1
|
Baert L, Manfroi B, Quintero M, Chavarria O, Barbon PV, Clement E, Zeller A, Van Kuppevelt T, Sturm N, Moreaux J, Tveita A, Bogen B, McKee T, Huard B. 3-O sulfation of syndecan-1 mediated by the sulfotransferase HS3ST3a1 enhances myeloma aggressiveness. Matrix Biol 2023; 120:60-75. [PMID: 37201729 DOI: 10.1016/j.matbio.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Multiple myeloma is a hematological neoplasm derived from plasma cells invariably developing in the bone marrow (BM). The persisting clinical challenge in MM resides in its high ability to resist drugs as shown by the frequent relapses observed in patients regardless of the treatment applied. In a mouse model of MM, we identified a subpopulation of cells harboring increased resistance to current MM drugs. These cells bound a proliferation inducing ligand (APRIL), a key MM promoting/survival factor. APRIL binding involved the heparan sulfate (HS) chain present on syndecan-1 (SDC-1), and correlated with reactivity to the anti-HS antibody 10e4. 10e4+cells had a high proliferation activity, and were able to form colonies in 3-D cultures. 10e4+ cells were the only cells able to develop in BM after intravenous injection. They also resisted drugs in vivo, since their number increased after treatment in BM. Notably, 10e4+ cells differentiated into 10e4- cells upon in vitro and in vivo expansion. Expression of one sulfotransferase, HS3ST3a1, allowed modification of syndecan-1 to confer reactivity to 10e4 and binding to APRIL. HS3ST3a1 deletion inhibited tumorigenesis in BM. Notably, the two populations coexisted at a variable frequency in the BM of MM patients at diagnosis. In total, our results indicate that 3-O-sulfation on SDC-1 carried out by HS3ST3a1 defines aggressive MM cells, and that targeting of this enzyme could possibly be used to better control drug resistance.
Collapse
Affiliation(s)
- L Baert
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - B Manfroi
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - M Quintero
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France
| | - O Chavarria
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - P V Barbon
- Institute for Advanced Biosciences, University Grenoble-Alpes, INSERM U1209, La Tronche, France
| | - E Clement
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France
| | - A Zeller
- Department of Pathology and Immunology, university Hospitals, Geneva, Switzerland
| | - T Van Kuppevelt
- Rabdoud university medical center, Nijmegen, the Netherlands
| | - N Sturm
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France; Department of Pathology, university Hospital, Grenoble, France
| | - J Moreaux
- Department of Biological Hematology, University Hospital, Montpellier, France; Institute of Human Genetics, centre national de la recherche scientifique, University Montpellier, France
| | - A Tveita
- Department of Immunology and transfusion medicine, Institute for Immunology, university Hospital, Oslo, Norway
| | - B Bogen
- Department of Immunology and transfusion medicine, Institute for Immunology, university Hospital, Oslo, Norway; University of Oslo, Norway
| | - T McKee
- Department of clinical pathology, university Hospitals, Geneva, Switzerland
| | - B Huard
- translational innovation in medicine and complexity, University Grenoble-Alpes, CNRS UMR5525, La Tronche, France.
| |
Collapse
|
2
|
Marques C, Reis CA, Vivès RR, Magalhães A. Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Front Oncol 2021; 11:778752. [PMID: 34858858 PMCID: PMC8632541 DOI: 10.3389/fonc.2021.778752] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Heparan Sulfate Proteoglycans (HSPGs) are important cell surface and Extracellular Matrix (ECM) maestros involved in the orchestration of multiple cellular events in physiology and pathology. These glycoconjugates bind to various bioactive proteins via their Heparan Sulfate (HS) chains, but also through the protein backbone, and function as scaffolds for protein-protein interactions, modulating extracellular ligand gradients, cell signalling networks and cell-cell/cell-ECM interactions. The structural features of HS chains, including length and sulfation patterns, are crucial for the biological roles displayed by HSPGs, as these features determine HS chains binding affinities and selectivity. The large HS structural diversity results from a tightly controlled biosynthetic pathway that is differently regulated in different organs, stages of development and pathologies, including cancer. This review addresses the regulatory mechanisms underlying HS biosynthesis, with a particular focus on the catalytic activity of the enzymes responsible for HS glycan sequences and sulfation motifs, namely D-Glucuronyl C5-Epimerase, N- and O-Sulfotransferases. Moreover, we provide insights on the impact of different HS structural epitopes over HSPG-protein interactions and cell signalling, as well as on the effects of deregulated expression of HS modifying enzymes in the development and progression of cancer. Finally, we discuss the clinical potential of HS biosynthetic enzymes as novel targets for therapy, and highlight the importance of developing new HS-based tools for better patients' stratification and cancer treatment.
Collapse
Affiliation(s)
- Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | | | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Patel VN, Pineda DL, Berenstein E, Hauser BR, Choi S, Prochazkova M, Zheng C, Goldsmith CM, van Kuppevelt TH, Kulkarni A, Song Y, Linhardt RJ, Chibly AM, Hoffman MP. Loss of Hs3st3a1 or Hs3st3b1 enzymes alters heparan sulfate to reduce epithelial morphogenesis and adult salivary gland function. Matrix Biol 2021; 103-104:37-57. [PMID: 34653670 DOI: 10.1016/j.matbio.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022]
Abstract
Heparan sulfate 3-O-sulfotransferases generate highly sulfated but rare 3-O-sulfated heparan sulfate (HS) epitopes on cell surfaces and in the extracellular matrix. Previous ex vivo experiments suggested functional redundancy exists among the family of seven enzymes but that Hs3st3a1 and Hs3st3b1 sulfated HS increases epithelial FGFR signaling and morphogenesis. Single-cell RNAseq analysis of control SMGs identifies increased expression of Hs3st3a1 and Hs3st3b1 in endbud and myoepithelial cells, both of which are progenitor cells during development and regeneration. To analyze their in vivo functions, we generated both Hs3st3a1-/- and Hs3st3b1-/- single knockout mice, which are viable and fertile. Salivary glands from both mice have impaired fetal epithelial morphogenesis when cultured with FGF10. Hs3st3b1-/- mice have reduced intact SMG branching morphogenesis and reduced 3-O-sulfated HS in the basement membrane. Analysis of HS biosynthetic enzyme transcription highlighted some compensatory changes in sulfotransferases expression early in development. The overall glycosaminoglycan composition of adult control and KO mice were similar, although HS disaccharide analysis showed increased N- and non-sulfated disaccharides in Hs3st3a1-/- HS. Analysis of adult KO gland function revealed normal secretory innervation, but without stimulation there was an increase in frequency of drinking behavior in both KO mice, suggesting basal salivary hypofunction, possibly due to myoepithelial dysfunction. Understanding how 3-O-sulfation regulates myoepithelial progenitor function will be important to manipulate HS-binding growth factors to enhance tissue function and regeneration.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dallas L Pineda
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elsa Berenstein
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Belinda R Hauser
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Choi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Translational Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Corinne M Goldsmith
- Translational Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical Centre, Nijmegen, Netherlands
| | - Ashok Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuefan Song
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Li J, Su G, Xu Y, Arnold K, Pagadala V, Wang C, Liu J. Synthesis of 3- O-Sulfated Heparan Sulfate Oligosaccharides Using 3- O-Sulfotransferase Isoform 4. ACS Chem Biol 2021; 16:2026-2035. [PMID: 34351732 DOI: 10.1021/acschembio.1c00474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate (HS) 3-O-sulfotransferase isoform 4 (3-OST-4) is a specialized carbohydrate sulfotransferase participating in the biosynthesis of heparan sulfate. Here, we report the expression and purification of the recombinant 3-OST-4 enzyme and use it for the synthesis of a library of 3-O-sulfated hexasaccharides and 3-O-sulfated octasaccharides. The unique structural feature of the library is that each oligosaccharide contains a disaccharide domain with a 2-O-sulfated glucuronic acid (GlcA2S) and 3-O-sulfated glucosamine (GlcNS3S). By rearranging the order of the enzymatic modification steps, we demonstrate the synthesis of oligosaccharides with different saccharide sequences. The structural characterization was completed by electrospray ionization mass spectrometry and NMR. These 3-O-sulfated oligosaccharides show weak to very weak anti-Factor Xa activity, a measurement of anticoagulant activity. We discovered that HSoligo 7 (HS oligosaccharide 7), a 3-O-sulfated octasaccharide, binds to high mobility group box 1 protein (HMGB1) and tau protein, both believed to be involved in the process of inflammation. Access to the recombinant 3-OST-4 expands the capability of the chemoenzymatic method to synthesize novel 3-O-sulfated oligosaccharides. The oligosaccharides will become valuable reagents to probe the biological functions of 3-O-sulfated HS and to develop HS-based therapeutic agents.
Collapse
Affiliation(s)
- Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Vijayakanth Pagadala
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
5
|
Chemoenzymatic synthesis of ultralow and low-molecular weight heparins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140301. [DOI: 10.1016/j.bbapap.2019.140301] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
|
6
|
Du J, Liu S, Liang Q, Lin J, Jiang L, Chen F, Wei Z. Analysis of Heparan sulfate/heparin from Colla corii asini by liquid chromatography-electrospray ion trap mass spectrometry. Glycoconj J 2019; 36:211-218. [DOI: 10.1007/s10719-019-09868-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 11/29/2022]
|
7
|
Hess AS, Lunney JK, Abrams S, Choi I, Trible BR, Hess MK, Rowland RRR, Plastow GS, Dekkers JCM. Identification of factors associated with virus level in tonsils of pigs experimentally infected with porcine reproductive and respiratory syndrome virus. J Anim Sci 2019; 97:536-547. [PMID: 30496411 DOI: 10.1093/jas/sky446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important global swine diseases from both an economic and animal welfare standpoint. PRRS has plagued the US swine industry for over 25 yr, and containment of PRRS virus (PRRSV) has been unsuccessful to date. The primary phase of PRRS, tracked by serum viremia, typically clears between 21 and 42 d postinfection (dpi) but tonsils are a main site of PRRSV persistence and PRRSV can be detected in tonsils in excess of 150 dpi. Measuring tonsil virus (TV) levels at late stages of infection (6 to 7 wk postinfection) can be used to assess tonsil persistence, as levels of virus in tonsil at this time likely influence how long the virus will remain in the tissue. TV levels were measured on pigs experimentally infected with either the NVSL-97-7895 (NVSL; n = 524) or KS-2006-72109 (KS06; n = 328) PRRSV type 2 isolates across five trials. The objectives of this study were to (i) estimate the heritability of TV levels at 35 or 42 dpi; (ii) identify factors the affect TV level, including serum viremia; (iii) identify genomic regions associated with TV level; and (iv) compare results for the two PRRSV isolates. TV level was lowly heritable for both isolates (NVSL: 0.05 ± 0.06; KS06: 0.11 ± 0.10). Level of TV was phenotypically associated with traits related to viral clearance from serum: pigs with low TV levels had an earlier and faster rate of maximal serum viral clearance, lower total serum viral load, and lower viremia level at 35 or 42 dpi. Although no genomic regions with major effects on TV level were identified, several showed some association (>0.1% of total genetic variance in the NVSL-infected dataset, the KS06-infected dataset, and the combined dataset). These regions contained the genes CCL1, CCL2, CCL8, HS3ST3B1, GALNT10, TCF7, C1QA/B/C, HPSE, G0S2, and CD34, which are involved in viral infiltration or replication, immune cell migration, and viral clearance from tissue. Results were similar between the two PRRSV isolates. In conclusion, selection for viral clearance traits in serum may reduce PRRSV persistence in the tonsil across PRRSV isolates. However, genetic correlations need to be estimated to determine whether this will be successful.
Collapse
Affiliation(s)
- Andrew S Hess
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | | | - Ben R Trible
- College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Melanie K Hess
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | | |
Collapse
|
8
|
Nguyen NT, Vivès RR, Torres M, Delauzun V, Saesen E, Roig-Zamboni V, Lortat-Jacob H, Rihet P, Bourne Y. Genetic and enzymatic characterization of 3-O-sulfotransferase SNPs associated with Plasmodium falciparum parasitaemia. Glycobiology 2018; 28:534-541. [PMID: 29718295 DOI: 10.1093/glycob/cwy038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/27/2018] [Indexed: 01/09/2023] Open
Abstract
The HS3ST3A1/B1 genes encode two homologous 3-O-sulfotransferases involved in the late modification step during heparan sulfate (HS) biosynthesis. In addition to the single nucleotide polymorphisms (SNPs) rs28470223 (C > T) in the promoter region of both HS3ST3A1 and rs62636623 (Gly/Arg) in the stem region of HS3ST3B1, three missense mutations (rs62056073, rs61729712 and rs9906590) located within the catalytic sulfotransferase domain of 3-OST-B1 are linked and associated to Plasmodium falciparum parasitaemia. To ascertain the functional effects of these SNP associations, we investigated the regulatory effect of rs28470223 and characterized the enzymatic activity of the missense SNP rs61729712 (Ser279Asn) localized at proximity of the substrate binding cleft. The SNP rs28470223 results in decreased promoter activity of HS3ST3A1 in K562 cells, suggesting a reduced in vivo transcription activity of the target gene. A comparative kinetic analysis of wt HS3ST3B1 and the Ser269Asn variant (rs61729712) using a HS-derived oligosaccharide substrate reveals a slightly higher catalytic activity for the SNP variant. These genetic and enzymatic studies suggest that genetic variations in enzymes responsible of HS 3-O-sulfation can modulate their promoter and enzymatic activities and may influence P. falciparum parasitaemia.
Collapse
Affiliation(s)
- Ngoc Thy Nguyen
- Aix Marseille University, INSERM, TAGC, Marseille, France.,CNRS, Aix Marseille University, AFMB, Marseille, France
| | - Romain R Vivès
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Magali Torres
- Aix Marseille University, INSERM, TAGC, Marseille, France
| | | | - Els Saesen
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | | | - Pascal Rihet
- Aix Marseille University, INSERM, TAGC, Marseille, France
| | - Yves Bourne
- CNRS, Aix Marseille University, AFMB, Marseille, France
| |
Collapse
|
9
|
The Pro-Tumoral Activity of Heparan Sulfate 3- O-Sulfotransferase 3B (HS3ST3B) in Breast Cancer MDA-MB-231 Cells Is Dependent on the Expression of Neuropilin-1. Molecules 2018; 23:molecules23102718. [PMID: 30360368 PMCID: PMC6222811 DOI: 10.3390/molecules23102718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 01/13/2023] Open
Abstract
Heparan sulfate 3-O-sulfotransferases (HS3STs) catalyze the maturation step of heparan sulfate (HS) 3-O-sulfation. This modification is relatively rare. Moreover, only a few biological processes have been described to be influenced by 3-O-sulfated HS, and few ligands have been identified so far. Among them, neuropilin-1 (Nrp1) was reported to exhibit tumor-promoting properties by enhancing the action of various growth factors. We recently demonstrated that transient overexpression of HS3ST2, 3B or 4 enhanced the proliferation of breast cancer MDA-MB-231 cells and promote efficient protection against pro-apoptotic stimuli. Hence, we hypothesized that the pro-tumoral activity of these HS3STs could depend on the expression of Nrp1. To test this, MDA-MB-231 cells were stably transfected with a construct encoding HS3ST3B and the expression of Nrp1 was down-regulated by RNA interference. First, we confirmed that stable expression of HS3ST3B effectively increased cell proliferation and viability. Silencing the expression of Nrp1 markedly attenuated the promoting effects of HS3ST3B, while the same treatment had only a moderate effect on the behavior of the parental cells. Altogether, our findings support the idea that the tumor-promoting effects of HS3ST3B could be dependent on the expression of Nrp1 in cancer cells.
Collapse
|
10
|
Hellec C, Delos M, Carpentier M, Denys A, Allain F. The heparan sulfate 3-O-sulfotransferases (HS3ST) 2, 3B and 4 enhance proliferation and survival in breast cancer MDA-MB-231 cells. PLoS One 2018; 13:e0194676. [PMID: 29547633 PMCID: PMC5856405 DOI: 10.1371/journal.pone.0194676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/07/2018] [Indexed: 01/03/2023] Open
Abstract
Heparan sulfate 3-O-sulfotransferases (HS3STs) catalyze the final maturation step of heparan sulfates. Although seven HS3ST isozymes have been described in human, 3-O-sulfation is a relatively rare modification, and only a few biological processes have been described to be influenced by 3-O-sulfated motifs. A conflicting literature has recently reported that HS3ST2, 3A, 3B and 4 may exhibit either tumor-promoting or anti-oncogenic properties, depending on the model used and cancer cell phenotype. Hence, we decided to compare the consequences of the overexpression of each of these HS3STs in the same cellular model. We demonstrated that, unlike HS3ST3A, the other three isozymes enhanced the proliferation of breast cancer MDA-MB-231 and BT-20 cells. Moreover, the colony forming capacity of MDA-MB-231 cells was markedly increased by the expression of HS3ST2, 3B and 4. No notable difference was observed between the three isozymes, meaning that the modifications catalyzed by each HS3ST had the same functional impact on cell behavior. We then demonstrated that overexpression of HS3ST2, 3B and 4 was accompanied by increased activation of c-Src, Akt and NF-κB and up-regulation of the anti-apoptotic proteins survivin and XIAP. In line with these findings, we showed that HS3ST-transfected cells are more resistant to cell death induction by pro-apoptotic stimuli or NK cells. Altogether, our findings demonstrate that HS3ST2, 3B and 4 share the same pro-tumoral activity and support the idea that these HS3STs could compensate each other for loss of their expression depending on the molecular signature of cancer cells and/or changes in the tumor environment.
Collapse
Affiliation(s)
- Charles Hellec
- University of Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maxime Delos
- University of Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Mathieu Carpentier
- University of Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Agnès Denys
- University of Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Fabrice Allain
- University of Lille, CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- * E-mail:
| |
Collapse
|
11
|
Xu Y, Chandarajoti K, Zhang X, Pagadala V, Dou W, Hoppensteadt DM, Sparkenbaugh EM, Cooley B, Daily S, Key NS, Severynse-Stevens D, Fareed J, Linhardt RJ, Pawlinski R, Liu J. Synthetic oligosaccharides can replace animal-sourced low-molecular weight heparins. Sci Transl Med 2017; 9:eaan5954. [PMID: 28878012 PMCID: PMC6231235 DOI: 10.1126/scitranslmed.aan5954] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Low-molecular weight heparin (LMWH) is used clinically to treat clotting disorders. As an animal-sourced product, LMWH is a highly heterogeneous mixture, and its anticoagulant activity is not fully reversible by protamine. Furthermore, the reliability of the LMWH supply chain is a concern for regulatory agencies. We demonstrate the synthesis of heparin dodecasaccharides (12-mers) at the gram scale. In vitro experiments demonstrate that the anticoagulant activity of the 12-mers could be reversed using protamine. One of these, labeled as 12-mer-1, reduced the size of blood clots in the mouse model of deep vein thrombosis and attenuated circulating procoagulant markers in the mouse model of sickle cell disease. An ex vivo experiment demonstrates that the anticoagulant activity of 12-mer-1 could be reversed by protamine. 12-mer-1 was also examined in a nonhuman primate model to determine its pharmacodynamic parameters. A 7-day toxicity study in a rat model showed no toxic effects. The data suggest that a synthetic homogeneous oligosaccharide can replace animal-sourced LMWHs.
Collapse
Affiliation(s)
- Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kasemsiri Chandarajoti
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Xing Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vijayakanth Pagadala
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wenfang Dou
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Erica M Sparkenbaugh
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian Cooley
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sharon Daily
- Center for Global Health, RTI International, Research Triangle Park, NC 27709, USA
| | - Nigel S Key
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Jawed Fareed
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60660, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Rafal Pawlinski
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Delos M, Hellec C, Foulquier F, Carpentier M, Allain F, Denys A. Participation of 3- O-sulfated heparan sulfates in the protection of macrophages by herpes simplex virus-1 glycoprotein D and cyclophilin B against apoptosis. FEBS Open Bio 2016; 7:133-148. [PMID: 28174681 PMCID: PMC5292672 DOI: 10.1002/2211-5463.12145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfates (HS) are involved in numerous biological processes, which rely on their ability to interact with a large panel of proteins. Although the reaction of 3‐O‐sulfation can be catalysed by the largest family of HS sulfotransferases, very few mechanisms have been associated with this modification and to date, only glycoprotein D (gD) of herpes simplex virus‐1 (HSV‐1 gD) and cyclophilin B (CyPB) have been well‐described as ligands for 3‐O‐sulfated HS. Here, we hypothesized that both ligands could induce the same responses via a mechanism dependent on 3‐O‐sulfated HS. First, we checked that HSV‐1 gD was as efficient as CyPB to induce the activation of the same signalling events in primary macrophages. We then demonstrated that both ligands efficiently reduced staurosporin‐induced apoptosis and modulated the expression of apoptotic genes. In addition to 3‐O‐sulfated HS, HSV‐1 gD was reported to interact with other receptors, including herpes virus entry mediator (HVEM), nectin‐1 and ‐2. Thus, we decided to identify the contribution of each binding site in the responses triggered by HSV‐1 gD and CyPB. We found that knock‐down of 3‐O‐sulfotransferase 2, which is the main 3‐O‐sulfated HS‐generating enzyme in macrophages, strongly reduced the responses induced by both ligands. Moreover, silencing the expression of HVEM rendered macrophages unresponsive to either HSV‐1 gD and CyPB, thus indicating that both proteins induced the same responses by interacting with a complex formed by 3‐O‐sulfated HS and HVEM. Collectively, our results suggest that HSV‐1 might hijack the binding sites for CyPB in order to protect macrophages against apoptosis for efficient infection.
Collapse
Affiliation(s)
- Maxime Delos
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) UMR 8576 CNRS University of Lille France
| | - Charles Hellec
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) UMR 8576 CNRS University of Lille France
| | - François Foulquier
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) UMR 8576 CNRS University of Lille France
| | - Mathieu Carpentier
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) UMR 8576 CNRS University of Lille France
| | - Fabrice Allain
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) UMR 8576 CNRS University of Lille France
| | - Agnès Denys
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF) UMR 8576 CNRS University of Lille France
| |
Collapse
|
13
|
Du JY, Chen LR, Liu S, Lin JH, Liang QT, Lyon M, Wei Z. Ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for the structural analysis of N-unsubstituted heparin/heparan sulfate. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:71-76. [DOI: 10.1016/j.jchromb.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 11/30/2022]
|
14
|
Mulloy B, Wu N, Gyapon-Quast F, Lin L, Zhang F, Pickering MC, Linhardt RJ, Feizi T, Chai W. Abnormally High Content of Free Glucosamine Residues Identified in a Preparation of Commercially Available Porcine Intestinal Heparan Sulfate. Anal Chem 2016; 88:6648-52. [PMID: 27295282 PMCID: PMC4948919 DOI: 10.1021/acs.analchem.6b01662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Heparan sulfate (HS)
polysaccharides are ubiquitous in animal tissues
as components of proteoglycans, and they participate in many important
biological processes. HS carbohydrate chains are complex and can contain
rare structural components such as N-unsubstituted
glucosamine (GlcN). Commercially available HS preparations have been
invaluable in many types of research activities. In the course of
preparing microarrays to include probes derived from HS oligosaccharides,
we found an unusually high content of GlcN residue in a recently purchased
batch of porcine intestinal mucosal HS. Composition and sequence analysis
by mass spectrometry of the oligosaccharides obtained after heparin
lyase III digestion of the polysaccharide indicated two and three
GlcN in the tetrasaccharide and hexasaccharide fractions, respectively. 1H NMR of the intact polysaccharide showed that this unusual
batch differed strikingly from other HS preparations obtained from
bovine kidney and porcine intestine. The very high content of GlcN
(30%) and low content of GlcNAc (4.2%) determined by disaccharide
composition analysis indicated that N-deacetylation
and/or N-desulfation may have taken place. HS is
widely used by the scientific community to investigate HS structures
and activities. Great care has to be taken in drawing conclusions
from investigations of structural features of HS and specificities
of HS interaction with proteins when commercial HS is used without
further analysis. Pending the availability of a validated commercial
HS reference preparation, our data may be useful to members of the
scientific community who have used the present preparation in their
studies.
Collapse
Affiliation(s)
| | | | | | - Lei Lin
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | |
Collapse
|
15
|
Sikora AS, Delos M, Martinez P, Carpentier M, Allain F, Denys A. Regulation of the Expression of Heparan Sulfate 3-O-Sulfotransferase 3B (HS3ST3B) by Inflammatory Stimuli in Human Monocytes. J Cell Biochem 2015; 117:1529-42. [PMID: 26575945 DOI: 10.1002/jcb.25444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
Heparan sulfate (HS) is recognized as an important player in a wide range of dynamic steps of inflammatory reactions. Thereby, structural HS remodeling is likely to play an important role in the regulation of inflammatory and immune responses; however, little is known about underlying mechanism. In this study, we analyzed the regulation of expression of HS 3-O-sulfotransferases (HS3STs) in response to inflammatory stimuli. We found that among the seven HS3ST isoenzymes, only the expression of HS3ST3B was markedly up-regulated in human primary monocytes and the related cell line THP1 after exposure to TLR agonists. TNF-α was also efficient, to a lesser extent, to increase HS3ST3B expression, while IL-6, IL-4, and IFN-γ were poor inducers. We then analyzed the molecular mechanisms that regulate the high expression of HS3ST3B in response to LPS. Based on the expression of HS3ST3B transcripts and on the response of a reporter gene containing the HS3ST3B1 promoter, we provide evidence that LPS induces a rapid and strong transcription of HS3ST3B1 gene, which was mainly dependent on the activation of NF-κB and JNK signaling pathways. Additionally, active p38 MAPK and de novo synthesized proteins are involved in post-transcriptional mechanisms to maintain a high level of HS3ST3B mRNA to a steady state. Altogether, our findings indicate that HS3ST3B1 gene behaves as a primary response gene, suggesting that it may play an important role in making 3-O-sulfated HS with specific functions in the regulation of inflammatory and immune responses. J. Cell. Biochem. 117: 1529-1542, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anne-Sophie Sikora
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Maxime Delos
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Pierre Martinez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Mathieu Carpentier
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Fabrice Allain
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Agnès Denys
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| |
Collapse
|
16
|
Liang QT, Du JY, Fu Q, Lin JH, Wei Z. Preparation and characterization of heparin hexasaccharide library with N-unsubstituted glucosamine residues. Glycoconj J 2015; 32:643-53. [DOI: 10.1007/s10719-015-9612-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/15/2015] [Accepted: 07/24/2015] [Indexed: 11/27/2022]
|
17
|
Dou W, Xu Y, Pagadala V, Pedersen LC, Liu J. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate. J Biol Chem 2015; 290:20427-37. [PMID: 26109066 DOI: 10.1074/jbc.m115.664409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Indexed: 01/03/2023] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays important physiological roles. The biosynthesis of HS involves a series of enzymes, including glycosyltransferases (or HS polymerase), epimerase, and sulfotransferases. N-Deacetylase/N-Sulfotransferase isoform 1 (NDST-1) is a critical enzyme in this pathway. NDST-1, a bifunctional enzyme, displays N-deacetylase and N-sulfotransferase activities to convert an N-acetylated glucosamine residue to an N-sulfo glucosamine residue. Here, we report the cooperative effects between N-deacetylase and N-sulfotransferase activities. Using baculovirus expression in insect cells, we obtained three recombinant proteins: full-length NDST-1 and the individual N-deacetylase and N-sulfotransferase domains. Structurally defined oligosaccharide substrates were synthesized to test the substrate specificities of the enzymes. We discovered that N-deacetylation is the limiting step and that interplay between the N-sulfotransferase and N-deacetylase accelerates the reaction. Furthermore, combining the individually expressed N-deacetylase and N-sulfotransferase domains produced different sulfation patterns when compared with that made by the NDST-1 enzyme. Our data demonstrate the essential role of domain cooperation within NDST-1 in producing HS with specific domain structures.
Collapse
Affiliation(s)
- Wenfang Dou
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, the Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China, and
| | - Yongmei Xu
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Vijayakanth Pagadala
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lars C Pedersen
- the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jian Liu
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
18
|
Liang QT, Xiao XM, Lin JH, Wei Z. A new sequencing approach for N-unsubstituted heparin/heparan sulfate oligosaccharides. Glycobiology 2015; 25:714-25. [DOI: 10.1093/glycob/cwv011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/07/2015] [Indexed: 01/28/2023] Open
|
19
|
Huang Y, Mao Y, Zong C, Lin C, Boons GJ, Zaia J. Discovery of a heparan sulfate 3-O-sulfation specific peeling reaction. Anal Chem 2014; 87:592-600. [PMID: 25486437 PMCID: PMC4287833 DOI: 10.1021/ac503248k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Heparan sulfate (HS) 3-O-sulfation determines
the binding specificity of HS/heparin for antithrombin III and plays
a key role in herpes simplex virus (HSV) infection. However, the low
natural abundance of HS 3-O-sulfation poses a serious
challenge for functional studies other than the two cases mentioned
above. By contrast, multiple distinct isoforms of 3-O-sulfotranserases exist in mammals (up to seven isoenzymes). Here
we describe a novel peeling reaction that specifically degrades HS
chains with 3-O-sulfated glucosamine at the reducing-end.
When HS/heparin is enzymatically depolymerized for compositional analysis,
3-O-sulfated glucosamine at the reducing ends appears
to be susceptible to degradation under mildly basic conditions. We
propose a 3-O-desulfation initiated peeling reaction
mechanism based on the intermediate and side-reaction products observed.
Our discovery calls for the re-evaluation of the natural abundance
and functions of HS 3-O-sulfation by taking into
consideration the negative impact of this novel peeling reaction.
Collapse
Affiliation(s)
- Yu Huang
- Department of Biochemistry, Boston University Medical Campus , 670 Albany Street, Boston, Massachusetts 02118, United States
| | | | | | | | | | | |
Collapse
|
20
|
Proteoglycans of reactive rat cortical astrocyte cultures: abundance of N-unsubstituted glucosamine-enriched heparan sulfate. Matrix Biol 2014; 41:8-18. [PMID: 25483985 DOI: 10.1016/j.matbio.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 11/22/2022]
Abstract
"Reactive" astrocytes and other glial cells in the injured CNS produce an altered extracellular matrix (ECM) that influences neuronal regeneration. We have profiled the glycosaminoglycan (GAG) component of proteoglycans (PGs) produced by reactive neonatal rat cortical astrocytes, and have quantified their neurite-outgrowth inhibitory activity. PGs extracted from cell layers and medium were fractionated on DEAE-Sephacel with a gradient of NaCl from 0.15 to 1.0 M. Monosaccharide analysis of the major peaks eluting at 0.6 M NaCl indicated an excess of GlcNH₂ to GalNH₂, suggesting an approximate HS/CS ratio of 6.2 in the cell layer and 4.2 in the medium. Chondroitinase ABC-generated disaccharide analysis of cell and medium PGs showed a >5-fold excess of chondroitin 4-sulfate over chondroitin 6-sulfate. Heparin lyase-generated disaccharides characteristic of the highly sulfated S-domain regions within HS were more abundant in cell layer than medium-derived PGs. Cell layer and medium HS disaccharides contained ~20% and ~40% N-unsubstituted glucosamine respectively, which is normally rare in HS isolated from most tissues. NGF-stimulated neurite outgrowth assays using NS-1 (PC12) neuronal cells on adsorbed substrata of PGs isolated from reactive astrocyte medium showed pronounced inhibition of neurite outgrowth, and aggregation of NS-1 cells. Cell layer PGs from DEAE-Sephacel pooled fractions having high charge density permitted greater NGF-stimulated outgrowth than PGs with lower charge density. Our results indicate the synthesis of both inhibitory and permissive PGs by activated astrocytes that may correlate with sulfation patterns and HS/CS ratios.
Collapse
|
21
|
Sabol JK, Wei W, López-Hoyos M, Seo Y, Andaya A, Leary JA. Heparan sulfate differences in rheumatoid arthritis versus healthy sera. Matrix Biol 2014; 40:54-61. [PMID: 25217862 DOI: 10.1016/j.matbio.2014.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022]
Abstract
Heparan sulfate (HS) is a complex and highly variable polysaccharide, expressed ubiquitously on the cell surface as HS proteoglycans (HSPGs), and found in the extracellular matrix as free HS fragments. Its heterogeneity due to various acetylation and sulfation patterns endows a multitude of functions. In animal tissues, HS interacts with a wide range of proteins to mediate numerous biological activities; given its multiple roles in inflammation processes, characterization of HS in human serum has significant potential for elucidating disease mechanisms. Historically, investigation of HS was limited by its low concentration in human serum, together with the complexity of the serum matrix. In this study, we used a modified mass spectrometry method to examine HS disaccharide profiles in the serum of 50 women with rheumatoid arthritis (RA), and compared our results to 51 sera from healthy women. Using various purification methods and online LC-MS/MS, we discovered statistically significant differences in the sulfation and acetylation patterns between populations. Since early diagnosis of RA is considered important in decelerating the disease's progression, identification of specific biomolecule characterizations may provide crucial information towards developing new therapies for suppressing the disease in its early stages. This is the first report of potential glycosaminoglycan biomarkers for RA found in human sera, while acknowledging the obvious fact that a larger population set, and more stringent collection parameters, will need to be investigated in the future.
Collapse
Affiliation(s)
- Jenny K Sabol
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA
| | - Wei Wei
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Marcos López-Hoyos
- Immunology Section. Hospital Universitario Marques de Valdecilla-IDIVAL, Santander 39008, SPAIN
| | - Youjin Seo
- Department of Chemistry, University of California, Davis, California 95616, USA
| | - Armann Andaya
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA
| | - Julie A Leary
- Department of Molecular & Cellular Biology, University of California, Davis, California 95616, USA.,Department of Chemistry, University of California, Davis, California 95616, USA
| |
Collapse
|
22
|
Thacker BE, Xu D, Lawrence R, Esko JD. Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 2013; 35:60-72. [PMID: 24361527 DOI: 10.1016/j.matbio.2013.12.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/02/2023]
Abstract
Many protein ligands bind to heparan sulfate, which results in their presentation, protection, oligomerization or conformational activation. Binding depends on the pattern of sulfation and arrangement of uronic acid epimers along the chains. Sulfation at the C3 position of glucosamine is a relatively rare, yet biologically significant modification, initially described as a key determinant for binding and activation of antithrombin and later for infection by type I herpes simplex virus. In mammals, a family of seven heparan sulfate 3-O-sulfotransferases installs sulfate groups at this position and constitutes the largest group of sulfotransferases involved in heparan sulfate formation. However, to date very few proteins or biological systems have been described that are influenced by 3-O-sulfation. This review describes our current understanding of the prevalence and structure of 3-O-sulfation sites, expression and substrate specificity of the 3-O-sulfotransferase family and the emerging roles of 3-O-sulfation in biology.
Collapse
Affiliation(s)
- Bryan E Thacker
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Ding Xu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0687, United States.
| |
Collapse
|
23
|
Wei W, Miller RL, Leary JA. Method development and analysis of free HS and HS in proteoglycans from pre- and postmenopausal women: evidence for biosynthetic pathway changes in sulfotransferase and sulfatase enzymes. Anal Chem 2013; 85:5917-23. [PMID: 23659730 DOI: 10.1021/ac400690g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heparan sulfate (HS) is one of the most complex and informative biopolymers found on the cell surface or in the extracellular matrix as either free HS fragments or constituents of HS proteoglycans (HSPGs). Analysis of free HS and HSPG sugar chains in human serum at the disaccharide level has great potential for early disease diagnosis and prognosis; however, the low concentration of HS in human serum, together with the complexity of the serum matrix, limits the information on HS. In this study, we present and validate the development of a new sensitive method for in-depth compositional analysis of free HS and HSPG sugar chains. This protocol involved several steps including weak anion exchange chromatography, ultrafiltration, and solid-phase extraction for enhanced detection prior to LC-MS/MS analysis. Using this protocol, a total of 51 serum samples from 26 premenopausal and 25 postmenopausal women were analyzed. Statistically significant differences in heparin/HS disaccharide profiles were observed. The proportion of N-acetylation and N-sulfation in both free HS and HSPG sugar chains were significantly different between pre- and postmenopausal women, indicating changes in N-deacetylase/N-sulfotransferases (NDSTs), the enzymes involved in the initial step of the biosynthetic pathway. Differences in the proportion of 6-O-sulfation suggest that 6-O-sulfotransferase and/or 6-O-sulfatase enzymes may also be implicated.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
24
|
Distinct 3-O-sulfated heparan sulfate modification patterns are required for kal-1-dependent neurite branching in a context-dependent manner in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2013; 3:541-52. [PMID: 23451335 PMCID: PMC3583460 DOI: 10.1534/g3.112.005199] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/13/2013] [Indexed: 12/30/2022]
Abstract
Heparan sulfate (HS) is an unbranched glycosaminoglycan exhibiting substantial molecular diversity due to multiple, nonuniformly introduced modifications, including sulfations, epimerization, and acetylation. HS modifications serve specific and instructive roles in neuronal development, leading to the hypothesis of a HS code that regulates nervous system patterning. Although the in vivo roles of many of the HS modifications have been investigated, very little is known about the function of HS 3-O-sulfation in vivo. By examining patterning of the Caenorhabditis elegans nervous system in loss of function mutants of the two 3-O-sulfotransferases, hst-3.1 and hst-3.2, we found HS 3-O-sulfation to be largely dispensable for overall neural development. However, generation of stereotypical neurite branches in hermaphroditic-specific neurons required hst-3.1, hst-3.2, as well as an extracellular cell adhesion molecule encoded by kal-1, the homolog of Kallmann Syndrome associated gene 1/anosmin-1. In contrast, kal-1−dependent neurite branching in AIY neurons required catalytic activity of hst-3.2 but not hst-3.1. The context-dependent requirement for hst-3.2 and hst-3.1 indicates that both enzymes generate distinct types of HS modification patterns in different cell types, which regulate kal-1 to promote neurite branching. We conclude that HS 3-O-sulfation does not play a general role in establishing the HS code in C. elegans but rather plays a specialized role in a context-dependent manner to establish defined aspects of neuronal circuits.
Collapse
|
25
|
Chappell EP, Liu J. Use of biosynthetic enzymes in heparin and heparan sulfate synthesis. Bioorg Med Chem 2012; 21:4786-92. [PMID: 23313092 DOI: 10.1016/j.bmc.2012.11.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 01/21/2023]
Abstract
Heparan sulfate and heparin are highly sulfated polysaccharides consisting of repeating disaccharide units of glucuronic acid or iduronic acid that is linked to glucosamine. Heparan sulfate displays a range of biological functions, and heparin is a widely used anticoagulant drug in hospitals. It has been known to organic chemists that the chemical synthesis of heparan sulfate and heparin oligosaccharides is extremely difficult. Recent advances in the study of the biosynthesis of heparan sulfate/heparin offer a chemoenzymatic approach to synthesize heparan sulfate and heparin. Compared to chemical synthesis, the chemoenzymatic method shortens the synthesis and improves the product yields significantly, providing an excellent opportunity to advance the understanding of the structure and function relationships of heparan sulfate. In this review, we attempt to summarize the progress of the chemoenzymatic synthetic method and its application in heparan sulfate and heparin research.
Collapse
Affiliation(s)
- Elizabeth P Chappell
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | | |
Collapse
|
26
|
Peterson S, Liu J. Deciphering mode of action of heparanase using structurally defined oligosaccharides. J Biol Chem 2012; 287:34836-43. [PMID: 22893710 DOI: 10.1074/jbc.m112.390161] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide that serves many biological functions, including regulating cell growth and inflammatory responses as well as the blood coagulation process. Heparanase is an enzyme that cleaves HS and is known to display a variety of pathophysiological effects in cancer, diabetes, and Alzheimer disease. The link between heparanase and diseases is a result of its selective cleavage of HS, which releases smaller HS fragments to enhance cell proliferation, migration, and invasion. Despite its importance in pathological diseases, the structural cues in HS that direct heparanase cleavage and the steps of HS depolymerization remain unknown. Here, we sought to probe the substrate specificity of heparanase using a series of structurally defined oligosaccharide substrates. The sites of heparanase cleavage on the oligosaccharide substrates were determined by mass spectrometry and gel permeation chromatography. We discovered that heparanase cleaves the linkage of glucuronic acid linked to glucosamine carrying 6-O-sulfo groups. Furthermore, our findings suggest that heparanase displays different cleavage modes by recognizing the structures of the nonreducing ends of the substrates. Our results deepen the understanding of the action mode of heparanase.
Collapse
Affiliation(s)
- Sherket Peterson
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
27
|
Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci U S A 2012; 109:10310-5. [PMID: 22689975 DOI: 10.1073/pnas.1202071109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deficiency of glycosaminoglycan (GAG) degradation causes a subclass of lysosomal storage disorders called mucopolysaccharidoses (MPSs), many of which present with severe neuropathology. Critical steps in the degradation of the GAG heparan sulfate remain enigmatic. Here we show that the lysosomal arylsulfatase G (ARSG) is the long-sought glucosamine-3-O-sulfatase required to complete the degradation of heparan sulfate. Arsg-deficient mice accumulate heparan sulfate in visceral organs and the central nervous system and develop neuronal cell death and behavioral deficits. This accumulated heparan sulfate exhibits unique nonreducing end structures with terminal N-sulfoglucosamine-3-O-sulfate residues, allowing diagnosis of the disorder. Recombinant human ARSG is able to cleave 3-O-sulfate groups from these residues as well as from an authentic 3-O-sulfated N-sulfoglucosamine standard. Our results demonstrate the key role of ARSG in heparan sulfate degradation and strongly suggest that ARSG deficiency represents a unique, as yet unknown form of MPS, which we term MPS IIIE.
Collapse
|
28
|
McCarthy KJ, Wassenhove-McCarthy DJ. The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:3-21. [PMID: 22258721 PMCID: PMC3351113 DOI: 10.1017/s1431927611012682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The glomerular basement membrane and its associated cells are critical elements in the renal ultrafiltration process. Traditionally the anionic charge associated with several carbohydrate moieties in the glomerular basement membrane are thought to form a charge selective barrier that restricts the transmembrane flux of anionic proteins across the glomerular basement membrane into the urinary space. The charge selective function, along with the size selective component of the basement membrane, serves to limit the efflux of plasma proteins from the capillary lumen. Heparan sulfate glycosaminoglycans are anionically charged carbohydrate structures attached to proteoglycan core proteins and have a role in establishing the charge selective function of the glomerular basement membrane. Although there are a large number of studies in the literature that support this concept, the results of several recent studies using molecular genetic approaches to minimize the anionic charge of the glomerular basement membrane would suggest that the role of heparan sulfate glycosaminoglycans in the glomerular capillary wall are still not yet entirely resolved, suggesting that this research area still requires new and novel exploration.
Collapse
Affiliation(s)
- Kevin J McCarthy
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | |
Collapse
|
29
|
Nguyen TKN, Arungundram S, Tran VM, Raman K, Al-Mafraji K, Venot A, Boons GJ, Kuberan B. A synthetic heparan sulfate oligosaccharide library reveals the novel enzymatic action of D-glucosaminyl 3-O-sulfotransferase-3a. MOLECULAR BIOSYSTEMS 2011; 8:609-14. [PMID: 22116385 DOI: 10.1039/c1mb05221g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heparan sulfate (HS) glucosaminyl 3-O-sulfotranferases sulfate the C3-hydroxyl group of certain glucosamine residues on heparan sulfate. Six different 3-OST isoforms exist, each of which can sulfate very distinct glucosamine residues within the HS chain. Among these isoforms, 3-OST1 has been shown to play a role in generating ATIII-binding HS anticoagulants whereas 3-OST2, 3-OST3, 3-OST4 and 3OST-6 have been shown to play a vital role in generating gD-binding HS chains that permit the entry of herpes simplex virus type 1 into cells. 3-OST5 has been found to generate both ATIII- and gD-binding HS motifs. Previous studies have examined the substrate specificities of all the 3-OST isoforms using HS polysaccharides. However, very few studies have examined the contribution of the epimer configuration of neighboring uronic acid residues next to the target site to 3-OST action. In this study, we utilized a well-defined synthetic oligosaccharide library to examine the substrate specificity of 3-OST3a and compared it to 3-OST1. We found that both 3-OST1 and 3-OST3a preferentially sulfate the 6-O-sulfated, N-sulfoglucosamine when an adjacent iduronyl residue is located to its reducing side. On the other hand, 2-O-sulfation of this uronyl residue can inhibit the action of 3-OST3a on the target residue. The results reveal novel substrate sites for the enzyme actions of 3-OST3a. It is also evident that both these enzymes have promiscuous and overlapping actions that are differentially regulated by iduronyl 2-O-sulfation.
Collapse
Affiliation(s)
- Thao Kim Nu Nguyen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Preparation of heparin/heparan sulfate oligosaccharides with internal N-unsubstituted glucosamine residues for functional studies. Glycoconj J 2011; 28:525-35. [DOI: 10.1007/s10719-011-9352-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/03/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
|
31
|
Deligny A, Denys A, Marcant A, Melchior A, Mazurier J, van Kuppevelt TH, Allain F. Synthesis of heparan sulfate with cyclophilin B-binding properties is determined by cell type-specific expression of sulfotransferases. J Biol Chem 2009; 285:1701-15. [PMID: 19940140 DOI: 10.1074/jbc.m109.018184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclophilin B (CyPB) induces migration and adhesion of T lymphocytes via a mechanism that requires interaction with 3-O-sulfated heparan sulfate (HS). HS biosynthesis is a complex process with many sulfotransferases involved. N-Deacetylases/N-sulfotransferases are responsible for N-sulfation, which is essential for subsequent modification steps, whereas 3-O-sulfotransferases (3-OSTs) catalyze the least abundant modification. These enzymes are represented by several isoforms, which differ in term of distribution pattern, suggesting their involvement in making tissue-specific HS. To elucidate how the specificity of CyPB binding is determined, we explored the relationships between the expression of these sulfotransferases and the generation of HS motifs with CyPB-binding properties. We demonstrated that high N-sulfate density and the presence of 2-O- and 3-O-sulfates determine binding of CyPB, as evidenced by competitive experiments with heparin derivatives, soluble HS, and anti-HS antibodies. We then showed that target cells, i.e. CD4+ lymphocyte subsets, monocytes/macrophages, and related cell lines, specifically expressed high levels of NDST2 and 3-OST3 isoforms. Silencing the expression of NDST1, NDST2, 2-OST, and 3-OST3 by RNA interference efficiently decreased binding and activity of CyPB, thus confirming their involvement in the biosynthesis of binding sequences for CyPB. Moreover, we demonstrated that NDST1 was able to partially sulfate exogenous substrate in the absence of NDST2 but not vice versa, suggesting that both isoenzymes do not have redundant activities but do have rather complementary activities in making N-sulfated sequences with CyPB-binding properties. Altogether, these results suggest a regulatory mechanism in which cell type-specific expression of certain HS sulfotransferases determines the specific binding of CyPB to target cells.
Collapse
Affiliation(s)
- Audrey Deligny
- Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576 du CNRS, Institut de Recherche Fédératif 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Meissen JK, Sweeney MD, Girardi M, Lawrence R, Esko JD, Leary JA. Differentiation of 3-O-sulfated heparin disaccharide isomers: identification of structural aspects of the heparin CCL2 binding motif. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:652-7. [PMID: 19185514 PMCID: PMC2758813 DOI: 10.1016/j.jasms.2008.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/29/2008] [Accepted: 12/01/2008] [Indexed: 05/09/2023]
Abstract
The presence of 3-O-sulfated glucosamine residues in heparin or heparan sulfate plays a role in binding to antithrombin III and HSV infection. In this study, tandem mass spectrometry was used to differentiate between two heparin disaccharide isomers containing variable sulfate at C6 in a common disaccharide and C3 in a more rare one. The dissociation patterns shown by MS(2) and MS(3) were clearly distinguishable between the isomers, allowing their differentiation and quantitation. Using this technique, we show that an octasaccharide with 11 sulfate groups with high affinity for inflammatory chemokine CCL2 does not contain 3-O-sulfated disaccharides.
Collapse
Affiliation(s)
- John K. Meissen
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
- Department of Chemistry, University of California, Davis, California, USA
| | | | - Matthew Girardi
- Department of Chemical Engineering, University of California, Davis, California, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Julie A. Leary
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
33
|
Abstract
The functions of heparan sulfate (HS) depend on the expression of structural domains that interact with protein partners. Glycosaminoglycans (GAGs) exhibit a high degree of polydispersity in their composition, chain length, sulfation, acetylation, and epimerization patterns. It is essential for the understanding of GAG biochemistry to produce detailed structural information as a function of spatial and temporal factors in biological systems. Toward this end, we developed a set of procedures to extract GAGs from various rat organ tissues and examined and compared HS expression levels using liquid chromatography/mass spectrometry. Here we demonstrate detailed variations in HS GAG chains as a function of organ location. These studies shed new light on the structural variation of GAG chains with respect to average length, disaccharide composition, and expression of low abundance structural epitopes, including unsubstituted amino groups and lyase-resistant oligosaccharides. The data show the presence of a disaccharide with an unsubstituted amino group that is endogenous and widely expressed in mammalian organ tissues.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
34
|
Mochizuki H, Yoshida K, Shibata Y, Kimata K. Tetrasulfated disaccharide unit in heparan sulfate: enzymatic formation and tissue distribution. J Biol Chem 2008; 283:31237-45. [PMID: 18757372 DOI: 10.1074/jbc.m801586200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the heparan sulfate 3-O-sulfotransferase (3OST)-5 produces a novel component of heparan sulfate, i.e. the tetrasulfated disaccharide (Di-tetraS) unit ( Mochizuki, H., Yoshida, K., Gotoh, M., Sugioka, S., Kikuchi, N., Kwon, Y.-D., Tawada, A., Maeyama, K., Inaba, N., Hiruma, T., Kimata, K., and Narimatsu, H. (2003) J. Biol. Chem. 278, 26780-26787 ). In the present study, we investigated the potential of other 3OST isoforms to produce Di-tetraS with heparan sulfate and heparin as acceptor substrates. 3OST-2, 3OST-3, and 3OST-4 produce Di-tetraS units as a major product from both substrates. 3OST-5 showed the same specificity for heparin, but the production from heparan sulfate was very low. Di-tetraS production by 3OST-1 was negligible. We then investigated the presence of Di-tetraS units in heparan sulfates from various rat tissues. Di-tetraS was detected in all of the tissues analyzed. Liver and spleen contain relatively high levels of Di-tetraS, 1.6 and 0.95%, respectively. However, the content of this unit in heart, large intestine, ileum, and lung is low, less than 0.2%. We further determined the expression levels of 3OST transcripts by quantitative real time PCR. The 3OST-3 transcripts are highly expressed in spleen and liver. The 3OST-2 and -4 are specifically expressed in brain. These results indicate that the Di-tetraS unit is widely distributed throughout the body as a rare and unique component of heparan sulfate and is synthesized by tissue-specific 3OST isoforms specific for Di-tetraS production.
Collapse
Affiliation(s)
- Hideo Mochizuki
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato, Tokyo 207-0021, Japan.
| | | | | | | |
Collapse
|
35
|
Krenn EC, Wille I, Gesslbauer B, Poteser M, van Kuppevelt TH, Kungl AJ. Glycanogenomics: a qPCR-approach to investigate biological glycan function. Biochem Biophys Res Commun 2008; 375:297-302. [PMID: 18692483 DOI: 10.1016/j.bbrc.2008.07.144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/18/2008] [Indexed: 02/05/2023]
Abstract
As an indirect approach towards glycan structures, qRT-PCR analyses using the DeltaDeltaC(T) method were performed to investigate changes in expression levels of heparan sulfate-synthesising enzymes of stimulated and unstimulated HMVECs. We chose NDSTs as early enzymes initiating sulfation and 3OSTs which act late generating specific binding sites. Major changes in expression patterns were found for the NDST3 and 3OST1 isoforms. Both enzymes were down-regulated 7- and 6-fold, respectively, following TNF-alpha stimulation, and 3.5- and 7.6-fold following LPS-stimulation suggesting a common restructuring process of HS in inflammation leading to a less diverse sulfation pattern. Immunostaining of TNF-alpha-stimulated cells using a phage display-derived antibody specific for 3-O-sulfation and unsulfated regions of HS resulted in significant fluorescence changes between unstimulated and stimulated.
Collapse
Affiliation(s)
- Evelyn C Krenn
- Institute for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
36
|
de Agostini AI, Dong JC, de Vantéry Arrighi C, Ramus MA, Dentand-Quadri I, Thalmann S, Ventura P, Ibecheole V, Monge F, Fischer AM, HajMohammadi S, Shworak NW, Zhang L, Zhang Z, Linhardt RJ. Human follicular fluid heparan sulfate contains abundant 3-O-sulfated chains with anticoagulant activity. J Biol Chem 2008; 283:28115-24. [PMID: 18669628 DOI: 10.1074/jbc.m805338200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anticoagulant heparan sulfate proteoglycans bind and activate antithrombin by virtue of a specific 3-O-sulfated pentasaccharide. They not only occur in the vascular wall but also in extravascular tissues, such as the ovary, where their functions remain unknown. The rupture of the ovarian follicle at ovulation is one of the most striking examples of tissue remodeling in adult mammals. It involves tightly controlled inflammation, proteolysis, and fibrin deposition. We hypothesized that ovarian heparan sulfates may modulate these processes through interactions with effector proteins. Our previous work has shown that anticoagulant heparan sulfates are synthesized by rodent ovarian granulosa cells, and we now have set out to characterize heparan sulfates from human follicular fluid. Here we report the first anticoagulant heparan sulfate purified from a natural human extravascular source. Heparan sulfate chains were fractionated according to their affinity for antithrombin, and their structure was analyzed by 1H NMR and MS/MS. We find that human follicular fluid is a rich source of anticoagulant heparan sulfate, comprising 50.4% of total heparan sulfate. These antithrombin-binding chains contain more than 6% 3-O-sulfated glucosamine residues, convey an anticoagulant activity of 2.5 IU/ml to human follicular fluid, and have an anti-Factor Xa specific activity of 167 IU/mg. The heparan sulfate chains that do not bind antithrombin surprisingly exhibit an extremely high content in 3-O-sulfated glucosamine residues, which suggest that they may exhibit biological activities through interactions with other proteins.
Collapse
Affiliation(s)
- Ariane I de Agostini
- Department of Gynaecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wille I, Rek A, Krenn E, Kungl AJ. Biophysical investigation of human heparan sulfate D-glucosaminyl 3-O-sulfotransferase-3A: a mutual effect of enzyme oligomerisation and glycosaminoglycan ligand binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1470-6. [PMID: 17936096 DOI: 10.1016/j.bbapap.2007.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 07/10/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
3-O-sulfation of heparan sulfate (HS) is the rarest modification within heparan sulfate biosynthesis resulting in unique biological activities. Heparan sulfate d-glucosaminyl 3-O-sulfotransferase-3A (3-OST-3A) (EC 2.8.2.23) generates a binding site for the envelope glycoprotein D (gD) of herpes simplex virus 1. We have expressed the sulfotransferase domain of the human heparan sulfate 3-OST-3A isoform in Escherichia coli and subsequently purified the active enzyme which was found to be present as an oligomer under nonreducing conditions. The activity of the enzyme was tested by a novel gD-dependent gel mobility assay. A biophysical characterisation of 3-OST-3A was performed to study ligand binding and ligand-induced structural changes. Interestingly, the natural substrate HS did not cause a secondary structural change in the enzyme, whereas heparin and chondroitin sulfate did, both of which also exhibited similar high affinity binding to 3-OST-3A compared to HS as detected by isothermal fluorescence titrations. In cross-link assays, only HS was found to induce high molecular aggregates of 3-OST-3A whereas other GAG ligands did not or even inhibited enzyme oligomerisation like the K5 polysaccharide, which was nevertheless found to bind to the enzyme. We therefore conclude that since 3-OST-3A is able to bind also non-substrate GAG ligands with high affinity, discrimination among ligands is triggered by protein oligomerisation.
Collapse
Affiliation(s)
- Iris Wille
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
38
|
Vanpouille C, Deligny A, Delehedde M, Denys A, Melchior A, Liénard X, Lyon M, Mazurier J, Fernig DG, Allain F. The heparin/heparan sulfate sequence that interacts with cyclophilin B contains a 3-O-sulfated N-unsubstituted glucosamine residue. J Biol Chem 2007; 282:24416-29. [PMID: 17588944 DOI: 10.1074/jbc.m701835200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.
Collapse
Affiliation(s)
- Christophe Vanpouille
- Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche Number 8576 du CNRS, Institut de Recherche Fédératif No. 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lawrence R, Yabe T, HajMohammadi S, Rhodes J, McNeely M, Liu J, Lamperti ED, Toselli PA, Lech M, Spear PG, Rosenberg RD, Shworak NW. The principal neuronal gD-type 3-O-sulfotransferases and their products in central and peripheral nervous system tissues. Matrix Biol 2007; 26:442-55. [PMID: 17482450 PMCID: PMC1993827 DOI: 10.1016/j.matbio.2007.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Within the nervous system, heparan sulfate (HS) of the cell surface and extracellular matrix influences developmental, physiologic and pathologic processes. HS is a functionally diverse polysaccharide that employs motifs of sulfate groups to selectively bind and modulate various effector proteins. Specific HS activities are modulated by 3-O-sulfated glucosamine residues, which are generated by a family of seven 3-O-sulfotransferases (3-OSTs). Most isoforms we herein designate as gD-type 3-OSTs because they generate HS(gD+), 3-O-sulfated motifs that bind the gD envelope protein of herpes simplex virus 1 (HSV-1) and thereby mediate viral cellular entry. Certain gD-type isoforms are anticipated to modulate neurobiologic events because a Drosophila gD-type 3-OST is essential for a conserved neurogenic signaling pathway regulated by Notch. Information about 3-OST isoforms expressed in the nervous system of mammals is incomplete. Here, we identify the 3-OST isoforms having properties compatible with their participation in neurobiologic events. We show that 3-OST-2 and 3-OST-4 are principal isoforms of brain. We find these are gD-type enzymes, as they produce products similar to a prototypical gD-type isoform, and they can modify HS to generate receptors for HSV-1 entry into cells. Therefore, 3-OST-2 and 3-OST-4 catalyze modifications similar or identical to those made by the Drosophila gD-type 3-OST that has a role in regulating Notch signaling. We also find that 3-OST-2 and 3-OST-4 are the predominant isoforms expressed in neurons of the trigeminal ganglion, and 3-OST-2/4-type 3-O-sulfated residues occur in this ganglion and in select brain regions. Thus, 3-OST-2 and 3-OST-4 are the major neural gD-type 3-OSTs, and so are prime candidates for participating in HS-dependent neurobiologic events.
Collapse
Affiliation(s)
- Roger Lawrence
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Tomio Yabe
- Department Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sassan HajMohammadi
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
| | - John Rhodes
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
| | - Melissa McNeely
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jian Liu
- Department of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC , United States
| | - Edward D. Lamperti
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Paul A. Toselli
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Miroslaw Lech
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patricia G. Spear
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert D. Rosenberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Nicholas W. Shworak
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
- *Address correspondence to: Nicholas W. Shworak, Angiogenesis Research Center, Section of Cardiology, Borwell Building 540W, HB7504, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, New Hampshire 03756, Tel. 603 650-6401; Fax. 603 653-0510; E-Mail:
| |
Collapse
|
40
|
Tiwari V, Clement C, Xu D, Valyi-Nagy T, Yue BYJT, Liu J, Shukla D. Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol 2006; 80:8970-80. [PMID: 16940509 PMCID: PMC1563926 DOI: 10.1128/jvi.00296-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 06/19/2006] [Indexed: 01/20/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection of the corneal stroma remains a major cause of blindness. Primary cultures of corneal fibroblasts (CF) were tested and found susceptible to HSV-1 entry, which was confirmed by deconvolution imaging of infected cells. Plaque assay and real-time PCR demonstrated viral replication and hence a productive infection of CF by HSV-1. A role for glycoprotein D (gD) receptors in cultured CF was determined by gD interference assay. Reverse transcription-PCR analysis indicated expression of herpesvirus entry mediator and 3-O-sulfated (3-OS) heparan sulfate (HS)-generating enzyme 3-O sulfotransferase 3 (3-OST-3) but not nectin-1 or nectin-2. Subsequently, HS isolated from these cells was found to contain two distinct disaccharides (IdoUA2S-AnMan3S and IdoUA2S-AnMan3S6S) that are representative of 3-OST-3 activity. The following lines of evidence supported the important role of 3-OS HS as the mediator of HSV-1 entry into CF. (i) Blockage of entry was observed in CF treated with heparinases. The same enzymes had significantly less effect on HeLa cells that use nectin-1 as the entry receptor. (ii) Enzymatic removal of cell surface HS also removed the major gD-binding receptor, as evident from the reduced binding of gD to cells. (iii) Spinoculation assay demonstrated that entry blockage by heparinase treatment included the membrane fusion step. (iv) HSV-1 glycoprotein-induced cell-to-cell fusion was inhibited by either prior treatment of cells with heparinases or by HS preparations enriched in 3-OS HS. Taken together, the data in this report provide novel information on the role of 3-OS HS in mediating infection of CF, a natural target cell type.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- University of Illinois at Chicago, Lions of Illinois Eye Research Institute, M/C 648, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999-2000. MASS SPECTROMETRY REVIEWS 2006; 25:595-662. [PMID: 16642463 DOI: 10.1002/mas.20080] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review describes the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates and continues coverage of the field from the previous review published in 1999 (D. J. Harvey, Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates, 1999, Mass Spectrom Rev, 18:349-451) for the period 1999-2000. As MALDI mass spectrometry is acquiring the status of a mature technique in this field, there has been a greater emphasis on applications rather than to method development as opposed to the previous review. The present review covers applications to plant-derived carbohydrates, N- and O-linked glycans from glycoproteins, glycated proteins, mucins, glycosaminoglycans, bacterial glycolipids, glycosphingolipids, glycoglycerolipids and related compounds, and glycosides. Applications of MALDI mass spectrometry to the study of enzymes acting on carbohydrates (glycosyltransferases and glycosidases) and to the synthesis of carbohydrates, are also covered.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
42
|
Muñoz E, Xu D, Kemp M, Zhang F, Liu J, Linhardt RJ. Affinity, kinetic, and structural study of the interaction of 3-O-sulfotransferase isoform 1 with heparan sulfate. Biochemistry 2006; 45:5122-8. [PMID: 16618101 PMCID: PMC4129659 DOI: 10.1021/bi052403n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 3-O-sulfonation of glucosamine residues in heparan sulfate (HS) by 3-O-sulfotransferase (3-OST) is a key substitution that is present in HS sequences of biological importance, in particular HS anticoagulant activity. Six different isoforms of 3-OST have been identified that exhibit different substrate specificity. In this paper the affinity and kinetics of the interaction between 3-O-sulfotransferase isoform 1 (3-OST-1) and HS have been examined using surface plasmon resonance (SPR). 3-OST-1 binds with micomolar affinity to HS (K(D) = 2.79 microM), and this interaction is apparently independent of the presence of the coenzyme, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). A conformational change in the complex has also been detected, supporting data from previous studies. Selected 3-OST-1 mutants have provided valuable information of amino acid residues that participate in 3-OST-1 interaction with HS substrate and its catalytic activity. The results from this study contribute to understanding the substrate specificity among the 3-OST isoforms and in the mechanism of 3-OST-1-catalyzed biosynthesis of anticoagulant HS.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert J. Linhardt
- To whom correspondence should be addressed. Phone: (518) 276-3404. Fax: (518) 276-3405.
| |
Collapse
|
43
|
Habuchi H, Habuchi O, Uchimura K, Kimata K, Muramatsu T. Determination of Substrate Specificity of Sulfotransferases and Glycosyltransferases (Proteoglycans). Methods Enzymol 2006; 416:225-43. [PMID: 17113869 DOI: 10.1016/s0076-6879(06)16014-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteoglycans have sulfated linear polysaccharide chains, that is, heparan sulfate, heparin, chondroitin sulfates, dermatan sulfate, and keratan sulfate. Many glycosyltransferases and sulfotransferases are involved in biosynthesis of the polysaccharides. Specificities of these enzymes have been mainly determined by evaluating their activities to various acceptor carbohydrates and by analyzing the structure of the products. For the latter purpose, enzymatic hydrolysis using heparitinases, heparinase, and chondroitinases or chemical degradation employing nitrous acid deamination has been effectively used in combination with high-performance liquid chromatography (HPLC) of the degraded products. As examples, we describe methods for assays and product characterization of sulfotransferases involved in biosynthesis of these polysaccharides, namely heparan sulfate 2-sulfotransferase, heparan sulfate 6-sulfotransferases, chondroitin 4-sulfotransferases, chondroitin 6-sulfotransferase, N-acetylgalactosamine 4-sulfate 6-sulfotransferase, and N-acetylglucosamine 6-sulfotransferases.
Collapse
Affiliation(s)
- Hiroko Habuchi
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | | | | | | | | |
Collapse
|
44
|
Ten Dam GB, Kurup S, van de Westerlo EMA, Versteeg EMM, Lindahl U, Spillmann D, van Kuppevelt TH. 3-O-sulfated oligosaccharide structures are recognized by anti-heparan sulfate antibody HS4C3. J Biol Chem 2005; 281:4654-62. [PMID: 16373349 DOI: 10.1074/jbc.m506357200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibodies against heparan sulfate (HS) are useful tools to study the structural diversity of HS. They demonstrate the large sequential variation within HS and show the distribution of HS oligosaccharide sequences within their natural environment. We analyzed the distribution and the structural characteristics of the oligosaccharide epitope recognized by anti-HS antibody HS4C3. Biosynthetic and synthetic heparin-related oligosaccharide libraries were used in affinity chromatography, immunoprecipitation, and enzyme-linked immunosorbent assay to identify this epitope as a 3-O-sulfated motif with antithrombin binding capacity. The antibody binds weakly to any N-sulfated, 2-O- and 6-O-sulfated hexa- to octasaccharide fragment but strongly to the corresponding oligosaccharide when there is a 3-O-sulfated glucosamine residue present in the sequence. This difference was highlighted by affinity interaction and immunohistochemistry at salt concentrations from 500 mm. At physiological salt conditions the antibody strongly recognized basal lamina of epithelia and endothelia. At 500 mm salt conditions, when 3-O sulfation is required for binding, antibody recognition was more restricted and selective. Antibody HS4C3 bound similar tissue structures as antithrombin in rat kidney. Furthermore, antithrombin and antibody HS4C3 could compete with one another for binding to heparin. Antibody HS4C3 was also able to inhibit the anti-coagulant activities of heparin and Arixtra as demonstrated using the activated partial thromboplastin time clotting and the anti-factor Xa assays. In summary, antibody HS4C3 selectively detects 3-O-sulfated HS structures and interferes with the coagulation activities of heparin by association with the anti-thrombin binding pentasaccharide sequence.
Collapse
Affiliation(s)
- Gerdy B Ten Dam
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen J, Avci FY, Muñoz EM, McDowell LM, Chen M, Pedersen LC, Zhang L, Linhardt RJ, Liu J. Enzymatic redesigning of biologically active heparan sulfate. J Biol Chem 2005; 280:42817-25. [PMID: 16260789 PMCID: PMC4140617 DOI: 10.1074/jbc.m504338200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate carries a wide range of biological activities, regulating blood coagulation, cell differentiation, and inflammatory responses. The sulfation patterns of the polysaccharide are essential for the biological activities. In this study, we report an enzymatic method for the sulfation of multimilligram amounts of heparan sulfate with specific functions using immobilized sulfotransferases combined with a 3'-phosphoadenosine 5'-phosphosulfate regeneration system. By selecting appropriate enzymatic modification steps, an inactive precursor has been converted to the heparan sulfate having three distinct biological activities, associated with binding to antithrombin, fibroblast growth factor-2, and herpes simplex virus envelope glycoprotein D. Because the recombinant sulfotransferases are expressed in bacteria, and the method uses a low cost sulfo donor, it can be readily utilized to synthesize large quantities of anticoagulant heparin drug or other biologically active heparan sulfates.
Collapse
Affiliation(s)
- Jinghua Chen
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Fikri Y. Avci
- Department of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Eva M. Muñoz
- Department of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Lynda M. McDowell
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Miao Chen
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lars C. Pedersen
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Lijuan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jian Liu
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- To whom correspondence should be addressed: Rm. 309, Beard Hall, University of North Carolina, Chapel Hill, NC 27599. Tel.: 919-843-6511; Fax: 919-843-5432;
| |
Collapse
|
46
|
Chen J, Liu J. Characterization of the structure of antithrombin-binding heparan sulfate generated by heparan sulfate 3-O-sulfotransferase 5. Biochim Biophys Acta Gen Subj 2005; 1725:190-200. [PMID: 16099108 DOI: 10.1016/j.bbagen.2005.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 06/21/2005] [Accepted: 06/22/2005] [Indexed: 11/26/2022]
Abstract
The 3-O-sulfation of glucosamine is a key modification step during the biosynthesis of anticoagulant heparan sulfate (HS). Both heparan sulfate 3-O-sulfotransferase -1 (3-OST-1) and 3-O-sulfotransferase-5 (3-OST-5) transfer sulfate to the 3-OH group of glucosamine to generate antithrombin-binding heparan sulfate (HS(act)). Here, we reported the isolation and characterization of the antithrombin-binding HS oligosaccharides generated by 3-OST-5 (3-OST-5 oligo(act)). (3)H-labeled HS of Chinese hamster ovary cells was exhaustively modified by 3-OST-1 to remove the 3-OST-1 modification sites followed by antithrombin-affinity fractionation. The non-antithrombin-binding fraction of 3-OST-1 pretreated HS was further modified by 3-OST-5 to generate additional antithrombin-binding HS, which was designated as 3-OST-5 HS(act). Structural analysis of 3-OST-5 HS(act) revealed that the antithrombin-binding site of 3-OST-5 HS(act) is located within a domain clustered with N-sulfated glucosamine units. We also isolated 3-OST-5 antithrombin-binding oligosaccharides (3-OST-5 oligo(act)) from high pH nitrous acid degraded 3-OST-5 HS(act). A disaccharide analysis revealed that 3-OST-5 oligo(act) were composed of multiple 3-O-sulfated glucosamine units. Our results provide additional insights on the relationship between the anticoagulant activity and structure of HS.
Collapse
Affiliation(s)
- Jinghua Chen
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, Beard Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
47
|
de la Fuente J, Ayoubi P, Blouin EF, Almazán C, Naranjo V, Kocan KM. Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cell Microbiol 2005; 7:549-59. [PMID: 15760455 DOI: 10.1111/j.1462-5822.2004.00485.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae) causes human, equine and canine granulocytic anaplasmosis and tick-borne fever of ruminants. The rickettsia parasitizes granulocytes and bone marrow progenitor cells, and can be propagated in human promyelocytic and tick cell lines. In this study, microarrays of synthetic polynucleotides of 21,329 human genes were used to identify genes that are differentially expressed in HL-60 human promyelocytic cells in response to infection with A. phagocytophilum. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) of selected genes confirmed the results of the microarray analysis. Six genes in the A. phagocytophilum-infected cells were found to be upregulated greater than 30-fold, while expression of downregulated genes most often did not change more than sixfold. Genes that were found to be differentially regulated in infected cells were those essential for cellular mechanisms including growth and differentiation, cell transport, signalling and communication and protective response against infection, some of which are most likely necessary for infection and multiplication of A. phagocytophilum in host cells. The differentially regulated genes described herein provide new information on the gene expression profiles in A. phagocytophilum-infected HL-60 cells, thus expanding in a global manner the existing information on the response of mammalian cells to A. phagocytophilum infection.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Xu D, Tiwari V, Xia G, Clement C, Shukla D, Liu J. Characterization of heparan sulphate 3-O-sulphotransferase isoform 6 and its role in assisting the entry of herpes simplex virus type 1. Biochem J 2005; 385:451-9. [PMID: 15303968 PMCID: PMC1134716 DOI: 10.1042/bj20040908] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heparan sulphate (HS) 3-O-sulphotransferase transfers sulphate to the 3-OH position of the glucosamine residue of HS to form 3-O-sulphated HS. The HS modified by 3-O-sulphotransferase isoform 3 binds to HSV-1 (herpes simplex virus type 1) gD (envelope glycoprotein D), and the resultant 3-O-sulphated HS serves as an entry receptor for HSV-1. In the present paper, we report the isolation and characterization of a novel HS 3-O-sulphotransferase isoform, designated HS 3-O-sulphotransferase isoform 6 (3-OST-6). Mouse 3-OST-6 gene was identified in the EST (expressed sequence tag) database and cloned into pcDNA3.1/Myc-His vector. A CHO (Chinese-hamster ovary) cell line that stably expresses 3-OST-6 (3OST6/CHO cells) was prepared. The disaccharide analysis of the HS isolated from 3OST6/CHO cells revealed that 3-OST-6 exhibits HS 3-O-sulphotransferase activity. Furthermore, 3OST6/CHO cells were susceptible to infection by HSV-1, but not by other alphaherpesviruses examined, suggesting that 3-OST-6 produces a specific entry receptor for HSV-1. Our results indicate that a new member of 3-OST family generates an entry receptor for HSV-1. The findings add to the growing body of evidence that HSV-1 entry is mediated by 3-O-sulphated HS generated by multiple members of 3-O-sulphotransferases.
Collapse
Affiliation(s)
- Ding Xu
- *Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Vaibhav Tiwari
- †Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
- ‡Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Guoqing Xia
- *Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Christian Clement
- †Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
- ‡Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Deepak Shukla
- †Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
- ‡Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Jian Liu
- *Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, U.S.A
- To whom correspondence should be addressed at Room 309, Beard Hall, University of North Carolina, Chapel Hill, NC 27599, U.S.A. (email )
| |
Collapse
|
49
|
Whitelock JM, Iozzo RV. Heparan Sulfate: A Complex Polymer Charged with Biological Activity. Chem Rev 2005; 105:2745-64. [PMID: 16011323 DOI: 10.1021/cr010213m] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|
50
|
Wei Z, Lyon M, Gallagher JT. Distinct Substrate Specificities of Bacterial Heparinases against N-Unsubstituted Glucosamine Residues in Heparan Sulfate. J Biol Chem 2005; 280:15742-8. [PMID: 15705564 DOI: 10.1074/jbc.m501102200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rare N-unsubstituted glucosamine (GlcNH(3)(+)) residues in heparan sulfate have important biological and pathophysiological roles. In this study, four GlcNH(3)(+)-containing disaccharides were obtained from partially de-N-sulfated forms of heparin and the N-sulfated K5 polysaccharide by digestion with combined heparinases I, II, and III. These were identified as DeltaHexA-GlcNH(3)(+),DeltaHexA-GlcNH(3)(+)(6S),DeltaHexA(2S)-GlcNH(3)(+), and DeltaHexA(2S)-GlcNH(3)(+)(6S). Digestions with individual enzymes revealed that heparinase I did not cleave at GlcNH(3)(+) residues; however, heparinases II and III showed selective and distinct activities. Heparinase II generated DeltaHexA-GlcNH(3)(+)(6S),DeltaHexA(2S)-GlcNH(3)(+), and DeltaHexA(2S)-GlcNH(3)(+)(6S) disaccharides, whereas heparinase III yielded only the DeltaHexA-GlcNH(3)(+) unit. Thus, the action of heparinase II requires O-sulfation, whereas heparinase III acts only on the corresponding non-sulfated unit. These striking distinctions in substrate specificities of heparinases could be used to isolate oligosaccharides with novel sequences of GlcNH(3)(+) residues. Finally, heparinases were used to identify and quantify GlcNH(3)(+)-containing disaccharides in native bovine kidney and porcine intestinal mucosal heparan sulfates. The relatively high content of O-sulfated GlcNH(3)(+)-disaccharides in kidney HS raises questions about how these sequences are generated.
Collapse
Affiliation(s)
- Zheng Wei
- Cancer Research UK and the University of Manchester Department of Medical Oncology, Christie Hospital National Health Service Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | | | | |
Collapse
|