• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4623447)   Today's Articles (3459)   Subscriber (49409)
For: Pierik AJ, Roseboom W, Happe RP, Bagley KA, Albracht SP. Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)2CO, Biology's way to activate H2. J Biol Chem 1999;274:3331-7. [PMID: 9920874 DOI: 10.1074/jbc.274.6.3331] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
Number Cited by Other Article(s)
1
Procacci B, Wrathall SLD, Farmer AL, Shaw DJ, Greetham GM, Parker AW, Rippers Y, Horch M, Lynam JM, Hunt NT. Understanding the [NiFe] Hydrogenase Active Site Environment through Ultrafast Infrared and 2D-IR Spectroscopy of the Subsite Analogue K[CpFe(CO)(CN)2] in Polar and Protic Solvents. J Phys Chem B 2024;128:1461-1472. [PMID: 38301127 PMCID: PMC10875664 DOI: 10.1021/acs.jpcb.3c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
2
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023;19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
3
Kulka-Peschke CJ, Schulz AC, Lorent C, Rippers Y, Wahlefeld S, Preissler J, Schulz C, Wiemann C, Bernitzky CCM, Karafoulidi-Retsou C, Wrathall SLD, Procacci B, Matsuura H, Greetham GM, Teutloff C, Lauterbach L, Higuchi Y, Ishii M, Hunt NT, Lenz O, Zebger I, Horch M. Reversible Glutamate Coordination to High-Valent Nickel Protects the Active Site of a [NiFe] Hydrogenase from Oxygen. J Am Chem Soc 2022;144:17022-17032. [PMID: 36084022 DOI: 10.1021/jacs.2c06400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
4
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study. Catalysts 2022. [DOI: 10.3390/catal12090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]  Open
5
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022;122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
6
Arlt C, Nutschan K, Haase A, Ihling C, Tänzler D, Sinz A, Sawers RG. Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN)2CO group during maturation of E. coli [NiFe]-hydrogenase 2. Sci Rep 2021;11:24362. [PMID: 34934150 PMCID: PMC8692609 DOI: 10.1038/s41598-021-03900-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023]  Open
7
Kaya Y, Erçağ A, Uğuz Ö, Koca A, Zorlu Y, Hacıoğlu M, Seher Birteksöz Tan A. New asymmetric bisthiocarbohydrazones and their mixed ligand nickel(II) complexes: Synthesis, characterization, crystal structure, electrochemical-spectroelectrochemical property, antimicrobial and antioxidant activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Biochem J 2021;478:3281-3295. [PMID: 34409988 PMCID: PMC8454700 DOI: 10.1042/bcj20210224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
9
Shepard EM, Impano S, Duffus BR, Pagnier A, Duschene KS, Betz JN, Byer AS, Galambas A, McDaniel EC, Watts H, McGlynn SE, Peters JW, Broderick WE, Broderick JB. HydG, the "dangler" iron, and catalytic production of free CO and CN-: implications for [FeFe]-hydrogenase maturation. Dalton Trans 2021;50:10405-10422. [PMID: 34240096 PMCID: PMC9154046 DOI: 10.1039/d1dt01359a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
10
Lorent C, Pelmenschikov V, Frielingsdorf S, Schoknecht J, Caserta G, Yoda Y, Wang H, Tamasaku K, Lenz O, Cramer SP, Horch M, Lauterbach L, Zebger I. Exploring Structure and Function of Redox Intermediates in [NiFe]-Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes. Angew Chem Int Ed Engl 2021;60:15854-15862. [PMID: 33783938 PMCID: PMC8360142 DOI: 10.1002/anie.202100451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Indexed: 01/28/2023]
11
Lorent C, Pelmenschikov V, Frielingsdorf S, Schoknecht J, Caserta G, Yoda Y, Wang H, Tamasaku K, Lenz O, Cramer SP, Horch M, Lauterbach L, Zebger I. Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]‐Hydrogenasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
12
Stripp ST. In Situ Infrared Spectroscopy for the Analysis of Gas-processing Metalloenzymes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
13
Fan Q, Neubauer P, Lenz O, Gimpel M. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview. Int J Mol Sci 2020;21:E5890. [PMID: 32824336 PMCID: PMC7460606 DOI: 10.3390/ijms21165890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023]  Open
14
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
15
Tai H, Hirota S. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. Chembiochem 2020;21:1573-1581. [DOI: 10.1002/cbic.202000058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Indexed: 01/28/2023]
16
Alfano M, Cavazza C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci 2020;29:1071-1089. [PMID: 32022353 DOI: 10.1002/pro.3836] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
17
Bose M, Li Z, Matsumoto T, Tatsumi K. A Dithiolato and Hydrido Bridged (CO/CN)Fe-Ni Complex with Unprotected CN: A Model for the [Ni-R] State of the [Ni-Fe] Hydrogenase Active Site. Inorg Chem 2020;59:968-971. [PMID: 31891256 DOI: 10.1021/acs.inorgchem.9b03082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
18
Horch M, Schoknecht J, Wrathall SLD, Greetham GM, Lenz O, Hunt NT. Understanding the structure and dynamics of hydrogenases by ultrafast and two-dimensional infrared spectroscopy. Chem Sci 2019;10:8981-8989. [PMID: 31762978 PMCID: PMC6857670 DOI: 10.1039/c9sc02851j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]  Open
19
Infrared Characterization of the Bidirectional Oxygen-Sensitive [NiFe]-Hydrogenase from E. coli. Catalysts 2018. [DOI: 10.3390/catal8110530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
20
Tai H, Higuchi Y, Hirota S. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Dalton Trans 2018. [PMID: 29532823 DOI: 10.1039/c7dt04910b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
21
Hartmann S, Frielingsdorf S, Ciaccafava A, Lorent C, Fritsch J, Siebert E, Priebe J, Haumann M, Zebger I, Lenz O. O2-Tolerant H2 Activation by an Isolated Large Subunit of a [NiFe] Hydrogenase. Biochemistry 2018;57:5339-5349. [DOI: 10.1021/acs.biochem.8b00760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
22
Scott AG, Szilagyi RK, Mulder DW, Ratzloff MW, Byer AS, King PW, Broderick WE, Shepard EM, Broderick JB. Compositional and structural insights into the nature of the H-cluster precursor on HydF. Dalton Trans 2018;47:9521-9535. [PMID: 29964288 DOI: 10.1039/c8dt01654b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
23
Tai H, Xu L, Nishikawa K, Higuchi Y, Hirota S. Equilibrium between inactive ready Ni-SIr and active Ni-SIa states of [NiFe] hydrogenase studied by utilizing Ni-SIr-to-Ni-SIa photoactivation. Chem Commun (Camb) 2018;53:10444-10447. [PMID: 28884761 DOI: 10.1039/c7cc06061k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
24
Tai H, Xu L, Inoue S, Nishikawa K, Higuchi Y, Hirota S. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited. Phys Chem Chem Phys 2018;18:22025-30. [PMID: 27456760 DOI: 10.1039/c6cp04628b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
25
Anaerobic Formate and Hydrogen Metabolism. EcoSal Plus 2017;7. [PMID: 27735784 DOI: 10.1128/ecosalplus.esp-0011-2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
26
Nishikawa K, Mochida S, Hiromoto T, Shibata N, Higuchi Y. Ni-elimination from the active site of the standard [NiFe]‑hydrogenase upon oxidation by O2. J Inorg Biochem 2017;177:435-437. [PMID: 28967475 DOI: 10.1016/j.jinorgbio.2017.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
27
Senger M, Stripp ST, Soboh B. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. J Biol Chem 2017;292:11670-11681. [PMID: 28539366 DOI: 10.1074/jbc.m117.788125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/23/2017] [Indexed: 01/07/2023]  Open
28
Plummer SM, Plummer MA, Merkel PA, Hagen M, Biddle JF, Waidner LA. Using directed evolution to improve hydrogen production in chimeric hydrogenases from Clostridia species. Enzyme Microb Technol 2016;93-94:132-141. [DOI: 10.1016/j.enzmictec.2016.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
29
Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. Proc Natl Acad Sci U S A 2016;113:11750-11755. [PMID: 27698140 DOI: 10.1073/pnas.1610554113] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
30
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016;116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 397] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
CO and CN- syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. Proc Natl Acad Sci U S A 2015;113:104-9. [PMID: 26699472 DOI: 10.1073/pnas.1515842113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]  Open
32
[NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1. Biochem J 2015;464:169-77. [PMID: 25184670 DOI: 10.1042/bj20140485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
33
Horch M, Lauterbach L, Mroginski MA, Hildebrandt P, Lenz O, Zebger I. Reversible active site sulfoxygenation can explain the oxygen tolerance of a NAD+-reducing [NiFe] hydrogenase and its unusual infrared spectroscopic properties. J Am Chem Soc 2015;137:2555-64. [PMID: 25647259 DOI: 10.1021/ja511154y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
34
Structural differences of oxidized iron–sulfur and nickel–iron cofactors in O 2 -tolerant and O 2 -sensitive hydrogenases studied by X-ray absorption spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015;1847:162-170. [DOI: 10.1016/j.bbabio.2014.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 11/23/2022]
35
Lanz ND, Booker SJ. Auxiliary iron-sulfur cofactors in radical SAM enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015;1853:1316-34. [PMID: 25597998 DOI: 10.1016/j.bbamcr.2015.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022]
36
Horch M, Hildebrandt P, Zebger I. Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes. Phys Chem Chem Phys 2015;17:18222-37. [DOI: 10.1039/c5cp02447a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
37
Pandey IK, Natarajan M, Kaur-Ghumaan S. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J Inorg Biochem 2014;143:88-110. [PMID: 25528677 DOI: 10.1016/j.jinorgbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
38
Chernev P, Lambertz C, Brünje A, Leidel N, Sigfridsson KGV, Kositzki R, Hsieh CH, Yao S, Schiwon R, Driess M, Limberg C, Happe T, Haumann M. Hydride Binding to the Active Site of [FeFe]-Hydrogenase. Inorg Chem 2014;53:12164-77. [DOI: 10.1021/ic502047q] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
39
Manor BC, Ringenberg MR, Rauchfuss TB. Borane-protected cyanides as surrogates of H-bonded cyanides in [FeFe]-hydrogenase active site models. Inorg Chem 2014;53:7241-7. [PMID: 24992155 PMCID: PMC4364604 DOI: 10.1021/ic500470z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
40
Albareda M, Pacios LF, Manyani H, Rey L, Brito B, Imperial J, Ruiz-Argüeso T, Palacios JM. Maturation of Rhizobium leguminosarum hydrogenase in the presence of oxygen requires the interaction of the chaperone HypC and the scaffolding protein HupK. J Biol Chem 2014;289:21217-29. [PMID: 24942742 DOI: 10.1074/jbc.m114.577403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
41
Shepard EM, Mus F, Betz JN, Byer AS, Duffus BR, Peters JW, Broderick JB. [FeFe]-hydrogenase maturation. Biochemistry 2014;53:4090-104. [PMID: 24878200 DOI: 10.1021/bi500210x] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
42
Weber K, Erdem ÖF, Bill E, Weyhermüller T, Lubitz W. Modeling the Active Site of [NiFe] Hydrogenases and the [NiFeu] Subsite of the C-Cluster of Carbon Monoxide Dehydrogenases: Low-Spin Iron(II) Versus High-Spin Iron(II). Inorg Chem 2014;53:6329-37. [DOI: 10.1021/ic500910z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
43
Lubitz W, Ogata H, Rüdiger O, Reijerse E. Hydrogenases. Chem Rev 2014;114:4081-148. [DOI: 10.1021/cr4005814] [Citation(s) in RCA: 1399] [Impact Index Per Article: 139.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
44
Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys 2014;544:142-52. [PMID: 24036122 PMCID: PMC3946514 DOI: 10.1016/j.abb.2013.09.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/31/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
45
Bruschi M, Tiberti M, Guerra A, De Gioia L. Disclosure of Key Stereoelectronic Factors for Efficient H2 Binding and Cleavage in the Active Site of [NiFe]-Hydrogenases. J Am Chem Soc 2014;136:1803-14. [DOI: 10.1021/ja408511y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
46
Engineering Hydrogenases for H2 Production: Bolts and Goals. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
47
Wombwell C, Reisner E. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases. Dalton Trans 2014;43:4483-93. [DOI: 10.1039/c3dt52967c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
48
Kothari A, Vaughn M, Garcia-Pichel F. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer. Front Microbiol 2013;4:363. [PMID: 24376438 PMCID: PMC3858816 DOI: 10.3389/fmicb.2013.00363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/15/2013] [Indexed: 11/13/2022]  Open
49
Driesener RC, Duffus BR, Shepard EM, Bruzas IR, Duschene KS, Coleman NJR, Marrison APG, Salvadori E, Kay CWM, Peters JW, Broderick JB, Roach PL. Biochemical and kinetic characterization of radical S-adenosyl-L-methionine enzyme HydG. Biochemistry 2013;52:8696-707. [PMID: 24206022 DOI: 10.1021/bi401143s] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
50
Richau KH, Kudahettige RL, Pujic P, Kudahettige NP, Sellstedt A. Structural and gene expression analyses of uptake hydrogenases and other proteins involved in nitrogenase protection in Frankia. J Biosci 2013;38:703-12. [DOI: 10.1007/s12038-013-9372-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
PrevPage 1 of 4 1234Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA