1
|
Tinzl M, Diedrich JV, Mittl PRE, Clémancey M, Reiher M, Proppe J, Latour JM, Hilvert D. Myoglobin-Catalyzed Azide Reduction Proceeds via an Anionic Metal Amide Intermediate. J Am Chem Soc 2024; 146:1957-1966. [PMID: 38264790 PMCID: PMC10811658 DOI: 10.1021/jacs.3c09279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024]
Abstract
Nitrene transfer reactions catalyzed by heme proteins have broad potential for the stereoselective formation of carbon-nitrogen bonds. However, competition between productive nitrene transfer and the undesirable reduction of nitrene precursors limits the broad implementation of such biocatalytic methods. Here, we investigated the reduction of azides by the model heme protein myoglobin to gain mechanistic insights into the factors that control the fate of key reaction intermediates. In this system, the reaction proceeds via a proposed nitrene intermediate that is rapidly reduced and protonated to give a reactive ferrous amide species, which we characterized by UV/vis and Mössbauer spectroscopies, quantum mechanical calculations, and X-ray crystallography. Rate-limiting protonation of the ferrous amide to produce the corresponding amine is the final step in the catalytic cycle. These findings contribute to our understanding of the heme protein-catalyzed reduction of azides and provide a guide for future enzyme engineering campaigns to create more efficient nitrene transferases. Moreover, harnessing the reduction reaction in a chemoenzymatic cascade provided a potentially practical route to substituted pyrroles.
Collapse
Affiliation(s)
- Matthias Tinzl
- Laboratory
of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Johannes V. Diedrich
- Institute
of Physical and Theoretical Chemistry, TU
Braunschweig, 38106 Braunschweig, Germany
| | - Peer R. E. Mittl
- Department
of Biochemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Martin Clémancey
- Université
Grenoble AlpesCNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des
Métaux, 17 Rue des Martyrs, Grenoble F-38054 Cedex, France
| | - Markus Reiher
- Institute
for Molecular Physical Science, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonny Proppe
- Institute
of Physical and Theoretical Chemistry, TU
Braunschweig, 38106 Braunschweig, Germany
| | - Jean-Marc Latour
- Université
Grenoble AlpesCNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des
Métaux, 17 Rue des Martyrs, Grenoble F-38054 Cedex, France
| | - Donald Hilvert
- Laboratory
of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Derrien V, André E, Bernad S. Peroxidase activity of rice (Oryza sativa) hemoglobin: distinct role of tyrosines 112 and 151. J Biol Inorg Chem 2023; 28:613-626. [PMID: 37507628 DOI: 10.1007/s00775-023-02014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Five non-symbiotic hemoglobins (nsHb) have been identified in rice (Oryza sativa). Previous studies have shown that stress conditions can induce their overexpression, but the role of those globins is still unclear. To better understand the functions of nsHb, the reactivity of rice Hb1 toward hydrogen peroxide (H2O2) has been studied in vitro. Our results show that recombinant rice Hb1 dimerizes through dityrosine cross-links in the presence of H2O2. By site-directed mutagenesis, we suggest that tyrosine 112 located in the FG loop is involved in this dimerization. Interestingly, this residue is not conserved in the sequence of the five rice non-symbiotic hemoglobins. Stopped-flow spectrophotometric experiments have been performed to measure the catalytic constants of rice Hb and its variants using the oxidation of guaiacol. We have shown that Tyrosine112 is a residue that enhances the peroxidase activity of rice Hb1, since its replacement by an alananine leads to a decrease of guaiacol oxidation. In contrast, tyrosine 151, a conserved residue which is buried inside the heme pocket, reduces the protein reactivity. Indeed, the variant Tyr151Ala exhibits a higher peroxidase activity than the wild type. Interestingly, this residue affects the heme coordination and the replacement of the tyrosine by an alanine leads to the loss of the distal ligand. Therefore, even if the amino acid at position 151 does not participate to the formation of the dimer, this residue modulates the peroxidase activity and plays a role in the hexacoordinated state of the heme.
Collapse
Affiliation(s)
- Valérie Derrien
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, Avenue Jean Perrin. Bat 350, 91405, Orsay, France.
| | - Eric André
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, Avenue Jean Perrin. Bat 350, 91405, Orsay, France
| | - Sophie Bernad
- Institut de Chimie Physique, UMR8000, Université Paris-Saclay, CNRS, Avenue Jean Perrin. Bat 350, 91405, Orsay, France
| |
Collapse
|
3
|
Malewschik T, Carey LM, de Serrano V, Ghiladi RA. Bridging the functional gap between reactivity and inhibition in dehaloperoxidase B from Amphitrite ornata: Mechanistic and structural studies with 2,4- and 2,6-dihalophenols. J Inorg Biochem 2022; 236:111944. [PMID: 35969974 DOI: 10.1016/j.jinorgbio.2022.111944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
The multifunctional catalytic globin dehaloperoxidase (DHP) from the marine worm Amphitrite ornata was shown to catalyze the H2O2-dependent oxidation of 2,4- and 2,6-dihalophenols (DXP; X = F, Cl, Br). Product identification by LC-MS revealed multiple monomeric products with varying degrees of oxidation and/or dehalogenation, as well as oligomers with n up to 6. Mechanistic and 18O-labeling studies demonstrated sequential dihalophenol oxidation via peroxidase and peroxygenase activities. Binding studies established that 2,4-DXP (X = Cl, Br) have the highest affinities of any known DHP substrate. X-ray crystallography identified different binding positions for 2,4- and 2,6-DXP substrates in the hydrophobic distal pocket of DHP. Correlation between the number of halogens and the substrate binding orientation revealed a halogen-dependent binding motif for mono- (4-halophenol), di- (2,4- and 2,6-dihalophenol) and trihalophenols (2,4,6-trihalopenol). Taken together, the findings here on dihalophenol reactivity with DHP advance our understanding of how these compounds bridge the inhibitory and oxidative functions of their mono- and trihalophenol counterparts, respectively, and provide further insight into the protein structure-function paradigm relevant to multifunctional catalytic globins in comparison to their monofunctional analogs.
Collapse
Affiliation(s)
- Talita Malewschik
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Leiah M Carey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
4
|
Guo C, Chadwick RJ, Foulis A, Bedendi G, Lubskyy A, Rodriguez KJ, Pellizzoni MM, Milton RD, Beveridge R, Bruns N. Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors. Chembiochem 2022; 23:e202200197. [PMID: 35816250 PMCID: PMC9545363 DOI: 10.1002/cbic.202200197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Indexed: 02/02/2023]
Abstract
Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Robert J. Chadwick
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Adam Foulis
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Giada Bedendi
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Andriy Lubskyy
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Kyle J. Rodriguez
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Nico Bruns
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK,Department of ChemistryTechnical University of DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
5
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Liu J, Xu JK, Yuan H, Wang XJ, Gao SQ, Wen GB, Tan XS, Lin YW. Engineering globins for efficient biodegradation of malachite green: two case studies of myoglobin and neuroglobin. RSC Adv 2022; 12:18654-18660. [PMID: 35873322 PMCID: PMC9229271 DOI: 10.1039/d2ra02795j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Engineered globins such as H64D Mb and A15C/H64D Ngb were efficient in the degradation of malachite green, with activities much higher than those of some native enzymes.
Collapse
Affiliation(s)
- Jiao Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Hong Yuan
- Department of Chemistry, Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiang-Shi Tan
- Department of Chemistry, Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
7
|
Hofbauer S, Pignataro M, Borsari M, Bortolotti CA, Di Rocco G, Ravenscroft G, Furtmüller PG, Obinger C, Sola M, Battistuzzi G. Pseudoperoxidase activity, conformational stability, and aggregation propensity of the His98Tyr myoglobin variant: implications for the onset of myoglobinopathy. FEBS J 2021; 289:1105-1117. [PMID: 34679218 PMCID: PMC9298411 DOI: 10.1111/febs.16235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023]
Abstract
The autosomal dominant striated muscle disease myoglobinopathy is due to the single point mutation His98Tyr in human myoglobin (MB), the heme protein responsible for binding, storage, and controlled release of O2 in striated muscle. In order to understand the molecular basis of this disease, a comprehensive biochemical and biophysical study on wt MB and the variant H98Y has been performed. Although only small differences exist between the active site architectures of the two proteins, the mutant (a) exhibits an increased reactivity toward hydrogen peroxide, (b) exhibits a higher tendency to form high‐molecular‐weight aggregates, and (c) is more prone to heme bleaching, possibly as a consequence of the observed H2O2‐induced formation of the Tyr98 radical close to the metal center. These effects add to the impaired oxygen binding capacity and faster heme dissociation of the H98Y variant compared with wt MB. As the above effects result from bond formation/cleavage events occurring at the distal and proximal heme sites, it appears that the molecular determinants of the disease are localized there. These findings set the basis for clarifying the onset of the cascade of chemical events that are responsible for the pathological symptoms of myoglobinopathy.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marcello Pignataro
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | | | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Nedlands, WA, Australia
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
8
|
Tsukakoshi K, Yamagishi Y, Kanazashi M, Nakama K, Oshikawa D, Savory N, Matsugami A, Hayashi F, Lee J, Saito T, Sode K, Khunathai K, Kuno H, Ikebukuro K. G-quadruplex-forming aptamer enhances the peroxidase activity of myoglobin against luminol. Nucleic Acids Res 2021; 49:6069-6081. [PMID: 34095949 PMCID: PMC8216272 DOI: 10.1093/nar/gkab388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023] Open
Abstract
Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin's peroxidase activity was discovered. Through our strategy—in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.
Collapse
Affiliation(s)
- Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasuko Yamagishi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mana Kanazashi
- DENSO CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Kenta Nakama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daiki Oshikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Akimasa Matsugami
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Fumiaki Hayashi
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Jinhee Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Taiki Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | | | - Hitoshi Kuno
- DENSO CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
9
|
Abiological catalysis by myoglobin mutant with a genetically incorporated unnatural amino acid. Biochem J 2021; 478:1795-1808. [PMID: 33821889 PMCID: PMC10071548 DOI: 10.1042/bcj20210091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
To inculcate biocatalytic activity in the oxygen-storage protein myoglobin (Mb), a genetically engineered myoglobin mutant H64DOPA (DOPA = L-3,4-dihydroxyphenylalanine) has been created. Incorporation of unnatural amino acids has already demonstrated their ability to accomplish many non-natural functions in proteins efficiently. Herein, the presence of redox-active DOPA residue in the active site of mutant Mb presumably stabilizes the compound I in the catalytic oxidation process by participating in an additional hydrogen bonding (H-bonding) as compared to the WT Mb. Specifically, a general acid-base catalytic pathway was achieved due to the availability of the hydroxyl moieties of DOPA. The reduction potential values of WT (E° = -260 mV) and mutant Mb (E° = -300 mV), w.r.t. Ag/AgCl reference electrode, in the presence of hydrogen peroxide, indicated an additional H-bonding in the mutant protein, which is responsible for the peroxidase activity of the mutant Mb. We observed that in the presence of 5 mM H2O2, H64DOPA Mb oxidizes thioanisole and benzaldehyde with a 10 and 54 folds higher rate, respectively, as opposed to WT Mb. Based on spectroscopic, kinetic, and electrochemical studies, we deduce that DOPA residue, when present within the distal pocket of mutant Mb, alone serves the role of His/Arg-pair of peroxidases.
Collapse
|
10
|
Lin YW. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Xiang HF, Xu JK, Liu J, Yang XZ, Gao SQ, Wen GB, Lin YW. Efficient biodegradation of malachite green by an artificial enzyme designed in myoglobin. RSC Adv 2021; 11:16090-16095. [PMID: 35481174 PMCID: PMC9029994 DOI: 10.1039/d1ra02202d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 12/26/2022] Open
Abstract
Synthetic dyes such as malachite green (MG) have a wide range of applications. Meanwhile, they bring great challenges for environmental security and cause potential damages to human health. Compared with traditional approaches, enzymatic catalysis is an emerging technique for wastewater treatment. As alternatives to natural enzymes, artificial enzymes have received much attention for potential applications. In previous studies, we have rationally designed artificial enzymes based on myoglobin (Mb), such as by introducing a distal histidine (F43H mutation) and creating a channel to the heme pocket (H64A mutation). We herein show that the artificial enzyme of F43H/H64A Mb can be successfully applied for efficient biodegradation of MG under weak acid conditions. The degradation efficiency is much higher than those of natural enzymes, such as dye-decolorizing peroxidase and laccase (13-18-fold). The interaction of MG and F43H/H64A Mb was investigated by using both experimental and molecular docking studies, and the biodegradation products of MG were also revealed by UPLC-ESI-MS analysis. Based on these results, we proposed a plausible biodegradation mechanism of MG. With the high-yield of overexpression in E. coli cells, this study suggests that the artificial enzyme has potential applications in the biodegradation of MG in fisheries and textile industries.
Collapse
Affiliation(s)
- Heng-Fang Xiang
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology Qingdao 266071 China
| | - Jiao Liu
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Xin-Zhi Yang
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
- Laboratory of Protein Structure and Function, University of South China Medical School Hengyang 421001 China
| |
Collapse
|
12
|
Uchida T, Omura I, Umetsu S, Ishimori K. Radical transfer but not heme distal residues is essential for pH dependence of dye-decolorizing activity of peroxidase from Vibrio cholerae. J Inorg Biochem 2021; 219:111422. [PMID: 33756393 DOI: 10.1016/j.jinorgbio.2021.111422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/02/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Dye-decolorizing peroxidase (DyP) is a heme-containing enzyme that catalyzes the degradation of anthraquinone dyes. A main feature of DyP is the acidic optimal pH for dye-decolorizing activity. In this study, we constructed several mutant DyP enzymes from Vibrio cholerae (VcDyP), with a view to identifying the decisive factor of the low pH preference of DyP. Initially, distal Asp144, a conserved residue, was replaced with His, which led to significant loss of dye-decolorizing activity. Introduction of His into a position slightly distant from heme resulted in restoration of activity but no shift in optimal pH, indicating that distal residues do not contribute to the pH dependence of catalytic activity. His178, an essential residue for dye decolorization, is located near heme and forms hydrogen bonds with Asp138 and Thr278. While Trp and Tyr mutants of His178 were inactive, the Phe mutant displayed ~35% activity of wild-type VcDyP, indicating that this position is a potential radical transfer route from heme to the active site on the protein surface. The Thr278Val mutant displayed similar enzymatic properties as WT VcDyP, whereas the Asp138Val mutant displayed significantly increased activity at pH 6.5. On the basis of these findings, we propose that neither distal amino acid residues, including Asp144, nor hydrogen bonds between His178 and Thr278 are responsible while the hydrogen bond between His178 and Asp138 plays a key role in the pH dependence of activity.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Issei Omura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Sayaka Umetsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
13
|
Substrate promiscuity of a de novo designed peroxidase. J Inorg Biochem 2021; 217:111370. [PMID: 33621939 DOI: 10.1016/j.jinorgbio.2021.111370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/20/2022]
Abstract
The design and construction of de novo enzymes offer potentially facile routes to exploiting powerful chemistries in robust, expressible and customisable protein frameworks, while providing insight into natural enzyme function. To this end, we have recently demonstrated extensive catalytic promiscuity in a heme-containing de novo protein, C45. The diverse transformations that C45 catalyses include substrate oxidation, dehalogenation and carbon‑carbon bond formation. Here we explore the substrate promiscuity of C45's peroxidase activity, screening the de novo enzyme against a panel of peroxidase and dehaloperoxidase substrates. Consistent with the function of natural peroxidases, C45 exhibits a broad spectrum of substrate activities with selectivity dictated primarily by the redox potential of the substrate, and by extension, the active oxidising species in peroxidase chemistry, compounds I and II. Though the comparison of these redox potentials provides a threshold for determining activity for a given substrate, substrate:protein interactions are also likely to play a significant role in determining electron transfer rates from substrate to heme, affecting the kinetic parameters of the enzyme. We also used biomolecular simulation to screen substrates against a computational model of C45 to identify potential interactions and binding sites. Several sites of interest in close proximity to the heme cofactor were discovered, providing insight into the catalytic workings of C45.
Collapse
|
14
|
Ghatak A, Bhunia S, Dey A. Effect of Pendant Distal Residues on the Rate and Selectivity of Electrochemical Oxygen Reduction Reaction Catalyzed by Iron Porphyrin Complexes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sarmistha Bhunia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
15
|
Mukherjee S, Nayek A, Bhunia S, Dey SG, Dey A. A Single Iron Porphyrin Shows pH Dependent Switch between "Push" and "Pull" Effects in Electrochemical Oxygen Reduction. Inorg Chem 2020; 59:14564-14576. [PMID: 32970430 DOI: 10.1021/acs.inorgchem.0c02408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "push-pull" effects associated with heme enzymes manifest themselves through highly evolved distal amino acid environments and axial ligands to the heme. These conserved residues enhance their reactivities by orders of magnitude relative to small molecules that mimic the primary coordination. An instance of a mononuclear iron porphyrin with covalently attached pendent phenanthroline groups is reported which exhibit reactivity indicating a pH dependent "push" to "pull" transition in the same molecule. The pendant phenanthroline residues provide proton transfer pathways into the iron site, ensuring selective 4e-/4H+ reduction of O2 to water. The protonation of these residues at lower pH mimics the pull effect of peroxidases, and a coordination of an axial hydroxide ligand at high pH emulates the push effect of P450 monooxygenases. Both effects enhance the rate of O2 reduction by orders of magnitude over its value at neutral pH while maintaining exclusive selectivity for 4e-/4H+ oxygen reduction reaction.
Collapse
Affiliation(s)
- Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Sarmistha Bhunia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
16
|
Bhunia S, Rana A, Dey SG, Ivancich A, Dey A. A designed second-sphere hydrogen-bond interaction that critically influences the O-O bond activation for heterolytic cleavage in ferric iron-porphyrin complexes. Chem Sci 2020; 11:2681-2695. [PMID: 34084327 PMCID: PMC8157560 DOI: 10.1039/c9sc04388h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
Heme hydroperoxidases catalyze the oxidation of substrates by H2O2. The catalytic cycle involves the formation of a highly oxidizing species known as Compound I, resulting from the two-electron oxidation of the ferric heme in the active site of the resting enzyme. This high-valent intermediate is formed upon facile heterolysis of the O-O bond in the initial FeIII-OOH complex. Heterolysis is assisted by the histidine and arginine residues present in the heme distal cavity. This chemistry has not been successfully modeled in synthetic systems up to now. In this work, we have used a series of iron(iii) porphyrin complexes (FeIIIL2(Br), FeIIIL3(Br) and FeIIIMPh(Br)) with covalently attached pendent basic groups (pyridine and primary amine) mimicking the histidine and arginine residues in the distal-pocket of natural heme enzymes. The presence of pendent basic groups, capable of 2nd sphere hydrogen bonding interactions, leads to almost 1000-fold enhancement in the rate of Compound I formation from peracids relative to analogous complexes without these residues. The short-lived Compound I intermediate formed at cryogenic temperatures could be detected using UV-vis electronic absorption spectroscopy and also trapped to be unequivocally identified by 9 GHz EPR spectroscopy at 4 K. The broad (2000 G) and axial EPR spectrum of an exchange-coupled oxoferryl-porphyrin radical species, [FeIV[double bond, length as m-dash]O Por˙+] with g eff ⊥ = 3.80 and g eff ‖ = 1.99, was observed upon a reaction of the FeIIIL3(Br) porphyrin complex with m-CPBA. The characterization of the reactivity of the FeIII porphyrin complexes with a substrate in the presence of an oxidant like m-CPBA by UV-vis electronic absorption spectroscopy showed that they are capable of oxidizing two equivalents of inorganic and organic substrate(s) like ferrocene, 2,4,6-tritertiary butyl phenol and o-phenylenediamine. These oxidations are catalytic with a turnover number (TON) as high as 350. Density Functional Theory (DFT) calculations show that the mechanism of O-O bond activation by 2nd sphere hydrogen bonding interaction from these pendent basic groups, which are protonated by a peracid, involves polarization of the O-O σ-bond, leading to lowering of the O-O σ*-orbital allowing enhanced back bonding from the iron center. These results demonstrate how inclusion of 2nd sphere hydrogen bonding interaction can play a critical role in O-O bond heterolysis.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Atanu Rana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Anabella Ivancich
- CNRS, Aix-Marseille Univ, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479 Marseille France
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
17
|
Zhang P, Yuan H, Xu J, Wang XJ, Gao SQ, Tan X, Lin YW. A Catalytic Binding Site Together with a Distal Tyr in Myoglobin Affords Catalytic Efficiencies Similar to Natural Peroxidases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b05080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ping Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
18
|
Ragucci S, Russo R, Landi N, Valletta M, Chambery A, Esposito S, Raundrup K, Di Maro A. Muskox myoglobin: purification, characterization and kinetics studies compared with cattle and water buffalo myoglobins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6278-6286. [PMID: 31259416 DOI: 10.1002/jsfa.9901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The Arctic muskox has economic potential as an alternative meat species and is becoming increasingly popular. The present study aimed to determine the primary structure and pseudoperoxidase activity of muskox myoglobin (Mb) compared to cattle and water buffalo myoglobins. RESULTS The primary structure of muskox Mb was determined via a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based mapping approach using the sheep Mb as a reference sequence. The muskox Mb consists of 153 amino acid residues and shows 100% identity with sheep Mb, whereas 98.69% and 97.38% identity is found with cattle and water buffalo Mbs, respectively. Muskox Mb has an autoxidation rate (MetMb formation) higher than both cattle and water buffalo Mbs at pH 7.2 (37 °C). Moreover, its pseudoperoxidase activity is higher than both cattle and water buffalo Mbs at pH 7.4 (physiological pH), whereas it is slightly lower than cattle Mb and higher than water buffalo at a lower pH (5.8), corresponding to the conditions in meat. CONCLUSION For the first time, the present study reports the purification of myoglobin from muskoxen and, furthermore, a comparative study is conducted on autoxidation and pseudoperoxidase activity with respect to cattle and water buffalo Mbs at both physiological and acid pH. Overall, the results of the current research provide novel information for future studies useful to the meat industry when considering the importance of myoglobin as a principal pigment in meat colour stability. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Sabrina Esposito
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| | | | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Caserta, Italy
| |
Collapse
|
19
|
Parui PP, Sarakar Y, Majumder R, Das S, Yang H, Yasuhara K, Hirota S. Determination of proton concentration at cardiolipin-containing membrane interfaces and its relation with the peroxidase activity of cytochrome c. Chem Sci 2019; 10:9140-9151. [PMID: 31827756 PMCID: PMC6889831 DOI: 10.1039/c9sc02993a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/03/2019] [Indexed: 01/04/2023] Open
Abstract
The activities of biomolecules are affected by the proton concentrations at biological membranes. Here, we succeeded in evaluating the interface proton concentration (-log[H+] defined as pH') of cardiolipin (CL)-enriched membrane models of the inner mitochondrial membrane (IMM) using a spiro-rhodamine-glucose molecule (RHG). According to fluorescence microscopy and 1H-NMR studies, RHG interacted with the Stern layer of the membrane. The acid/base equilibrium of RHG between its protonated open form (o-RHG) and deprotonated closed spiro-form (c-RHG) at the membrane interface was monitored with UV-vis absorption and fluorescence spectra. The interface pH' of 25% cardiolipin (CL)-containing large unilamellar vesicles (LUVs), which possess similar lipid properties to those of the IMM, was estimated to be ∼3.9, when the bulk pH was similar to the mitochondrial intermembrane space pH (6.8). However, for the membranes containing mono-anionic lipids, the interface pH' was estimated to be ∼5.3 at bulk pH 6.8, indicating that the local negative charges of the lipid headgroups in the lipid membranes are responsible for the deviation of the interface pH' from the bulk pH. The peroxidase activity of cyt c increased 5-7 fold upon lowering the pH to 3.9-4.3 or adding CL-containing (10-25% of total lipids) LUVs compared to that at bulk pH 6.8, indicating that the pH' decrease at the IMM interface from the bulk pH enhances the peroxidase activity of cyt c. The peroxidase activity of cyt c at the membrane interface of tetraoleoyl CL (TOCL)-enriched (50% of total lipids) LUVs was higher than that estimated from the interface pH', while the peroxidase activity was similar to that estimated from the interface pH' for tetramyristoyl CL (TMCL)-enriched LUVs, supporting the hypothesis that when interacting with TOCL (not TMCL), cyt c opens the heme crevice to substrates. The present simple methodology allows us to estimate the interface proton concentrations of complex biological membranes.
Collapse
Affiliation(s)
- Partha Pratim Parui
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India . ; ; Tel: +91-9433490492
- Division of Materials Science , Nara Institute of Science and Technology , Nara 630-0192 , Japan
| | - Yeasmin Sarakar
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India . ; ; Tel: +91-9433490492
| | - Rini Majumder
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India . ; ; Tel: +91-9433490492
| | - Sanju Das
- Department of Chemistry , Jadavpur University , Kolkata 700032 , India . ; ; Tel: +91-9433490492
- Department of Chemistry , Maulana Azad College , Kolkata 700013 , India
| | - Hongxu Yang
- Division of Materials Science , Nara Institute of Science and Technology , Nara 630-0192 , Japan
| | - Kazuma Yasuhara
- Division of Materials Science , Nara Institute of Science and Technology , Nara 630-0192 , Japan
| | - Shun Hirota
- Division of Materials Science , Nara Institute of Science and Technology , Nara 630-0192 , Japan
| |
Collapse
|
20
|
Lin Y. Rational design of heme enzymes for biodegradation of pollutants toward a green future. Biotechnol Appl Biochem 2019; 67:484-494. [DOI: 10.1002/bab.1788] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ying‐Wu Lin
- School of Chemistry and Chemical Engineering University of South China Hengyang People's Republic of China
- Laboratory of Protein Structure and Function University of South China Hengyang People's Republic of China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes University of South China Hengyang People's Republic of China
| |
Collapse
|
21
|
Jia HY, Zong MH, Zheng GW, Li N. Myoglobin-Catalyzed Efficient In Situ Regeneration of NAD(P)+ and Their Synthetic Biomimetic for Dehydrogenase-Mediated Oxidations. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04890] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao-Yu Jia
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
22
|
Yin L, Yuan H, Liu C, He B, Gao SQ, Wen GB, Tan X, Lin YW. A Rationally Designed Myoglobin Exhibits a Catalytic Dehalogenation Efficiency More than 1000-Fold That of a Native Dehaloperoxidase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02979] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lu−Lu Yin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Can Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
23
|
A novel thermophilic hemoprotein scaffold for rational design of biocatalysts. J Biol Inorg Chem 2018; 23:1295-1307. [PMID: 30209579 DOI: 10.1007/s00775-018-1615-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Hemoproteins are commonly found in nature, and involved in many important cellular processes such as oxygen transport, electron transfer, and catalysis. Rational design of hemoproteins can not only inspire novel biocatalysts but will also lead to a better understanding of structure-function relationships in native hemoproteins. Here, the heme nitric oxide/oxygen-binding protein from Caldanaerobacter subterraneus subsp. tengcongensis (TtH-NOX) is used as a novel scaffold for oxidation biocatalyst design. We show that signaling protein TtH-NOX can be reengineered to catalyze H2O2 decomposition and oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) by H2O2. In addition, the role of the distal tyrosine (Tyr140) in catalysis is investigated. The mutation of Tyr140 to alanine hinders the catalysis of the oxidation reactions. On the other hand, the mutation of Tyr140 to histidine, which is commonly observed in peroxidases, leads to a significant increase of the catalytic activity. Taken together, these results show that, while the distal histidine plays an important role in hemoprotein reactions with H2O2, it is not always essential for oxidation activity. We show that TtH-NOX protein can be used as an alternative scaffold for the design of novel biocatalysts with desired reactivity or functionality. H-NOX proteins are homologous to the nitric oxide sensor soluble guanylate cyclase. Here, we show that the gas sensor protein TtH-NOX shows limited capacity for catalysis of redox reactions and it can be used as a novel scaffold in biocatalysis design.
Collapse
|
24
|
Bhunia S, Rana A, Roy P, Martin DJ, Pegis ML, Roy B, Dey A. Rational Design of Mononuclear Iron Porphyrins for Facile and Selective 4e -/4H + O 2 Reduction: Activation of O-O Bond by 2nd Sphere Hydrogen Bonding. J Am Chem Soc 2018; 140:9444-9457. [PMID: 29975839 DOI: 10.1021/jacs.8b02983] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facile and selective 4e-/4H+ electrochemical reduction of O2 to H2O in aqueous medium has been a sought-after goal for several decades. Elegant but synthetically demanding cytochrome c oxidase mimics have demonstrated selective 4e-/4H+ electrochemical O2 reduction to H2O is possible with rate constants as fast as 105 M-1 s-1 under heterogeneous conditions in aqueous media. Over the past few years, in situ mechanistic investigations on iron porphyrin complexes adsorbed on electrodes have revealed that the rate and selectivity of this multielectron and multiproton process is governed by the reactivity of a ferric hydroperoxide intermediate. The barrier of O-O bond cleavage determines the overall rate of O2 reduction and the site of protonation determines the selectivity. In this report, a series of mononuclear iron porphyrin complexes are rationally designed to achieve efficient O-O bond activation and site-selective proton transfer to effect facile and selective electrochemical reduction of O2 to water. Indeed, these crystallographically characterized complexes accomplish facile and selective reduction of O2 with rate constants >107 M-1 s-1 while retaining >95% selectivity when adsorbed on electrode surfaces (EPG) in water. These oxygen reduction reaction rate constants are 2 orders of magnitude faster than all known heme/Cu complexes and these complexes retain >90% selectivity even under rate determining electron transfer conditions that generally can only be achieved by installing additional redox active groups in the catalyst.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Atanu Rana
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Pronay Roy
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Daniel J Martin
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Michael L Pegis
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bijan Roy
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| | - Abhishek Dey
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A Raja SC Mullick Road , Kolkata , West Bengal 700032 , India
| |
Collapse
|
25
|
Mashima T, Oohora K, Hayashi T. Substitution of an amino acid residue axially coordinating to the heme molecule in hexameric tyrosine-coordinated hemoprotein to enhance peroxidase activity. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424617500936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To convert an originally tyrosine-coordinated heme to histidine-coordinated heme in hexameric tyrosine-coordinated hemoprotein, HTHP, Tyr45, a residue coordinating to the heme cofactor, and Arg25 located in the distal site are replaced with Phe45 and His25, respectively in each of the subunits of the protein. The obtained HTHP mutant (HTHP[Formula: see text] was characterized by SDS-PAGE, ESI-TOF MS, dynamic light scattering measurements and size exclusion chromatography. These analyses indicate that HTHP[Formula: see text] maintains its stable hexameric structure with the altered ligation of each of the heme cofactors. Comparison of UV-vis absorption spectra of the ferric-, ferrous-, CO- and CN-forms of HTHP[Formula: see text] with those of several well-known His-ligated hemoproteins indicates that heme is coordinated by the His25 residue. The reaction of HTHP[Formula: see text] with cumene hydroperoxide produces both cumyl alcohol and acetophenone in a 2.3:1 ratio, indicating that heterolytic O–O bond cleavage dominantly occurs to form the two-electron oxidized species known as compound I. Peroxidase activity of HTHP[Formula: see text] is found to follow Michaelis–Menten kinetics. The [Formula: see text] values of HTHP[Formula: see text] for H[Formula: see text]O[Formula: see text]-dependent oxidation of ABTS and guaiacol are 10- and 100-fold higher, respectively, than those of wild type HTHP (HTHP[Formula: see text]. The [Formula: see text]/[Formula: see text] values of HTHP[Formula: see text] for both substrates are increased 30-fold relative to that of HTHP[Formula: see text]. Moreover, HTHP[Formula: see text] is capable of promoting catalytic sulfoxidation of thioanisole with H[Formula: see text]O[Formula: see text] with a turnover number ca. 2-fold higher than that of HTHP[Formula: see text]. The present findings demonstrate that proximal His ligation to the heme is significantly effective to increase the peroxidase activity in the HTHP matrix.
Collapse
Affiliation(s)
- Tsuyoshi Mashima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
26
|
Improved rate of substrate oxidation catalyzed by genetically-engineered myoglobin. Arch Biochem Biophys 2018; 639:44-51. [DOI: 10.1016/j.abb.2017.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
|
27
|
Pott M, Hayashi T, Mori T, Mittl PRE, Green AP, Hilvert D. A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold. J Am Chem Soc 2018; 140:1535-1543. [DOI: 10.1021/jacs.7b12621] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moritz Pott
- Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Takahiro Mori
- Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Zurich 8057, Switzerland
| | - Anthony P. Green
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
28
|
Libardi SH, Alves FR, Tabak M. Interaction of Glossoscolex paulistus extracellular hemoglobin with hydrogen peroxide: Formation and decay of ferryl-HbGp. Int J Biol Macromol 2018; 111:271-280. [PMID: 29305213 DOI: 10.1016/j.ijbiomac.2017.12.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/12/2017] [Accepted: 12/28/2017] [Indexed: 11/30/2022]
Abstract
The giant extracellular hemoglobin from earthworm Glossoscolex paulistus (HbGp) reacts with hydrogen peroxide, displaying peroxidase activity in the presence of guaiacol. The formation of ferryl-HbGp (compound II) from the peroxidase cycle was studied in the present work. The hypervalent ferryl-HbGp species was formed directly by the reaction of oxy-HbGp and hydrogen peroxide. The oxy-HbGp heme groups (144) under different excess of H2O2, relative to heme, showed an influence in the total amount of ferryl-HbGp at the end of the reaction. The ferryl-HbGp was formed with second order rate constant of 27.1±0.5M-1s-1, at pH7.0 and 25°C. The increase of the pH value to 8.0 induces both faster formation and decay of ferryl-HbGp, together with oligomeric dissociation induced by the presence of H2O2, as observed by DLS. This effect of dissociation increases the heme exposure and decreases the ferryl-HbGp stability, affecting the rate constant as a parallel reaction. At pH7.0, high excess of H2O2, above 1:5 oxy-HbGp heme: H2O2, produces the aggregation of the protein. Our results show for the first time, for an extracellular giant hemoglobin, the possible effects of oxidative stress induced by hydrogen peroxide.
Collapse
Affiliation(s)
- Silvia H Libardi
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| | - Fernanda R Alves
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
29
|
Glorieux C, Calderon PB. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem 2017; 398:1095-1108. [PMID: 28384098 DOI: 10.1515/hsz-2017-0131] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 12/18/2022]
Abstract
This review is centered on the antioxidant enzyme catalase and will present different aspects of this particular protein. Among them: historical discovery, biological functions, types of catalases and recent data with regard to molecular mechanisms regulating its expression. The main goal is to understand the biological consequences of chronic exposure of cells to hydrogen peroxide leading to cellular adaptation. Such issues are of the utmost importance with potential therapeutic extrapolation for various pathologies. Catalase is a key enzyme in the metabolism of H2O2 and reactive nitrogen species, and its expression and localization is markedly altered in tumors. The molecular mechanisms regulating the expression of catalase, the oldest known and first discovered antioxidant enzyme, are not completely elucidated. As cancer cells are characterized by an increased production of reactive oxygen species (ROS) and a rather altered expression of antioxidant enzymes, these characteristics represent an advantage in terms of cell proliferation. Meanwhile, they render cancer cells particularly sensitive to an oxidant insult. In this context, targeting the redox status of cancer cells by modulating catalase expression is emerging as a novel approach to potentiate chemotherapy.
Collapse
|
30
|
Hu S, He B, Du KJ, Wang XJ, Gao SQ, Lin YW. Peroxidase Activity of a c-Type Cytochrome b5 in the Non-Native State is Comparable to that of Native Peroxidases. ChemistryOpen 2017. [PMID: 28638761 PMCID: PMC5474653 DOI: 10.1002/open.201700055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The design of artificial metalloenzymes has achieved tremendous progress, although few designs can achieve catalytic performances comparable to that of native enzymes. Moreover, the structure and function of artificial metalloenzymes in non‐native states has rarely been explored. Herein, we found that a c‐type cytochrome b5 (Cyt b5), N57C/S71C Cyt b5, with heme covalently attached to the protein matrix through two Cys–heme linkages, adopts a non‐native state with an open heme site after guanidine hydrochloride (Gdn⋅HCl)‐induced unfolding, which facilitates H2O2 activation and substrate binding. Stopped‐flow kinetic studies further revealed that c‐type Cyt b5 in the non‐native state exhibited impressive peroxidase activity comparable to that of native peroxidases, such as the most efficient horseradish peroxidase. This study presents an alternative approach to the design of functional artificial metalloenzymes by exploring enzymatic functions in non‐native states.
Collapse
Affiliation(s)
- Shan Hu
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Bo He
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Ke-Jie Du
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function University of South China Hengyang 421001 P.R. China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering University of South China Hengyang 421001 P.R. China.,Laboratory of Protein Structure and Function University of South China Hengyang 421001 P.R. China
| |
Collapse
|
31
|
McCombs NL, Moreno-Chicano T, Carey LM, Franzen S, Hough MA, Ghiladi RA. Interaction of Azole-Based Environmental Pollutants with the Coelomic Hemoglobin from Amphitrite ornata: A Molecular Basis for Toxicity. Biochemistry 2017; 56:2294-2303. [PMID: 28387506 DOI: 10.1021/acs.biochem.7b00041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The toxicities of azole pollutants that have widespread agricultural and industrial uses are either poorly understood or unknown, particularly with respect to how infaunal organisms are impacted by this class of persistent organic pollutant. To identify a molecular basis by which azole compounds may have unforeseen toxicity on marine annelids, we examine here their impact on the multifunctional dehaloperoxidase (DHP) hemoglobin from the terebellid polychaete Amphitrite ornata. Ultraviolet-visible and resonance Raman spectroscopic studies showed an increase in the six-coordinate low-spin heme population in DHP isoenzyme B upon binding of imidazole, benzotriazole, and benzimidazole (Kd values of 52, 82, and 110 μM, respectively), suggestive of their direct binding to the heme-Fe. Accordingly, atomic-resolution X-ray crystal structures, supported by computational studies, of the DHP B complexes of benzotriazole (1.14 Å), benzimidazole (1.08 Å), imidazole (1.08 Å), and indazole (1.12 Å) revealed two ligand binding motifs, one with direct ligand binding to the heme-Fe, and another in which the ligand binds in the hydrophobic distal pocket without coordinating the heme-Fe. Taken together, the results demonstrate a new mechanism by which azole pollutants can potentially disrupt hemoglobin function, thereby improving our understanding of their impact on infaunal organisms in marine and aquatic environments.
Collapse
Affiliation(s)
- Nikolette L McCombs
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Tadeo Moreno-Chicano
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester, Essex CO4 3SQ, U.K
| | - Leiah M Carey
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| | - Michael A Hough
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester, Essex CO4 3SQ, U.K
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
32
|
Yamada M, Hashimoto Y, Kumano T, Tsujimura S, Kobayashi M. New function of aldoxime dehydratase: Redox catalysis and the formation of an unexpected product. PLoS One 2017; 12:e0175846. [PMID: 28410434 PMCID: PMC5391958 DOI: 10.1371/journal.pone.0175846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
In general, hemoproteins are capable of catalyzing redox reactions. Aldoxime dehydratase (OxdA), which is a unique heme-containing enzyme, catalyzes the dehydration of aldoximes to the corresponding nitriles. Its reaction is a rare example of heme directly activating an organic substrate, unlike the utilization of H2O2 or O2 as a mediator of catalysis by other heme-containing enzymes. While it is unknown whether OxdA catalyzes redox reactions or not, we here for the first time detected catalase activity (which is one of the redox activities) of wild-type OxdA, OxdA(WT). Furthermore, we constructed a His320 → Asp mutant of OxdA [OxdA(H320D)], and found it exhibits catalase activity. Determination of the kinetic parameters of OxdA(WT) and OxdA(H320D) revealed that their Km values for H2O2 were similar to each other, but the kcat value of OxdA(H320D) was 30 times higher than that of OxdA(WT). Next, we examined another redox activity and found it was the peroxidase activity of OxdAs. While both OxdA(WT) and OxdA(H320D) showed the activity, the activity of OxdA(H320D) was dozens of times higher than that of OxdA(WT). These findings demonstrated that the H320D mutation enhances the peroxidase activity of OxdA. OxdAs (WT and H320D) were found to catalyze another redox reaction, a peroxygenase reaction. During this reaction of OxdA(H320D) with 1-methoxynaphthalene as a substrate, surprisingly, the reaction mixture changed to a color different from that with OxdA(WT), which was due to the known product, Russig’s blue. We purified and identified the new product as 1-methoxy-2-naphthalenol, which has never been reported as a product of the peroxygenase reaction, to the best of our knowledge. These findings indicated that the H320D mutation not only enhanced redox activities, but also significantly altered the hydroxylation site of the substrate.
Collapse
Affiliation(s)
- Masatoshi Yamada
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiteru Hashimoto
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuto Kumano
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Tsujimura
- Division of Materials Science, Faculty of Pure and Applied Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
33
|
Li LL, Yuan H, Liao F, He B, Gao SQ, Wen GB, Tan X, Lin YW. Rational design of artificial dye-decolorizing peroxidases using myoglobin by engineering Tyr/Trp in the heme center. Dalton Trans 2017; 46:11230-11238. [DOI: 10.1039/c7dt02302b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Artificial dye-decolorizing peroxidases (DyPs) have been rationally designed using myoglobin (Mb) as a protein scaffold by engineering Tyr/Trp in the heme center, such as F43Y/F138 W Mb, which exhibited catalytic performance comparable to some native DyPs.
Collapse
Affiliation(s)
- Le-Le Li
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science
- Fudan University
- Shanghai 200433
- China
| | - Fei Liao
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Bo He
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function
- University of South China
- Hengyang 421001
- China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function
- University of South China
- Hengyang 421001
- China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science
- Fudan University
- Shanghai 200433
- China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- China
- Laboratory of Protein Structure and Function
| |
Collapse
|
34
|
Wu LB, Du KJ, Nie CM, Gao SQ, Wen GB, Tan X, Lin YW. Peroxidase activity enhancement of myoglobin by two cooperative distal histidines and a channel to the heme pocket. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Heterolytic OO bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG. J Inorg Biochem 2016; 167:60-67. [PMID: 27907864 DOI: 10.1016/j.jinorgbio.2016.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/23/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023]
Abstract
The diheme enzyme MauG utilizes H2O2 to perform oxidative posttranslational modification on a protein substrate. A bis-Fe(IV) species of MauG was previously identified as a key intermediate in this reaction. Heterolytic cleavage of the OO bond of H2O2 drives the formation of the bis-Fe(IV) intermediate. In this work, we tested a hypothesis that a glutamate residue, Glu113 in the distal pocket of the pentacoordinate heme of MauG, facilitates heterolytic OO bond cleavage, thereby leading to bis-Fe(IV) formation. This hypothesis was proposed based on sequence alignment and structural comparison with other H2O2-utilizing hemoenzymes, especially those from the diheme enzyme superfamily that MauG belongs to. Electron paramagnetic resonance (EPR) characterization of the reaction between MauG and H2O2 revealed that mutation of Glu113 inhibited heterolytic OO bond cleavage, in agreement with our hypothesis. This result was further confirmed by the HPLC study in which an analog of H2O2, cumene hydroperoxide, was used to probe the pattern of OO bond cleavage. Together, our data suggest that Glu113 functions as an acid-base catalyst to assist heterolytic OO bond cleavage during the early stage of the catalytic reaction. This work advances our mechanistic understanding of the H2O2-activation process during bis-Fe(IV) formation in MauG.
Collapse
|
36
|
A Highly Efficient Dual Rotating Disks Photocatalytic Fuel Cell with Wedged Surface TiO2 Nanopore Anode and Hemoglobin Film Cathode. Catalysts 2016. [DOI: 10.3390/catal6080114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
37
|
Liao F, Yuan H, Du KJ, You Y, Gao SQ, Wen GB, Lin YW, Tan X. Distinct roles of a tyrosine-associated hydrogen-bond network in fine-tuning the structure and function of heme proteins: two cases designed for myoglobin. MOLECULAR BIOSYSTEMS 2016; 12:3139-45. [PMID: 27476534 DOI: 10.1039/c6mb00537c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrogen-bond (H-bond) network, specifically a Tyr-associated H-bond network, plays key roles in regulating the structure and function of proteins, as exemplified by abundant heme proteins in nature. To explore an approach for fine-tuning the structure and function of artificial heme proteins, we herein used myoglobin (Mb) as a model protein and introduced a Tyr residue in the secondary sphere of the heme active site at two different positions (107 and 138). We performed X-ray crystallography, UV-Vis spectroscopy, stopped-flow kinetics, and electron paramagnetic resonance (EPR) studies for the two single mutants, I107Y Mb and F138Y Mb, and compared to that of wild-type Mb under the same conditions. The results showed that both Tyr107 and Tyr138 form a distinct H-bond network involving water molecules and neighboring residues, which fine-tunes ligand binding to the heme iron and enhances the protein stability, respectively. Moreover, the Tyr107-associated H-bond network was shown to fine-tune both H2O2 binding and activation. With two cases demonstrated for Mb, this study suggests that the Tyr-associated H-bond network has distinct roles in regulating the protein structure, properties and functions, depending on its location in the protein scaffold. Therefore, it is possible to design a Tyr-associated H-bond network in general to create other artificial heme proteins with improved properties and functions.
Collapse
Affiliation(s)
- Fei Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu LB, Yuan H, Zhou H, Gao SQ, Nie CM, Tan X, Wen GB, Lin YW. An intramolecular disulfide bond designed in myoglobin fine-tunes both protein structure and peroxidase activity. Arch Biochem Biophys 2016; 600:47-55. [DOI: 10.1016/j.abb.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 01/08/2023]
|
39
|
Yan DJ, Yuan H, Li W, Xiang Y, He B, Nie CM, Wen GB, Lin YW, Tan X. How a novel tyrosine-heme cross-link fine-tunes the structure and functions of heme proteins: a direct comparitive study of L29H/F43Y myoglobin. Dalton Trans 2016; 44:18815-22. [PMID: 26458300 DOI: 10.1039/c5dt03040d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A heme-protein cross-link is a key post-translational modification (PTM) of heme proteins. Meanwhile, the structural and functional consequences of heme-protein cross-links are not fully understood, due to limited studies on a direct comparison of the same protein with and without the cross-link. A Tyr-heme cross-link with a C-O bond is a newly discovered PTM of heme proteins, and is spontaneously formed in F43Y myoglobin (Mb) between the Tyr hydroxyl group and the heme 4-vinyl group in vivo. In this study, we found that with an additional distal His29 introduced in the heme pocket, the double mutant L29H/F43Y Mb can form two distinct forms under different protein purification conditions, with and without a novel Tyr-heme cross-link. By solving the X-ray structures of both forms of L29H/F43Y Mb and performing spectroscopic studies, we made a direct structural and functional comparison in the same protein scaffold. It revealed that the Tyr-heme cross-link regulates the heme distal hydrogen-bonding network, and fine-tunes not only the spectroscopic and ligand binding properties, but also the protein reactivity. Moreover, the formation of the Tyr-heme cross-link in the double mutant L29H/F43Y Mb was investigated in vitro. This study addressed the key issue of how Tyr-heme cross-link fine-tunes the structure and functions of the heme protein, and provided a plausible mechanism for the formation of the newly discovered Tyr-heme cross-link.
Collapse
Affiliation(s)
- Dao-Jing Yan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Hong Yuan
- Department of Chemistry/Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| | - Wei Li
- Department of Chemistry/Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| | - Yu Xiang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China. and Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry/Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
40
|
Wu LB, Yuan H, Gao SQ, You Y, Nie CM, Wen GB, Lin YW, Tan X. Regulating the nitrite reductase activity of myoglobin by redesigning the heme active center. Nitric Oxide 2016; 57:21-29. [PMID: 27108710 DOI: 10.1016/j.niox.2016.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Heme proteins perform diverse functions in living systems, of which nitrite reductase (NIR) activity receives much attention recently. In this study, to better understand the structural elements responsible for the NIR activity, we used myoglobin (Mb) as a model heme protein and redesigned the heme active center, by introducing one or two distal histidines, and by creating a channel to the heme center with removal of the native distal His64 gate (His to Ala mutation). UV-Vis kinetic studies, combined with EPR studies, showed that a single distal histidine with a suitable position to the heme iron, i.e., His43, is crucial for nitrite (NO2(-)) to nitric oxide (NO) reduction. Moreover, creation of a water channel to the heme center significantly enhanced the NIR activity compared to the corresponding mutant without the channel. In addition, X-ray crystallographic studies of F43H/H64A Mb and its complexes with NO2(-) or NO revealed a unique hydrogen-bonding network in the heme active center, as well as unique substrate and product binding models, providing valuable structural information for the enhanced NIR activity. These findings enriched our understanding of the structure and NIR activity relationship of heme proteins. The approach of creating a channel in this study is also useful for rational design of other functional heme proteins.
Collapse
Affiliation(s)
- Lei-Bin Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Yong You
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China.
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
41
|
McCombs NL, D’Antonio J, Barrios DA, Carey LM, Ghiladi RA. Nonmicrobial Nitrophenol Degradation via Peroxygenase Activity of Dehaloperoxidase-Hemoglobin from Amphitrite ornata. Biochemistry 2016; 55:2465-78. [DOI: 10.1021/acs.biochem.6b00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikolette L. McCombs
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| | - Jennifer D’Antonio
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| | - David A. Barrios
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204
| |
Collapse
|
42
|
Zhao Y, Du KJ, Gao SQ, He B, Wen GB, Tan X, Lin YW. Distinct mechanisms for DNA cleavage by myoglobin with a designed heme active center. J Inorg Biochem 2016; 156:113-21. [DOI: 10.1016/j.jinorgbio.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
|
43
|
Husband J, Aaron MS, Bains RK, Lewis AR, Warren JJ. Catalytic reduction of dioxygen with modified Thermus thermophilus cytochrome c552. J Inorg Biochem 2016; 157:8-14. [PMID: 26816109 DOI: 10.1016/j.jinorgbio.2016.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/23/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Efficient catalysis of the oxygen reduction reaction (ORR) is of central importance to function in fuel cells. Metalloproteins, such as laccase (Cu) or cytochrome c oxidase (Cu/Fe-heme) carry out the 4H(+)/4e(-) reduction quite efficiently, but using large, complex protein frameworks. Smaller heme proteins also can carry out ORR, but less efficiently. To gain greater insight into features that promote efficient ORR, we expressed, characterized, and investigated the electrochemical behavior of six new mutants of cytochrome c552 from Thermus thermophilus: V49S/M69A, V49T/M69A, L29D/V49S/M69A, P27A/P28A/L29D/V49S/M69A, and P27A/P28A/L29D/V49T/M69A. Mutation to V49 causes only minor shifts to Fe(III/II) reduction potentials (E°'), but introduction of Ser provides a hydrogen bond donor that slightly enhances oxygen reduction activity. Mutation of L29 to D induces small shifts in heme optical spectra, but not to E°' (within experimental error). Replacement of P27 and P28 with A in both positions induces a -50 mV shift in E°', again with small changes to the optical spectra. Both the optical spectra and reduction potentials have signatures consistent with peroxidase enzymes. The V49S and V49T mutations have the largest impact of ORR catalysis, suggesting that increased electron density at the Fe site does not improve O2 reduction chemistry.
Collapse
Affiliation(s)
- Jonathan Husband
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Michael S Aaron
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Rajneesh K Bains
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Andrew R Lewis
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
44
|
Mohammadzade S, Beig Parikhani A, Askari H. Assessment of Behavior of Rice Root Peroxidase in the Presence of Silver Nanoparticles. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2016. [DOI: 10.17795/ajmb-30943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Cai YB, Yao SY, Hu M, Liu X, Zhang JL. Manganese protoporphyrin IX reconstituted myoglobin capable of epoxidation of the CC bond with Oxone®. Inorg Chem Front 2016. [DOI: 10.1039/c6qi00120c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Myoglobin with three distal histidines stabilizes KHSO5, facilitates the O–O bond heterocleavage, and firstly catalyzes epoxidation with the MnPPIX cofactor.
Collapse
Affiliation(s)
- Yuan-Bo Cai
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Si-Yu Yao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Mo Hu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
46
|
Uchida T, Sasaki M, Tanaka Y, Ishimori K. A Dye-Decolorizing Peroxidase from Vibrio cholerae. Biochemistry 2015; 54:6610-21. [PMID: 26431465 DOI: 10.1021/acs.biochem.5b00952] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dye-decolorizing peroxidase (DyP) protein from Vibrio cholerae (VcDyP) was expressed in Escherichia coli, and its DyP activity was assayed by monitoring degradation of a typical anthraquinone dye, reactive blue 19 (RB19). Its kinetic activity was obtained by fitting the data to the Michaelis-Menten equation, giving kcat and Km values of 1.3 ± 0.3 s(-1) and 50 ± 20 μM, respectively, which are comparable to those of other DyP enzymes. The enzymatic activity of VcDyP was highest at pH 4. A mutational study showed that two distal residues, Asp144 and Arg230, which are conserved in a DyP family, are essential for the DyP reaction. The crystal structure and resonance Raman spectra of VcDyP indicate the transfer of a radical from heme to the protein surface, which was supported by the formation of the intermolecular covalent bond in the reaction with H2O2. To identify the radical site, each of nine tyrosine or two tryptophan residues was substituted. It was clarified that Tyr129 and Tyr235 are in the active site of the dye degradation reaction at lower pH, while Tyr109 and Tyr133 are the sites of an intermolecular covalent bond at higher pH. VcDyP degrades RB19 at lower pH, while it loses activity under neutral or alkaline conditions because of a change in the radical transfer pathway. This finding suggests the presence of a pH-dependent switch of the radical transfer pathway, probably including His178. Although the physiological function of the DyP reaction is unclear, our findings suggest that VcDyP enhances the DyP activity to survive only when it is placed under a severe condition such as being in gastric acid.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University , Sapporo 060-0810, Japan
| | - Miho Sasaki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University , Sapporo 060-0810, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University , Sapporo 060-0808, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University , Sapporo 060-0810, Japan
| |
Collapse
|
47
|
Campomanes P, Rothlisberger U, Alfonso-Prieto M, Rovira C. The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase. J Am Chem Soc 2015; 137:11170-8. [DOI: 10.1021/jacs.5b06796] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pablo Campomanes
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mercedes Alfonso-Prieto
- Departament de Química Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08208 Barcelona, Spain
| | - Carme Rovira
- Departament de Química Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08208 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| |
Collapse
|
48
|
Ebihara A, Manzoku M, Fukui K, Shimada A, Morita R, Masui R, Kuramitsu S. Roles of Mn-catalase and a possible heme peroxidase homologue in protection from oxidative stress in Thermus thermophilus. Extremophiles 2015; 19:775-85. [PMID: 25997395 DOI: 10.1007/s00792-015-0753-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
Hydrogen peroxide (H2O2) produces hydroxyl radicals that directly attack a variety of biomolecules and cause severe cellular dysfunction. An extremely thermophilic bacterium, Thermus thermophilus HB8, possesses at least three enzymes that can scavenge H2O2: manganese-containing catalase (TTHA0122, MnCAT), a possible peroxiredoxin homologue (TTHA1300), and a possible heme peroxidase (HPX) homologue (TTHA1714). To investigate the roles of these proteins, we attempted to disrupt each of these genes in T. thermophilus HB8. Although we were able to completely disrupt ttha1300, we were unable to completely delete ttha0122 and ttha1714 because of polyploidy. Quantitative real-time PCR showed that, compared to the wild type, 31 % of ttha0122 and 11 % of ttha1714 remained in the ∆ttha0122 and ∆ttha1714 disruption mutants, respectively. Mutants with reduced levels of ttha0122 or ttha1714 exhibited a significant increase in spontaneous mutation frequency. ∆ttha1714 grew slower than the wild type under normal conditions. ∆ttha0122 grew very poorly after exposure to H2O2. Moreover, ∆ttha0122 did not show H2O2-scavenging activity, whereas ∆ttha1300 and ∆ttha1714 scavenged H2O2, a property similar to that exhibited by the wild type. MnCAT purified from T. thermophilus HB8 cells scavenged H2O2 in vitro. The recombinant form of the possible HPX homologue, reconstituted with hemin, showed peroxidase activity with H2O2 as an oxidant substrate. Based on these results, we propose that not only MnCAT but also the possible HPX homologue is involved in protecting the cell from oxidative stress in T. thermophilus.
Collapse
Affiliation(s)
- Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan,
| | | | | | | | | | | | | |
Collapse
|
49
|
Ascenzi P, Coletta M, Wilson MT, Fiorucci L, Marino M, Polticelli F, Sinibaldi F, Santucci R. Cardiolipin-cytochrome c complex: Switching cytochrome c from an electron-transfer shuttle to a myoglobin- and a peroxidase-like heme-protein. IUBMB Life 2015; 67:98-109. [PMID: 25857294 DOI: 10.1002/iub.1350] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/11/2015] [Indexed: 12/18/2022]
Abstract
Cytochrome c (cytc) is a small heme-protein located in the space between the inner and the outer membrane of the mitochondrion that transfers electrons from cytc-reductase to cytc-oxidase. The hexa-coordinated heme-Fe atom of cytc displays a very low reactivity toward ligands and does not exhibit significant catalytic properties. However, upon cardiolipin (CL) binding, cytc achieves ligand binding and catalytic properties reminiscent of those of myoglobin and peroxidase. In particular, the peroxidase activity of the cardiolipin-cytochrome c complex (CL-cytc) is critical for the redistribution of CL from the inner to the outer mitochondrial membranes and is essential for the execution and completion of the apoptotic program. On the other hand, the capability of CL-cytc to bind NO and CO and the heme-Fe-based scavenging of reactive nitrogen and oxygen species may affect apoptosis. Here, the ligand binding and catalytic properties of CL-cytc are analyzed in parallel with those of CL-free cytc, myoglobin, and peroxidase to dissect the potential mechanisms of CL in modulating the pro- and anti-apoptotic actions of cytc.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Du JF, Li W, Li L, Wen GB, Lin YW, Tan X. Regulating the coordination state of a heme protein by a designed distal hydrogen-bonding network. ChemistryOpen 2014; 4:97-101. [PMID: 25969804 PMCID: PMC4420578 DOI: 10.1002/open.201402108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 01/03/2023] Open
Abstract
Heme coordination state determines the functional diversity of heme proteins. Using myoglobin as a model protein, we designed a distal hydrogen-bonding network by introducing both distal glutamic acid (Glu29) and histidine (His43) residues and regulated the heme into a bis-His coordination state with native ligands His64 and His93. This resembles the heme site in natural bis-His coordinated heme proteins such as cytoglobin and neuroglobin. A single mutation of L29E or F43H was found to form a distinct hydrogen-bonding network involving distal water molecules, instead of the bis-His heme coordination, which highlights the importance of the combination of multiple hydrogen-bonding interactions to regulate the heme coordination state. Kinetic studies further revealed that direct coordination of distal His64 to the heme iron negatively regulates fluoride binding and hydrogen peroxide activation by competing with the exogenous ligands. The new approach developed in this study can be generally applicable for fine-tuning the structure and function of heme proteins.
Collapse
Affiliation(s)
- Jun-Fang Du
- School of Chemistry and Chemical Engineering, University of South China Hengyang, 421001, (P. R. China))
| | - Wei Li
- Department of Chemistry and Institute of Biomedical Science, Fudan University Shanghai, 200433, (P. R. China)
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng, 252059, (P. R. China)
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Hengyang, 421001, (P. R. China)
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China Hengyang, 421001, (P. R. China)) ; Laboratory of Protein Structure and Function, University of South China Hengyang, 421001, (P. R. China)
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University Shanghai, 200433, (P. R. China)
| |
Collapse
|