focus on identifying the mechanisms
involved in the beneficial effects of statins on the endothelium. This may help develop
drugs specifically aimed at endothelial dysfunction.
Collapse
Affiliation(s)
- Bozidarka Zaric
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Milan Obradovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Andreja Trpkovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Esma R. Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
27
|
Radulović S, Gottschalk B, Hörl G, Zardoya-Laguardia P, Schilcher I, Hallström S, Vujić N, Schmidt K, Trieb M, Graier WF, Malli R, Kratky D, Marsche G, Frank S. Endothelial lipase increases eNOS activating capacity of high-density lipoprotein. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158612. [PMID: 31923467 PMCID: PMC7116681 DOI: 10.1016/j.bbalip.2020.158612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022]
Abstract
Endothelial lipase (EL) changes structural and functional properties of high-density lipoprotein (HDL). HDL is a relevant modulator of endothelial nitric oxide synthase (eNOS) activity, but the effect of EL on HDL induced eNOS-activation has not yet been investigated. Here, we examined the impact of EL-modified HDL (EL-HDL) on eNOS activity, subcellular trafficking, and eNOS- dependent vasorelaxation. EL-HDL and empty virus (EV)-HDL as control were isolated from human serum incubated with EL-overexpressing or EV infected HepG2 cells. EL-HDL exhibited higher capacity to induce eNOS phosphorylation at Ser1177 and eNOS activity in EA.hy 926 cells, as well as eNOS-dependent vasorelaxation of mouse aortic rings compared to control HDL. As revealed by confocal and structured illumination-microscopy EL-HDL-driven induction of eNOS was accompanied by an increased eNOS-GFP targeting to the plasma membrane and a lower eNOS-GFP colocalization with Golgi and mitochondria. Widefield microscopy of filipin stained cells revealed that EL-HDL lowered cellular free cholesterol (FC) and as found by thin-layer chromatography increased cellular cholesterol ester (CE) content. Additionally, cholesterol efflux capacity, acyl-coenzyme A: cholesterol acyltransferase activity, and HDL particle uptake were comparable between EL-HDL and control HDL. In conclusion, EL increases eNOS activating capacity of HDL, a phenomenon accompanied by an enrichment of the plasma membrane eNOS pool, a decreased cell membrane FC and increased cellular CE content.
Collapse
Affiliation(s)
- Snježana Radulović
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Gerd Hörl
- Otto Loewi Research Center, Division of Physiological Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6/3, 8010 Graz, Austria
| | - Pablo Zardoya-Laguardia
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Irene Schilcher
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Seth Hallström
- Otto Loewi Research Center, Division of Physiological Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6/3, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Kurt Schmidt
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Markus Trieb
- Otto Loewi Research Center, Division of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
28
|
Kruglikov IL, Scherer PE. Caveolin as a Universal Target in Dermatology. Int J Mol Sci 2019; 21:E80. [PMID: 31877626 PMCID: PMC6981867 DOI: 10.3390/ijms21010080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 is strongly expressed in different dermal and subdermal cells and physically interacts with signaling molecules and receptors, among them with transforming growth factor beta (TGF-β), matrix metalloproteinases, heat shock proteins, toll-like and glucocorticoid receptors. It should therefore be heavily involved in the regulation of cellular signaling in various hyperproliferative and inflammatory skin conditions. We provide an overview of the role of the caveolin-1 expression in different hyperproliferative and inflammatory skin diseases and discuss its possible active involvement in the therapeutic effects of different well-known drugs widely applied in dermatology. We also discuss the possible role of caveolin expression in development of the drug resistance in dermatology. Caveolin-1 is not only an important pathophysiological factor in different hyperproliferative and inflammatory dermatological conditions, but can also serve as a target for their treatment. Targeted regulation of caveolin is likely to serve as a new treatment strategy in dermatology.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| |
Collapse
|
29
|
Couto NF, Rezende L, Fernandes-Braga W, Alves AP, Agero U, Alvarez-Leite J, Damasceno NRT, Castro-Gomes T, Andrade LO. OxLDL alterations in endothelial cell membrane dynamics leads to changes in vesicle trafficking and increases cell susceptibility to injury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183139. [PMID: 31812625 DOI: 10.1016/j.bbamem.2019.183139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Plasma membrane repair (PMR) is an important process for cell homeostasis, especially for cells under constant physical stress. Repair involves a sequence of Ca2+-dependent events, including lysosomal exocytosis and subsequent compensatory endocytosis. Cholesterol sequestration from plasma membrane causes actin cytoskeleton reorganization and polymerization, increasing cell stiffness, which leads to exocytosis and reduction of a peripheral pool of lysosomes involved in PMR. These changes in mechanical properties are similar to those observed in cells exposed to oxidized Low Density Lipoprotein (oxLDL), a key molecule during atherosclerosis development. Using a human umbilical vein endothelial cell line (EAhY926) we evaluated the influence of mechanical modulation induced by oxLDL in PMR and its effect in endothelial fragility. Similar to MβCD (a drug capable of sequestering cholesterol) treatment, oxLDL exposure led to actin reorganization and de novo polymerization, as well as an increase in cell rigidity and lysosomal exocytosis. Additionally, for both MβCD and oxLDL treated cells, there was an initial increase in endocytic events, likely triggered by the peak of exocytosis induced by both treatments. However, no further endocytic events were observed, suggesting that constitutive endocytosis is blocked upon treatment and that the reorganized cytoskeleton function as a mechanical barrier to membrane traffic. Finally, the increase in cell rigidity renders cells more prone to mechanical injury. Together, these data show that mechanical modulation induced by oxLDL exposure not only alters membrane traffic in cells, but also makes them more susceptible to mechanical injury, which may likely contribute to the initial steps of atherosclerosis development.
Collapse
Affiliation(s)
- Natália Fernanda Couto
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luisa Rezende
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
30
|
Abstract
Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.
Collapse
Affiliation(s)
- Xinchun Pi
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Liang Xie
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock (C.P.)
| |
Collapse
|
31
|
Upregulated LOX-1 Receptor: Key Player of the Pathogenesis of Atherosclerosis. Curr Atheroscler Rep 2019; 21:38. [DOI: 10.1007/s11883-019-0801-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
LOX-1: Regulation, Signaling and Its Role in Atherosclerosis. Antioxidants (Basel) 2019; 8:antiox8070218. [PMID: 31336709 PMCID: PMC6680802 DOI: 10.3390/antiox8070218] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis has long been known to be a chronic inflammatory disease. In addition, there is intense oxidative stress in atherosclerosis resulting from an imbalance between the excess reactive oxygen species (ROS) generation and inadequate anti-oxidant defense forces. The excess of the oxidative forces results in the conversion of low-density lipoproteins (LDL) to oxidized LDL (ox-LDL), which is highly atherogenic. The sub-endothelial deposition of ox-LDL, formation of foamy macrophages, vascular smooth muscle cell (VSMC) proliferation and migration, and deposition of collagen are central pathophysiologic steps in the formation of atherosclerotic plaque. Ox-LDL exerts its action through several different scavenger receptors, the most important of which is LOX-1 in atherogenesis. LOX-1 is a transmembrane glycoprotein that binds to and internalizes ox-LDL. This interaction results in variable downstream effects based on the cell type. In endothelial cells, there is an increased expression of cellular adhesion molecules, resulting in the increased attachment and migration of inflammatory cells to intima, followed by their differentiation into macrophages. There is also a worsening endothelial dysfunction due to the increased production of vasoconstrictors, increased ROS, and depletion of endothelial nitric oxide (NO). In the macrophages and VSMCs, ox-LDL causes further upregulation of the LOX-1 gene, modulation of calpains, macrophage migration, VSMC proliferation and foam cell formation. Soluble LOX-1 (sLOX-1), a fragment of the main LOX-1 molecule, is being investigated as a diagnostic marker because it has been shown to be present in increased quantities in patients with hypertension, diabetes, metabolic syndrome and coronary artery disease. LOX-1 gene deletion in mice and anti-LOX-1 therapy has been shown to decrease inflammation, oxidative stress and atherosclerosis. LOX-1 deletion also results in damage from ischemia, making LOX-1 a promising target of therapy for atherosclerosis and related disorders. In this article we focus on the different mechanisms for regulation, signaling and the various effects of LOX-1 in contributing to atherosclerosis.
Collapse
|
33
|
Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr Med Chem 2019; 26:1693-1700. [DOI: 10.2174/0929867325666180508100950] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 02/02/2023]
Abstract
Oxidized LDL (ox-LDL) plays a central role in atherosclerosis by acting on multiple
cells such as endothelial cells, macrophages, platelets, fibroblasts and smooth muscle cells
through LOX-1. LOX-1 is a 50 kDa transmembrane glycoprotein that serves as receptor for
ox-LDL, modified lipoproteins, activated platelets and advance glycation end-products. Ox-
LDL through LOX-1, in endothelial cells, causes increase in leukocyte adhesion molecules,
activates pathways of apoptosis, increases reactive oxygen species and cause endothelial dysfunction.
In vascular smooth muscle cells and fibroblasts, they stimulate proliferation, migration
and collagen synthesis. LOX-1 expressed on macrophages inhibit macrophage migration
and stimulate foam cell formation. They also stimulate generation of metalloproteinases and
contribute to plaque instability and thrombosis. Drugs that modulate LOX-1 are desirable targets
against atherosclerosis. Many naturally occurring compounds have been shown to modulate
LOX-1 expression and atherosclerosis. Currently, novel drug design techniques are used
to identify molecules that can bind to LOX-1 and inhibit its activation by ox-LDL. In addition,
techniques using RNA interference and monoclonal antibody against LOX-1 are currently
being investigated for clinical use.
Collapse
Affiliation(s)
- Ajoe John Kattoor
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Sri Harsha Kanuri
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Jawahar L. Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
34
|
Potje SR, Grando MD, Chignalia AZ, Antoniali C, Bendhack LM. Reduced caveolae density in arteries of SHR contributes to endothelial dysfunction and ROS production. Sci Rep 2019; 9:6696. [PMID: 31040342 PMCID: PMC6491560 DOI: 10.1038/s41598-019-43193-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022] Open
Abstract
Caveolae are plasma membrane invaginations enriched with high cholesterol and sphingolipid content; they also contain caveolin proteins in their structure. Endothelial nitric oxide synthase (eNOS), an enzyme that synthesizes nitric oxide (NO) by converting L-arginine to L-citrulline, is highly concentrated in plasma membrane caveolae. Hypertension is associated with decreased NO production and impaired endothelium-dependent relaxation. Understanding the molecular mechanisms that follow hypertension is important. For this study, we hypothesized that spontaneously hypertensive rat (SHR) vessels should have a smaller number of caveolae, and that the caveolae structure should be disrupted in these vessels. This should impair the eNOS function and diminish NO bioavailability. Therefore, we aimed to investigate caveolae integrity and density in SHR aortas and mesenteric arteries and the role played by caveolae in endothelium-dependent relaxation. We have been able to show the presence of caveolae-like structures in SHR aortas and mesenteric arteries. Increased phenylephrine-induced contractile response after treatment with dextrin was related to lower NO release. In addition, impaired acetylcholine-induced endothelium-dependent relaxation could be related to decreased caveolae density in SHR vessels. The most important finding of this study was that cholesterol depletion with dextrin induced eNOS phosphorylation at Serine1177 (Ser1177) and boosted reactive oxygen species (ROS) production in normotensive rat and SHR vessels, which suggested eNOS uncoupling. Dextrin plus L-NAME or BH4 decreased ROS production in aorta and mesenteric arteries supernatant’s of both SHR and normotensive groups. Human umbilical vein endothelial cells (HUVECs) treated with dextrin confirmed eNOS uncoupling, as verified by the reduced eNOS dimer/monomer ratio. BH4, L-arginine, or BH4 plus L-arginine inhibited eNOS monomerization. All these results showed that caveolae structure and integrity are essential for endothelium-dependent relaxation. Additionally, a smaller number of caveolae is associated with hypertension. Finally, caveolae disruption promotes eNOS uncoupling in normotensive and hypertensive rat vessels and in HUVECs.
Collapse
Affiliation(s)
- Simone R Potje
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Marcella D Grando
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andreia Z Chignalia
- Department of Anesthesiology, College of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Cristina Antoniali
- Department of Basic Sciences, School of Dentistry, State University of São Paulo, Araçatuba, São Paulo, Brazil
| | - Lusiane M Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
35
|
Purvis GSD, Collino M, Loiola RA, Baragetti A, Chiazza F, Brovelli M, Sheikh MH, Collotta D, Cento A, Mastrocola R, Aragno M, Cutrin JC, Reutelingsperger C, Grigore L, Catapano AL, Yaqoob MM, Norata GD, Solito E, Thiemermann C. Identification of AnnexinA1 as an Endogenous Regulator of RhoA, and Its Role in the Pathophysiology and Experimental Therapy of Type-2 Diabetes. Front Immunol 2019; 10:571. [PMID: 30972066 PMCID: PMC6446914 DOI: 10.3389/fimmu.2019.00571] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Annexin A1 (ANXA1) is an endogenously produced anti-inflammatory protein, which plays an important role in the pathophysiology of diseases associated with chronic inflammation. We demonstrate that patients with type-2 diabetes have increased plasma levels of ANXA1 when compared to normoglycemic subjects. Plasma ANXA1 positively correlated with fatty liver index and elevated plasma cholesterol in patients with type-2 diabetes, suggesting a link between aberrant lipid handling, and ANXA1. Using a murine model of high fat diet (HFD)-induced insulin resistance, we then investigated (a) the role of endogenous ANXA1 in the pathophysiology of HFD-induced insulin resistance using ANXA1−/− mice, and (b) the potential use of hrANXA1 as a new therapeutic approach for experimental diabetes and its microvascular complications. We demonstrate that: (1) ANXA1−/− mice fed a HFD have a more severe diabetic phenotype (e.g., more severe dyslipidemia, insulin resistance, hepatosteatosis, and proteinuria) compared to WT mice fed a HFD; (2) treatment of WT-mice fed a HFD with hrANXA1 attenuated the development of insulin resistance, hepatosteatosis and proteinuria. We demonstrate here for the first time that ANXA1−/− mice have constitutively activated RhoA. Interestingly, diabetic mice, which have reduced tissue expression of ANXA1, also have activated RhoA. Treatment of HFD-mice with hrANXA1 restored tissue levels of ANXA1 and inhibited RhoA activity, which, in turn, resulted in restoration of the activities of Akt, GSK-3β and endothelial nitric oxide synthase (eNOS) secondary to re-sensitization of IRS-1 signaling. We further demonstrate in human hepatocytes that ANXA1 protects against excessive mitochondrial proton leak by activating FPR2 under hyperglycaemic conditions. In summary, our data suggest that (a) ANXA1 is a key regulator of RhoA activity, which restores IRS-1 signal transduction and (b) recombinant human ANXA1 may represent a novel candidate for the treatment of T2D and/or its complications.
Collapse
Affiliation(s)
- Gareth S D Purvis
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rodrigo A Loiola
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Martina Brovelli
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy.,Centro SISA per lo studio del'Aterosclerosi, Bassini Hospital, Lombardy, Italy
| | - Madeeha H Sheikh
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Alessia Cento
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Molecular Biotechnology and Sciences for the Health, University of Turin, Turin, Italy
| | - Juan C Cutrin
- Department of Molecular Biotechnology and Sciences for the Health, University of Turin, Turin, Italy
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute, Maastricht University, Maastricht, Netherlands
| | - Liliana Grigore
- Centro SISA per lo studio del'Aterosclerosi, Bassini Hospital, Lombardy, Italy.,IRCCS Multimedica, Lombardy, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Magdi M Yaqoob
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy.,Centro SISA per lo studio del'Aterosclerosi, Bassini Hospital, Lombardy, Italy
| | - Egle Solito
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II", Naples, Italy
| | - Christoph Thiemermann
- Department of Translational Medicine and Therapeutics, Bart's and The London School of Medicine and Dentistry, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
36
|
Tian K, Ogura S, Little PJ, Xu SW, Sawamura T. Targeting LOX-1 in atherosclerosis and vasculopathy: current knowledge and future perspectives. Ann N Y Acad Sci 2018; 1443:34-53. [PMID: 30381837 DOI: 10.1111/nyas.13984] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1; also known as OLR1) is the dominant receptor that recognizes and internalizes oxidized low-density lipoproteins (ox-LDLs) in endothelial cells. Several genetic variants of LOX-1 are associated with the risk and severity of coronary artery disease. The LOX-1-ox-LDL interaction induces endothelial dysfunction, leukocyte adhesion, macrophage-derived foam cell formation, smooth muscle cell proliferation and migration, and platelet activation. LOX-1 activation eventually leads to the rupture of atherosclerotic plaques and acute cardiovascular events. In addition, LOX-1 can be cleaved to generate soluble LOX-1 (sLOX-1), which is a useful diagnostic and prognostic marker for atherosclerosis-related diseases in human patients. Of therapeutic relevance, several natural products and clinically used drugs have emerged as LOX-1 inhibitors that have antiatherosclerotic actions. We hereby provide an updated overview of role of LOX-1 in atherosclerosis and associated vascular diseases, with an aim to highlighting the potential of LOX-1 as a novel theranostic tool for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Kunming Tian
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sayoko Ogura
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, Queensland, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Suo-Wen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York
| | - Tatsuya Sawamura
- Department of Physiology, School of Medicine, Shinshu University, Nagano, Japan.,Research Center for Next Generation Medicine, Shinshu University, Nagano, Japan
| |
Collapse
|
37
|
Stamatikos A, Dronadula N, Ng P, Palmer D, Knight E, Wacker BK, Tang C, Kim F, Dichek DA. ABCA1 Overexpression in Endothelial Cells In Vitro Enhances ApoAI-Mediated Cholesterol Efflux and Decreases Inflammation. Hum Gene Ther 2018; 30:236-248. [PMID: 30079772 DOI: 10.1089/hum.2018.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, a disease of blood vessels, is driven by cholesterol accumulation and inflammation. Gene therapy that removes cholesterol from blood vessels and decreases inflammation is a promising approach for prevention and treatment of atherosclerosis. In previous work, we reported that helper-dependent adenoviral (HDAd) overexpression of apolipoprotein A-I (apoAI) in endothelial cells (ECs) increases cholesterol efflux in vitro and reduces atherosclerosis in vivo. However, the effect of HDAdApoAI on atherosclerosis is partial. To improve this therapy, we considered concurrent overexpression of ATP-binding cassette subfamily A, member 1 (ABCA1), a protein that is required for apoAI-mediated cholesterol efflux. Before attempting combined apoAI/ABCA1 gene therapy, we tested whether an HDAd that expresses ABCA1 (HDAdABCA1) increases EC cholesterol efflux, whether increased cholesterol efflux alters normal EC physiology, and whether ABCA1 overexpression in ECs has anti-inflammatory effects. HDAdABCA1 increased EC ABCA1 protein (∼3-fold; p < 0.001) and apoAI-mediated cholesterol efflux (2.3-fold; p = 0.007). Under basal culture conditions, ABCA1 overexpression did not alter EC proliferation, metabolism, migration, apoptosis, nitric oxide production, or inflammatory gene expression. However, in serum-starved, apoAI-treated EC, ABCA1 overexpression had anti-inflammatory effects: decreased inflammatory gene expression (∼50%; p ≤ 0.02 for interleukin [IL]-6, tumor necrosis factor [TNF]-α, and vascular cell adhesion protein-1); reduced lipid-raft Toll-like receptor 4 (80%; p = 0.001); and a trend towards increased nitric oxide production (∼55%; p = 0.1). In ECs stimulated with lipopolysaccharide, ABCA1 overexpression markedly decreased inflammatory gene expression (∼90% for IL-6 and TNF-α; p < 0.001). Therefore, EC ABCA1 overexpression has no toxic effects and counteracts the two key drivers of atherosclerosis: cholesterol accumulation and inflammation. In vivo testing of HDAdABCA1 is warranted.
Collapse
Affiliation(s)
- Alexis Stamatikos
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Nagadhara Dronadula
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Philip Ng
- 2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna Palmer
- 2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ethan Knight
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Bradley K Wacker
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Chongren Tang
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Francis Kim
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - David A Dichek
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
38
|
Nour OAA, Shehatou GSG, Rahim MA, El-Awady MS, Suddek GM. Cinnamaldehyde exerts vasculoprotective effects in hypercholestrolemic rabbits. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1203-1219. [PMID: 30058017 DOI: 10.1007/s00210-018-1547-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Abstract
The effects of cinnamaldehyde (CIN), a commonly consumed food flavor, against high-cholesterol diet (HCD)-induced vascular damage in rabbits were evaluated. Male New Zealand rabbits (n = 24) were allocated to four groups at random: control, fed with standard rabbit chow; CIN, fed with standard diet and administered CIN; HCD, fed with 1% cholesterol-enriched diet; and HCD-CIN, fed with HCD and treated with CIN. CIN was orally given at a dose of (10 mg/kg/day) concomitantly with each diet type from day 1 until the termination of the experimental protocol (4 weeks). HCD elicited significant elevations in serum levels of total cholesterol (TC), triglycerides (TGs), and high- and low-density lipoprotein cholesterol (HDL-C and LDL-C, respectively) compared with control rabbits. Moreover, aortic levels of nitric oxide metabolites (NOx) and antioxidant enzyme activities were significantly lower, while aortic levels of malondialdehyde (MDA) and myeloperoxidase (MPO) activity were significantly higher, in HCD-fed rabbits relative to control animals. CIN administration mitigated or completely reversed HCD-induced metabolic alterations, vascular oxidative stress, and inflammation. Moreover, CIN ameliorated HCD-induced vascular functional and structural irregularities. Aortic rings from HCD-CIN group showed improved relaxation to acetylcholine compared to aortas from HCD group. Moreover, CIN decreased atherosclerotic lipid deposition and intima/media (I/M) ratio of HCD aortas. CIN-mediated effects might be related to its ability to attenuate the elevated aortic mRNA expression of cholesteryl ester transfer protein (CETP) and MPO in HCD group. Interestingly, the vasculoprotective effects of CIN treatment in the current study do not seem to be mediated via Nrf2-dependent mechanisms. In conclusion, CIN may mitigate the development of atherosclerosis in hypercholestrolemic rabbits via cholesterol-lowering, antiinflammatory and antioxidant activities.
Collapse
Affiliation(s)
- Omnia A A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mona Abdel Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
39
|
Shamsaldeen YA, Ugur R, Benham CD, Lione LA. Diabetic dyslipidaemia is associated with alterations in eNOS, caveolin-1, and endothelial dysfunction in streptozotocin treated rats. Diabetes Metab Res Rev 2018; 34:e2995. [PMID: 29471582 DOI: 10.1002/dmrr.2995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Diabetes is a complex progressive disease characterized by chronic hyperglycaemia and dyslipidaemia associated with endothelial dysfunction. Oxidized LDL (Ox-LDL) is elevated in diabetes and may contribute to endothelial dysfunction. The aim of this study was to relate the serum levels of Ox-LDL with endothelial dysfunction in streptozotocin (STZ)-diabetic rats and to further explore the changes in endothelial nitric oxide synthase (eNOS) and caveolin-1 (CAV-1) expression in primary aortic endothelial cells. METHODS Diabetes was induced with a single intraperitoneal injection of STZ in male Wistar rats. During the hyperglycaemic diabetes state serum lipid markers, aortic relaxation and aortic endothelial cell eNOS and CAV-1 protein expressions were measured. RESULTS Elevated serum Ox-LDL (STZ 1486 ± 78.1 pg/mL vs control 732.6 ± 160.6 pg/mL, P < .05) was associated with hyperglycaemia (STZ 29 ± 0.9 mmol/L vs control: 7.2 ± 0.2 mmol/L, P < .001) and hypertriglyceridaemia (STZ 9.0 ± 1.5 mmol/L vs control: 3.0 ± 0.3 mmol/L, P < .01) in diabetic rats. A significant reduction was observed in STZ-diabetic aortic endothelial cell eNOS and CAV-1 of 40% and 30%, respectively, accompanied by a compromised STZ-diabetic carbachol-induced vasodilation (STZ 29.6 ± 9.3% vs control 77.2 ± 2.5%, P < .001). CONCLUSIONS The elevated serum Ox-LDL in hyperglycaemic STZ-diabetic rats may contribute to diabetic endothelial dysfunction, possibly through downregulation of endothelial CAV-1 and eNOS.
Collapse
Affiliation(s)
- Yousif A Shamsaldeen
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, UK
| | - Rosemary Ugur
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, UK
| | - Christopher D Benham
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, UK
| | - Lisa A Lione
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, UK
| |
Collapse
|
40
|
Abdo AI, Rayner BS, van Reyk DM, Hawkins CL. Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction. Redox Biol 2017; 13:623-632. [PMID: 28818791 PMCID: PMC5558469 DOI: 10.1016/j.redox.2017.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
Low-density lipoprotein (LDL) modified by hypochlorous acid (HOCl) produced by myeloperoxidase (MPO) is present in atherosclerotic lesions, where it is implicated in the propagation of inflammation and acceleration of lesion development by multiple pathways, including the induction of endothelial dysfunction. Thiocyanate (SCN-) ions are utilised by MPO to produce the oxidant hypothiocyanous acid (HOSCN), which reacts with LDL in a different manner to HOCl. Whilst the reactivity of HOCl-modified LDL has been previously studied, the role of HOSCN in the modification of LDL in vivo is poorly defined, although emerging evidence suggests that these particles have distinct biological properties. This is important because elevated plasma SCN- is linked with both the propagation and prevention of atherosclerosis. In this study, we demonstrate that both HOSCN- and HOCl-modified LDL inhibit endothelium-mediated vasorelaxation ex vivo in rat aortic ring segments. In vitro experiments with human coronary artery endothelial cells show that HOSCN-modified LDL decreases in the production of nitric oxide (NO•) and induces the loss of endothelial nitric oxide synthase (eNOS) activity. This occurs to a similar extent to that seen with HOCl-modified LDL. In each case, these effects are related to eNOS uncoupling, rather than altered expression, phosphorylation or cellular localisation. Together, these data provide new insights into role of MPO and LDL modification in the induction of endothelial dysfunction, which has implications for both the therapeutic use of SCN- within the setting of atherosclerosis and for smokers, who have elevated plasma levels of SCN-, and are more at risk of developing cardiovascular disease. Myeloperoxidase produces HOCl and HOSCN that modify LDL in a distinct manner. HOSCN- and HOCl-LDL inhibit endothelium-mediated vasorelaxation in aortic rings ex vivo. HOSCN- and HOCl-LDL decrease endothelial production of nitric oxide in vitro. Decreased eNOS activity is seen, which associated with enzyme uncoupling. HOSCN- and HOCl-LDL induce colocalisation of eNOS and caveolin 1.
Collapse
Affiliation(s)
- Adrian I Abdo
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin S Rayner
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David M van Reyk
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark.
| |
Collapse
|
41
|
Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F, Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med 2017; 55:26-44. [DOI: 10.1016/j.mam.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
42
|
Caveolin-1: An Oxidative Stress-Related Target for Cancer Prevention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7454031. [PMID: 28546853 PMCID: PMC5436035 DOI: 10.1155/2017/7454031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 01/19/2023]
Abstract
Aberrant oxidative metabolism is one of the hallmarks of cancer. Reactive species overproduction could promote carcinogenesis via inducing genetic mutations and activating oncogenic pathways, and thus, antioxidant therapy was considered as an important strategy for cancer prevention and treatment. Caveolin-1 (Cav-1), a constituent protein of caveolae, has been shown to mediate tumorigenesis and progression through oxidative stress modulation recently. Reactive species could modulate the expression, degradation, posttranslational modifications, and membrane trafficking of Cav-1, while Cav-1-targeted treatments could scavenge the reactive species. More importantly, emerging evidences have indicated that multiple antioxidants could exert antitumor activities in cancer cells and protective activities in normal cells by modulating the Cav-1 pathway. Altogether, these findings indicate that Cav-1 may be a promising oxidative stress-related target for cancer antioxidant prevention. Elucidating the underlying interaction mechanisms between oxidative stress and Cav-1 is helpful for enhancing the preventive effects of antioxidants on cancer, for improving clinical outcomes of antioxidant-related therapeutics in cancer patients, and for developing Cav-1 targeted drugs. Herein, we summarize the available evidence of the roles of Cav-1 and oxidative stress in tumorigenesis and development and shed novel light on designing strategies for cancer prevention or treatment by utilizing the interaction mode between Cav-1 and oxidative stress.
Collapse
|
43
|
Singh KK, Matkar PN, Pan Y, Quan A, Gupta V, Teoh H, Al-Omran M, Verma S. Endothelial long non-coding RNAs regulated by oxidized LDL. Mol Cell Biochem 2017; 431:139-149. [PMID: 28316063 DOI: 10.1007/s11010-017-2984-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/24/2017] [Indexed: 11/26/2022]
Abstract
Oxidized low-density lipoprotein (oxLDL) plays a central role in the pathogenesis of atherosclerosis, in part via an effect to promote endothelial dysfunction. In the present study, we evaluated the expression profiles of long non-coding RNAs (lncRNAs) and protein-coding mRNAs in endothelial cells following oxLDL stimulation. LncRNAs and mRNAs from human umbilical vein endothelial cells (HUVECs) were profiled with the Arraystar Human lncRNA Expression Microarray V3.0 following 24 h of oxLDL treatment (100 µg/mL). Of the 30,584 lncRNAs screened, 923 were significantly up-regulated and 975 significantly down-regulated (P < 0.05) in response to oxLDL exposure. In the same HUVEC samples, 518 of the 26,106 mRNAs screened were up-regulated and 572 were down-regulated. Of these differentially expressed lncRNAs, CLDN10-AS1 and CTC-459I6.1 were the most up-regulated (~87-fold) and down-regulated (~28-fold), respectively. Bioinformatic assignment of the differentially regulated genes into functional groups indicated that many are involved in signaling pathways among which are the cytokine receptor, chemokine, TNF, MAPK and Ras signaling pathways, olfactory transduction, and vascular smooth muscle cell function. This is the first report profiling oxLDL-mediated changes in lncRNA and mRNA expression in human endothelial cells. The novel targets revealed substantially extend the list of potential candidate genes involved in atherogenesis.
Collapse
Affiliation(s)
- Krishna K Singh
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 5E21 KRCBS, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
- Division of Endocrinology & Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Yi Pan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Vijay Gupta
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Division of Endocrinology & Metabolism, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Mohammed Al-Omran
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 5E21 KRCBS, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Surgery, King Saud University and the King Saud University-Li Ka Shing Collaborative Research Program, Riyadh, Saudi Arabia
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
44
|
Amiya E. Interaction of hyperlipidemia and reactive oxygen species: Insights from the lipid-raft platform. World J Cardiol 2016; 8:689-694. [PMID: 28070236 PMCID: PMC5183968 DOI: 10.4330/wjc.v8.i12.689] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/07/2016] [Accepted: 10/09/2016] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress are closely associated with the development of atherosclerosis, and the most important regulator of ROS production in endothelial cells is NADPH oxidase. Activation of NADPH oxidase requires the assembly of multiple subunits into lipid rafts, which include specific lipid components, including free cholesterol and specific proteins. Disorders of lipid metabolism such as hyperlipidemia affect the cellular lipid components included in rafts, resulting in modification of cellular reactions that produce ROS. In the similar manner, several pathways associating ROS production are affected by the presence of lipid disorder through raft compartments. In this manuscript, we review the pathophysiological implications of hyperlipidemia and lipid rafts in the production of ROS.
Collapse
|
45
|
Aliskiren attenuates the effects of interleukin-6 on endothelial nitric oxide synthase and caveolin-1 in human aortic endothelial cells. Nitric Oxide 2016; 61:45-54. [DOI: 10.1016/j.niox.2016.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/21/2022]
|
46
|
Abstract
Endothelial nitric oxide (NO) synthase (eNOS) has an indispensable role in the erectile response. In the penis, eNOS activity and endothelial NO bioavailability are regulated by multiple post-translatlonal molecular mechanisms, such as eNOS phosphorylation, eNOS interaction with regulatory proteins and contractile pathways, and actions of reactive oxygen species (ROS). These mechanisms regulate eNOS-mediated responses under physiologic circumstances and provide various mechanisms whereby endothelial NO availability may be altered in states of vasculogenlc erectile dysfunction (ED), in view of the recent advances in the field of eNOS function in the penis and its role in penile erection, the emphasis in this review is placed on the mechanisms regulating eNOS activity and its interaction with the RhoA/Rho-kinase pathway in the physiology of penile erection and the pathophysiology of ED.
Collapse
Affiliation(s)
- Biljana Musicki
- Johns Hopkins Hospital, Department of Urology, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
47
|
Shentu TP, He M, Sun X, Zhang J, Zhang F, Gongol B, Marin TL, Zhang J, Wen L, Wang Y, Geary GG, Zhu Y, Johnson DA, Shyy JYJ. AMP-Activated Protein Kinase and Sirtuin 1 Coregulation of Cortactin Contributes to Endothelial Function. Arterioscler Thromb Vasc Biol 2016; 36:2358-2368. [PMID: 27758765 DOI: 10.1161/atvbaha.116.307871] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cortactin translocates to the cell periphery in vascular endothelial cells (ECs) on cortical-actin assembly in response to pulsatile shear stress. Because cortactin has putative sites for AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) deacetylation, we examined the hypothesis that AMPK and SIRT1 coregulate cortactin dynamics in response to shear stress. APPROACH AND RESULTS Analysis of the ability of AMPK to phosphorylate recombinant cortactin and oligopeptides whose sequences matched AMPK consensus sequences in cortactin pointed to Thr-401 as the site of AMPK phosphorylation. Mass spectrometry confirmed Thr-401 as the site of AMPK phosphorylation. Immunoblot analysis with AMPK siRNA and SIRT1 siRNA in human umbilical vein ECs and EC-specific AMPKα2 knockout mice showed that AMPK phosphorylation of cortactin primes SIRT1 deacetylation in response to shear stress. Immunoblot analyses with cortactin siRNA in human umbilical vein ECs, phospho-deficient T401A and phospho-mimetic T401D mutant, or aceto-deficient (9K/R) and aceto-mimetic (9K/Q) showed that cortactin regulates endothelial nitric oxide synthase activity. Confocal imaging and sucrose-density gradient analyses revealed that the phosphorylated/deacetylated cortactin translocates to the EC periphery facilitating endothelial nitric oxide synthase translocation from lipid to nonlipid raft domains. Knockdown of cortactin in vitro or genetic reduction of cortactin expression in vivo in mice substantially decreased the endothelial nitric oxide synthase-derived NO bioavailability. In vivo, atherosclerotic lesions increase in ApoE-/-/cortactin+/- mice, when compared with ApoE-/-/cortactin+/+ littermates. CONCLUSIONS AMPK phosphorylation of cortactin followed by SIRT1 deacetylation modulates the interaction of cortactin and cortical-actin in response to shear stress. Functionally, this AMPK/SIRT1 coregulated cortactin-F-actin dynamics is required for endothelial nitric oxide synthase subcellular translocation/activation and is atheroprotective.
Collapse
Affiliation(s)
- Tzu-Pin Shentu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Ming He
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Xiaoli Sun
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jianlin Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Fan Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Brendan Gongol
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Traci L Marin
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Jiao Zhang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Liang Wen
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yinsheng Wang
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Gregory G Geary
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - Yi Zhu
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - David A Johnson
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.)
| | - John Y-J Shyy
- From the Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-P.S., M.H., J.Z., J.Z.; L.W., J.Y.-J.S.); Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China (X.S., Y.Z.); Department of Chemistry, University of California, Riverside (F.Z., Y.W.); Department of Cardiopulmonary Sciences, Schools of Allied Health, Loma Linda University, CA (B.G., T.L.M.); Department of Kinesiology and Health Sciences, California State University, San Bernardino (G.G.G.); and Division of Biomedical Sciences, University of California, Riverside (D.A.J.).
| |
Collapse
|
48
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
49
|
Lipoproteins as modulators of atherothrombosis: From endothelial function to primary and secondary coagulation. Vascul Pharmacol 2016; 82:1-10. [DOI: 10.1016/j.vph.2015.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
|
50
|
Chu YC, Huang KT. CRP/oxLDL co-incubates impair endothelial functions through CD32, LOX-1, and keratin 1 with dependence on their ratio. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|