1
|
Bernitzky CCM, Caserta G, Frielingsdorf S, Schoknecht J, Schmidt A, Scheerer P, Lenz O, Hildebrandt P, Lorent C, Zebger I, Horch M. Expanding the scope of resonance Raman spectroscopy in hydrogenase research: New observable states and reporter vibrations. J Inorg Biochem 2025; 262:112741. [PMID: 39326301 DOI: 10.1016/j.jinorgbio.2024.112741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Oxygen-tolerant [NiFe] hydrogenases are valuable blueprints for the activation and evolution of molecular hydrogen under application-relevant conditions. Vibrational spectroscopic techniques play a key role in the investigation of these metalloenzymes. For instance, resonance Raman spectroscopy has been introduced as a site-selective approach for probing metal-ligand coordinates of the [NiFe] active site and FeS clusters. Despite its success, this approach is still challenged by a limited number of detectable active-site states - due to missing resonance enhancement or intrinsic light sensitivity - and difficulties in their assignment. Utilizing two oxygen-tolerant [NiFe] hydrogenases as model systems, we illustrate how these challenges can be met by extending excitation and detection wavelength regimes in resonance Raman spectroscopic studies. Specifically, we observe that this technique does not only probe low-frequency metal-ligand vibrations but also high-frequency intra-ligand modes of the diatomic CO/CN- ligands at the active site of [NiFe] hydrogenases. These reporter vibrations are routinely probed by infrared absorption spectroscopy, so that direct comparison of spectra from both techniques allows an unambiguous assignment of states detected by resonance Raman spectroscopy. Moreover, we find that a previously undetected state featuring a bridging hydroxo ligand between Ni and Fe can be probed using higher excitation wavelengths, as photoconversion occurring at lower wavelengths is avoided. In summary, this study expands the applicability of resonance Raman spectroscopy to hydrogenases and other complex metalloenzymes by introducing new strategies for probing and assigning redox-structural states of the active site.
Collapse
Affiliation(s)
- Cornelius C M Bernitzky
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany; Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Giorgio Caserta
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Janna Schoknecht
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Oliver Lenz
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Christian Lorent
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Ingo Zebger
- Technische Universität Berlin, Institut für Chemie, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Marius Horch
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany.
| |
Collapse
|
2
|
Karafoulidi-Retsou C, Lorent C, Katz S, Rippers Y, Matsuura H, Higuchi Y, Zebger I, Horch M. Light-Induced Electron Transfer in a [NiFe] Hydrogenase Opens a Photochemical Shortcut for Catalytic Dihydrogen Cleavage. Angew Chem Int Ed Engl 2024; 63:e202409065. [PMID: 39054251 DOI: 10.1002/anie.202409065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
[NiFe] hydrogenases catalyze the reversible cleavage of molecular hydrogen into protons and electrons. Here, we have studied the impact of temperature and illumination on an oxygen-tolerant and thermostable [NiFe] hydrogenase by IR and EPR spectroscopy. Equilibrium mixtures of two catalytic [NiFe] states, Nia-C and Nia-SR'', were found to drastically change with temperature, indicating a thermal exchange of electrons between the [NiFe] active site and iron-sulfur clusters of the enzyme. In addition, IR and EPR experiments performed under illumination revealed an unusual photochemical response of the enzyme. Nia-SR'', a fully reduced hydride intermediate of the catalytic cycle, was found to be reversibly photoconverted into another catalytic state, Nia-L. In contrast to the well-known photolysis of the more oxidized hydride intermediate Nia-C, photoconversion of Nia-SR'' into Nia-L is an active-site redox reaction that involves light-driven electron transfer towards the enzyme's iron-sulfur clusters. Omitting the ground-state intermediate Nia-C, this direct interconversion of these two states represents a potential photochemical shortcut of the catalytic cycle that integrates multiple redox sites of the enzyme. In total, our findings reveal the non-local redistribution of electrons via thermal and photochemical reaction channels and the potential of accelerating or controlling [NiFe] hydrogenases by light.
Collapse
Affiliation(s)
- Chara Karafoulidi-Retsou
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Yvonne Rippers
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN/SPring-8 Center, 1.1.1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Ingo Zebger
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Marius Horch
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin, Germany
| |
Collapse
|
3
|
Procacci B, Wrathall SLD, Farmer AL, Shaw DJ, Greetham GM, Parker AW, Rippers Y, Horch M, Lynam JM, Hunt NT. Understanding the [NiFe] Hydrogenase Active Site Environment through Ultrafast Infrared and 2D-IR Spectroscopy of the Subsite Analogue K[CpFe(CO)(CN) 2] in Polar and Protic Solvents. J Phys Chem B 2024; 128:1461-1472. [PMID: 38301127 PMCID: PMC10875664 DOI: 10.1021/acs.jpcb.3c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
The [CpFe(CO)(CN)2]- unit is an excellent structural model for the Fe(CO)(CN)2 moiety of the active site found in [NiFe] hydrogenases. Ultrafast infrared (IR) pump-probe and 2D-IR spectroscopy have been used to study K[CpFe(CO)(CN)2] (M1) in a range of protic and polar solvents and as a dry film. Measurements of anharmonicity, intermode vibrational coupling strength, vibrational relaxation time, and solvation dynamics of the CO and CN stretching modes of M1 in H2O, D2O, methanol, dimethyl sulfoxide, and acetonitrile reveal that H-bonding to the CN ligands plays an important role in defining the spectroscopic characteristics and relaxation dynamics of the Fe(CO)(CN)2 unit. Comparisons of the spectroscopic and dynamic data obtained for M1 in solution and in a dry film with those obtained for the enzyme led to the conclusion that the protein backbone forms an important part of the bimetallic active site environment via secondary coordination sphere interactions.
Collapse
Affiliation(s)
- Barbara Procacci
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Solomon L. D. Wrathall
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Amy L. Farmer
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Daniel J. Shaw
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Gregory M. Greetham
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Anthony W. Parker
- STFC
Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Yvonne Rippers
- Department
of Physics, Ultrafast Dynamics in Catalysis, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Marius Horch
- Department
of Physics, Ultrafast Dynamics in Catalysis, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jason M. Lynam
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| | - Neil T. Hunt
- Department
of Chemistry, York Biomedical Research Institute,
University of York, York YO10 5DD, U.K.
| |
Collapse
|
4
|
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023; 19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
Abstract
[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.
Collapse
|
5
|
Kulka-Peschke CJ, Schulz AC, Lorent C, Rippers Y, Wahlefeld S, Preissler J, Schulz C, Wiemann C, Bernitzky CCM, Karafoulidi-Retsou C, Wrathall SLD, Procacci B, Matsuura H, Greetham GM, Teutloff C, Lauterbach L, Higuchi Y, Ishii M, Hunt NT, Lenz O, Zebger I, Horch M. Reversible Glutamate Coordination to High-Valent Nickel Protects the Active Site of a [NiFe] Hydrogenase from Oxygen. J Am Chem Soc 2022; 144:17022-17032. [PMID: 36084022 DOI: 10.1021/jacs.2c06400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NAD+-reducing [NiFe] hydrogenases are valuable biocatalysts for H2-based energy conversion and the regeneration of nucleotide cofactors. While most hydrogenases are sensitive toward O2 and elevated temperatures, the soluble NAD+-reducing [NiFe] hydrogenase from Hydrogenophilus thermoluteolus (HtSH) is O2-tolerant and thermostable. Thus, it represents a promising candidate for biotechnological applications. Here, we have investigated the catalytic activity and active-site structure of native HtSH and variants in which a glutamate residue in the active-site cavity was replaced by glutamine, alanine, and aspartate. Our biochemical, spectroscopic, and theoretical studies reveal that at least two active-site states of oxidized HtSH feature an unusual architecture in which the glutamate acts as a terminal ligand of the active-site nickel. This observation demonstrates that crystallographically observed glutamate coordination represents a native feature of the enzyme. One of these states is diamagnetic and characterized by a very high stretching frequency of an iron-bound active-site CO ligand. Supported by density-functional-theory calculations, we identify this state as a high-valent species with a biologically unprecedented formal Ni(IV) ground state. Detailed insights into its structure and dynamics were obtained by ultrafast and two-dimensional infrared spectroscopy, demonstrating that it represents a conformationally strained state with unusual bond properties. Our data further show that this state is selectively and reversibly formed under oxic conditions, especially upon rapid exposure to high O2 levels. We conclude that the kinetically controlled formation of this six-coordinate high-valent state represents a specific and precisely orchestrated stereoelectronic response toward O2 that could protect the enzyme from oxidative damage.
Collapse
Affiliation(s)
- Catharina J Kulka-Peschke
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Anne-Christine Schulz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Yvonne Rippers
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Stefan Wahlefeld
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Janina Preissler
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Claudia Schulz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Charlotte Wiemann
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | | | - Chara Karafoulidi-Retsou
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Solomon L D Wrathall
- Department of Chemistry & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Barbara Procacci
- Department of Chemistry & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Hiroaki Matsuura
- Life Science Research Infrastructure Group, RIKEN/SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K
| | - Christian Teutloff
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Lars Lauterbach
- Institute of Applied Microbiology, Synthetic Microbiology, RWTH Aachen University, Worringer Weg 1, D-52074 Aachen, Germany
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Masaharu Ishii
- Graduate School of Agricultural and Life Sciences / Faculty of Agriculture, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Neil T Hunt
- Department of Chemistry & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, U.K
| | - Oliver Lenz
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Marius Horch
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
6
|
Understanding 2D-IR Spectra of Hydrogenases: A Descriptive and Predictive Computational Study. Catalysts 2022. [DOI: 10.3390/catal12090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
[NiFe] hydrogenases are metalloenzymes that catalyze the reversible cleavage of dihydrogen (), a clean future fuel. Understanding the mechanism of these biocatalysts requires spectroscopic techniques that yield insights into the structure and dynamics of the [NiFe] active site. Due to the presence of CO and ligands at this cofactor, infrared (IR) spectroscopy represents an ideal technique for studying these aspects, but molecular information from linear IR absorption experiments is limited. More detailed insights can be obtained from ultrafast nonlinear IR techniques like IRpump−IRprobe and two-dimensional (2D-)IR spectroscopy. However, fully exploiting these advanced techniques requires an in-depth understanding of experimental observables and the encoded molecular information. To address this challenge, we present a descriptive and predictive computational approach for the simulation and analysis of static 2D-IR spectra of [NiFe] hydrogenases and similar organometallic systems. Accurate reproduction of experimental spectra from a first-coordination-sphere model suggests a decisive role of the [NiFe] core in shaping the enzymatic potential energy surface. We also reveal spectrally encoded molecular information that is not accessible by experiments, thereby helping to understand the catalytic role of the diatomic ligands, structural differences between [NiFe] intermediates, and possible energy transfer mechanisms. Our studies demonstrate the feasibility and benefits of computational spectroscopy in the 2D-IR investigation of hydrogenases, thereby further strengthening the potential of this nonlinear IR technique as a powerful research tool for the investigation of complex bioinorganic molecules.
Collapse
|
7
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Arlt C, Nutschan K, Haase A, Ihling C, Tänzler D, Sinz A, Sawers RG. Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN) 2CO group during maturation of E. coli [NiFe]-hydrogenase 2. Sci Rep 2021; 11:24362. [PMID: 34934150 PMCID: PMC8692609 DOI: 10.1038/s41598-021-03900-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023] Open
Abstract
[NiFe]-hydrogenases activate dihydrogen. Like all [NiFe]-hydrogenases, hydrogenase 2 of Escherichia coli has a bimetallic NiFe(CN)2CO cofactor in its catalytic subunit. Biosynthesis of the Fe(CN)2CO group of the [NiFe]-cofactor occurs on a distinct scaffold complex comprising the HybG and HypD accessory proteins. HybG is a member of the HypC-family of chaperones that confers specificity towards immature hydrogenase catalytic subunits during transfer of the Fe(CN)2CO group. Using native mass spectrometry of an anaerobically isolated HybG-HypD complex we show that HybG carries the Fe(CN)2CO group. Our results also reveal that only HybG, but not HypD, interacts with the apo-form of the catalytic subunit. Finally, HybG was shown to have two distinct, and apparently CO2-related, covalent modifications that depended on the presence of the N-terminal cysteine residue on the protein, possibly representing intermediates during Fe(CN)2CO group biosynthesis. Together, these findings suggest that the HybG chaperone is involved in both biosynthesis and delivery of the Fe(CN)2CO group to its target protein. HybG is thus suggested to shuttle between the assembly complex and the apo-catalytic subunit. This study provides new insights into our understanding of how organometallic cofactor components are assembled on a scaffold complex and transferred to their client proteins.
Collapse
Affiliation(s)
- Christian Arlt
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Kerstin Nutschan
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Alexander Haase
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Christian Ihling
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Dirk Tänzler
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Institute of Pharmacy, Center for Structural Mass Spectrometry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
9
|
Kaya Y, Erçağ A, Uğuz Ö, Koca A, Zorlu Y, Hacıoğlu M, Seher Birteksöz Tan A. New asymmetric bisthiocarbohydrazones and their mixed ligand nickel(II) complexes: Synthesis, characterization, crystal structure, electrochemical-spectroelectrochemical property, antimicrobial and antioxidant activity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Biochem J 2021; 478:3281-3295. [PMID: 34409988 PMCID: PMC8454700 DOI: 10.1042/bcj20210224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The [4Fe-4S] cluster containing scaffold complex HypCD is the central construction site for the assembly of the [Fe](CN)2CO cofactor precursor of [NiFe]-hydrogenase. While the importance of the HypCD complex is well established, not much is known about the mechanism by which the CN- and CO ligands are transferred and attached to the iron ion. We report an efficient expression and purification system producing the HypCD complex from E. coli with complete metal content. This enabled in-depth spectroscopic characterizations. The results obtained by EPR and Mössbauer spectroscopy demonstrate that the [Fe](CN)2CO cofactor and the [4Fe-4S] cluster of the HypCD complex are redox active. The data indicate a potential-dependent interconversion of the [Fe]2+/3+ and [4Fe-4S]2+/+ couple, respectively. Moreover, ATR FTIR spectroscopy reveals potential-dependent disulfide formation, which hints at an electron confurcation step between the metal centers. MicroScale thermophoresis indicates preferable binding between the HypCD complex and its in vivo interaction partner HypE under reducing conditions. Together, these results provide comprehensive evidence for an electron inventory fit to drive multi-electron redox reactions required for the assembly of the CN- and CO ligands on the scaffold complex HypCD.
Collapse
|
11
|
Shepard EM, Impano S, Duffus BR, Pagnier A, Duschene KS, Betz JN, Byer AS, Galambas A, McDaniel EC, Watts H, McGlynn SE, Peters JW, Broderick WE, Broderick JB. HydG, the "dangler" iron, and catalytic production of free CO and CN -: implications for [FeFe]-hydrogenase maturation. Dalton Trans 2021; 50:10405-10422. [PMID: 34240096 PMCID: PMC9154046 DOI: 10.1039/d1dt01359a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The organometallic H-cluster of the [FeFe]-hydrogenase consists of a [4Fe-4S] cubane bridged via a cysteinyl thiolate to a 2Fe subcluster ([2Fe]H) containing CO, CN-, and dithiomethylamine (DTMA) ligands. The H-cluster is synthesized by three dedicated maturation proteins: the radical SAM enzymes HydE and HydG synthesize the non-protein ligands, while the GTPase HydF serves as a scaffold for assembly of [2Fe]H prior to its delivery to the [FeFe]-hydrogenase containing the [4Fe-4S] cubane. HydG uses l-tyrosine as a substrate, cleaving it to produce p-cresol as well as the CO and CN- ligands to the H-cluster, although there is some question as to whether these are formed as free diatomics or as part of a [Fe(CO)2(CN)] synthon. Here we show that Clostridium acetobutylicum (C.a.) HydG catalyzes formation of multiple equivalents of free CO at rates comparable to those for CN- formation. Free CN- is also formed in excess molar equivalents over protein. A g = 8.9 EPR signal is observed for C.a. HydG reconstituted to load the 5th "dangler" iron of the auxiliary [4Fe-4S][FeCys] cluster and is assigned to this "dangler-loaded" cluster state. Free CO and CN- formation and the degree of activation of [FeFe]-hydrogenase all occur regardless of dangler loading, but are increased 10-35% in the dangler-loaded HydG; this indicates the dangler iron is not essential to this process but may affect relevant catalysis. During HydG turnover in the presence of myoglobin, the g = 8.9 signal remains unchanged, indicating that a [Fe(CO)2(CN)(Cys)] synthon is not formed at the dangler iron. Mutation of the only protein ligand to the dangler iron, H272, to alanine nearly completely abolishes both free CO formation and hydrogenase activation, however results show this is not due solely to the loss of the dangler iron. In experiments with wild type and H272A HydG, and with different degrees of dangler loading, we observe a consistent correlation between free CO/CN- formation and hydrogenase activation. Taken in full, our results point to free CO/CN-, but not an [Fe(CO)2(CN)(Cys)] synthon, as essential species in hydrogenase maturation.
Collapse
Affiliation(s)
- Eric M Shepard
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Stella Impano
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Benjamin R Duffus
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Kaitlin S Duschene
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Jeremiah N Betz
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Amanda S Byer
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Amanda Galambas
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Elizabeth C McDaniel
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Hope Watts
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99163, USA
| | - William E Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
12
|
Lorent C, Pelmenschikov V, Frielingsdorf S, Schoknecht J, Caserta G, Yoda Y, Wang H, Tamasaku K, Lenz O, Cramer SP, Horch M, Lauterbach L, Zebger I. Exploring Structure and Function of Redox Intermediates in [NiFe]-Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes. Angew Chem Int Ed Engl 2021; 60:15854-15862. [PMID: 33783938 PMCID: PMC8360142 DOI: 10.1002/anie.202100451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Indexed: 01/28/2023]
Abstract
To study metalloenzymes in detail, we developed a new experimental setup allowing the controlled preparation of catalytic intermediates for characterization by various spectroscopic techniques. The in situ monitoring of redox transitions by infrared spectroscopy in enzyme lyophilizate, crystals, and solution during gas exchange in a wide temperature range can be accomplished as well. Two O2 -tolerant [NiFe]-hydrogenases were investigated as model systems. First, we utilized our platform to prepare highly concentrated hydrogenase lyophilizate in a paramagnetic state harboring a bridging hydride. This procedure proved beneficial for 57 Fe nuclear resonance vibrational spectroscopy and revealed, in combination with density functional theory calculations, the vibrational fingerprint of this catalytic intermediate. The same in situ IR setup, combined with resonance Raman spectroscopy, provided detailed insights into the redox chemistry of enzyme crystals, underlining the general necessity to complement X-ray crystallographic data with spectroscopic analyses.
Collapse
Affiliation(s)
- Christian Lorent
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Vladimir Pelmenschikov
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Stefan Frielingsdorf
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Janna Schoknecht
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Giorgio Caserta
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research InstituteSPring-81-1-1 Kouto, Mikazuki-choSayo-gunHyogo679-5198Japan
| | - Hongxin Wang
- SETI Institute189 Bernardo AvenueMountain ViewCalifornia94043USA
| | - Kenji Tamasaku
- RIKEN SPring-8 center1-1-1 Kouto, Sayo-choSayo-gunHyogo679-5148Japan
| | - Oliver Lenz
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | | | - Marius Horch
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Lars Lauterbach
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Ingo Zebger
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| |
Collapse
|
13
|
Lorent C, Pelmenschikov V, Frielingsdorf S, Schoknecht J, Caserta G, Yoda Y, Wang H, Tamasaku K, Lenz O, Cramer SP, Horch M, Lauterbach L, Zebger I. Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]‐Hydrogenasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christian Lorent
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Vladimir Pelmenschikov
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Stefan Frielingsdorf
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Janna Schoknecht
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Giorgio Caserta
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute SPring-8 1-1-1 Kouto, Mikazuki-cho Sayo-gun Hyogo 679-5198 Japan
| | - Hongxin Wang
- SETI Institute 189 Bernardo Avenue Mountain View California 94043 USA
| | - Kenji Tamasaku
- RIKEN SPring-8 center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Oliver Lenz
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Stephen P. Cramer
- SETI Institute 189 Bernardo Avenue Mountain View California 94043 USA
| | - Marius Horch
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Lars Lauterbach
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Ingo Zebger
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
14
|
Affiliation(s)
- Sven T. Stripp
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
15
|
Fan Q, Neubauer P, Lenz O, Gimpel M. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview. Int J Mol Sci 2020; 21:E5890. [PMID: 32824336 PMCID: PMC7460606 DOI: 10.3390/ijms21165890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
Hydrogenases are complex metalloenzymes, showing tremendous potential as H2-converting redox catalysts for application in light-driven H2 production, enzymatic fuel cells and H2-driven cofactor regeneration. They catalyze the reversible oxidation of hydrogen into protons and electrons. The apo-enzymes are not active unless they are modified by a complicated post-translational maturation process that is responsible for the assembly and incorporation of the complex metal center. The catalytic center is usually easily inactivated by oxidation, and the separation and purification of the active protein is challenging. The understanding of the catalytic mechanisms progresses slowly, since the purification of the enzymes from their native hosts is often difficult, and in some case impossible. Over the past decades, only a limited number of studies report the homologous or heterologous production of high yields of hydrogenase. In this review, we emphasize recent discoveries that have greatly improved our understanding of microbial hydrogenases. We compare various heterologous hydrogenase production systems as well as in vitro hydrogenase maturation systems and discuss their perspectives for enhanced biohydrogen production. Additionally, activities of hydrogenases isolated from either recombinant organisms or in vivo/in vitro maturation approaches were systematically compared, and future perspectives for this research area are discussed.
Collapse
Affiliation(s)
- Qin Fan
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Peter Neubauer
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Oliver Lenz
- Department of Chemistry, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Matthias Gimpel
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| |
Collapse
|
16
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
17
|
Tai H, Hirota S. Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. Chembiochem 2020; 21:1573-1581. [DOI: 10.1002/cbic.202000058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Hulin Tai
- MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional MoleculesDepartment of ChemistryYanbian University Park Road 977 Yanji 133002 Jilin China
| | - Shun Hirota
- Division of Materials ScienceGraduate School of Science and TechnologyNara Institute of Science and Technology 8916-5 Takayama Ikoma Nara 630-0192 Japan
| |
Collapse
|
18
|
Alfano M, Cavazza C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci 2020; 29:1071-1089. [PMID: 32022353 DOI: 10.1002/pro.3836] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Nickel enzymes, present in archaea, bacteria, plants, and primitive eukaryotes are divided into redox and nonredox enzymes and play key functions in diverse metabolic processes, such as energy metabolism and virulence. They catalyze various reactions by using active sites of diverse complexities, such as mononuclear nickel in Ni-superoxide dismutase, glyoxylase I and acireductone dioxygenase, dinuclear nickel in urease, heteronuclear metalloclusters in [NiFe]-carbon monoxide dehydrogenase, acetyl-CoA decarbonylase/synthase and [NiFe]-hydrogenase, and even more complex cofactors in methyl-CoM reductase and lactate racemase. The presence of metalloenzymes in a cell necessitates a tight regulation of metal homeostasis, in order to maintain the appropriate intracellular concentration of nickel while avoiding its toxicity. As well, the biosynthesis and insertion of nickel active sites often require specific and elaborated maturation pathways, allowing the correct metal to be delivered and incorporated into the target enzyme. In this review, the phylogenetic distribution of nickel enzymes will be briefly described. Their tridimensional structures as well as the complexity of their active sites will be discussed. In view of the latest findings on these enzymes, a special focus will be put on the biosynthesis of their active sites and nickel activation of apo-enzymes.
Collapse
Affiliation(s)
- Marila Alfano
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, Grenoble, France
| | - Christine Cavazza
- University of Grenoble Alpes, CEA, CNRS, IRIG, CBM, Grenoble, France
| |
Collapse
|
19
|
Bose M, Li Z, Matsumoto T, Tatsumi K. A Dithiolato and Hydrido Bridged (CO/CN)Fe-Ni Complex with Unprotected CN: A Model for the [Ni-R] State of the [Ni-Fe] Hydrogenase Active Site. Inorg Chem 2020; 59:968-971. [PMID: 31891256 DOI: 10.1021/acs.inorgchem.9b03082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A dithiolate/hydride bridged Fe-Ni complex, [(CN)(CO)2FeII(μ-pdt)(μ-H)NiII(CN)(PCy3)]- (2, pdt = propane-1,3-dithiolate) has been synthesized by the reaction of [(CN)2(CO)2FeII(pdt)]2- with [NiII(Cl)(H)(PCy3)2] as a synthetic analogue of the Ni-R state of the active site of the [Ni-Fe] hydrogenase. X-ray crystallography of this model complex suggests that the hydride unsymmetrically binds to Ni and Fe similar to natural [Ni-Fe] hydrogenases.
Collapse
Affiliation(s)
- Moumita Bose
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science , Nagoya University , Furo-Cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Zilong Li
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science , Nagoya University , Furo-Cho, Chikusa-ku, Nagoya 464-8602 , Japan
| | - Tsuyoshi Matsumoto
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Furo-Cho, Chikusa-ku, Nagoya 464-8601 , Japan
| | - Kazuyuki Tatsumi
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science , Nagoya University , Furo-Cho, Chikusa-ku, Nagoya 464-8602 , Japan
| |
Collapse
|
20
|
Horch M, Schoknecht J, Wrathall SLD, Greetham GM, Lenz O, Hunt NT. Understanding the structure and dynamics of hydrogenases by ultrafast and two-dimensional infrared spectroscopy. Chem Sci 2019; 10:8981-8989. [PMID: 31762978 PMCID: PMC6857670 DOI: 10.1039/c9sc02851j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022] Open
Abstract
Hydrogenases are valuable model enzymes for sustainable energy conversion approaches using H2, but rational utilization of these base-metal biocatalysts requires a detailed understanding of the structure and dynamics of their complex active sites. The intrinsic CO and CN- ligands of these metalloenzymes represent ideal chromophores for infrared (IR) spectroscopy, but structural and dynamic insight from conventional IR absorption experiments is limited. Here, we apply ultrafast and two-dimensional (2D) IR spectroscopic techniques, for the first time, to study hydrogenases in detail. Using an O2-tolerant [NiFe] hydrogenase as a model system, we demonstrate that IR pump-probe spectroscopy can explore catalytically relevant ligand bonding by accessing high-lying vibrational states. This ultrafast technique also shows that the protein matrix is influential in vibrational relaxation, which may be relevant for energy dissipation from the active site during fast reaction steps. Further insights into the relevance of the active site environment are provided by 2D-IR spectroscopy, which reveals equilibrium dynamics and structural constraints imposed on the H2-accepting intermediate of [NiFe] hydrogenases. Both techniques offer new strategies for uniquely identifying redox-structural states in complex catalytic mixtures via vibrational quantum beats and 2D-IR off-diagonal peaks. Together, these findings considerably expand the scope of IR spectroscopy in hydrogenase research, and new perspectives for the characterization of these enzymes and other (bio-)organometallic targets are presented.
Collapse
Affiliation(s)
- Marius Horch
- Department of Chemistry , York Biomedical Research Institute , University of York , Heslington , York , YO10 5DD , UK .
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , Berlin , D-10623 , Germany
| | - Janna Schoknecht
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , Berlin , D-10623 , Germany
| | - Solomon L D Wrathall
- Department of Chemistry , York Biomedical Research Institute , University of York , Heslington , York , YO10 5DD , UK .
| | - Gregory M Greetham
- STFC Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Science and Innovation Campus , Didcot , Oxford , OX110PE , UK
| | - Oliver Lenz
- Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , Berlin , D-10623 , Germany
| | - Neil T Hunt
- Department of Chemistry , York Biomedical Research Institute , University of York , Heslington , York , YO10 5DD , UK .
| |
Collapse
|
21
|
Infrared Characterization of the Bidirectional Oxygen-Sensitive [NiFe]-Hydrogenase from E. coli. Catalysts 2018. [DOI: 10.3390/catal8110530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
[NiFe]-hydrogenases are gas-processing metalloenzymes that catalyze the conversion of dihydrogen (H2) to protons and electrons in a broad range of microorganisms. Within the framework of green chemistry, the molecular proceedings of biological hydrogen turnover inspired the design of novel catalytic compounds for H2 generation. The bidirectional “O2-sensitive” [NiFe]-hydrogenase from Escherichia coli HYD-2 has recently been crystallized; however, a systematic infrared characterization in the presence of natural reactants is not available yet. In this study, we analyze HYD-2 from E. coli by in situ attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR) under quantitative gas control. We provide an experimental assignment of all catalytically relevant redox intermediates alongside the O2- and CO-inhibited cofactor species. Furthermore, the reactivity and mutual competition between H2, O2, and CO was probed in real time, which lays the foundation for a comparison with other enzymes, e.g., “O2-tolerant” [NiFe]-hydrogenases. Surprisingly, only Ni-B was observed in the presence of O2 with no indications for the “unready” Ni-A state. The presented work proves the capabilities of in situ ATR FTIR spectroscopy as an efficient and powerful technique for the analysis of biological macromolecules and enzymatic small molecule catalysis.
Collapse
|
22
|
Tai H, Higuchi Y, Hirota S. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Dalton Trans 2018. [PMID: 29532823 DOI: 10.1039/c7dt04910b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[NiFe] hydrogenase (H2ase) catalyzes the oxidation of dihydrogen to two protons and two electrons and/or its reverse reaction. For this simple reaction, the enzyme has developed a sophisticated but intricate mechanism with heterolytic cleavage of dihydrogen (or a combination of a hydride and a proton), where its Ni-Fe active site exhibits various redox states. Recently, thermodynamic parameters of the acid-base equilibrium for activation-inactivation, a new intermediate in the catalytic reaction, and new crystal structures of [NiFe] H2ases have been reported, providing significant insights into the activation-inactivation and catalytic reaction mechanisms of [NiFe] H2ases. This Perspective provides an overview of the reaction mechanisms of [NiFe] H2ases based on these new findings.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | | | | |
Collapse
|
23
|
Hartmann S, Frielingsdorf S, Ciaccafava A, Lorent C, Fritsch J, Siebert E, Priebe J, Haumann M, Zebger I, Lenz O. O2-Tolerant H2 Activation by an Isolated Large Subunit of a [NiFe] Hydrogenase. Biochemistry 2018; 57:5339-5349. [DOI: 10.1021/acs.biochem.8b00760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sven Hartmann
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Alexandre Ciaccafava
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Christian Lorent
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Johannes Fritsch
- Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Elisabeth Siebert
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Jacqueline Priebe
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| | - Oliver Lenz
- Department of Chemistry, Sekr. PC14, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
24
|
Scott AG, Szilagyi RK, Mulder DW, Ratzloff MW, Byer AS, King PW, Broderick WE, Shepard EM, Broderick JB. Compositional and structural insights into the nature of the H-cluster precursor on HydF. Dalton Trans 2018; 47:9521-9535. [PMID: 29964288 DOI: 10.1039/c8dt01654b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Assembly of an active [FeFe]-hydrogenase requires dedicated maturation enzymes that generate the active-site H-cluster: the radical SAM enzymes HydE and HydG synthesize the unusual non-protein ligands - carbon monoxide, cyanide, and dithiomethylamine - while the GTPase HydF serves as a scaffold for assembly of the 2Fe subcluster containing these ligands. In the current study, enzymatically cluster-loaded HydF ([2Fe]F) is produced by co-expression with HydE and HydG in an Escherichia coli host followed by isolation and examination by FTIR and EPR spectroscopy. FTIR reveals the presence of well-defined terminal CO and CN- ligands; however, unlike in the [FeFe]-hydrogenase, no bridging CO is observed. Exposure of this loaded HydF to exogenous CO or H2 produces no significant changes to the FTIR spectrum, indicating that, unlike in the [FeFe]-hydrogenase, the 2Fe cluster in loaded HydF is coordinatively saturated and relatively unreactive. EPR spectroscopy reveals the presence of both [4Fe-4S] and [2Fe-2S] clusters on this loaded HydF, but provides no direct evidence for these being linked to the [2Fe]F. Using the chemical reactivity and FTIR data, a large collection of computational models were evaluated. Their scaled quantum chemical vibrational spectra allowed us to score various [2Fe]F structures in terms of their ability to reproduce the diatomic stretching frequencies observed in the FTIR experimental spectra. Collectively, the results provide new insights that support the presence of a diamagnetic, but spin-polarized FeI-FeI oxidation state for the [2Fe]F precursor cluster that is coordinated by 4 CO and 2 CN- ligands, and bridged to an adjacent iron-sulfur cluster through one of the CN- ligands.
Collapse
Affiliation(s)
- Anna G Scott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tai H, Xu L, Nishikawa K, Higuchi Y, Hirota S. Equilibrium between inactive ready Ni-SI r and active Ni-SI a states of [NiFe] hydrogenase studied by utilizing Ni-SI r-to-Ni-SI a photoactivation. Chem Commun (Camb) 2018; 53:10444-10447. [PMID: 28884761 DOI: 10.1039/c7cc06061k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previously, the Ni-SIr state of [NiFe] hydrogenase was found to convert to the Ni-SIa state by light irradiation. Herein, large activation energies and a large kinetic isotope effect were obtained for the reconversion of the Ni-SIa state to the Ni-SIr state after the Ni-SIr-to-Ni-SIa photoactivation, suggesting that the Ni-SIa state reacts with H2O and leaves a bridging hydroxo ligand for the Ni-SIr state.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Liyang Xu
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | - Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan and Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
26
|
Tai H, Xu L, Inoue S, Nishikawa K, Higuchi Y, Hirota S. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited. Phys Chem Chem Phys 2018; 18:22025-30. [PMID: 27456760 DOI: 10.1039/c6cp04628b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Ni-SIr state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was photoactivated to its Ni-SIa state by Ar(+) laser irradiation at 514.5 nm, whereas the Ni-SL state was light induced from a newly identified state, which was less active than any other identified state and existed in the "as-isolated" enzyme.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Liyang Xu
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | - Seiya Inoue
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Koji Nishikawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan and Graduate School of Life Science, University of Hyogo, 3-2-1 Koto Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Shun Hirota
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan. and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Nishikawa K, Mochida S, Hiromoto T, Shibata N, Higuchi Y. Ni-elimination from the active site of the standard [NiFe]‑hydrogenase upon oxidation by O 2. J Inorg Biochem 2017; 177:435-437. [PMID: 28967475 DOI: 10.1016/j.jinorgbio.2017.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Hydrogenase is a key enzyme for a coming hydrogen energy society, because it has strong catalytic activities on both uptake and production of dihydrogen. We, however, have to overcome the sensitivity against O2 of the enzyme, because hydrogenase is, generally, easily inactivated in the presence of O2. In this study, we have revisited the crystal structures of [NiFe]‑hydrogenase from sulfate-reducing bacterium in the several oxidized and reduced conditions. Our results revealed that the Ni-Fe active site of the enzyme exposed into O2 showed two forms, Form-1 and Form-2. The Ni-Fe active site in Form-1 showed the typical Ni-B (inactive ready) structure, whereas those in Form-2 lost Ni with no relation to an exposure time to O2, and two cysteinyl sulfur ligands made a disulfide bond. On the other hand, the formation of sulfenylation of the cysteinyl ligand to Ni, which is often observed in the oxidized form, did not correlate with the Ni-elimination, but with exposure time to O2.
Collapse
Affiliation(s)
- Koji Nishikawa
- Department of Picobiology, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Satoko Mochida
- Department of Picobiology, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Takeshi Hiromoto
- Department of Picobiology, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Naoki Shibata
- Department of Picobiology, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Department of Picobiology, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan; Core Research for Evolutional Science and Technology(CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| |
Collapse
|
28
|
Senger M, Stripp ST, Soboh B. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. J Biol Chem 2017; 292:11670-11681. [PMID: 28539366 DOI: 10.1074/jbc.m117.788125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/23/2017] [Indexed: 01/07/2023] Open
Abstract
Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H2). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN)2CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic in vitro maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of Escherichia coli from purified components. The maturation process included formation and insertion of the NiFe(CN)2CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Moritz Senger
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Basem Soboh
- Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany.
| |
Collapse
|
29
|
Plummer SM, Plummer MA, Merkel PA, Hagen M, Biddle JF, Waidner LA. Using directed evolution to improve hydrogen production in chimeric hydrogenases from Clostridia species. Enzyme Microb Technol 2016; 93-94:132-141. [DOI: 10.1016/j.enzmictec.2016.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
|
30
|
Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. Proc Natl Acad Sci U S A 2016; 113:11750-11755. [PMID: 27698140 DOI: 10.1073/pnas.1610554113] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rise of inorganic-biological hybrid organisms for solar-to-chemical production has spurred mechanistic investigations into the dynamics of the biotic-abiotic interface to drive the development of next-generation systems. The model system, Moorella thermoacetica-cadmium sulfide (CdS), combines an inorganic semiconductor nanoparticle light harvester with an acetogenic bacterium to drive the photosynthetic reduction of CO2 to acetic acid with high efficiency. In this work, we report insights into this unique electrotrophic behavior and propose a charge-transfer mechanism from CdS to M. thermoacetica Transient absorption (TA) spectroscopy revealed that photoexcited electron transfer rates increase with increasing hydrogenase (H2ase) enzyme activity. On the same time scale as the TA spectroscopy, time-resolved infrared (TRIR) spectroscopy showed spectral changes in the 1,700-1,900-cm-1 spectral region. The quantum efficiency of this system for photosynthetic acetic acid generation also increased with increasing H2ase activity and shorter carrier lifetimes when averaged over the first 24 h of photosynthesis. However, within the initial 3 h of photosynthesis, the rate followed an opposite trend: The bacteria with the lowest H2ase activity photosynthesized acetic acid the fastest. These results suggest a two-pathway mechanism: a high quantum efficiency charge-transfer pathway to H2ase generating H2 as a molecular intermediate that dominates at long time scales (24 h), and a direct energy-transducing enzymatic pathway responsible for acetic acid production at short time scales (3 h). This work represents a promising platform to utilize conventional spectroscopic methodology to extract insights from more complex biotic-abiotic hybrid systems.
Collapse
|
31
|
Abstract
Numerous recent developments in the biochemistry, molecular biology, and physiology of formate and H2 metabolism and of the [NiFe]-hydrogenase (Hyd) cofactor biosynthetic machinery are highlighted. Formate export and import by the aquaporin-like pentameric formate channel FocA is governed by interaction with pyruvate formate-lyase, the enzyme that generates formate. Formate is disproportionated by the reversible formate hydrogenlyase (FHL) complex, which has been isolated, allowing biochemical dissection of evolutionary parallels with complex I of the respiratory chain. A recently identified sulfido-ligand attached to Mo in the active site of formate dehydrogenases led to the proposal of a modified catalytic mechanism. Structural analysis of the homologous, H2-oxidizing Hyd-1 and Hyd-5 identified a novel proximal [4Fe-3S] cluster in the small subunit involved in conferring oxygen tolerance to the enzymes. Synthesis of Salmonella Typhimurium Hyd-5 occurs aerobically, which is novel for an enterobacterial Hyd. The O2-sensitive Hyd-2 enzyme has been shown to be reversible: it presumably acts as a conformational proton pump in the H2-oxidizing mode and is capable of coupling reverse electron transport to drive H2 release. The structural characterization of all the Hyp maturation proteins has given new impulse to studies on the biosynthesis of the Fe(CN)2CO moiety of the [NiFe] cofactor. It is synthesized on a Hyp-scaffold complex, mainly comprising HypC and HypD, before insertion into the apo-large subunit. Finally, clear evidence now exists indicating that Escherichia coli can mature Hyd enzymes differentially, depending on metal ion availability and the prevailing metabolic state. Notably, Hyd-3 of the FHL complex takes precedence over the H2-oxidizing enzymes.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin Luther University, Halle-Wittenberg, 06120 Halle, Germany
| | - R Gary Sawers
- Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
32
|
Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. Chem Rev 2016; 116:8693-749. [PMID: 27353631 PMCID: PMC5026416 DOI: 10.1021/acs.chemrev.6b00180] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.
Collapse
Affiliation(s)
- David Schilter
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - James M. Camara
- Department of Chemistry, Yeshiva University, 500 West 185th Street, New York, New York 10033, United States
| | - Mioy T. Huynh
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
CO and CN- syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. Proc Natl Acad Sci U S A 2015; 113:104-9. [PMID: 26699472 DOI: 10.1073/pnas.1515842113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The synthesis and assembly of the active site [FeFe] unit of [FeFe]-hydrogenases require at least three maturases. The radical S-adenosyl-l-methionine HydG, the best characterized of these proteins, is responsible for the synthesis of the hydrogenase CO and CN(-) ligands from tyrosine-derived dehydroglycine (DHG). We speculated that CN(-) and the CO precursor (-):CO2H may be generated through an elimination reaction. We tested this hypothesis with both wild type and HydG variants defective in second iron-sulfur cluster coordination by measuring the in vitro production of CO, CN(-), and (-):CO2H-derived formate. We indeed observed formate production under these conditions. We conclude that HydG is a multifunctional enzyme that produces DHG, CN(-), and CO at three well-differentiated catalytic sites. We also speculate that homocysteine, cysteine, or a related ligand could be involved in Fe(CO)x(CN)y transfer to the HydF carrier/scaffold.
Collapse
|
34
|
[NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1. Biochem J 2015; 464:169-77. [PMID: 25184670 DOI: 10.1042/bj20140485] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
[NiFe]-hydrogenases (Hyd) bind a nickel-iron-based cofactor. The Fe ion of the cofactor is bound by two cyanide ligands and a single carbon monoxide ligand. Minimally six accessory proteins (HypA-HypF) are necessary for NiFe(CN)2CO cofactor biosynthesis in Escherichia coli. It has been shown that the anaerobically purified HypC-HypD-HypE scaffold complex carries the Fe(CN)2CO moiety of this cofactor. In the present study, we have purified the HybG-HypDE complex and used it to successfully reconstitute in vitro active Hyd from E. coli. HybG is a homologue of HypC that is specifically required for the maturation of Hyd-2 and also functions in the maturation of Hyd-1 of E. coli. Maturation of active Hyd-1 and Hyd-2 could be demonstrated in extracts derived from HybG- and HypD-deficient E. coli strains by adding anaerobically purified HybG-HypDE complex. In vitro maturation was dependent on ATP, carbamoylphosphate, nickel and reducing conditions. Hydrogenase maturation was prevented when the purified HybG-HypDE complex used in the maturation assay lacked a bound Fe(CN)2CO moiety. These findings demonstrate that it is possible to isolate incompletely processed intermediates on the maturation pathway and to use these to activate apo-forms of [NiFe]-hydrogenase large subunits.
Collapse
|
35
|
Horch M, Lauterbach L, Mroginski MA, Hildebrandt P, Lenz O, Zebger I. Reversible active site sulfoxygenation can explain the oxygen tolerance of a NAD+-reducing [NiFe] hydrogenase and its unusual infrared spectroscopic properties. J Am Chem Soc 2015; 137:2555-64. [PMID: 25647259 DOI: 10.1021/ja511154y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxygen-tolerant [NiFe] hydrogenases are metalloenzymes that represent valuable model systems for sustainable H2 oxidation and production. The soluble NAD(+)-reducing [NiFe] hydrogenase (SH) from Ralstonia eutropha couples the reversible cleavage of H2 with the reduction of NAD(+) and displays a unique O2 tolerance. Here we performed IR spectroscopic investigations on purified SH in various redox states in combination with density functional theory to provide structural insights into the catalytic [NiFe] center. These studies revealed a standard-like coordination of the active site with diatomic CO and cyanide ligands. The long-lasting discrepancy between spectroscopic data obtained in vitro and in vivo could be solved on the basis of reversible cysteine oxygenation in the fully oxidized state of the [NiFe] site. The data are consistent with a model in which the SH detoxifies O2 catalytically by means of an NADH-dependent (per)oxidase reaction involving the intermediary formation of stable cysteine sulfenates. The occurrence of two catalytic activities, hydrogen conversion and oxygen reduction, at the same cofactor may inspire the design of novel biomimetic catalysts performing H2-conversion even in the presence of O2.
Collapse
Affiliation(s)
- Marius Horch
- Institut für Chemie, Technische Universität Berlin , Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Structural differences of oxidized iron–sulfur and nickel–iron cofactors in O 2 -tolerant and O 2 -sensitive hydrogenases studied by X-ray absorption spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:162-170. [DOI: 10.1016/j.bbabio.2014.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 11/23/2022]
|
37
|
Lanz ND, Booker SJ. Auxiliary iron-sulfur cofactors in radical SAM enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1316-34. [PMID: 25597998 DOI: 10.1016/j.bbamcr.2015.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022]
Abstract
A vast number of enzymes are now known to belong to a superfamily known as radical SAM, which all contain a [4Fe-4S] cluster ligated by three cysteine residues. The remaining, unligated, iron ion of the cluster binds in contact with the α-amino and α-carboxylate groups of S-adenosyl-l-methionine (SAM). This binding mode facilitates inner-sphere electron transfer from the reduced form of the cluster into the sulfur atom of SAM, resulting in a reductive cleavage of SAM to methionine and a 5'-deoxyadenosyl radical. The 5'-deoxyadenosyl radical then abstracts a target substrate hydrogen atom, initiating a wide variety of radical-based transformations. A subset of radical SAM enzymes contains one or more additional iron-sulfur clusters that are required for the reactions they catalyze. However, outside of a subset of sulfur insertion reactions, very little is known about the roles of these additional clusters. This review will highlight the most recent advances in the identification and characterization of radical SAM enzymes that harbor auxiliary iron-sulfur clusters. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Nicholas D Lanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
38
|
Horch M, Hildebrandt P, Zebger I. Concepts in bio-molecular spectroscopy: vibrational case studies on metalloenzymes. Phys Chem Chem Phys 2015; 17:18222-37. [DOI: 10.1039/c5cp02447a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Challenges and chances in bio-molecular spectroscopy are exemplified by vibrational case studies on metalloenzymes.
Collapse
Affiliation(s)
- M. Horch
- Technische Universität Berlin
- Institut für Chemie
- D-10623 Berlin
- Germany
| | - P. Hildebrandt
- Technische Universität Berlin
- Institut für Chemie
- D-10623 Berlin
- Germany
| | - I. Zebger
- Technische Universität Berlin
- Institut für Chemie
- D-10623 Berlin
- Germany
| |
Collapse
|
39
|
Pandey IK, Natarajan M, Kaur-Ghumaan S. Hydrogen generation: aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models. J Inorg Biochem 2014; 143:88-110. [PMID: 25528677 DOI: 10.1016/j.jinorgbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The design, syntheses and characteristics of metal carbonyl complexes with aromatic dithiolate linkers reported as bioinspired hydrogenase catalytic site models are described and reviewed. Among these the complexes capable of hydrogen generation have been discussed in detail. Comparisons have been made with carbonyl complexes having alkyl dithiolates as linkers between metal centers.
Collapse
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
40
|
Chernev P, Lambertz C, Brünje A, Leidel N, Sigfridsson KGV, Kositzki R, Hsieh CH, Yao S, Schiwon R, Driess M, Limberg C, Happe T, Haumann M. Hydride Binding to the Active Site of [FeFe]-Hydrogenase. Inorg Chem 2014; 53:12164-77. [DOI: 10.1021/ic502047q] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Petko Chernev
- Institute for Experimental
Physics, Free University Berlin, 14195 Berlin, Germany
| | - Camilla Lambertz
- Institute for Biochemistry of Plants, Department
of Photobiotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Annika Brünje
- Institute for Biochemistry of Plants, Department
of Photobiotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Nils Leidel
- Institute for Experimental
Physics, Free University Berlin, 14195 Berlin, Germany
| | | | - Ramona Kositzki
- Institute for Experimental
Physics, Free University Berlin, 14195 Berlin, Germany
| | - Chung-Hung Hsieh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shenglai Yao
- Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Rafael Schiwon
- Department of Chemistry, Humboldt University Berlin, 12489 Berlin, Germany
| | - Matthias Driess
- Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Christian Limberg
- Department of Chemistry, Humboldt University Berlin, 12489 Berlin, Germany
| | - Thomas Happe
- Institute for Biochemistry of Plants, Department
of Photobiotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Michael Haumann
- Institute for Experimental
Physics, Free University Berlin, 14195 Berlin, Germany
| |
Collapse
|
41
|
Manor BC, Ringenberg MR, Rauchfuss TB. Borane-protected cyanides as surrogates of H-bonded cyanides in [FeFe]-hydrogenase active site models. Inorg Chem 2014; 53:7241-7. [PMID: 24992155 PMCID: PMC4364604 DOI: 10.1021/ic500470z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Triarylborane Lewis acids bind [Fe2(pdt)(CO)4(CN)2](2-) [1](2-) (pdt(2-) = 1,3-propanedithiolate) and [Fe2(adt)(CO)4(CN)2](2-) [3](2-) (adt(2-) = 1,3-azadithiolate, HN(CH2S(-))2) to give the 2:1 adducts [Fe2(xdt)(CO)4(CNBAr3)2](2-). Attempts to prepare the 1:1 adducts [1(BAr3)](2-) (Ar = Ph, C6F5) were unsuccessful, but related 1:1 adducts were obtained using the bulky borane B(C6F4-o-C6F5)3 (BAr(F)*3). By virtue of the N-protection by the borane, salts of [Fe2(pdt)(CO)4(CNBAr3)2](2-) sustain protonation to give hydrides that are stable (in contrast to [H1](-)). The hydrides [H1(BAr3)2](-) are 2.5-5 pKa units more acidic than the parent [H1](-). The adducts [1(BAr3)2](2-) oxidize quasi-reversibly around -0.3 V versus Fc(0/+) in contrast to ca. -0.8 V observed for the [1](2-/-) couple. A simplified synthesis of [1](2-), [3](2-), and [Fe2(pdt)(CO)5(CN)](-) ([2](-)) was developed, entailing reaction of the diiron hexacarbonyl complexes with KCN in MeCN.
Collapse
Affiliation(s)
- Brian C. Manor
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Mark R. Ringenberg
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Thomas B. Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Albareda M, Pacios LF, Manyani H, Rey L, Brito B, Imperial J, Ruiz-Argüeso T, Palacios JM. Maturation of Rhizobium leguminosarum hydrogenase in the presence of oxygen requires the interaction of the chaperone HypC and the scaffolding protein HupK. J Biol Chem 2014; 289:21217-29. [PMID: 24942742 DOI: 10.1074/jbc.m114.577403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
[NiFe] hydrogenases are key enzymes for the energy and redox metabolisms of different microorganisms. Synthesis of these metalloenzymes involves a complex series of biochemical reactions catalyzed by a plethora of accessory proteins, many of them required to synthesize and insert the unique NiFe(CN)2CO cofactor. HypC is an accessory protein conserved in all [NiFe] hydrogenase systems and involved in the synthesis and transfer of the Fe(CN)2CO cofactor precursor. Hydrogenase accessory proteins from bacteria-synthesizing hydrogenase in the presence of oxygen include HupK, a scaffolding protein with a moderate sequence similarity to the hydrogenase large subunit and proposed to participate as an intermediate chaperone in the synthesis of the NiFe cofactor. The endosymbiotic bacterium Rhizobium leguminosarum contains a single hydrogenase system that can be expressed under two different physiological conditions: free-living microaerobic cells (∼ 12 μm O2) and bacteroids from legume nodules (∼ 10-100 nm O2). We have used bioinformatic tools to model HupK structure and interaction of this protein with HypC. Site-directed mutagenesis at positions predicted as critical by the structural analysis have allowed the identification of HupK and HypC residues relevant for the maturation of hydrogenase. Mutant proteins altered in some of these residues show a different phenotype depending on the physiological condition tested. Modeling of HypC also predicts the existence of a stable HypC dimer whose presence was also demonstrated by immunoblot analysis. This study widens our understanding on the mechanisms for metalloenzyme biosynthesis in the presence of oxygen.
Collapse
Affiliation(s)
- Marta Albareda
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros de Montes, Universidad Politécnica de Madrid, 28040 Madrid, Spain, and
| | - Hamid Manyani
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Luis Rey
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Belén Brito
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Juan Imperial
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain, Consejo Superior de Investigaciones Científicas, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Tomás Ruiz-Argüeso
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Jose M Palacios
- From the Centro de Biotecnología y Genómica de Plantas and Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain,
| |
Collapse
|
43
|
Shepard EM, Mus F, Betz JN, Byer AS, Duffus BR, Peters JW, Broderick JB. [FeFe]-hydrogenase maturation. Biochemistry 2014; 53:4090-104. [PMID: 24878200 DOI: 10.1021/bi500210x] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hydrogenases are metalloenzymes that catalyze the reversible reduction of protons at unusual metal centers. This Current Topic discusses recent advances in elucidating the steps involved in the biosynthesis of the complex metal cluster at the [FeFe]-hydrogenase (HydA) active site, known as the H-cluster. The H-cluster is composed of a 2Fe subcluster that is anchored within the active site by a bridging cysteine thiolate to a [4Fe-4S] cubane. The 2Fe subcluster contains carbon monoxide, cyanide, and bridging dithiolate ligands. H-cluster biosynthesis is now understood to occur stepwise; standard iron-sulfur cluster assembly machinery builds the [4Fe-4S] cubane of the H-cluster, while three specific maturase enzymes known as HydE, HydF, and HydG assemble the 2Fe subcluster. HydE and HydG are both radical S-adenosylmethionine enzymes that interact with an iron-sulfur cluster binding GTPase scaffold, HydF, during the construction of the 2Fe subcluster moiety. In an unprecedented biochemical reaction, HydG cleaves tyrosine and decomposes the resulting dehydroglycine into carbon monoxide and cyanide ligands. The role of HydE in the biosynthetic pathway remains undefined, although it is hypothesized to be critical for the synthesis of the bridging dithiolate. HydF is the site where the complete 2Fe subcluster is formed and ultimately delivered to the immature hydrogenase protein in the final step of [FeFe]-hydrogenase maturation. This work addresses the roles of and interactions among HydE, HydF, HydG, and HydA in the formation of the mature [FeFe]-hydrogenase.
Collapse
Affiliation(s)
- Eric M Shepard
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | | | | | | | | | | | | |
Collapse
|
44
|
Weber K, Erdem ÖF, Bill E, Weyhermüller T, Lubitz W. Modeling the Active Site of [NiFe] Hydrogenases and the [NiFeu] Subsite of the C-Cluster of Carbon Monoxide Dehydrogenases: Low-Spin Iron(II) Versus High-Spin Iron(II). Inorg Chem 2014; 53:6329-37. [DOI: 10.1021/ic500910z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Katharina Weber
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Özlen F. Erdem
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
45
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
46
|
Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys 2014; 544:142-52. [PMID: 24036122 PMCID: PMC3946514 DOI: 10.1016/j.abb.2013.09.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/31/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
Abstract
This review describes the functions, structures, and mechanisms of nine nickel-containing enzymes: glyoxalase I, acireductone dioxygenase, urease, superoxide dismutase, [NiFe]-hydrogenase, carbon monoxide dehydrogenase, acetyl-coenzyme A synthase/decarbonylase, methyl-coenzyme M reductase, and lactate racemase. These enzymes catalyze their various chemistries by using metallocenters of diverse structures, including mononuclear nickel, dinuclear nickel, nickel-iron heterodinuclear sites, more complex nickel-containing clusters, and nickel-tetrapyrroles. Selected other enzymes are active with nickel, but the physiological relevance of this metal specificity is unclear. Additional nickel-containing proteins of undefined function have been identified.
Collapse
Affiliation(s)
- Jodi L Boer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Scott B Mulrooney
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
47
|
Bruschi M, Tiberti M, Guerra A, De Gioia L. Disclosure of Key Stereoelectronic Factors for Efficient H2 Binding and Cleavage in the Active Site of [NiFe]-Hydrogenases. J Am Chem Soc 2014; 136:1803-14. [DOI: 10.1021/ja408511y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maurizio Bruschi
- Department
of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza
della Scienza 1, 20126-Milan, Italy
| | - Matteo Tiberti
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126-Milan, Italy
| | - Alessandro Guerra
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126-Milan, Italy
| | - Luca De Gioia
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126-Milan, Italy
| |
Collapse
|
48
|
Engineering Hydrogenases for H2 Production: Bolts and Goals. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Wombwell C, Reisner E. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases. Dalton Trans 2014; 43:4483-93. [DOI: 10.1039/c3dt52967c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of structural models of the Ni centre in [NiFeSe] hydrogenases display reactivity relevant to the enzyme.
Collapse
Affiliation(s)
- Claire Wombwell
- Christian Doppler Laboratory for Sustainable SynGas Chemistry
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| |
Collapse
|
50
|
Kothari A, Vaughn M, Garcia-Pichel F. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer. Front Microbiol 2013; 4:363. [PMID: 24376438 PMCID: PMC3858816 DOI: 10.3389/fmicb.2013.00363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/15/2013] [Indexed: 11/13/2022] Open
Abstract
The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural, and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 μm wide trichomes, composed of stacked disk-like short cells (2 μm long), encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells) at the breakage point. Short, sheath-less, motile filaments (hormogonia) are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1%. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp). It contained 6515 putative protein-encoding genes, of which, 43% encode proteins of known functional role, 26% corresponded to proteins with domain or family assignments, 19.6% encode conserved hypothetical proteins, and 11.3% encode apparently unique hypothetical proteins. The strain's genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen, and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose, and glycine betaine. According to its genome, BL J strain also has the potential to produce a plethora of products of biotechnological interest such as Curacin A, Barbamide, Hemolysin-type calcium-binding toxin, the suncreens scytonemin, and mycosporines, as well as heptadecane and pentadecane alkanes. With respect to hydrogen production, initial comparisons of the genetic architecture and sequence of relevant genes and loci, and a comparative model of protein structure of the NiFe bidirectional hydrogenase, did not reveal conspicuous differences that could explain its unusual hydrogen producing capacity.
Collapse
Affiliation(s)
- Ankita Kothari
- School of Life Sciences, Arizona State University Tempe, AZ, USA
| | - Michael Vaughn
- Department of Chemistry and Biochemistry, Arizona State University Tempe, AZ, USA
| | | |
Collapse
|