1
|
Palmer T, Stansfeld PJ. Targeting of proteins to the twin-arginine translocation pathway. Mol Microbiol 2020; 113:861-871. [PMID: 31971282 PMCID: PMC7317946 DOI: 10.1111/mmi.14461] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
The twin-arginine protein transport (Tat pathway) is found in prokaryotes and plant organelles and transports folded proteins across membranes. Targeting of substrates to the Tat system is mediated by the presence of an N-terminal signal sequence containing a highly conserved twin-arginine motif. The Tat machinery comprises membrane proteins from the TatA and TatC families. Assembly of the Tat translocon is dynamic and is triggered by the interaction of a Tat substrate with the Tat receptor complex. This review will summarise recent advances in our understanding of Tat transport, focusing in particular on the roles played by Tat signal peptides in protein targeting and translocation.
Collapse
Affiliation(s)
- Tracy Palmer
- Faculty of Medical Sciences, Centre for Bacterial Cell Biology, Biosciences Institute, Molecular and Cellular Microbiology Theme, Newcastle University, Newcastle upon Tyne, England
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
New CP, Ma Q, Dabney-Smith C. Routing of thylakoid lumen proteins by the chloroplast twin arginine transport pathway. PHOTOSYNTHESIS RESEARCH 2018; 138:289-301. [PMID: 30101370 DOI: 10.1007/s11120-018-0567-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Thylakoids are complex sub-organellar membrane systems whose role in photosynthesis makes them critical to life. Thylakoids require the coordinated expression of both nuclear- and plastid-encoded proteins to allow rapid response to changing environmental conditions. Transport of cytoplasmically synthesized proteins to thylakoids or the thylakoid lumen is complex; the process involves transport across up to three membrane systems with routing through three aqueous compartments. Protein transport in thylakoids is accomplished by conserved ancestral prokaryotic plasma membrane translocases containing novel adaptations for the sub-organellar location. This review focuses on the evolutionarily conserved chloroplast twin arginine transport (cpTat) pathway. An overview is provided of known aspects of the cpTat components, energy requirements, and mechanisms with a focus on recent discoveries. Some of the most exciting new studies have been in determining the structural architecture of the membrane complex involved in forming the point of passage for the precursor and binding features of the translocase components. The cpTat system is of particular interest because it transports folded protein domains using only the proton motive force for energy. The implications for mechanism of translocation by recent studies focusing on interactions between membrane Tat components and with the translocating precursor will be discussed.
Collapse
Affiliation(s)
- Christopher Paul New
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA
| | - Qianqian Ma
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA
| | - Carole Dabney-Smith
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA.
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
3
|
Wojnowska M, Gault J, Yong SC, Robinson CV, Berks BC. Precursor-Receptor Interactions in the Twin Arginine Protein Transport Pathway Probed with a New Receptor Complex Preparation. Biochemistry 2018; 57:1663-1671. [PMID: 29460615 PMCID: PMC5852461 DOI: 10.1021/acs.biochem.8b00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The twin arginine translocation (Tat) system moves folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Signal peptide-bearing substrates of the Tat pathway (precursor proteins) are recognized at the membrane by the TatBC receptor complex. The only established preparation of the TatBC complex uses the detergent digitonin, rendering it unsuitable for biophysical analysis. Here we show that the detergent glyco-diosgenin (GDN) can be used in place of digitonin to isolate homogeneous TatBC complexes that bind precursor proteins with physiological specificity. We use this new preparation to quantitatively characterize TatBC-precursor interactions in a fully defined system. Additionally, we show that the GDN-solubilized TatBC complex co-purifies with substantial quantities of phospholipids.
Collapse
Affiliation(s)
- Marta Wojnowska
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Shee Chien Yong
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Ben C Berks
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| |
Collapse
|
4
|
Abstract
The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invariant arginine pair that is critical for efficient targeting to the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex comprised of TatB and TatC components, with TatC containing the twin-arginine recognition site. Here, we isolated suppressors in the signal peptide of the Tat substrate, SufI, that restored Tat transport in the presence of inactivating substitutions in the TatC twin-arginine binding site. These suppressors increased signal peptide hydrophobicity, and copurification experiments indicated that they restored binding to the variant TatBC complex. The hydrophobic suppressors could also act in cis to suppress substitutions at the signal peptide twin-arginine motif that normally prevent targeting to the Tat pathway. Highly hydrophobic variants of the SufI signal peptide containing four leucine substitutions retained the ability to interact with the Tat system. The hydrophobic signal peptides of two Sec substrates, DsbA and OmpA, containing twin lysine residues, were shown to mediate export by the Tat pathway and to copurify with TatBC. These findings indicate that there is unprecedented overlap between Sec and Tat signal peptides and that neither the signal peptide twin-arginine motif nor the TatC twin-arginine recognition site is an essential mechanistic feature for operation of the Tat pathway.IMPORTANCE Protein export is an essential process in all prokaryotes. The Sec and Tat export pathways operate in parallel, with the Sec machinery transporting unstructured precursors and the Tat pathway transporting folded proteins. Proteins are targeted to the Tat pathway by N-terminal signal peptides that contain an almost invariant twin-arginine motif. Here, we make the surprising discovery that the twin arginines are not essential for recognition of substrates by the Tat machinery and that this requirement can be bypassed by increasing the signal peptide hydrophobicity. We further show that signal peptides of bona fide Sec substrates can also mediate transport by the Tat pathway. Our findings suggest that key features of the Tat targeting mechanism have evolved to prevent mistargeting of substrates to the Sec pathway rather than being a critical requirement for function of the Tat pathway.
Collapse
|
5
|
Tooke FJ, Babot M, Chandra G, Buchanan G, Palmer T. A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways. eLife 2017; 6. [PMID: 28513434 PMCID: PMC5449189 DOI: 10.7554/elife.26577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
The majority of multi-spanning membrane proteins are co-translationally inserted into the bilayer by the Sec pathway. An important subset of membrane proteins have globular, cofactor-containing extracytoplasmic domains requiring the dual action of the co-translational Sec and post-translational Tat pathways for integration. Here, we identify further unexplored families of membrane proteins that are dual Sec-Tat-targeted. We establish that a predicted heme-molybdenum cofactor-containing protein, and a complex polyferredoxin, each require the concerted action of two translocases for their assembly. We determine that the mechanism of handover from Sec to Tat pathway requires the relatively low hydrophobicity of the Tat-dependent transmembrane domain. This, coupled with the presence of C-terminal positive charges, results in abortive insertion of this transmembrane domain by the Sec pathway and its subsequent release at the cytoplasmic side of the membrane. Together, our data points to a simple unifying mechanism governing the assembly of dual targeted membrane proteins.
Collapse
Affiliation(s)
- Fiona J Tooke
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marion Babot
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Grant Buchanan
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
6
|
Grimm I, Erdmann R, Girzalsky W. Role of AAA(+)-proteins in peroxisome biogenesis and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:828-37. [PMID: 26453804 DOI: 10.1016/j.bbamcr.2015.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022]
Abstract
Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.
Collapse
Affiliation(s)
- Immanuel Grimm
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | - Wolfgang Girzalsky
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
7
|
Affiliation(s)
- Ben C. Berks
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom;
| |
Collapse
|
8
|
Cline K. Mechanistic Aspects of Folded Protein Transport by the Twin Arginine Translocase (Tat). J Biol Chem 2015; 290:16530-8. [PMID: 25975269 DOI: 10.1074/jbc.r114.626820] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin arginine translocase (Tat) transports folded proteins of widely varying size across ionically tight membranes with only 2-3 components of machinery and the proton motive force. Tat operates by a cycle in which the receptor complex combines with the pore-forming component to assemble a new translocase for each substrate. Recent data on component and substrate organization in the receptor complex and on the structure of the pore complex inform models for translocase assembly and translocation. A translocation mechanism involving local transient bilayer rupture is discussed.
Collapse
Affiliation(s)
- Kenneth Cline
- From the Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
9
|
Aldridge C, Ma X, Gerard F, Cline K. Substrate-gated docking of pore subunit Tha4 in the TatC cavity initiates Tat translocase assembly. J Cell Biol 2014; 205:51-65. [PMID: 24711501 PMCID: PMC3987133 DOI: 10.1083/jcb.201311057] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/11/2014] [Indexed: 11/22/2022] Open
Abstract
The twin-arginine translocase (Tat) transports folded proteins across tightly sealed membranes. cpTatC is the core component of the thylakoid translocase and coordinates transport through interactions with the substrate signal peptide and other Tat components, notably the Tha4 pore-forming component. Here, Cys-Cys matching mapped Tha4 contact sites on cpTatC and assessed the role of signal peptide binding on Tha4 assembly with the cpTatC-Hcf106 receptor complex. Tha4 made contact with a peripheral cpTatC site in nonstimulated membranes. In the translocase, Tha4 made an additional contact within the cup-shaped cavity of cpTatC that likely seeds Tha4 polymerization to form the pore. Substrate binding triggers assembly of Tha4 onto the interior site. We provide evidence that the substrate signal peptide inserts between cpTatC subunits arranged in a manner that conceivably forms an enclosed chamber. The location of the inserted signal peptide and the Tha4-cpTatC contact data suggest a model for signal peptide-gated Tha4 entry into the chamber to form the translocase.
Collapse
Affiliation(s)
- Cassie Aldridge
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611
| | | | | | | |
Collapse
|
10
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
11
|
Pal D, Fite K, Dabney-Smith C. Direct interaction between a precursor mature domain and transport component Tha4 during twin arginine transport of chloroplasts. PLANT PHYSIOLOGY 2013; 161:990-1001. [PMID: 23209125 PMCID: PMC3561034 DOI: 10.1104/pp.112.207522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Proteins destined for the thylakoid lumen of chloroplasts must cross three membranes en route. The chloroplast twin arginine translocation (cpTat) system facilitates the transport of about one-half of all proteins that cross the thylakoid membrane in chloroplasts. Known mechanistic features of the cpTat system are drastically different from other known translocation systems, notably in its formation of a transient complex to transport fully folded proteins utilizing only the protonmotive force generated during photosynthesis for energy. However, key details, such as the structure and composition of the translocation pore, are still unknown. One of the three transmembrane cpTat components, Tha4, is thought to function as the pore by forming an oligomer. Yet, little is known about the topology of Tha4 in thylakoid, and little work has been done to detect precursor-Tha4 interactions, which are expected if Tha4 is the pore. Here, we present evidence of the interaction of the precursor with Tha4 under conditions leading to transport, using cysteine substitutions on the precursor and Tha4 and disulfide bond formation in pea (Pisum sativum). The mature domain of a transport-competent precursor interacts with the amphipathic helix and amino terminus of functional Tha4 under conditions leading to transport. Detergent solubilization of thylakoids post cross linking and blue-native polyacrylamide gel electrophoresis analysis shows that Tha4 is found in a complex containing precursor and Hcf106 (i.e. the cpTat translocase). Affinity precipitation of the cross-linked complex via Tha4 clearly demonstrates that the interaction is with full-length precursor. How these data suggest a role for Tha4 in cpTat transport is discussed.
Collapse
|
12
|
Aldridge C, Storm A, Cline K, Dabney-Smith C. The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport. J Biol Chem 2012; 287:34752-63. [PMID: 22896708 PMCID: PMC3464578 DOI: 10.1074/jbc.m112.385666] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Indexed: 11/06/2022] Open
Abstract
Twin arginine transport (Tat) systems transport folded proteins using proton-motive force as sole energy source. The thylakoid Tat system comprises three membrane components. A complex composed of cpTatC and Hcf106 is the twin arginine signal peptide receptor. Signal peptide binding triggers assembly of Tha4 for the translocation step. Tha4 is thought to serve as the protein-conducting element, and the topology it adopts during transport produces the transmembrane passageway. We analyzed Tha4 topology and conformation in actively transporting translocases and compared that with Tha4 in nontransporting membranes. Using cysteine accessibility labeling techniques and diagnostic protease protection assays, we confirm an overall N(OUT)-C(IN) topology for Tha4 that is maintained under transport conditions. Significantly, the amphipathic helix (APH) and C-tail exhibited substantial changes in accessibility when actively engaged in protein transport. Compared with resting state, cysteines within the APH became less accessible to stromally applied modifying reagent. The APH proximal C-tail, although still accessible to Cys-directed reagents, was much less accessible to protease. We attribute these changes in accessibility to indicate the Tha4 conformation that is adopted in the translocase primed for translocation. We propose that in the primed translocase, the APH partitions more extensively and uniformly into the membrane interface and the C-tails pack closer together in a mesh-like network. Implications for the mode by which the substrate protein crosses the bilayer are discussed.
Collapse
Affiliation(s)
- Cassie Aldridge
- From the Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 and
| | - Amanda Storm
- the Department of Chemistry and Biochemistry and
| | - Kenneth Cline
- From the Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 and
| | - Carole Dabney-Smith
- the Department of Chemistry and Biochemistry and
- Cell, Molecular, and Structural Biology, Miami University, Oxford, Ohio 45056
| |
Collapse
|
13
|
Lo SM, Theg SM. Role of vesicle-inducing protein in plastids 1 in cpTat transport at the thylakoid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:656-68. [PMID: 22487220 DOI: 10.1111/j.1365-313x.2012.05020.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
VIPP1 has been shown to be required for the proper formation of thylakoid membranes. However, studies on VIPP1 itself, as well as on PspA, its bacterial homolog, suggests that this protein may be involved in a number of additional functions, including protein translocation. The role of VIPP1 in protein translocation in the chloroplast has not been investigated. To this end, we conducted in vitro thylakoid protein transport assays to look at the effect of VIPP1 on the cpTat pathway, which is one of three translocation pathways found in both the chloroplast and its bacterial progenitor. We found that VIPP1 does indeed enhance protein transport through the cpTat pathway by up to 100%. The VIPP1 effect on cpTat activity occurs without interacting with the substrates or components of the translocon, and does not alter the energy potentials driving this translocation pathway. Instead, VIPP1 greatly enhances the amount of substrate bound productively to the thylakoids. Moreover, the presence of increasing VIPP1 concentrations in the reactions resulted in greater interactions between thylakoid membranes. Taken together, these results demonstrate a stimulatory role for VIPP1 in cpTat transport by enhancement of substrate binding, probably to the membrane lipid regions of the thylakoid. We propose a model in which VIPP1 facilitates reorganization of the thylakoid structure to increase substrate access to productive binding regions of the membrane as an early step in the cpTat pathway.
Collapse
Affiliation(s)
- Shari M Lo
- Section of Plant Biology, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
14
|
Celedon JM, Cline K. Stoichiometry for binding and transport by the twin arginine translocation system. J Cell Biol 2012; 197:523-34. [PMID: 22564412 PMCID: PMC3352945 DOI: 10.1083/jcb.201201096] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/12/2012] [Indexed: 11/22/2022] Open
Abstract
Twin arginine translocation (Tat) systems transport large folded proteins across sealed membranes. Tat systems accomplish this feat with three membrane components organized in two complexes. In thylakoid membranes, cpTatC and Hcf106 comprise a large receptor complex containing an estimated eight cpTatC-Hcf106 pairs. Protein transport occurs when Tha4 joins the receptor complex as an oligomer of uncertain size that is thought to form the protein-conducting structure. Here, binding analyses with intact membranes or purified complexes indicate that each receptor complex could bind eight precursor proteins. Kinetic analysis of translocation showed that each precursor-bound site was independently functional for transport, and, with sufficient Tha4, all sites were concurrently active for transport. Tha4 titration determined that ∼26 Tha4 protomers were required for transport of each OE17 (oxygen-evolving complex subunit of 17 kD) precursor protein. Our results suggest that, when fully saturated with precursor proteins and Tha4, the Tat translocase is an ∼2.2-megadalton complex that can individually transport eight precursor proteins or cooperatively transport multimeric precursors.
Collapse
Affiliation(s)
- Jose M Celedon
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
15
|
Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci 2012; 367:1029-46. [PMID: 22411976 PMCID: PMC3297433 DOI: 10.1098/rstb.2011.0202] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate maturation and membrane-targeting. Tat translocases comprise two kinds of membrane proteins, a hexahelical TatC-type protein and one or two members of the single-spanning TatA protein family, called TatA and TatB. TatC- and TatA-type proteins form homo- and hetero-oligomeric complexes. The subunits of TatABC translocases are predominantly recovered from two separate complexes, a TatBC complex that might contain some TatA, and a homomeric TatA complex. TatB and TatC coordinately recognize twin-arginine signal peptides and accommodate them in membrane-embedded binding pockets. Advanced binding of the signal sequence to the Tat translocase requires the proton-motive force (PMF) across the membranes and might involve a first recruitment of TatA. When targeted in this manner, folded twin-arginine precursors induce homo-oligomerization of TatB and TatA. Ultimately, this leads to the formation of a transmembrane protein conduit that possibly consists of a pore-like TatA structure. The translocation step again is dependent on the PMF.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzle-Strasse 1, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Albiniak AM, Baglieri J, Robinson C. Targeting of lumenal proteins across the thylakoid membrane. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1689-98. [PMID: 22275386 DOI: 10.1093/jxb/err444] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The biogenesis of the plant thylakoid network is an enormously complex process in terms of protein targeting. The membrane system contains a large number of proteins, some of which are synthesized within the organelle, while many others are imported from the cytosol. Studies in recent years have shown that the targeting of imported proteins into and across the thylakoid membrane is particularly complex, with four different targeting pathways identified to date. Two of these are used to target membrane proteins: a signal recognition particle (SRP)-dependent pathway and a highly unusual pathway that appears to require none of the known targeting apparatus. Two further pathways are used to translocate lumenal proteins across the thylakoid membrane from the stroma and, again, the two pathways differ dramatically from each other. One is a Sec-type pathway, in which ATP hydrolysis by SecA drives the transport of the substrate protein through the membrane in an unfolded conformation. The other is the twin-arginine translocation (Tat) pathway, where substrate proteins are transported in a folded state using a unique mechanism that harnesses the proton motive force across the thylakoid membrane. This article reviews progress in studies on the targeting of lumenal proteins, with reference to the mechanisms involved, their evolution from endosymbiotic progenitors of the chloroplast, and possible elements of regulation.
Collapse
Affiliation(s)
- Anna M Albiniak
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
17
|
Fröbel J, Rose P, Müller M. Early contacts between substrate proteins and TatA translocase component in twin-arginine translocation. J Biol Chem 2011; 286:43679-43689. [PMID: 22041896 DOI: 10.1074/jbc.m111.292565] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Patrick Rose
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
18
|
Maurer C, Panahandeh S, Jungkamp AC, Moser M, Müller M. TatB functions as an oligomeric binding site for folded Tat precursor proteins. Mol Biol Cell 2010; 21:4151-61. [PMID: 20926683 PMCID: PMC2993744 DOI: 10.1091/mbc.e10-07-0585] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The TatABC subunits of the twin-arginine translocation machinery allow transport of folded proteins by an unknown mechanism. Here we show that the entire surfaces of folded Tat substrates contact TatB via both of its predicted helices. Our data suggest that TatB forms an oligomeric binding site that transiently accommodates folded Tat precursors. Twin-arginine-containing signal sequences mediate the transmembrane transport of folded proteins. The cognate twin-arginine translocation (Tat) machinery of Escherichia coli consists of the membrane proteins TatA, TatB, and TatC. Whereas Tat signal peptides are recognized by TatB and TatC, little is known about molecular contacts of the mature, folded part of Tat precursor proteins. We have placed a photo-cross-linker into Tat substrates at sites predicted to be either surface-exposed or hidden in the core of the folded proteins. On targeting of these variants to the Tat machinery of membrane vesicles, all surface-exposed sites were found in close proximity to TatB. Correspondingly, incorporation of the cross-linker into TatB revealed multiple precursor-binding sites in the predicted transmembrane and amphipathic helices of TatB. Large adducts indicative of TatB oligomers contacting one precursor molecule were also obtained. Cross-linking of Tat substrates to TatB required an intact twin-arginine signal peptide and disappeared upon transmembrane translocation. Our collective data are consistent with TatB forming an oligomeric binding site that transiently accommodates folded Tat precursors.
Collapse
Affiliation(s)
- Carlo Maurer
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Ma X, Cline K. Multiple precursor proteins bind individual Tat receptor complexes and are collectively transported. EMBO J 2010; 29:1477-88. [PMID: 20339348 PMCID: PMC2876949 DOI: 10.1038/emboj.2010.44] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/03/2010] [Indexed: 11/09/2022] Open
Abstract
The thylakoid twin arginine protein translocation (Tat) system is thought to have a multivalent receptor complex with each cpTatC-Hcf106 pair constituting a signal peptide-binding unit. Conceptual models suggest that translocation of individual precursor proteins occurs upon assembly of a Tha4 oligomer with a precursor-occupied cpTatC-Hcf106. However, results reported here reveal that multiple precursor proteins bound to a single receptor complex can be transported together. Precursor proteins that contain one or two cysteine residues readily formed intermolecular disulphide bonds upon binding to the receptor complex, resulting in dimeric and tetrameric precursor proteins. Three lines of evidence indicate that all members of precursor oligomers were specifically bound to a receptor unit. Blue native-polyacrylamide gel electrophoresis analysis showed that oligomers were present on individual receptor complexes rather than bridging two or more receptor complexes. Upon energizing the membrane, the dimeric and tetrameric precursors were transported across the membrane with efficiencies comparable with that of monomeric precursors. These results imply a novel aspect of Tat systems, whereby multiple precursor-binding sites can act in concert to transport an interlinked oligo-precursor protein.
Collapse
Affiliation(s)
- Xianyue Ma
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| | - Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Aldridge C, Cain P, Robinson C. Protein transport in organelles: Protein transport into and across the thylakoid membrane. FEBS J 2009; 276:1177-86. [PMID: 19187234 DOI: 10.1111/j.1742-4658.2009.06875.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chloroplast thylakoid is the most abundant membrane system in nature, and is responsible for the critical processes of light capture, electron transport and photophosphorylation. Most of the resident proteins are imported from the cytosol and then transported into or across the thylakoid membrane. This minireview describes the multitude of pathways used for these proteins. We discuss the huge differences in the mechanisms involved in the secretory and twin-arginine translocase pathways used for the transport of proteins into the lumen, with an emphasis on the differing substrate conformations and energy requirements. We also discuss the rationale for the use of two different systems for membrane protein insertion: the signal recognition particle pathway and the so-called spontaneous pathway. The recent crystallization of a key chloroplast signal recognition particle component provides new insights into this rather unique form of signal recognition particle.
Collapse
Affiliation(s)
- Cassie Aldridge
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
21
|
Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1735-56. [PMID: 17935691 DOI: 10.1016/j.bbamem.2007.07.015] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/20/2022]
Abstract
In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation of secretory proteins in their folded state. Although the targeting signals that direct secretory proteins to these pathways show a high degree of similarity, the translocation mechanisms and translocases involved are vastly different.
Collapse
|
22
|
Cline K, McCaffery M. Evidence for a dynamic and transient pathway through the TAT protein transport machinery. EMBO J 2007; 26:3039-49. [PMID: 17568769 PMCID: PMC1914107 DOI: 10.1038/sj.emboj.7601759] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/22/2007] [Indexed: 11/09/2022] Open
Abstract
Tat systems transport completely folded proteins across ion-tight membranes. Three membrane proteins comprise the Tat machinery in most systems. In thylakoids, cpTatC and Hcf106 mediate precursor recognition, whereas Tha4 facilitates translocation. We used chimeric precursor proteins with unstructured peptides and folded domains to test predictions of competing translocation models. Two models invoke protein-conducting channels, whereas another model proposes that cpTatC pulls substrates through a patch of Tha4 on the lipid bilayer. The thylakoid system transported unstructured peptide substrates alone or when fused to folded domains. However, larger substrates stalled before completion, some with amino- and carboxyl-folded domains on opposite sides of the membrane. The length of the precursor that resulted in translocation arrest (20 to 30 nm) exceeded that expected for a single 'pull' mechanism, suggesting that a sustained driving force rather than a single pull moves the protein across the bilayer. Three different methods showed that stalled substrates were not stuck in a channel or even associated with Tat machinery. This finding favors the Tha4 patch model for translocation.
Collapse
Affiliation(s)
- Kenneth Cline
- Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville FL, USA.
| | | |
Collapse
|
23
|
Gérard F, Cline K. The thylakoid proton gradient promotes an advanced stage of signal peptide binding deep within the Tat pathway receptor complex. J Biol Chem 2007; 282:5263-72. [PMID: 17172598 DOI: 10.1074/jbc.m610337200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat (twin arginine translocation) systems transport folded proteins across the thylakoid membrane of chloroplasts and the plasma membrane of most bacteria. Tat precursors are targeted by hydrophobic cleavable signal peptides with twin arginine (RR) motifs. Bacterial precursors possess an extended consensus, (S/T)RRXFLK, of which the two arginines and the phenylalanine are essential for efficient transport. Thylakoid Tat precursors possess twin arginines but lack the consensus phenylalanine. Here, we have characterized two stages of precursor binding to the thylakoid Tat signal peptide receptor, the 700-kDa cpTatC-Hcf106 complex. The OE17 precursor tOE17 binds to the receptor by RR-dependant electrostatic interactions and partially dissociates during blue native gel electrophoresis. In addition, the signal peptide of thylakoid-bound tOE17 is highly exposed to the membrane surface, as judged by accessibility to factor Xa of cleavage sites engineered into signal peptide flanking regions. By contrast, tOE17 containing a consensus phenylalanine in place of Val(-20) (V - 20F) binds the receptor more strongly and is completely stable during blue native gel electrophoresis. Thylakoid bound V - 20F is also completely protected from factor Xa at the identical sites. This suggests that the signal peptide is buried deeply in the cpTatC-Hcf106 binding site. We further provide evidence that the proton gradient, which is required for translocation, induces a tighter interaction between tOE17 and the cpTat machinery, similar to that exhibited by V - 20F. This implies that translocation involves a very intimate association of the signal peptide with the receptor complex binding site.
Collapse
Affiliation(s)
- Fabien Gérard
- Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
24
|
Cline K, Theg SM. The Sec and Tat Protein Translocation Pathways in Chloroplasts. MOLECULAR MACHINES INVOLVED IN PROTEIN TRANSPORT ACROSS CELLULAR MEMBRANES 2007. [DOI: 10.1016/s1874-6047(07)25018-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Lee PA, Orriss GL, Buchanan G, Greene NP, Bond PJ, Punginelli C, Jack RL, Sansom MSP, Berks BC, Palmer T. Cysteine-scanning mutagenesis and disulfide mapping studies of the conserved domain of the twin-arginine translocase TatB component. J Biol Chem 2006; 281:34072-85. [PMID: 16973610 DOI: 10.1074/jbc.m607295200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic membrane protein TatB is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. Together with the TatC component it forms a complex that functions as a membrane receptor for substrate proteins. Structural predictions suggest that TatB is anchored to the membrane via an N-terminal transmembrane alpha-helix that precedes an amphipathic alpha-helical section of the protein. From truncation analysis it is known that both these regions of the protein are essential for function. Here we construct 31 unique cysteine substitutions in the first 42 residues of TatB. Each of the substitutions results in a TatB protein that is competent to support Tat-dependent protein translocation. Oxidant-induced disulfide cross-linking shows that both the N-terminal and amphipathic helices form contacts with at least one other TatB protomer. For the transmembrane helix these contacts are localized to one face of the helix. Molecular modeling and molecular dynamics simulations provide insight into the possible structural basis of the transmembrane helix interactions. Using variants with double cysteine substitutions in the transmembrane helix, we were able to detect cross-links between up to five TatB molecules. Protein purification showed that species containing at least four cross-linked TatB molecules are found in correctly assembled TatBC complexes. Our results suggest that the transmembrane helices of TatB protomers are in the center rather than the periphery of the TatBC complex.
Collapse
Affiliation(s)
- Philip A Lee
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gérard F, Cline K. Efficient twin arginine translocation (Tat) pathway transport of a precursor protein covalently anchored to its initial cpTatC binding site. J Biol Chem 2006; 281:6130-5. [PMID: 16407185 DOI: 10.1074/jbc.m512733200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thylakoid twin arginine protein translocation (Tat) system operates by a cyclical mechanism in which precursors bind to a cpTatC-Hcf106 receptor complex, which then recruits Tha4 to form the translocase. After translocation, the translocase disassembles. Here, we fine-mapped initial interactions between precursors and the components of the receptor complex. Precursors with (Tmd)Phe substitutions in the signal peptide and early mature domain were bound to thylakoids and photo-cross-linked to components. cpTatC and Hcf106 were found to interact with different regions of the signal peptide. cpTatC cross-linked strongly to residues in the immediate vicinity of the twin arginine motif. Hcf106 cross-linked less strongly to residues in the hydrophobic core and the early mature domain. To determine whether precursors must leave their initial sites of interaction during translocation, cross-linked precursors were subjected to protein transport conditions. tOE17 cross-linked to cpTatC was efficiently translocated, indicating that the mature domain of the precursor can be translocated while the signal peptide remains anchored to the receptor complex.
Collapse
Affiliation(s)
- Fabien Gérard
- Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
27
|
Abstract
Both in prokaryotic organisms and in chloroplasts, a specialized protein transport pathway exists which is capable of translocating proteins in a fully folded conformation. Transport is mediated in both instances by signal peptides harbouring a twin-arginine consensus motif (twin-arginine translocation (Tat) pathway). The Tat translocase comprises the three functionally different membrane proteins TatA, TatB, and TatC. While TatB and TatC are involved in the specific recognition of the substrate, TatA might be the major pore-forming component. Current evidence suggests that a functional Tat translocase is assembled from separate TatBC and TatA assemblies only on demand, i.e., in the presence of transport substrate and a transmembrane H+-motive force.
Collapse
Affiliation(s)
- Matthias Müller
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
28
|
Müller M. Twin-arginine-specific protein export in Escherichia coli. Res Microbiol 2005; 156:131-6. [PMID: 15748976 DOI: 10.1016/j.resmic.2004.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 09/06/2004] [Indexed: 11/19/2022]
Abstract
In many prokaryotic organisms, secretory proteins harboring a twin-arginine consensus motif are exported in a fully folded conformation via the twin-arginine translocation (Tat) pathway. In Escherichia coli, Tat involves the three structurally and functionally different membrane proteins TatA, TatB, and TatC. Whereas TatC proteins function in the specific recognition of substrate, TatA might be the major pore-forming subunit.
Collapse
Affiliation(s)
- Matthias Müller
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| |
Collapse
|
29
|
Abstract
The Tat protein transporter is found in the membranes of many bacteria and in plant chloroplasts. This highly unusual transport machine moves folded and often oligomeric substrate proteins across energy-conserving membranes. A recent paper reports the first use of a photo-crosslinking approach to dissect the early recognition events between the transporter and its substrate.
Collapse
Affiliation(s)
- Tracy Palmer
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| | | | | |
Collapse
|
30
|
Berks BC, Palmer T, Sargent F. The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 2003; 47:187-254. [PMID: 14560665 DOI: 10.1016/s0065-2911(03)47004-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Tat (twin arginine translocation) protein transport system functions to export folded protein substrates across the bacterial cytoplasmic membrane and to insert certain integral membrane proteins into that membrane. It is entirely distinct from the Sec pathway. Here, we describe our current knowledge of the molecular features of the Tat transport system. In addition, we discuss the roles that the Tat pathway plays in the bacterial cell, paying particular attention to the involvement of the Tat pathway in the biogenesis of cofactor-containing proteins, in cell wall biosynthesis and in bacterial pathogenicity.
Collapse
Affiliation(s)
- Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
31
|
Fincher V, Dabney-Smith C, Cline K. Functional assembly of thylakoid ΔpH-dependent/Tat protein transport pathway componentsin vitro. ACTA ACUST UNITED AC 2003; 270:4930-41. [PMID: 14653819 DOI: 10.1046/j.1432-1033.2003.03894.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Assembly of the components of the thylakoid deltapH-dependent/Tat protein transport machinery was analyzed in vitro. Upon incubation with intact chloroplasts, precursors to all three components, Hcf106, cpTatC and Tha4, were imported into the organelle and assembled into characteristic endogenous complexes. In particular, all of the imported cpTatC and approximately two-thirds of the imported Hcf106 functionally assembled into 700 kDa complexes capable of binding Tat pathway precursor proteins. The amounts assembled into thylakoids by this procedure were moderate. However, physiological quantities of mature forms of Tha4 and Hcf106 were integrated into isolated thylakoids and a significant percentage of the Hcf106 so integrated was assembled into the 700 kDa complex. Interestingly, a mutant form of Hcf106 in which an invariant transmembrane glutamate was changed to glutamine integrated into the membrane but did not assemble into the receptor complex. Analysis of energy and known pathway component requirements indicated that Hcf106 and Tha4 integrate by an unassisted or 'spontaneous' mechanism. The functionality of in vitro integrated Tha4 was verified by its ability to restore transport to thylakoid membranes from the maize tha4 mutant, which lacks the Tha4 protein. Development of this functional in vitro assembly assay will facilitate structure-function studies of the thylakoid Tat pathway translocation machinery.
Collapse
Affiliation(s)
- Vivian Fincher
- Horticultural Sciences and Plant Molecular and Cellular Biology, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
32
|
Dabney-Smith C, Mori H, Cline K. Requirement of a Tha4-conserved transmembrane glutamate in thylakoid Tat translocase assembly revealed by biochemical complementation. J Biol Chem 2003; 278:43027-33. [PMID: 12941940 DOI: 10.1074/jbc.m307923200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thylakoid Tat system employs three membrane components and the pH gradient to transport folded proteins. The translocase is signal-assembled, i.e. a receptor complex containing cpTatC and Hcf106 binds the precursor protein, and upon membrane energization, Tha4 is recruited to the precursor-receptor complex to effect translocation. We developed a two-step complementation assay to examine the implied central role of Tha4 in translocation. The first step results in the inactivation of endogenous Tha4 with specific antibodies. The second step involves integrating exogenous Tha4 and presenting the system with precursor protein. We verified this approach by confirming the results obtained recently with the Escherichia coli Tha4 ortholog TatA, i.e. that the carboxyl terminus is dispensable and the amphipathic helix essential for transport. We then investigated a conserved Tha4 transmembrane glutamate in detail. Substitution of glutamate 10 with alanine, glutamine, and even aspartate largely eliminated the ability of Tha4 to complement transport, whereas a conservative substitution elsewhere in the transmembrane domain was without effect. Chemical cross-linking assays showed that the mutated Tha4s failed to be recruited to the receptor complex under transport conditions, indicating a role for the transmembrane glutamate in translocase assembly. This assay promises an avenue into understanding the role of Tha4 in both the assembly and translocation steps of the Tat translocase.
Collapse
Affiliation(s)
- Carole Dabney-Smith
- Horticultural Sciences and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
33
|
Abstract
The targeting of proteins into and across biological membranes to their correct cellular locations is mediated by a variety of transport pathways. These systems must couple the thermodynamically unfavorable processes of substrate translocation and integration with the expenditure of metabolic energy, using the free energy of ATP and GTP hydrolysis and/or a transmembrane protonmotive force. Several recent advances in our knowledge of the structure and function of these transport systems have provided insights into the mechanisms of energy transduction, force generation and energy use by different protein transport pathways.
Collapse
Affiliation(s)
- Nathan N Alder
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843, USA
| | | |
Collapse
|
34
|
Alder NN, Theg SM. Protein transport via the cpTat pathway displays cooperativity and is stimulated by transport-incompetent substrate. FEBS Lett 2003; 540:96-100. [PMID: 12681490 DOI: 10.1016/s0014-5793(03)00231-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinetic analyses of cpTat-mediated protein transport across the thylakoid membrane were conducted, revealing three important characteristics of this translocation pathway. First, transport via the cpTAT system displays a non-Michaelis-Menten, sigmoidal rate-substrate relationship with an apparent Hill coefficient of 1.80, indicative of positive homotropic cooperativity. Second, the presence of transport-incompetent substrates was found not to competitively inhibit the translocation of transport-competent substrates. However, the presence of low concentrations of transport-incompetent protein enhances the transport of wild type substrate. Together, these findings suggest that interaction between Tat machinery components and both transport-competent and transport-incompetent protein may elicit a cooperative effect on the translocation rate.
Collapse
Affiliation(s)
- Natahan N Alder
- Division of Biological Sciences, Section of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
35
|
Palmer T, Berks BC. Moving folded proteins across the bacterial cell membrane. MICROBIOLOGY (READING, ENGLAND) 2003; 149:547-556. [PMID: 12634324 DOI: 10.1099/mic.0.25900-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Tat protein export system is located in the bacterial cytoplasmic membrane and operates in parallel to the well-known Sec pathway. While the Sec system only transports unstructured substrates, the function of the Tat pathway is to translocate folded proteins. The Tat translocase thus faces the formidable challenge of moving structured macromolecular substrates across the bacterial cytoplasmic membrane without rendering the membrane freely permeable to protons and other ions. The substrates of the Tat pathway are often proteins that bind cofactor molecules in the cytoplasm, and are thus folded, prior to export. Such periplasmic cofactor-containing proteins are essential for most types of bacterial respiratory and photosynthetic energy metabolism. In addition, the Tat pathway is involved in outer membrane biosynthesis and in bacterial pathogenesis. Substrates are targeted to the Tat pathway by amino-terminal signal sequences harbouring consecutive, essentially invariant, arginine residues, and movement of proteins through the Tat system is energized by the transmembrane proton electrochemical gradient. The TatA protein probably forms the transport channel while the TatBC proteins act as a receptor complex that recognizes the signal peptide of the substrate protein.
Collapse
Affiliation(s)
- Tracy Palmer
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
36
|
Alder NN, Theg SM. Energetics of protein transport across biological membranes. a study of the thylakoid DeltapH-dependent/cpTat pathway. Cell 2003; 112:231-42. [PMID: 12553911 DOI: 10.1016/s0092-8674(03)00032-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Among the pathways for protein translocation across biological membranes, the DeltapH-dependent/Tat system is unusual in its sole reliance upon the transmembrane pH gradient to drive protein transport. The free energy cost of protein translocation via the chloro-plast DeltapH-dependent/Tat pathway was measured by conducting in vitro transport assays with isolated thylakoids while concurrently monitoring energetic parameters. These experiments revealed a substrate-specific energetic barrier to cpTat-mediated transport as well as direct utilization of protons from the gradient, consistent with a H+/protein antiporter mechanism. The magnitude of proton flux was assayed by four independent approaches and averaged 7.9 x 10(4) protons released from the gradient per transported protein. This corresponds to a DeltaG transport of 6.9 x 10(5) kJ.mol protein translocated(-1), representing the utilization of an energetic equivalent of 10(4) molecules of ATP. At this cost, we estimate that the DeltapH-dependent/cpTat pathway utilizes approximately 3% of the total energy output of the chloroplast.
Collapse
Affiliation(s)
- Nathan N Alder
- Section of Plant Biology, Division of Biological Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
37
|
de Leeuw E, Granjon T, Porcelli I, Alami M, Carr SB, Müller M, Sargent F, Palmer T, Berks BC. Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. J Mol Biol 2002; 322:1135-46. [PMID: 12367533 DOI: 10.1016/s0022-2836(02)00820-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Escherichia coli Tat apparatus is a protein translocation system that serves to export folded proteins across the inner membrane. The integral membrane proteins TatA, TatB and TatC are essential components of this pathway. Substrate proteins are directed to the Tat apparatus by specialized N-terminal signal peptides bearing a consensus twin-arginine sequence motif. Here we have systematically examined the Tat complexes that can be purified from overproducing strains. Our data suggest that the TatA, TatB and TatC proteins are found in at least two major types of high molecular mass complex in detergent solution, one consisting predominantly of TatA but with a small quantity of TatB, and the other based on a TatBC unit but also containing some TatA protein. The latter complex is shown to be capable of binding a Tat signal peptide. Using an alternative purification strategy we show that it is possible to isolate a TatABC complex containing a high molar excess of the TatA component.
Collapse
Affiliation(s)
- Erik de Leeuw
- Department of Biochemistry, University of Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mori H, Cline K. A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid [Delta]pH/Tat translocase. J Cell Biol 2002; 157:205-10. [PMID: 11956224 PMCID: PMC2199252 DOI: 10.1083/jcb.200202048] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2002] [Revised: 03/01/2002] [Accepted: 03/07/2002] [Indexed: 11/25/2022] Open
Abstract
The thylakoid DeltapH-dependent/Tat pathway is a novel system with the remarkable ability to transport tightly folded precursor proteins using a transmembrane DeltapH as the sole energy source. Three known components of the transport machinery exist in two distinct subcomplexes. A cpTatC-Hcf106 complex serves as precursor receptor and a Tha4 complex is required after precursor recognition. Here we report that Tha4 assembles with cpTatC-Hcf106 during the translocation step. Interactions among components were examined by chemical cross-linking of intact thylakoids followed by immunoprecipitation and immunoblotting. cpTatC and Hcf106 were consistently associated under all conditions tested. In contrast, Tha4 was only associated with cpTatC and Hcf106 in the presence of a functional precursor and the DeltapH. Interestingly, a synthetic signal peptide could replace intact precursor in triggering assembly. The association of all three components was transient and dissipated upon the completion of protein translocation. Such an assembly-disassembly cycle could explain how the DeltapH/Tat system can assemble translocases to accommodate folded proteins of varied size. It also explains in part how the system can exist in the membrane without compromising its ion and proton permeability barrier.
Collapse
Affiliation(s)
- Hiroki Mori
- Horticultural Sciences and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|
39
|
Mori H, Cline K. Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:80-90. [PMID: 11750664 DOI: 10.1016/s0167-4889(01)00150-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two distinct protein translocation pathways that employ hydrophobic signal peptides function in the plant thylakoid membrane. These two systems are precursor specific and distinguished by their energy and component requirements. Recent studies have shown that one pathway is homologous to the bacterial general export system called Sec. The other one, called the DeltapH-dependent pathway, was originally considered to be unique to plant thylakoids. However, it is now known that homologous transport systems are widely present in prokaryotes and even present in archaea. Here we review these protein transport pathways and discuss their capabilities and mechanisms of operation.
Collapse
Affiliation(s)
- H Mori
- Horticultural Sciences and Plant Molecular and Cellular Biology, University of Florida, 1137 Fifield Hall, Gainesville, FL 32611, USA
| | | |
Collapse
|
40
|
Cline K, Mori H. Thylakoid DeltapH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J Cell Biol 2001; 154:719-29. [PMID: 11502764 PMCID: PMC2196467 DOI: 10.1083/jcb.200105149] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2001] [Revised: 07/06/2001] [Accepted: 07/09/2001] [Indexed: 12/02/2022] Open
Abstract
The thylakoid DeltapH-dependent pathway transports folded proteins with twin arginine-containing signal peptides. Identified components of the machinery include cpTatC, Hcf106, and Tha4. The reaction occurs in two steps: precursor binding to the machinery, and transport across the membrane. Here, we show that a cpTatC-Hcf106 complex serves as receptor for specific binding of twin arginine-containing precursors. Antibodies to either Hcf106 or cpTatC, but not Tha4, inhibited precursor binding. Blue native gel electrophoresis and coimmunoprecipitation of digitonin-solubilized thylakoids showed that Hcf106 and cpTatC are members of an approximately 700-kD complex that lacks Tha4. Thylakoid-bound precursor proteins were also associated with an approximately 700-kD complex and were coimmunoprecipitated with antibodies to cpTatC or Hcf106. Chemical cross-linking revealed that precursors make direct contact with cpTatC and Hcf106 and confirmed that Tha4 is not associated with precursor, cpTatC, or Hcf106 in the membrane. Precursor binding to the cpTatC-Hcf106 complex required both the twin arginine and the hydrophobic core of the signal peptide. Precursors remained bound to the complex when Tha4 was sequestered by antibody, even in the presence of DeltapH. These results indicate that precursor binding to the cpTatC-Hcf106 complex constitutes the recognition event for this pathway and that subsequent participation by Tha4 leads to translocation.
Collapse
Affiliation(s)
- K Cline
- Horticultural Sciences and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA.
| | | |
Collapse
|