1
|
Bellavita R, Esposito S, Braccia S, Madrid L, Ortega P, D'Auria G, Zarrilli F, Amato F, Galdiero S, de la Mata J, Falcigno L, Falanga A. Targetable domains for the design of peptide-dendrimer inhibitors of SARS-CoV-2. Int J Pharm 2024; 661:124389. [PMID: 38942185 DOI: 10.1016/j.ijpharm.2024.124389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
We have recently witnessed that considerable progresses have been made in the rapid detection and appropriate treatments of COVID-19, but still this virus remains one of the main targets of world research. Based on the knowledge of the complex mechanism of viral infection we designed peptide-dendrimer inhibitors of SARS-CoV-2with the aim to block cell infection through interfering with the host-pathogen interactions. We used two different strategies: i) the first one aims at hindering the virus anchorage to the human cell; ii) the second -strategy points to interfere with the mechanism of virus-cell membrane fusion. We propose the use of different nanosized carriers, formed by several carbosilane dendritic wedges to deliver two different peptides designed to inhibit host interaction or virus entry. The antiviral activity of the peptide-dendrimers, as well as of free peptides and free dendrimers was evaluated through the use of SARS-CoV-2 pseudotyped lentivirus. The results obtained show that peptides designed to block host-pathogen interaction represent a valuable strategy for viral inhibition.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Speranza Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy
| | - Simone Braccia
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Laura Madrid
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Italy
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Italy; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28801 Alcalá de Henares, Spain; Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Gabriella D'Auria
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Federica Zarrilli
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy
| | - Felice Amato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Scarl, 80131 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Italy; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28801 Alcalá de Henares, Spain; Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain.
| | - Lucia Falcigno
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples 'Federico II', Via Università 100, Portici, 80055 Portici, Italy.
| |
Collapse
|
2
|
Mishra N, Kant R, Leung DW, Gross ML, Amarasinghe GK. Biochemical and HDX Mass Spectral Characterization of the SARS-CoV-2 Nsp1 Protein. Biochemistry 2023; 62:1744-1754. [PMID: 37205707 PMCID: PMC11687130 DOI: 10.1021/acs.biochem.3c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/29/2023] [Indexed: 05/21/2023]
Abstract
A major challenge in defining the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is to better understand virally encoded multifunctional proteins and their interactions with host factors. Among the many proteins encoded by the positive-sense, single-stranded RNA genome, nonstructural protein 1 (Nsp1) stands out due to its impact on several stages of the viral replication cycle. Nsp1 is the major virulence factor that inhibits mRNA translation. Nsp1 also promotes host mRNA cleavage to modulate host and viral protein expression and to suppress host immune functions. To better define how this multifunctional protein can facilitate distinct functions, we characterize SARS-CoV-2 Nsp1 by using a combination of biophysical techniques, including light scattering, circular dichroism, hydrogen/deuterium exchange mass spectrometry (HDX-MS), and temperature-dependent HDX-MS. Our results reveal that the SARS-CoV-2 Nsp1 N- and C-terminus are unstructured in solution, and in the absence of other proteins, the C-terminus has an increased propensity to adopt a helical conformation. In addition, our data indicate that a short helix exists near the C-terminus and adjoins the region that binds the ribosome. Together, these findings provide insights into the dynamic nature of Nsp1 that impacts its functions during infection. Furthermore, our results will inform efforts to understand SARS-CoV-2 infection and antiviral development.
Collapse
Affiliation(s)
- Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Ravi Kant
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
3
|
Zhou B, Wu Y, Su Z. Computational Simulation of Holin S105 in Membrane Bilayer and Its Dimerization Through a Helix-Turn-Helix Motif. J Membr Biol 2021; 254:397-407. [PMID: 34189599 PMCID: PMC10811654 DOI: 10.1007/s00232-021-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/15/2021] [Indexed: 11/30/2022]
Abstract
During the final step of the bacteriophage infection cycle, the cytoplasmic membrane of host cells is disrupted by small membrane proteins called holins. The function of holins in cell lysis is carried out by forming a highly ordered structure called lethal lesion, in which the accumulation of holins in the cytoplasmic membrane leads to the sudden opening of a hole in the middle of this oligomer. Previous studies showed that dimerization of holins is a necessary step to induce their higher order assembly. However, the molecular mechanism underlying the holin-mediated lesion formation is not well understood. In order to elucidate the functions of holin, we first computationally constructed a structural model for our testing system: the holin S105 from bacteriophage lambda. All atom molecular dynamic simulations were further applied to refine its structure and study its dynamics as well as interaction in lipid bilayer. Additional simulations on association between two holins provide supportive evidence to the argument that the C-terminal region of holin plays a critical role in regulating the dimerization. In detail, we found that the adhesion of specific nonpolar residues in transmembrane domain 3 (TMD3) in a polar environment serves as the driven force of dimerization. Our study therefore brings insights to the design of binding interfaces between holins, which can be potentially used to modulate the dynamics of lesion formation.
Collapse
Affiliation(s)
- Brian Zhou
- Edgemont Jr.\Sr. High School, 200 White Oak Ln, Scarsdale, NY, 10583, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Zhang Y, Xia B, Li Y, Lin X, Wu Q. Substrate Engineering in Lipase-Catalyzed Selective Polymerization of d-/l-Aspartates and Diols to Prepare Helical Chiral Polyester. Biomacromolecules 2021; 22:918-926. [PMID: 33427463 DOI: 10.1021/acs.biomac.0c01605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of optically pure polymers is one of the most challenging tasks in polymer chemistry. Herein, Novozym 435 (Lipase B from Candida antarctica, immobilized on Lewatit VP OC 1600)-catalyzed polycondensation between d-/l-aspartic acid (Asp) diester and diols for the preparation of helical chiral polyesters was reported. Compared with d-Asp diesters, the fast-reacting l-Asp diesters easily reacted with diols to provide a series of chiral polyesters containing N-substitutional l-Asp repeating units. Besides amino acid configuration, N-substituent side chains and the chain length of diols were also investigated and optimized. It was found that bulky acyl N-substitutional groups like N-Boc and N-Cbz were more favorable for this polymerization than small ones probably due to competitively binding of these small acyl groups into the active site of Novozym 435. The highest molecular weight can reach up to 39.5 × 103 g/mol (Mw, Đ = 1.64). Moreover, the slow-reacting d-Asp diesters were also successfully polymerized by modifying the substrate structure to create a "nonchiral" condensation environment artificially. These enantiocomplementary chiral polyesters are thermally stable and have specific helical structures, which was confirmed by circular dichroism (CD) spectra, scanning electron microscope (SEM), and molecular calculation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Bo Xia
- Jiyang College of Zhejiang A&F University, Zhuji 311800, People's Republic of China
| | - Yanyan Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
5
|
Vincenzi M, Mercurio FA, Leone M. About TFE: Old and New Findings. Curr Protein Pept Sci 2019; 20:425-451. [PMID: 30767740 DOI: 10.2174/1389203720666190214152439] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/28/2023]
Abstract
The fluorinated alcohol 2,2,2-Trifluoroethanol (TFE) has been implemented for many decades now in conformational studies of proteins and peptides. In peptides, which are often disordered in aqueous solutions, TFE acts as secondary structure stabilizer and primarily induces an α -helical conformation. The exact mechanism through which TFE plays its stabilizing roles is still debated and direct and indirect routes, relying either on straight interaction between TFE and molecules or indirect pathways based on perturbation of solvation sphere, have been proposed. Another still unanswered question is the capacity of TFE to favor in peptides a bioactive or a native-like conformation rather than simply stimulate the raise of secondary structure elements that reflect only the inherent propensity of a specific amino-acid sequence. In protein studies, TFE destroys unique protein tertiary structure and often leads to the formation of non-native secondary structure elements, but, interestingly, gives some hints about early folding intermediates. In this review, we will summarize proposed mechanisms of TFE actions. We will also describe several examples, in which TFE has been successfully used to reveal structural properties of different molecular systems, including antimicrobial and aggregation-prone peptides, as well as globular folded and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia A Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
6
|
Polyserine repeats promote coiled coil-mediated fibril formation and length-dependent protein aggregation. J Struct Biol 2018; 204:572-584. [PMID: 30194983 DOI: 10.1016/j.jsb.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/06/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
Abstract
Short polyserine (polyS) repeats are frequently found in proteins and longer ones are produced in neurological disorders such as Huntington disease (HD) owing to translational frameshifting or non-ATG-dependent translation, together with polyglutamine (polyQ) and polyalanine (polyA) repeats, forming intracellular aggregates. However, the physiological and pathological structures of polyS repeats are not clearly understood. Early studies highlighted their structural versatility, similar to other homopolymers whose conformation is influenced by the surrounding protein context. As polyS stretches are frequently near polyQ and polyA repeats, which can be part of coiled coil (CC) structures, and the frameshift-derived polyS repeats in HD directly flank CC heptads important for aggregation, we investigate here the structural and aggregation properties of polyS in the context of CC structures. We have taken advantage of peptide models, previously used to study polyQ and polyA in CCs, in which we inserted polyS repeats of variable length and studied them in comparison with polyQ and polyA peptides. We found that polyS repeats promote CC-mediated polymerization and fibrillization as revealed by circular dichroism, chemical crosslinking, and atomic force microscopy. Furthermore, they promote CC-based, length-dependent intracellular aggregation, which is negligible with 7 and widespread with 49 serines. These findings show that polyS repeats can participate in the formation of CCs, as previously found for polyQ and polyA, conferring to peptides distinctive structural properties with aggregation kinetics that are intermediate between those of polyA and polyQ CCs, and contribute to an overall structural definition of the pathophysiogical roles of homopolymeric repeats in CC structures.
Collapse
|
7
|
Maes M, Loyter A, Friedler A. Peptides that inhibit HIV-1 integrase by blocking its protein-protein interactions. FEBS J 2012; 279:2795-809. [PMID: 22742518 DOI: 10.1111/j.1742-4658.2012.08680.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HIV-1 integrase (IN) is one of the key enzymes in the viral replication cycle. It mediates the integration of viral cDNA into the host cell genome. IN activity requires interactions with several viral and cellular proteins, as well as IN oligomerization. Inhibition of IN is an important target for the development of anti-HIV therapies, but there is currently only one anti-HIV drug used in the clinic that targets IN. Several other small-molecule anti-IN drug leads are either undergoing clinical trials or in earlier stages of development. These molecules specifically inhibit one of the IN-mediated reactions necessary for successful integration. However, small-molecule inhibitors of protein-protein interactions are difficult to develop. In this review, we focus on peptides that inhibit IN. Peptides have advantages over small-molecule inhibitors of protein-protein interactions: they can mimic the structures of the binding domains within proteins, and are large enough to competitively inhibit protein-protein interactions. The development of peptides that bind IN and inhibit its protein-protein interactions will increase our understanding of the IN mode of action, and lead to the development of new drug leads, such as small molecules derived from these peptides, for better anti-HIV therapy.
Collapse
Affiliation(s)
- Michal Maes
- Institute of Chemistry, The Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
8
|
Ndao M, Dutta K, Bromley KM, Lakshminarayanan R, Sun Z, Rewari G, Moradian-Oldak J, Evans JS. Probing the self-association, intermolecular contacts, and folding propensity of amelogenin. Protein Sci 2011; 20:724-34. [PMID: 21351181 DOI: 10.1002/pro.603] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amelogenins are an intrinsically disordered protein family that plays a major role in the development of tooth enamel, one of the most highly mineralized materials in nature. Monomeric porcine amelogenin possesses random coil and residual secondary structures, but it is not known which sequence regions would be conformationally attractive to potential enamel matrix targets such as other amelogenins (self-assembly), other matrix proteins, cell surfaces, or biominerals. To address this further, we investigated recombinant porcine amelogenin (rP172) using "solvent engineering" techniques to simultaneously promote native-like structure and induce amelogenin oligomerization in a manner that allows identification of intermolecular contacts between amelogenin molecules. We discovered that in the presence of 2,2,2-trifluoroethanol (TFE) significant folding transitions and stabilization occurred primarily within the N- and C-termini, while the polyproline Type II central domain was largely resistant to conformational transitions. Seven Pro residues (P2, P127, P130, P139, P154, P157, P162) exhibited conformational response to TFE, and this indicates these Pro residues act as folding enhancers in rP172. The remaining Pro residues resisted TFE perturbations and thus act as conformational stabilizers. We also noted that TFE induced rP172 self-association via the formation of intermolecular contacts involving P4-H6, V19-P33, and E40-T58 regions of the N-terminus. Collectively, these results confirm that the N- and C-termini of amelogenin are conformationally responsive and represent potential interactive sites for amelogenin-target interactions during enamel matrix mineralization. Conversely, the Pro, Gln central domain is resistant to folding and this may have important functional significance for amelogenin.
Collapse
Affiliation(s)
- Moise Ndao
- Laboratory for Chemical Physics, New York University, New York, New York 10010, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
The HIV-1 integrase α4-helix involved in LTR-DNA recognition is also a highly antigenic peptide element. PLoS One 2010; 5:e16001. [PMID: 21209864 PMCID: PMC3012736 DOI: 10.1371/journal.pone.0016001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/02/2010] [Indexed: 01/01/2023] Open
Abstract
Monoclonal antibodies (MAbas) constitute remarkable tools to analyze the relationship between the structure and the function of a protein. By immunizing a mouse with a 29mer peptide (K159) formed by residues 147 to 175 of the HIV-1 integrase (IN), we obtained a monoclonal antibody (MAba4) recognizing an epitope lying in the N-terminal portion of K159 (residues 147–166 of IN). The boundaries of the epitope were determined in ELISA assays using peptide truncation and amino acid substitutions. The epitope in K159 or as a free peptide (pep-a4) was mostly a random coil in solution, while in the CCD (catalytic core domain) crystal, the homologous segment displayed an amphipathic helix structure (α4-helix) at the protein surface. Despite this conformational difference, a strong antigenic crossreactivity was observed between pep-a4 and the protein segment, as well as K156, a stabilized analogue of pep-a4 constrained into helix by seven helicogenic mutations, most of them involving hydrophobic residues. We concluded that the epitope is freely accessible to the antibody inside the protein and that its recognition by the antibody is not influenced by the conformation of its backbone and the chemistry of amino acids submitted to helicogenic mutations. In contrast, the AA →Glu mutations of the hydrophilic residues Gln148, Lys156 and Lys159, known for their interactions with LTRs (long terminal repeats) and inhibitors (5 CITEP, for instance), significantly impaired the binding of K156 to the antibody. Moreover, we found that in competition ELISAs, the processed and unprocessed LTR oligonucleotides interfered with the binding of MAba4 to IN and K156, confirming that the IN α4-helix uses common residues to interact with the DNA target and the MAba4 antibody. This also explains why, in our standard in vitro concerted integration assays, MAba4 strongly impaired the IN enzymatic activity.
Collapse
|
10
|
Merad H, Porumb H, Zargarian L, René B, Hobaika Z, Maroun RG, Mauffret O, Fermandjian S. An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF. PLoS One 2009; 4:e4081. [PMID: 19119323 PMCID: PMC2607020 DOI: 10.1371/journal.pone.0004081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 12/04/2008] [Indexed: 01/29/2023] Open
Abstract
Background Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149–186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the α4 and α5 helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer. Principal Findings We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the α4 and α5 helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a Kd (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (α4) which has the role of DNA recognition helix, while the C terminal helix (α5) would rather contribute to the motif stabilization by interactions with the α4 helix. Conclusion The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.
Collapse
Affiliation(s)
- Hayate Merad
- LBPA, CNRS (UMR 8113)–Ecole Normale Supérieure de Cachan, Cachan, France
| | - Horea Porumb
- LBPA, CNRS (UMR 8113)–Ecole Normale Supérieure de Cachan, Cachan, France
| | - Loussiné Zargarian
- LBPA, CNRS (UMR 8113)–Ecole Normale Supérieure de Cachan, Cachan, France
| | - Brigitte René
- LBPA, CNRS (UMR 8113)–Ecole Normale Supérieure de Cachan, Cachan, France
| | - Zeina Hobaika
- LBPA, CNRS (UMR 8113)–Ecole Normale Supérieure de Cachan, Cachan, France
| | - Richard G. Maroun
- Département des Sciences de la Vie et de la Terre, Faculté des Sciences, Université Saint Joseph, CST-Mar Roukos, B. P. 1514, Beyrouth, Liban
| | - Olivier Mauffret
- LBPA, CNRS (UMR 8113)–Ecole Normale Supérieure de Cachan, Cachan, France
| | - Serge Fermandjian
- LBPA, CNRS (UMR 8113)–Ecole Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
11
|
Horgan CP, Oleksy A, Zhdanov AV, Lall PY, White IJ, Khan AR, Futter CE, McCaffrey JG, McCaffrey MW. Rab11-FIP3 is critical for the structural integrity of the endosomal recycling compartment. Traffic 2007; 8:414-30. [PMID: 17394487 DOI: 10.1111/j.1600-0854.2007.00543.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rab11-FIP3 is an endosomal recycling compartment (ERC) protein that is implicated in the process of membrane delivery from the ERC to sites of membrane insertion during cell division. Here we report that Rab11-FIP3 is critical for the structural integrity of the ERC during interphase. We demonstrate that knockdown of Rab11-FIP3 and expression of a mutant of Rab11-FIP3 that is Rab11-binding deficient cause loss of all ERC-marker protein staining from the pericentrosomal region of A431 cells. Furthermore, we find that fluorophore-labelled transferrin cannot access the pericentrosomal region of cells in which Rab11-FIP3 function has been perturbed. We find that this Rab11-FIP3 function appears to be specific because expression of the equivalent Rab11-binding deficient mutant of Rab-coupling protein does not perturb ERC morphology. In addition, we find that other organelles such as sorting and late endosomes are unaffected by loss of Rab11-FIP3 function. Finally, we demonstrate the presence of an extensive coiled-coil region between residues 463 and 692 of Rab11-FIP3, which exists as a dimer in solution and is critical to support its function on the ERC. Together, these data indicate that Rab11-FIP3 is necessary for the structural integrity of the pericentrosomal ERC.
Collapse
Affiliation(s)
- Conor P Horgan
- Molecular Cell Biology Laboratory, Department of Biochemistry, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Corrêa F, Farah CS. Different effects of trifluoroethanol and glycerol on the stability of tropomyosin helices and the head-to-tail complex. Biophys J 2007; 92:2463-75. [PMID: 17218461 PMCID: PMC1864823 DOI: 10.1529/biophysj.106.098541] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tropomyosin (Tm) is a dimeric coiled-coil protein, composed of 284 amino acids (410 A), that forms linear homopolymers through head-to-tail interactions at low ionic strength. The head-to-tail complex involves the overlap of approximately nine N-terminal residues of one molecule with nine C-terminal residues of another Tm molecule. In this study, we investigate the influence of 2,2,2-trifluoroethanol (TFE) and glycerol on the stability of recombinant Tm fragments (ASTm1-142, Tm143-284(5OHW269)) and of the dimeric head-to-tail complex formed by the association of these two fragments. The C-terminal fragment (Tm143-284(5OHW269)) contains a 5-hydroxytryptophan (5OHW) probe at position 269 whose fluorescence is sensitive to the head-to-tail interaction and allows us to accompany titrations of Tm143-284(5OHW269) with ASTm1-142 to calculate the dissociation constant (Kd) and the interaction energy at TFE and glycerol concentrations between 0% and 15%. We observe that TFE, but not glycerol, reduces the stability of the head-to-tail complex. Thermal denaturation experiments also showed that the head-to-tail complex increases the overall conformational stability of the Tm fragments. Urea and thermal denaturation assays demonstrated that both TFE and glycerol increase the stability of the isolated N- and C-terminal fragments; however, only TFE caused a significant reduction in the cooperativity of unfolding these fragments. Our results show that these two cosolvents stabilize the structures of individual Tm fragments in different manners and that these differences may be related to their opposing effects on head-to-tail complex formation.
Collapse
Affiliation(s)
- Fernando Corrêa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
13
|
Jankowski CK, Foucher S, Fermandjian S, Maroun RG. Study of peptide oligomer derived from HIV-1 integrase molecular modelling. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Koo BK, Jung YS, Shin J, Han I, Mortier E, Zimmermann P, Whiteford JR, Couchman JR, Oh ES, Lee W. Structural basis of syndecan-4 phosphorylation as a molecular switch to regulate signaling. J Mol Biol 2005; 355:651-63. [PMID: 16310216 DOI: 10.1016/j.jmb.2005.09.087] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 12/26/2022]
Abstract
The syndecan transmembrane proteoglycans are involved in the organization of the actin cytoskeleton and have important roles as cell surface receptors during cell-matrix interactions. We have shown that the syndecan-4 cytoplasmic domain (4L) forms oligomeric complexes that bind to and stimulate PKCalpha activity in the presence of PtdIns(4,5)P2, emphasizing the importance of multimerization in the regulation of PKCalpha activation. Oligomerization of the cytoplasmic domain of syndecan-4 is regulated either positively by PtdIns(4,5)P2 or negatively by phosphorylation of serine 183. Phosphorylation results in reduced PKCalpha activity by inhibiting PtdIns(4,5)P2-dependent oligomerization of the syndecan-4 cytoplasmic domain. Data from NMR and gel-filtration chromatography show that the phosphorylated cytoplasmic domain (p-4L) exists as a dimer, similar to 4L, but not as higher-order oligomers. NMR analysis showed that the overall conformation of p-4L is a compact intertwined dimer with an unusually symmetric clamp shape, and its molecular surface is mostly positively charged. The two parallel strands form a cavity in the center of the dimeric twist. An especially marked effect of phosphorylation of the syndecan-4 cytoplasmic domain is a dramatic conformational change near the C2 region that ablates an interaction site with the PDZ domain of syntenin. Wound healing studies further suggest that syndecan-4 phosphorylation might influence cell migration behavior. We conclude that the phosphorylation (Ser183) of syndecan-4 can play a critical role as a molecular switch to regulate its functions through conformational change.
Collapse
Affiliation(s)
- Bon-Kyung Koo
- Department of Biochemistry and Protein Network Research Center, College of Science, Yonsei University, Seoul 120-749, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jankowski C, Martel JL, Fermandjian S, Maroun R. Study of potential HIV-1 inhibition. Glutaric dialdehyde adducts. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2005.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Renisio JG, Cosquer S, Cherrak I, Antri SE, Mauffret O, Fermandjian S. Pre-organized structure of viral DNA at the binding-processing site of HIV-1 integrase. Nucleic Acids Res 2005; 33:1970-81. [PMID: 15814814 PMCID: PMC1074723 DOI: 10.1093/nar/gki346] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 12/12/2022] Open
Abstract
The integration of the human immunodeficiency virus type 1 DNA into the host cell genome is catalysed by the viral integrase (IN). The reaction consists of a 3'-processing [dinucleotide released from each 3' end of the viral long terminal repeat (LTR)] followed by a strand transfer (insertion of the viral genome into the human chromosome). A 17 base pair oligonucleotide d(GGAAAATCTCTAGCAGT), d(ACTGCTAGAGATTTTCC) reproducing the U5-LTR extremity of viral DNA that contains the IN attachment site was analysed by NMR using the classical NOEs and scalar coupling constants in conjunction with a small set of residual dipolar coupling constants (RDCs) measured at the 13C/15N natural abundance. The combination of these two types of parameters in calculations significantly improved the DNA structure determination. The well-known features of A-tracts were clearly identified by RDCs in the first part of the molecule. The binding/cleavage site at the viral DNA end is distinguishable by a loss of regular base stacking and a distorted minor groove that can aid its specific recognition by IN.
Collapse
Affiliation(s)
- Jean-Guillaume Renisio
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8113, Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée, Ecole Normale Supérieure de Cachan94235 Cachan, France and Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Sylvain Cosquer
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8113, Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée, Ecole Normale Supérieure de Cachan94235 Cachan, France and Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Ilham Cherrak
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8113, Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée, Ecole Normale Supérieure de Cachan94235 Cachan, France and Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Saïd El Antri
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8113, Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée, Ecole Normale Supérieure de Cachan94235 Cachan, France and Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Olivier Mauffret
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8113, Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée, Ecole Normale Supérieure de Cachan94235 Cachan, France and Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | - Serge Fermandjian
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 8113, Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée, Ecole Normale Supérieure de Cachan94235 Cachan, France and Institut Gustave Roussy, 94805 Villejuif Cedex, France
| |
Collapse
|
17
|
Maroun RG, Zargarian L, Stocklin R, Troalen F, Jankowski CK, Fermandjian S. A structural study of model peptides derived from HIV-1 integrase central domain. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2539-48. [PMID: 16106350 DOI: 10.1002/rcm.2093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The HIV-1 integrase (IN) catalyzes the integration of viral DNA in the human genome. In vitro the enzyme displays an equilibrium of monomers, dimers, tetramers and larger oligomers. However, its functional oligomeric form in vivo is not known. We report a study of the auto-associative properties of three peptides denoted K156, E156 and E159. These derive from the alpha4 helix of the IN catalytic core. The alpha4 helix is an amphipatic helix exposed at the surface of the protein and could be involved in the oligomerization process through its hydrophobic face. The peptides were obtained from the replacement of several amino acid residues by more helicogenic ones in the alpha4 helix peptide. K156 carries the basic residues Lys156 and Lys159, which have been shown important for the binding of IN to viral DNA. In E156 and E159 they are replaced with the acidic residue Glu. A fourth peptide K(E)156 obtained from the replacement of hydrophobic residues with Glu in K156 in order to abolish the auto-associative properties is used as a negative control. The capacity shown by peptides for alpha-helical formation is demonstrated by circular dichroism (CD) analysis performed in aqueous solution and in aqueous trifluoroethanol (TFE) mixtures. Both electrospray ionization mass spectrometry (ESI-MS) and glutaraldehyde chemical cross-linking show that peptides adopt different solvent-dependent equilibriums of monomers, dimers, trimers and tetramers. Oligomerization of peptides in aqueous solution is related to their ability to form helical structures. Addition of a small amount of TFE (<10%) stimulates helix stabilization and the interhelical hydrophobic contacts. Higher amounts of TFE alter the hydrophobic contacts and disrupt the oligomeric species. In addition to hydrophobic interactions, the patterns indicate that the biologically important Lys156 and Lys159 residues also participate in helix association. K(E)156 despite its ability to adopt a helical structure is unable to associate into oligomers, demonstrating the importance of hydrophobic contacts for oligomerization. Thus, the designed peptides provide us information on the functional properties of the alpha4 IN that seems to hold a dual role in DNA recognition and protein oligomerization.
Collapse
Affiliation(s)
- Richard G Maroun
- Département de Biologie et Pharmacologie Structurales, UMR 8113 CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|
18
|
Zargarian L, Benleumi MS, Renisio JG, Merad H, Maroun RG, Wieber F, Mauffret O, Porumb H, Troalen F, Fermandjian S. Strategy to discriminate between high and low affinity bindings of human immunodeficiency virus, type 1 integrase to viral DNA. J Biol Chem 2003; 278:19966-73. [PMID: 12626494 DOI: 10.1074/jbc.m211711200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The last decade has contributed to our understanding of the three-dimensional structure of the human immunodeficiency virus, type 1 (HIV-1) integrase (IN) and to the description of how the enzyme catalyzes the viral DNA integration into the host DNA. Recognition of the viral DNA termini by IN is sequence-specific, and that of the host DNA does not require particular sequence, although in physicochemical studies IN fails to discriminate between the two interactions. Here, such discrimination was allowed thanks to a model system using designed oligonucleotides and peptides as binding structures. Spectroscopic (circular dichroism, NMR, and fluorescence anisotropy) techniques and biochemical (enzymatic and filter binding) assays clearly indicated that the amphipathic helix alpha4, located at the catalytic domain surface, is responsible for the specific high affinity binding of the enzyme to viral DNA. Analogues of the alpha4 peptide having increased helicity and still bearing the biologically relevant lysines 156 and 159 on the DNA binding face, and oligonucleotides conserving an intact attachment site, are required to achieve high affinity complexes (Kd of 1.5 nm). Data corroborate previous in vivo results obtained with mutated viruses.
Collapse
Affiliation(s)
- Loussinée Zargarian
- Département de Biologie et Pharmacologie Structurales, UMR 8113 CNRS, Institut Gustave Roussy, Villejuif 94805 and Ecole Normale Supérieure de Cachan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Paulucci AA, Hicks L, Machado A, Miranda MTM, Kay CM, Farah CS. Specific sequences determine the stability and cooperativity of folding of the C-terminal half of tropomyosin. J Biol Chem 2002; 277:39574-84. [PMID: 12167616 DOI: 10.1074/jbc.m204749200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomyosin is a flexible 410 A coiled-coil protein in which the relative stabilities of specific regions may be important for its proper function in the control of muscle contraction. In addition, tropomyosin can be used as a simple model of natural occurrence to understand the inter- and intramolecular interactions that govern the stability of coiled-coils. We have produced eight recombinant tropomyosin fragments (Tm(143-284(5OHW),) Tm(189-284(5OHW)), Tm(189-284), Tm(220-284(5OHW)), Tm(220-284), Tm(143-235), Tm(167-260), and Tm(143-260)) and one synthetic peptide (Ac-Tm(215-235)) to investigate the relative conformational stability of different regions derived from the C-terminal region of the protein, which is known to interact with the troponin complex. Analytical ultracentrifugation experiments show that the fragments that include the last 24 residues of the molecule (Tm(143-284(5OHW)), Tm(189-284(5OHW)), Tm(220-284(5OHW)), Tm(220-284)) are completely dimerized at 10 microm dimer (50 mm phosphate, 100 mm NaCl, 1.0 mm dithiothreitol, and 0.5 mm EDTA, 10 degrees C), whereas fragments that lack the native C terminus (Tm(143-235),Tm(167-260), and Tm(143-260)) are in a monomer-dimer equilibrium under these conditions. The presence of trifluoroethanol resulted in a reduction in the [theta](222)/[theta](208) circular dichroism ratio in all of the fragments and induced stable trimer formation only in those containing residues 261-284. Urea denaturation monitored by circular dichroism and fluorescence revealed that residues 261-284 of tropomyosin are very important for the stability of the C-terminal half of the molecule as a whole. Furthermore, the absence of this region greatly increases the cooperativity of urea-induced unfolding. Temperature and urea denaturation experiments show that Tm(143-235) is less stable than other fragments of the same size. We have identified a number of factors that may contribute to this particular instability, including an interhelix repulsion between g and e' positions of the heptad repeat, a charged residue at the hydrophobic coiled-coil interface, and a greater fraction of beta-branched residues located at d positions.
Collapse
Affiliation(s)
- Adriana A Paulucci
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo CP 26.077, CEP 05599-970 São Paulo, São Paulo 05508900, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Martinez D, Gerig JT. Intermolecular (1)H[(19)F] NOEs in studies of fluoroalcohol-induced conformations of peptides and proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 152:269-275. [PMID: 11567580 DOI: 10.1006/jmre.2001.2403] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mixtures of fluorinated alcohols and water can selectively stabilize certain secondary structures of peptides and proteins. Such mixtures may also be of use in solubilizing hydrophobic or membrane-bound proteins. We show that intermolecular dipolar interactions between the fluorine nuclei of such solvents and the protons of a dissolved protein lead to readily detected (1)H[(19)F] nuclear Overhauser effects. These NOEs can potentially provide information about solvent exposure of particular groups as well as indicate the formation of long-lived fluoroalcohol-solute complexes. Results obtained with HEW lysozyme in solutions containing trifluoroethanol illustrate these possibilities.
Collapse
Affiliation(s)
- D Martinez
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
21
|
Abstract
Human immunodeficiency virus Type 1 (HIV-1) integrase is an essential enzyme for the obligatory integration of the viral DNA into the infected cell chromosome. As no cellular homologue of HIV integrase has been identified, this unique HIV-1 enzyme is an attractive target for the development of new therapeutics. Treatment of HIV-1 infection and AIDS currently consists of the use of combinations of HIV-1 inhibitors directed against reverse transcriptase (RT) and protease. However, their numerous side effects and the rapid emergence of drug-resistant variants limit greatly their use in many AIDS patients. In principle, inhibitors of the HIV-1 integrase should be relatively non-toxic and provide additional benefits for AIDS chemotherapy. There have been many major advances in our understanding of the molecular mechanism of the integration reaction, although some critical aspects remain obscure. Several classes of compounds have been screened and further scrutinised for their inhibitory properties against the HIV integrase; however, there are currently no useful inhibitors available clinically for the treatment of AIDS patients. This review describes the current knowledge of the biological functions of the HIV-1 integrase and reports the major classes of integrase inhibitors identified to date.
Collapse
Affiliation(s)
- Khampoune Sayasith
- CRRA, Faculty of Veterinary Medicine, University of Montreal, PO Box 5000, St-Hyacinthe, Quebec, Canada J2S 7C6.
| | | | | |
Collapse
|
22
|
Fermandjian S, Maroun RS, Amekraz B, Jankowski CK. Self-association of an amphipathic helix peptide inhibitor of HIV-1 integrase assessed by electro spray ionization mass spectrometry in trifluoroethanol/water mixtures. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:320-324. [PMID: 11241761 DOI: 10.1002/rcm.231] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Establishing the auto-associative properties of a molecule in solution can be important for determination of its structure and function. EAA26 (VESMNEELKKIIAQVRAQAEHLKTAY) has been designed to inhibit HIV-1 integrase via formation of a stable coiled-coil structure with a nearly homologous segment in the enzyme. The latter catalyzes the permanent incorporation of a DNA copy of the retrovirus genome into host cell DNA, and is thus essential to the life of the retrovirus. This makes integrase an obvious drug target in the therapy of AIDS. The present work has demonstrated, using electrospray ionization mass spectrometry (ESI-MS), that EAA26 is monomeric in pure water, and tetrameric and dimeric at respectively low and medium concentrations of 2,2,2-trifluoroethanol (TFE), and again monomeric at higher TFE concentrations. Thus, the apolar solvent TFE may contribute to either stabilization or disruption of the intermolecular hydrophobic contacts depending on its concentration in aqueous solution. Previous NMR and ultracentifugation results are thus confirmed, indicating the reliability of ESI-MS for defining the self-association state of biologically relevant peptides in both water and organic-water solutions.
Collapse
Affiliation(s)
- S Fermandjian
- Département de Biologie et Pharmacologie Structurales, UMR 8532 CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | |
Collapse
|