1
|
Thomas LA, Hopkinson RJ. The biochemistry of the carcinogenic alcohol metabolite acetaldehyde. DNA Repair (Amst) 2024; 144:103782. [PMID: 39566398 DOI: 10.1016/j.dnarep.2024.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Acetaldehyde (AcH) is the first metabolite of ethanol and is proposed to be responsible for the genotoxic effects of alcohol consumption. As an electrophilic aldehyde, AcH can form multiple adducts with DNA and other biomolecules, leading to function-altering and potentially toxic and carcinogenic effects. In this review, we describe sources of AcH in humans, including AcH biosynthesis mechanisms, and outline the structures, properties and functions of AcH-derived adducts with biomolecules. We also describe human AcH detoxification mechanisms and discuss ongoing challenges in the field.
Collapse
Affiliation(s)
- Liam A Thomas
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Richard J Hopkinson
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
2
|
Williams TL, Taily IM, Hatton L, Berezin AA, Wu Y, Moliner V, Świderek K, Tsai Y, Luk LYP. Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion. Angew Chem Int Ed Engl 2024; 63:e202403098. [PMID: 38545954 PMCID: PMC11497281 DOI: 10.1002/anie.202403098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/20/2024]
Abstract
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.
Collapse
Affiliation(s)
- Thomas L. Williams
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Irshad M. Taily
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Lewis Hatton
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Andrey A Berezin
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Yi‐Lin Wu
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM)Universitat Jaume I12071CastellóSpain
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM)Universitat Jaume I12071CastellóSpain
| | - Yu‐Hsuan Tsai
- Institute of Molecular PhysiologyShenzhen Bay LaboratoryGaoke International Innovation CenterGuangming District518132Shenzhen, GuangdongChina
| | - Louis Y. P. Luk
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| |
Collapse
|
3
|
John T, Pires E, Hester SS, Salah E, Hopkinson RJ, Schofield CJ. Formaldehyde reacts with N-terminal proline residues to give bicyclic aminals. Commun Chem 2023; 6:12. [PMID: 36698022 PMCID: PMC9839752 DOI: 10.1038/s42004-022-00801-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Formaldehyde (HCHO) is a potent electrophile that is toxic above threshold levels, but which is also produced in the nuclei of eukaryotic cells by demethylases. We report studies with the four canonical human histones revealing that histone H2B reacts with HCHO, including as generated by a histone demethylase, to give a stable product. NMR studies show that HCHO reacts with the N-terminal proline and associated amide of H2B to give a 5,5-bicyclic aminal that is relatively stable to competition with HCHO scavengers. While the roles of histone modification by this reaction require further investigation, we demonstrated the potential of N-terminal aminal formation to modulate protein function by conducting biochemical and cellular studies on the effects of HCHO on catalysis by 4-oxalocrotonate tautomerase, which employs a nucleophilic N-terminal proline. The results suggest that reactions of N-terminal residues with HCHO and other aldehydes have potential to alter protein function.
Collapse
Affiliation(s)
- Tobias John
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Elisabete Pires
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Svenja S Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Eidarus Salah
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Richard J Hopkinson
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, UK.
| | | |
Collapse
|
4
|
Agarwal N, Nagar N, Raj R, Kumar D, Poluri KM. Conserved Apical Proline Regulating the Structure and DNA Binding Properties of Helicobacter pylori Histone-like DNA Binding Protein (Hup). ACS OMEGA 2022; 7:15231-15246. [PMID: 35572751 PMCID: PMC9089689 DOI: 10.1021/acsomega.2c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Prokaryotic cells lack a proper dedicated nuclear arrangement machinery. A set of proteins known as nucleoid associated proteins (NAPs) perform opening and closure of nucleic acids, behest cellular requirement. Among these, a special class of proteins analogous to eukaryotic histones popularly known as histone-like (HU) DNA binding proteins facilitate the nucleic acid folding/compaction thereby regulating gene architecture and gene regulation. DNA compaction and DNA protection in Helicobacter pylori is performed by HU protein (Hup). To dissect and galvanize the role of proline residue in the binding of Hup with DNA, the structure-dynamics-functional relationship of Hup-P64A variant was analyzed. NMR and biophysical studies evidenced that Hup-P64A protein attenuated DNA-binding and induced structural/stability changes in the DNA binding domain (DBD). Moreover, molecular dynamics simulations and 15N relaxation studies established the reduced conformational dynamics of P64A protein. This comprehensive study dissected the exclusive role of evolutionarily conserved apical proline residue in regulating the structure and DNA binding of Hup protein as P64 is presumed to be involved in the external leverage mechanism responsible for DNA bending and packaging, as proline rings wedge into the DNA backbone through intercalation besides their significant role in DNA binding.
Collapse
Affiliation(s)
- Nipanshu Agarwal
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Nupur Nagar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Ritu Raj
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow-226014, India
| | - Dinesh Kumar
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow-226014, India
| | - Krishna Mohan Poluri
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
- Centre
for Nanotechnology, Indian Institute of
Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
5
|
No cancer predisposition or increased spontaneous mutation frequencies in NEIL DNA glycosylases-deficient mice. Sci Rep 2017; 7:4384. [PMID: 28663564 PMCID: PMC5491499 DOI: 10.1038/s41598-017-04472-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Base excision repair (BER) is a major pathway for removal of DNA base lesions and maintenance of genomic stability, which is essential in cancer prevention. DNA glycosylases recognize and remove specific lesions in the first step of BER. The existence of a number of these enzymes with overlapping substrate specificities has been thought to be the reason why single knock-out models of individual DNA glycosylases are not cancer prone. In this work we have characterized DNA glycosylases NEIL1 and NEIL2 (Neil1−/−/Neil2−/−) double and NEIL1, NEIL2 and NEIL3 (Neil1−/−/Neil2−/−/Neil3−/−) triple knock-out mouse models. Unexpectedly, our results show that these mice are not prone to cancer and have no elevated mutation frequencies under normal physiological conditions. Moreover, telomere length is not affected and there was no accumulation of oxidative DNA damage compared to wild-type mice. These results strengthen the hypothesis that the NEIL enzymes are not simply back-up enzymes for each other but enzymes that have distinct functions beyond canonical repair.
Collapse
|
6
|
Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase. PLoS One 2014; 9:e87984. [PMID: 24498234 PMCID: PMC3909288 DOI: 10.1371/journal.pone.0087984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/01/2014] [Indexed: 11/25/2022] Open
Abstract
Cigarette smoke (CS) is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH) inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG) repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP). Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na+K+-ATPase locus (ouar) were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells’ capacity to repair damaged DNA.
Collapse
|
7
|
A covalent protein-DNA 5'-product adduct is generated following AP lyase activity of human ALKBH1 (AlkB homologue 1). Biochem J 2013; 452:509-18. [PMID: 23577621 DOI: 10.1042/bj20121908] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ALKBH1 (AlkB homologue 1) is a mammalian AlkB (2-oxoglutarate-dependent dioxygenase) homologue that possesses AP (abasic or apurinic/apyrimidinic) lyase activity. The AP lyase reaction is catalysed by imine formation with an active site lysine residue, and a covalent intermediate can be trapped in the presence of NaBH4. Surprisingly, ALKBH1 also forms a stable protein-DNA adduct in the absence of a reducing agent. Experiments with different substrates demonstrated that the protein covalently binds to the 5' DNA product, i.e. the fragment containing an α,β-unsaturated aldehyde. The N-terminal domain of ALKBH1 was identified as the main site of linkage with DNA. By contrast, mutagenesis studies suggest that the primary catalytic residue forming the imine linkage is Lys133, with Lys154 and other lysine residues in this region serving in opportunistic roles. These findings confirm the classification of ALKBH1 as an AP lyase, identify the primary and a secondary lysine residues involved in the lyase reaction, and demonstrate that the protein forms a covalent adduct with the 5' DNA product. We propose two plausible chemical mechanisms to account for the covalent attachment.
Collapse
|
8
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
9
|
Barrantes-Reynolds R, Wallace SS, Bond JP. Using shifts in amino acid frequency and substitution rate to identify latent structural characters in base-excision repair enzymes. PLoS One 2011; 6:e25246. [PMID: 21998646 PMCID: PMC3188539 DOI: 10.1371/journal.pone.0025246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 08/30/2011] [Indexed: 12/30/2022] Open
Abstract
Protein evolution includes the birth and death of structural motifs. For example, a zinc finger or a salt bridge may be present in some, but not all, members of a protein family. We propose that such transitions are manifest in sequence phylogenies as concerted shifts in substitution rates of amino acids that are neighbors in a representative structure. First, we identified rate shifts in a quartet from the Fpg/Nei family of base excision repair enzymes using a method developed by Xun Gu and coworkers. We found the shifts to be spatially correlated, more precisely, associated with a flexible loop involved in bacterial Fpg substrate specificity. Consistent with our result, sequences and structures provide convincing evidence that this loop plays a very different role in other family members. Second, then, we developed a method for identifying latent protein structural characters (LSC) given a set of homologous sequences based on Gu's method and proximity in a high-resolution structure. Third, we identified LSC and assigned states of LSC to clades within the Fpg/Nei family of base excision repair enzymes. We describe seven LSC; an accompanying Proteopedia page (http://proteopedia.org/wiki/index.php/Fpg_Nei_Protein_Family) describes these in greater detail and facilitates 3D viewing. The LSC we found provided a surprisingly complete picture of the interaction of the protein with the DNA capturing familiar examples, such as a Zn finger, as well as more subtle interactions. Their preponderance is consistent with an important role as phylogenetic characters. Phylogenetic inference based on LSC provided convincing evidence of independent losses of Zn fingers. Structural motifs may serve as important phylogenetic characters and modeling transitions involving structural motifs may provide a much deeper understanding of protein evolution.
Collapse
Affiliation(s)
- Ramiro Barrantes-Reynolds
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey P. Bond
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
10
|
Im EK, Hong CH, Back JH, Han YS, Chung JH. Functional identification of an 8-oxoguanine specific endonuclease from Thermotoga maritima. BMB Rep 2009; 38:676-82. [PMID: 16336782 DOI: 10.5483/bmbrep.2005.38.6.676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, no 8-oxoguanine-specific endonuclease-coding gene has been identified in Thermotoga maritima of the order Thermotogales, although its entire genome has been deciphered. However, the hypothetical protein Tm1821 from T. maritima, has a helix-hairpin-helix motif that is considered to be important for DNA binding and catalytic activity. Here, Tm1821 was overexpressed in Escherichia coli and purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration. Tm1821 protein was found to efficiently cleave an oligonucleotide duplex containing 8-oxoguanine, but Tm1821 had little effect on other substrates containing modified bases. Moreover, Tm1821 strongly preferred DNA duplexes containing an 8-oxoguanine:C pair among oligonucleotide duplexes containing 8-oxoguanine paired with four different bases (A, C, G, or T). Furthermore, Tm1821 showed AP lyase activity and Schiff base formation with 8-oxoguanine in the presence of NaBH4, which suggests that it is a bifunctional DNA glycosylase. Tm1821 protein shares unique conserved amino acids and substrate specificity with an 8-oxoguanine DNA glycosylase from the hyperthermophilic archaeon. Thus, the DNA recognition and catalytic mechanisms of Tm1821 protein are likely to be similar to archaeal repair protein, although T. maritima is an eubacterium.
Collapse
Affiliation(s)
- Eun Kyoung Im
- Yonsei Research Institute of Aging Science, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | |
Collapse
|
11
|
Krokeide SZ, Bolstad N, Laerdahl JK, Bjørås M, Luna L. Expression and purification of NEIL3, a human DNA glycosylase homolog. Protein Expr Purif 2008; 65:160-4. [PMID: 19121397 DOI: 10.1016/j.pep.2008.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
The base excision repair (BER) pathway is mainly responsible for the repair of a vast number of non-bulky lesions produced by alkylation, oxidation or deamination of bases. DNA glycosylases are the key enzymes that recognize damaged bases and initiate BER by catalyzing the cleavage of the N-glycosylic bond between the base and the sugar. Many of the mammalian DNA glycosylases have been identified by a combination of biochemical and bioinformatics analysis. Thus, a mammalian family of three proteins (NEIL1, NEIL2 and NEIL3) that showed homology to the Escherichia coli Fpg/Nei DNA glycosylases was identified. Two of the proteins, NEIL1 and NEIL2 have been thoroughly characterized and shown to initiate BER of a diverse number of oxidized lesions. However, much less is known about NEIL3. The biochemical properties of NEIL3 have not been elucidated. This is mainly due to the difficulty in the expression and purification of NEIL3. Here, we describe the expression and partial purification of full-length human NEIL3 and the expression, purification and characterization of a truncated human core-NEIL3 (amino acids 1-301) that contains the complete E. coli Fpg/Nei-like domain but lacks the C-terminal region.
Collapse
Affiliation(s)
- Silje Z Krokeide
- Centre for Molecular Biology and Neuroscience, Department of Molecular Biology, Institute of Microbiology, Rikshospitalet Medical Centre, Sognsvannsveien 28, N0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
12
|
Takao M, Oohata Y, Kitadokoro K, Kobayashi K, Iwai S, Yasui A, Yonei S, Zhang QM. Human Nei-like protein NEIL3 has AP lyase activity specific for single-stranded DNA and confers oxidative stress resistance in Escherichia coli mutant. Genes Cells 2008; 14:261-70. [PMID: 19170771 DOI: 10.1111/j.1365-2443.2008.01271.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oxidative base damage leads to alteration of genomic information and is implicated as a cause of aging and carcinogenesis. To combat oxidative damage to DNA, cells contain several DNA glycosylases including OGG1, NTH1 and the Nei-like proteins, NEIL1 and NEIL2. A third Nei-like protein, NEIL3, is composed of an amino-terminal Nei-like domain and an unknown carboxy-terminal domain. In contrast to the other well-described DNA glycosylases, the DNA glycosylase activity and in vivo repair function of NEIL3 remains unclear. We show here that the structural modeling of the putative NEIL3 glycosylase domain (1-290) fits well to the known Escherichia coli Fpg crystal structure. In spite of the structural similarity, the recombinant NEIL3 and NEIL3(1-290) proteins do not cleave any of several test oligonucleotides containing a single modified base. Within the substrates, we detected AP lyase activity for single-stranded (ss) DNA but double-stranded (ds) DNA. The activity is abrogated completely in mutants with an amino-terminal deletion and at the zinc-finger motif. Surprisingly, NEIL3 partially rescues an E. coli nth nei mutant from hydrogen peroxide sensitivity. Taken together, repair of certain base damage including base loss in ssDNA may be mediated by NEIL3.
Collapse
Affiliation(s)
- Masashi Takao
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
A continuous hyperchromicity assay to characterize the kinetics and thermodynamics of DNA lesion recognition and base excision. Proc Natl Acad Sci U S A 2008; 105:70-5. [PMID: 18172202 DOI: 10.1073/pnas.0710363105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a continuous hyperchromicity assay (CHA) for monitoring and characterizing enzyme activities associated with DNA processing. We use this assay to determine kinetic and thermodynamic parameters for a repair enzyme that targets nucleic acid substrates containing a specific base lesion. This optically based kinetics assay exploits the free-energy differences between a lesion-containing DNA duplex substrate and the enzyme-catalyzed, lesion-excised product, which contains at least one hydrolyzed phosphodiester bond. We apply the assay to the bifunctional formamidopyrimidine glycosylase (Fpg) repair enzyme (E) that recognizes an 8-oxodG lesion within a 13-mer duplex substrate (S). Base excision/elimination yields a gapped duplex product (P) that dissociates to produce the diagnostic hyperchromicity signal. Analysis of the kinetic data at 25 degrees C yields a K(m) of 46.6 nM for the E.S interaction, and a k(cat) of 1.65 min(-1) for conversion of the ES complex into P. The temperature dependence reveals a free energy (DeltaG(b)) of -10.0 kcal.mol(-1) for the binding step (E + S <--> ES) that is enthalpy-driven (DeltaH(b) = -16.4 kcal.mol(-1)). The activation barrier (DeltaG) of 19.6 kcal.mol(-1) for the chemical step (ES <--> P) also is enthalpic in nature (DeltaH = 19.2 kcal.mol(-1)). Formation of the transition state complex from the reactants (E + S <--> ES), a pathway that reflects Fpg catalytic specificity (k(cat)/K(m)) toward excision of the 8-oxodG lesion, exhibits an overall activation free energy (DeltaG(T)) of 9.6 kcal.mol(-1). These parameters characterize the driving forces that dictate Fpg enzyme efficiency and specificity and elucidate the energy landscape for lesion recognition and repair.
Collapse
|
14
|
Baker DJ, Wuenschell G, Xia L, Termini J, Bates SE, Riggs AD, O'Connor TR. Nucleotide Excision Repair Eliminates Unique DNA-Protein Cross-links from Mammalian Cells. J Biol Chem 2007; 282:22592-604. [PMID: 17507378 DOI: 10.1074/jbc.m702856200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA-protein cross-links (DPCs) present a formidable obstacle to cellular processes because they are "superbulky" compared with the majority of chemical adducts. Elimination of DPCs is critical for cell survival because their persistence can lead to cell death or halt cell cycle progression by impeding DNA and RNA synthesis. To study DPC repair, we have used DNA methyltransferases to generate unique DPC adducts in oligodeoxyribonucleotides or plasmids to monitor both in vitro excision and in vivo repair. We show that HhaI DNA methyltransferase covalently bound to an oligodeoxyribonucleotide is not efficiently excised by using mammalian cell-free extracts, but protease digestion of the full-length HhaI DNA methyltransferase-DPC yields a substrate that is efficiently removed by a process similar to nucleotide excision repair (NER). To examine the repair of that unique DPC, we have developed two plasmid-based in vivo assays for DPC repair. One assay shows that in nontranscribed regions, DPC repair is greater than 60% in 6 h. The other assay based on host cell reactivation using a green fluorescent protein demonstrates that DPCs in transcribed genes are also repaired. Using Xpg-deficient cells (NER-defective) with the in vivo host cell reactivation assay and a unique DPC indicates that NER has a role in the repair of this adduct. We also demonstrate a role for the 26 S proteasome in DPC repair. These data are consistent with a model for repair in which the polypeptide chain of a DPC is first reduced by proteolysis prior to NER.
Collapse
Affiliation(s)
- David J Baker
- Biology Division, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Blaisdell JO, Wallace SS. Rapid determination of the active fraction of DNA repair glycosylases: a novel fluorescence assay for trapped intermediates. Nucleic Acids Res 2007; 35:1601-11. [PMID: 17289752 PMCID: PMC1865064 DOI: 10.1093/nar/gkm021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Current methods to measure the fraction of active glycosylase molecules in a given enzyme preparation are slow and cumbersome. Here we report a novel assay for rapidly determining the active fraction based on molecular accessibility of a fluorescent DNA minor groove binder, 4′,6-diamidino-2-phenylindole (DAPI). Several 5,6-dihydrouracil-containing (DHU) DNA substrates were designed with sequence-dependent DAPI-binding sites to which base excision repair glycosylases were covalently trapped by reduction. Trapped complexes impeded the association of DAPI in a manner dependent on the enzyme used and the location of the DAPI-binding site in relation to the lesion. Of the sequences tested, one was shown to give an accurate measure of the fraction of active molecules for each enzyme tested from both the Fpg/Nei family and HhH-GPD Nth superfamily of DNA glycosylases. The validity of the approach was demonstrated by direct comparison with current gel-based methods. Additionally, the results are supported by in silico modeling based on available crystal structures.
Collapse
Affiliation(s)
| | - Susan S. Wallace
- *To whom correspondence should be addressed. +1 802 656 2164+1 802 656 8749
| |
Collapse
|
16
|
Rogacheva M, Ishchenko A, Saparbaev M, Kuznetsova S, Ogryzko V. High resolution characterization of formamidopyrimidine-DNA glycosylase interaction with its substrate by chemical cross-linking and mass spectrometry using substrate analogs. J Biol Chem 2006; 281:32353-65. [PMID: 16928690 DOI: 10.1074/jbc.m606217200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOgg1) initiate the base excision repair pathway for 7,8-dihydro-8-oxoguanine (8-oxoG) residues present in DNA. Recent structural and biochemical studies of Fpg-DNA and hOgg1-DNA complexes point to the existence of extensive interactions between phosphate groups and amino acids. However, the role of these contacts and their physiological relevance remains unclear. In the present study, we combined chemical cross-linking and electrospray ionization mass spectrometry (ESI/MS/MS) approaches to identify interacting residues in the Fpg-DNA and hOgg1-DNA complexes. The active centers of Fpg and hOgg1 were cross-linked with a series of reactive oligonucleotide duplexes containing both a single 8-oxoG residue and an O-ethyl-substituted pyrophosphate internucleotide (SPI) group at different positions in duplex DNA. The cross-linking efficiency reached 50% for Fpg and 30% for hOgg1. We have identified seven phosphate groups on both strands of the DNA duplex specifically interacting with nucleophilic amino acids in Fpg, and eight in hOgg1. MS/MS analysis of the purified proteolytic fragments suggests that lysine 56 of Fpg and lysine 249 of hOgg1 cross-link to the phosphate located 3' to the 8-oxoG residue. Site-specific mutagenesis analysis of Fpg binding to DNA substrate confirms the conclusions of our approach. Our results are consistent with crystallographic data on the Fpg-DNA complex and provide new data on the hOgg1-DNA interaction. The approach developed in this work provides a useful tool to study pro- and eukaryotic homologues of Fpg as well as other repair enzymes.
Collapse
Affiliation(s)
- Maria Rogacheva
- Laboratory of Nucleic Acids Chemistry, Department of Chemistry, Moscow State University, Moscow 119992, Russia
| | | | | | | | | |
Collapse
|
17
|
Amara P, Serre L. Functional flexibility of Bacillus stearothermophilus formamidopyrimidine DNA-glycosylase. DNA Repair (Amst) 2006; 5:947-58. [PMID: 16857432 DOI: 10.1016/j.dnarep.2006.05.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/16/2006] [Accepted: 05/25/2006] [Indexed: 11/29/2022]
Abstract
The formamidopyrimidine-DNA glycosylase (Fpg) recognizes and eliminates efficiently 8-oxoguanine, an abundant mutagenic DNA lesion. The X-ray structure of the inactive E3Q mutant of Fpg from Bacillus stearothermophilus, complexed to an 8-oxoG-containing DNA, revealed a small peptide (called the alphaF-beta10 loop) involved in the recognition of the lesion via an interaction with the protonated N(7) atom. This region, which is disordered in the X-ray models where an abasic site-containing DNA is bound to Fpg, interacts tightly with the 8-oxoG which appears to be confined within the enzyme. Molecular dynamics simulations were performed on this mutant and the wild type derived model at 298 and 323K, to determine if this tight assembly around the 8-oxoG was due to the mutation and/or to an inappropriate experimental temperature. Differences in the relative orientation of the protein structural domains and in the architecture around the damaged base were observed, depending on the presence of the mutation and/or on the temperature. This data allowed us to show that the recognition of the damaged base by the wild type enzyme close to its optimal temperature might require significant movements of the enzyme, leading to conformational changes that could not be detected within the only X-ray structure. In addition, a dynamics performed with a normal guanine suggests that the alphaF-beta10 loop dynamics could be needed by the active Fpgs to distinguish a damaged guanine from a normal nucleotide.
Collapse
Affiliation(s)
- Patricia Amara
- Laboratoire de Dynamique Moléculaire, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France.
| | | |
Collapse
|
18
|
Gao G, DeRose EF, Kirby TW, London RE. NMR determination of lysine pKa values in the Pol lambda lyase domain: mechanistic implications. Biochemistry 2006; 45:1785-94. [PMID: 16460025 DOI: 10.1021/bi051856p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The base excision repair (BER) process requires removal of an abasic deoxyribose-5-phosphate group, a catalytic activity that has been demonstrated for the N-terminal 8 kDa domain of DNA polymerase beta (Pol beta), and for the homologous domain of DNA polymerase lambda (Pol lambda). Previous studies have demonstrated that this activity results from formation of a Schiff base adduct of the abasic deoxyribose C-1' with a lysine residue (K312 in the case of Pol lambda), followed by a beta-elimination reaction. To better understand the underlying chemistry, we have determined pKa values for the lysine residues in the Pol lambda lyase domain labeled with [epsilon-13C]lysine. At neutral pH, the H(epsilon) protons on 3 of the 10 lysine residues in this domain, K287, K291, and K312, exhibit chemical shift inequivalence that results from immobilization of the lysyl side chains. For K287 and K291, this results from the K287-E261 and K291-E298 salt bridge interactions, while for K312, immobilization apparently results from steric and hydrogen-bonding interactions that constrain the position of the lysine side chain. The pKa value of K312 is depressed to 9.58, a value indicating that at physiological pH K312 will exist predominantly in the protonated form. Titration of the domain with hairpin DNA containing a 5'-tetrahydrofuran terminus to model the abasic site produced shifts of the labeled lysine resonances that were in fast exchange but appeared to be complete at a stoichiometry of approximately 1:1.3, consistent with a dissociation constant of approximately 1 microM. The epsilon-proton shifts of K273 were the most sensitive to the addition of the DNA, apparently due to changes in the relative orientation between K273 and W274 in the DNA complex. The average pKa values increased by 0.55, consistent with the formation of some DNA-lysine salt bridges and with the general pH increase expected to result from a reduction in the net positive charge of the complex. A general increase in the Hill coefficients observed in the complex is consistent with the screening of the interacting lysine residues by the DNA. The pKa of K312 residue increased to 10.58 in the complex, probably due to salt bridge formation with the 5'-phosphate group of the DNA. The pKa values obtained for the lyase domain of Pol lambda in the present study are consistent with recent crystallographic studies of Pol beta complexed with 5-phosphorylated abasic sugar analogues in nicked DNA which reveal an open site with no obvious interactions that would significantly depress the pK value for the active site lysine residue. It is suggested that due to the heterogeneity of the damaged DNA substrates with which Pol lambda as well as other related polymerases may be required to bind, the unexpectedly poor optimization of the lyase catalytic site may reflect a compromise of flexibility with catalytic efficiency.
Collapse
Affiliation(s)
- Guanghua Gao
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
19
|
Garcia-Diaz M, Bebenek K, Gao G, Pedersen LC, London RE, Kunkel TA. Structure–function studies of DNA polymerase lambda. DNA Repair (Amst) 2005; 4:1358-67. [PMID: 16213194 DOI: 10.1016/j.dnarep.2005.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA polymerase lambda is a member of the X family of polymerases that is implicated in non-homologous end-joining of double-strand breaks in DNA and in base excision repair of DNA damage. To better understand the roles of DNA polymerase lambda in these repair pathways, here we review its structure and biochemical properties, with emphasis on its gap-filling polymerization activity, its dRP lyase activity and its unusual DNA synthetic (in)fidelity.
Collapse
Affiliation(s)
- Miguel Garcia-Diaz
- Laboratory of Structural Biology and Laboratory of Molecular Genetics NIEHS, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lloyd RS. Investigations of pyrimidine dimer glycosylases--a paradigm for DNA base excision repair enzymology. Mutat Res 2005; 577:77-91. [PMID: 15923014 DOI: 10.1016/j.mrfmmm.2005.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 01/04/2023]
Abstract
The most prevalent forms of cancer in humans are the non-melanoma skin cancers, with over a million new cases diagnosed in the United States annually. The portions of the body where these cancers arise are almost exclusively on the most heavily sun-exposed tissues. It is now well established that exposure to ultraviolet light (UV) causes not only damage to DNA that subsequently generates mutations and a transformed phenotype, but also UV-induced immunosuppression. Human cells have only one mechanism to remove the UV-induced dipyrimidine DNA photoproducts: nucleotide excision repair (NER). However, simpler organisms such as bacteria, bacteriophages and some eukaryotic viruses contain up to three distinct mechanisms to initiate the repair of UV-induced dipyrimidine adducts: NER, base excision repair (BER) and photoreversal. This review will focus on the biology and the mechanisms of DNA glycosylase/AP lyases that initiate BER of cis-syn cyclobutane pyrimidine dimers. One of these enzymes, the T4 pyrimidine dimer glycosylase (T4-pdg), formerly known as T4 endonuclease V has served as a model in the study of this entire class of enzymes. It was the first DNA repair enzyme: (1) for which a biologically significant processive nicking activity was demonstrated; (2) to have its active site determined, (3) to have its crystal structure solved, (4) to be shown to carry out nucleotide flipping, and (5) to be used in human clinical trials for disease prevention.
Collapse
Affiliation(s)
- R Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| |
Collapse
|
21
|
Affiliation(s)
- J Christopher Fromme
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
22
|
Buchko GW, McAteer K, Wallace SS, Kennedy MA. Solution-state NMR investigation of DNA binding interactions in Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg): a dynamic description of the DNA/protein interface. DNA Repair (Amst) 2005; 4:327-39. [PMID: 15661656 DOI: 10.1016/j.dnarep.2004.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2004] [Indexed: 11/16/2022]
Abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is a base excision repair (BER) protein that removes oxidative DNA lesions. Recent crystal structures of Fpg bound to DNA revealed residues involved in damage recognition and enzyme catalysis, but failed to shed light on the dynamic nature of the processes. To examine the structural and dynamic changes that occur in solution when Fpg binds DNA, NMR spectroscopy was used to study Escherichia coli Fpg free in solution and bound to a double-stranded DNA oligomer containing 1,3-propanediol (13-PD), a non-hydrolyzable abasic-site analogue. Only 209 out of a possible 251 (83%) free-precession 15N/1H HSQC cross peaks were observed and 180 of these were assignable, indicating that approximately 30% of the residues undergo intermediate motion on the NMR timescale, broadening the resonances beyond detection or making them intractable in backbone assignment experiments. The majority of these affected residues were in the polypeptide linker region and the interface between the N- and C-terminal domains. DNA titration experiments revealed line broadening and chemical shift perturbations for backbone amides nearby and distant from the DNA binding surface, but failed to quench the intermediate timescale motion observed for free Fpg, including those residues directly involved in DNA binding, notwithstanding a nanomolar dissociation constant for 13-PD binding. Indeed, after binding to 13-PD, at least approximately 40% of the Fpg residues undergo intermediate timescale motion even though all other residues exhibit tight DNA binding characteristic of slow exchange. CPMG-HSQC experiments revealed millisecond to microsecond motion for the backbone amides of D91 and H92 that were quenched upon binding 13-PD. In free Fpg, heteronuclear 1H-15N NOE experiments detected picosecond timescale backbone motion in the alphaF-beta9 loop, the region primarily responsible for chemically discriminating 8-oxoguanine (8-oxoG) over normal guanine, that was quenched after binding 13-PD. Collectively, these observations reveal that, in solution, Fpg is a very dynamic molecule even after binding damaged DNA. Such motion, especially at the DNA binding surface, may be key to its processive search for DNA damage and its catalytic functions once it recognizes damaged DNA.
Collapse
Affiliation(s)
- Garry W Buchko
- Biological Sciences Division, Battelle, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | | | | | | |
Collapse
|
23
|
Reddy P, Jaruga P, O'Connor T, Rodriguez H, Dizdaroglu M. Overexpression and rapid purification of Escherichia coli formamidopyrimidine-DNA glycosylase. Protein Expr Purif 2004; 34:126-33. [PMID: 14766308 DOI: 10.1016/j.pep.2003.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 11/25/2003] [Indexed: 11/27/2022]
Abstract
Formamidopyrimidine DNA glycosylase (Fpg) is a DNA glycosylase with an associated AP lyase activity. As a DNA repair enzyme, Fpg excises several modified bases from DNA associated with exposure to oxidizing agents such as free radicals. Experiments in many laboratories have been limited by the availability of the enzyme, and its production required at least a week of work to complete its purification. We have devised a new method that decreases the time and expense of purification of Fpg that should render this protein accessible to any laboratory. Fpg was subcloned into a gamma P(L) promoter-containing vector (pRE) and overproduced in the appropriate Escherichia coli host cells to about 25% of the total cellular protein. Fpg was purified to homogeneity in a simple two-step procedure with a 50% saving in time when compared to the previously known procedure. Comparative studies showed that the excision of 8-hydroxyguanine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, and 4,6-diamino-5-formamidopyrimidine, and to a lesser extent, 8-hydroxyadenine was virtually identical for the Fpg purified using this method and for the Fpg purified by the original method. Therefore, this method should prove useful for a large number of laboratories and further research on oxidative DNA damage.
Collapse
Affiliation(s)
- Prasad Reddy
- Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| | | | | | | | | |
Collapse
|
24
|
Doublié S, Bandaru V, Bond JP, Wallace SS. The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proc Natl Acad Sci U S A 2004; 101:10284-9. [PMID: 15232006 PMCID: PMC478564 DOI: 10.1073/pnas.0402051101] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Indexed: 12/21/2022] Open
Abstract
In prokaryotes, two DNA glycosylases recognize and excise oxidized pyrimidines: endonuclease III (Nth) and endonuclease VIII (Nei). The oxidized purine 8-oxoguanine, on the other hand, is recognized by Fpg (also known as MutM), a glycosylase that belongs to the same family as Nei. The recent availability of the human genome sequence allowed the identification of three human homologs of Escherichia coli Nei. We report here the crystal structure of a human Nei-like (NEIL) enzyme, NEIL1. The structure of NEIL1 exhibits the same overall fold as E. coli Nei, albeit with an unexpected twist. Sequence alignments had predicted that NEIL1 would lack a zinc finger, and it was therefore expected to use a different DNA-binding motif instead. Our structure revealed that, to the contrary, NEIL1 contains a structural motif composed of two antiparallel beta-strands that mimics the antiparallel beta-hairpin zinc finger found in other Fpg/Nei family members but lacks the loops that harbor the zinc-binding residues and, therefore, does not coordinate zinc. This "zincless finger" appears to be required for NEIL1 activity, because mutating a very highly conserved arginine within this motif greatly reduces the glycosylase activity of the enzyme.
Collapse
Affiliation(s)
- Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, USA.
| | | | | | | |
Collapse
|
25
|
Stivers JT, Jiang YL. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev 2003; 103:2729-59. [PMID: 12848584 DOI: 10.1021/cr010219b] [Citation(s) in RCA: 378] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
26
|
Abstract
Nearly all cells express proteins that confer resistance to the mutagenic effects of oxidative DNA damage. The primary defense against the toxicity of oxidative nucleobase lesions in DNA is the base-excision repair (BER) pathway. Endonuclease III (EndoIII) is a [4Fe-4S] cluster-containing DNA glycosylase with repair activity specific for oxidized pyrimidine lesions in duplex DNA. We have determined the crystal structure of a trapped intermediate that represents EndoIII frozen in the act of repairing DNA. The structure of the protein-DNA complex provides insight into the ability of EndoIII to recognize and repair a diverse array of oxidatively damaged bases. This structure also suggests a rationale for the frequent occurrence in certain human cancers of a specific mutation in the related DNA repair protein MYH.
Collapse
Affiliation(s)
- J Christopher Fromme
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
27
|
Abstract
A number of intrinsic and extrinsic mutagens induce structural damage in cellular DNA. These DNA damages are cytotoxic, miscoding or both and are believed to be at the origin of cell lethality, tissue degeneration, ageing and cancer. In order to counteract immediately the deleterious effects of such lesions, leading to genomic instability, cells have evolved a number of DNA repair mechanisms including the direct reversal of the lesion, sanitation of the dNTPs pools, mismatch repair and several DNA excision pathways including the base excision repair (BER) nucleotide excision repair (NER) and the nucleotide incision repair (NIR). These repair pathways are universally present in living cells and extremely well conserved. This review is focused on the repair of lesions induced by free radicals and ionising radiation. The BER pathway removes most of these DNA lesions, although recently it was shown that other pathways would also be efficient in the removal of oxidised bases. In the BER pathway the process is initiated by a DNA glycosylase excising the modified and mismatched base by hydrolysis of the glycosidic bond between the base and the deoxyribose of the DNA, generating a free base and an abasic site (AP-site) which in turn is repaired since it is cytotoxic and mutagenic.
Collapse
Affiliation(s)
- Laurent Gros
- Groupe Réparation de l'ADN, UMR 8532 CNRS, LBPA-ENS Cachan, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
28
|
Brik A, Dawson PE, Keinan E. The product of the natural reaction catalyzed by 4-oxalocrotonate tautomerase becomes an affinity label of its mutant. Bioorg Med Chem 2002; 10:3891-7. [PMID: 12413840 DOI: 10.1016/s0968-0896(02)00385-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
4-Oxalocrotonate tautomerase (4-OT) catalyzes the isomerization of 4-oxalocrotonate, 1, to 2-oxo-3E-hexenedioate, 3, using a general acid/base mechanism that involves a conserved N-terminal proline residue. The P1A and P1G mutants have been shown to catalyze this isomerization but at reduced rates. Analysis of these mutants by mass spectrometry demonstrated that P1A is susceptible to a 1,4-addition of the N-terminal primary amine across the double bond of enone 3 to form a covalent adduct. Although slower than the isomerization reaction, the addition is fast, with 50% of the active sites being alkylated within 12 min. By contrast, the wt4-OT shows no detectable modification over 24 h. These results support the hypothesis that avoidance of nucleophilic reactions, such as the irreversible Michael addition to the product, could be a contributing factor in the evolutionary conservation of N-terminal proline residues in 4OT.
Collapse
Affiliation(s)
- Ashraf Brik
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
29
|
Morland I, Rolseth V, Luna L, Rognes T, Bjørås M, Seeberg E. Human DNA glycosylases of the bacterial Fpg/MutM superfamily: an alternative pathway for the repair of 8-oxoguanine and other oxidation products in DNA. Nucleic Acids Res 2002; 30:4926-36. [PMID: 12433996 PMCID: PMC137166 DOI: 10.1093/nar/gkf618] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mild phenotype associated with targeted disruption of the mouse OGG1 and NTH1 genes has been attributed to the existence of back-up activities and/or alternative pathways for the removal of oxidised DNA bases. We have characterised two new genes in human cells that encode DNA glycosylases, homologous to the bacterial Fpg (MutM)/Nei class of enzymes, capable of removing lesions that are substrates for both hOGG1 and hNTH1. One gene, designated HFPG1, showed ubiquitous expression in all tissues examined whereas the second gene, HFPG2, was only expressed at detectable levels in the thymus and testis. Transient transfections of HeLa cells with fusions of the cDNAs to EGFP revealed intracellular sorting to the nucleus with accumulation in the nucleoli for hFPG1, while hFPG2 co-localised with the 30 kDa subunit of RPA. hFPG1 was purified and shown to act on DNA substrates containing 8-oxoguanine, 5-hydroxycytosine and abasic sites. Removal of 8-oxoguanine, but not cleavage at abasic sites, was opposite base-dependent, with 8-oxoG:C being the preferred substrate and negligible activity towards 8-oxoG:A. It thus appears that hFPG1 has properties similar to mammalian OGG1 in preventing mutations arising from misincorporation of A across 8-oxoG and could function as a back-up repair activity for OGG1 in ogg1(-/-) mice.
Collapse
Affiliation(s)
- Ingrid Morland
- Department of Molecular Biology, Institute of Medical Microbiology, University of Oslo, Rikshospitalet, 0027 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
30
|
Takao M, Kanno SI, Kobayashi K, Zhang QM, Yonei S, van der Horst GTJ, Yasui A. A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. J Biol Chem 2002; 277:42205-13. [PMID: 12200441 DOI: 10.1074/jbc.m206884200] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymine glycol, a potentially lethal DNA lesion produced by reactive oxygen species, can be removed by DNA glycosylase, Escherichia coli Nth (endonuclease III), or its mammalian homologue NTH1. We have found previously that mice deleted in the Nth homologue still retain at least two residual glycosylase activities for thymine glycol. We report herein that in cell extracts from the mNth1 knock-out mouse there is a third thymine glycol glycosylase activity that is encoded by one of three mammalian proteins with sequence similarity to E. coli Fpg (MutM) and Nei (endonuclease VIII). Tissue expression of this mouse Nei-like (designated as Neil1) gene is ubiquitous but much lower than that of mNth1 except in heart, spleen, and skeletal muscle. Recombinant NEIL1 can remove thymine glycol and 5-hydroxyuracil in double- and single-stranded DNA much more efficiently than 8-oxoguanine and can nick the strand by an associated (beta-delta) apurinic/apyrimidinic lyase activity. In addition, the mouse NEIL1 has a unique DNA glycosylase/lyase activity toward mismatched uracil and thymine, especially in U:C and T:C mismatches. These results suggest that NEIL1 is a back-up glycosylase for NTH1 with unique substrate specificity and tissue-specific expression.
Collapse
Affiliation(s)
- Masashi Takao
- Department of Molecular Genetics, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Serre L, Pereira de Jésus K, Boiteux S, Zelwer C, Castaing B. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. EMBO J 2002; 21:2854-65. [PMID: 12065399 PMCID: PMC126059 DOI: 10.1093/emboj/cdf304] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The formamidopyrimidine-DNA glycosylase (Fpg, MutM) is a bifunctional base excision repair enzyme (DNA glycosylase/AP lyase) that removes a wide range of oxidized purines, such as 8-oxoguanine and imidazole ring-opened purines, from oxidatively damaged DNA. The structure of a non-covalent complex between the Lactoccocus lactis Fpg and a 1,3-propanediol (Pr) abasic site analogue-containing DNA has been solved. Through an asymmetric interaction along the damaged strand and the intercalation of the triad (M75/R109/F111), Fpg pushes out the Pr site from the DNA double helix, recognizing the cytosine opposite the lesion and inducing a 60 degrees bend of the DNA. The specific recognition of this cytosine provides some structural basis for understanding the divergence between Fpg and its structural homologue endo nuclease VIII towards their substrate specificities. In addition, the modelling of the 8-oxoguanine residue allows us to define an enzyme pocket that may accommodate the extrahelical oxidized base.
Collapse
Affiliation(s)
| | - Karine Pereira de Jésus
- Institut de Biologie Structurale, CNRS-CEA, 41 av. Jules Horowitz, 38027 Grenoble cedex 01,
Centre de Biophysique Moléculaire UPR4301 affiliated to the University of Orléans, CNRS, rue Charles Sadron, 45071 Orléans cedex 02 and
Laboratoire de Radiobiologie du DNA, UMR217, CNRS-CEA, Centre d’Etudes Nucléaires, BP6, 92265 Fontenay-Aux-Roses, France Corresponding author e-mail:
| | - Serge Boiteux
- Institut de Biologie Structurale, CNRS-CEA, 41 av. Jules Horowitz, 38027 Grenoble cedex 01,
Centre de Biophysique Moléculaire UPR4301 affiliated to the University of Orléans, CNRS, rue Charles Sadron, 45071 Orléans cedex 02 and
Laboratoire de Radiobiologie du DNA, UMR217, CNRS-CEA, Centre d’Etudes Nucléaires, BP6, 92265 Fontenay-Aux-Roses, France Corresponding author e-mail:
| | - Charles Zelwer
- Institut de Biologie Structurale, CNRS-CEA, 41 av. Jules Horowitz, 38027 Grenoble cedex 01,
Centre de Biophysique Moléculaire UPR4301 affiliated to the University of Orléans, CNRS, rue Charles Sadron, 45071 Orléans cedex 02 and
Laboratoire de Radiobiologie du DNA, UMR217, CNRS-CEA, Centre d’Etudes Nucléaires, BP6, 92265 Fontenay-Aux-Roses, France Corresponding author e-mail:
| | - Bertrand Castaing
- Institut de Biologie Structurale, CNRS-CEA, 41 av. Jules Horowitz, 38027 Grenoble cedex 01,
Centre de Biophysique Moléculaire UPR4301 affiliated to the University of Orléans, CNRS, rue Charles Sadron, 45071 Orléans cedex 02 and
Laboratoire de Radiobiologie du DNA, UMR217, CNRS-CEA, Centre d’Etudes Nucléaires, BP6, 92265 Fontenay-Aux-Roses, France Corresponding author e-mail:
| |
Collapse
|
32
|
Kurtz AJ, Dodson ML, Lloyd RS. Evidence for multiple imino intermediates and identification of reactive nucleophiles in peptide-catalyzed beta-elimination at abasic sites. Biochemistry 2002; 41:7054-64. [PMID: 12033939 DOI: 10.1021/bi020026y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prior investigations have demonstrated that peptides containing a single aromatic residue flanked by basic ones, such as Lys-Trp-Lys, can incise the phosphodiester backbone of duplex DNA at an AP site via beta-elimination. An amine serves as the reactive nucleophile to attack C1' on the ring-open deoxyribose sugar to form a transient peptide-DNA imino (Schiff base) intermediate, which may be isolated as a stable covalent species under reducing conditions. In the current study, we use this methodology to demonstrate that peptide-catalyzed beta-elimination proceeds via the formation of two Schiff base intermediates, one of which was covalently trapped prior to strand incision and the other following strand incision. N-Terminal acetylation of reactive peptides significantly inhibited formation of a trapped Schiff base complex; thus, we demonstrate for the first time that the preferred reactive nucleophile for peptides catalyzing strand incision is the N-terminal alpha-amino group, not an epsilon-amino group located on a lysine residue as previously postulated. Trapping reactions in which the central tryptophan residue was changed to alanine did not have a significant impact on the efficiency of Schiff base formation, indicating that the presence of an aromatic residue is dispensable for the step prior to peptide-catalyzed beta-elimination. Interestingly, the methodology presented here affords a convenient means for covalently attaching an array of peptides onto AP site-containing DNA in a site-specific fashion. We suggest that the generation of such DNA-peptide cross-links may provide utility in studying the repair of biologically significant DNA-protein cross-link damage as DNA-peptide complexes may mimic intermediate structures along a repair pathway for DNA-protein cross-links.
Collapse
Affiliation(s)
- Andrew J Kurtz
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-1071, USA
| | | | | |
Collapse
|
33
|
Burgess S, Jaruga P, Dodson ML, Dizdaroglu M, Lloyd RS. Determination of active site residues in Escherichia coli endonuclease VIII. J Biol Chem 2002; 277:2938-44. [PMID: 11711552 DOI: 10.1074/jbc.m110499200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endonuclease VIII from Escherichia coli is a DNA glycosylase/lyase that removes oxidatively damaged bases. EndoVIII is a functional homologue of endonuclease III, but a sequence homologue of formamidopyrimidine-DNA glycosylase (Fpg). Using multiple sequence alignments, we have identified six target residues in endoVIII that may be involved in the enzyme's glycosylase and/or lyase functions: the N-terminal proline, and five acidic residues that are completely conserved in the endoVIII-Fpg proteins. To investigate the contribution of these residues, site-directed mutagenesis was used to create seven mutants: P2T, E3D, E3Q, E6Q, D129N, D160N, and E174Q. Each mutant was assayed both for lyase activity on abasic (AP) sites and for glycosylase/lyase activity on 5-hydroxyuracil, thymine glycol, and gamma-irradiated DNA with multiple lesions. The P2T mutant did not have lyase or glycosylase/lyase activity but could efficiently form Schiff base intermediates on AP sites. E6Q, D129N, and D160N behaved essentially as endoVIII in all assays. E3D, E3Q, and E174Q retained significant AP lyase activity but had severely diminished or abolished glycosylase/lyase activities on the DNA lesions tested. These studies provide detailed predictions concerning the active site of endoVIII.
Collapse
Affiliation(s)
- Sarah Burgess
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-1071, USA
| | | | | | | | | |
Collapse
|
34
|
Saparbaev M, Sidorkina OM, Jurado J, Privezentzev CV, Greenberg MM, Laval J. Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: different roles of proline 2 and lysine 57 residues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2002; 39:10-17. [PMID: 11813291 DOI: 10.1002/em.10041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Escherichia coli Fpg protein is involved in the repair of oxidized purines, including the highly mutagenic 7,8-dihydro-8-oxoguanine (8-oxoG). The Fpg protein also excises various oxidized pyrimidines with high efficiency. We examined, by targeted mutagenesis, the role of two highly conserved amino acid residues, proline 2 (P2) and lysine 57 (K57), on the catalytic activities of the Fpg protein toward a ring-fragmentation product of thymine (alpha RT) and 5,6-dihydrothymine (dHT). The following E. coli mutant Fpg proteins were investigated: lysine 57 --> glycine (FpgK57G), proline 2 --> glycine (FpgP2G), and proline 2 --> glutamic acid (FpgP2E). The FpgK57G protein had barely detectable alpha RT and dHT-DNA glycosylase activities and produced minute amounts of a Schiff-base complex upon reaction with alpha RT containing DNA. In contrast, the activity of an FpgP2G mutant toward alpha RT was comparable to the wild type activity and produced a Schiff-base complex with this substrate. FpgP2E was completely inactive in all the assays, in contrast, to the other mutants. The crystal structure of a homologous Fpg protein from an extreme thermophile, Thermus thermophilus HB8, reveals that it is composed of two distinct domains connected by a flexible hinge (Sugahara et al. [2000]: EMBO J 19:3857-3869). The N-terminal proline, one primary residue for enzymatic catalysis, is positioned at the bottom of a cleft in close proximity to lysine 52 (analogous to K57 of the E. coli Fpg). Based on the biochemical assays, together with the crystal structure of T. thermophilus HB8 Fpg protein, we propose a two-nucleophile model for the enzymatic catalysis.
Collapse
Affiliation(s)
- Murat Saparbaev
- Groupe Réparation de l'ADN, UMR 8532 Centre National de la Recherche Scientifique, LBPA-ENS Cachan, Institut Gustave Roussy, Villejuif Cedex, France
| | | | | | | | | | | |
Collapse
|
35
|
Sidorkina O, Dizdaroglu M, Laval J. Effect of single mutations on the specificity of Escherichia coli FPG protein for excision of purine lesions from DNA damaged by free radicals. Free Radic Biol Med 2001; 31:816-23. [PMID: 11557320 DOI: 10.1016/s0891-5849(01)00659-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The formamidopyrimidine N-DNA glycosylase (Fpg protein) of Escherichia coli is a DNA repair enzyme that is specific for the removal of purine-derived lesions from DNA damaged by free radicals and other oxidative processes. We investigated the effect of single mutations on the specificity of this enzyme for three purine-derived lesions in DNA damaged by free radicals. These damaging agents generate a multiplicity of base products in DNA, with the yields depending on the damaging agent. Wild type Fpg protein (wt-Fpg) removes 8-hydroxyguanine (8-OH-Gua), 4,6-diamino-5-formamidopyrimidine (FapyAde), and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) from damaged DNA with similar specificities. We generated five mutant forms of this enzyme with mutations involving Lys-57-->Gly (FpgK57G), Lys-57-->Arg (FpgK57R), Lys-155-->Ala (FpgK155A), Pro-2-->Gly (FpgP2G), and Pro-2-->Glu (FpgP2E), and purified them to homogeneity. FpgK57G and FpgK57R were functional for removal of FapyAde and FapyGua with a reduced activity when compared with wt-Fpg. The removal of 8-OH-Gua was different in that the specificity of FpgK57G was significantly lower for its removal from irradiated DNA, whereas wt-Fpg, FpgK57G, and FpgK57R excised 8-OH-Gua from H2O2/Fe(III)-EDTA/ascorbic acid-treated DNA with almost the same specificity. FpgK155A and FpgP2G had very low activity and FpgP2E exhibited no activity at all. Michaelis-Menten kinetics of excision was measured and kinetic constants were obtained. The results indicate an important role of Lys-57 residue in the activity of Fpg protein for 8-OH-Gua, but a lesser significant role for formamidopyrimidines. Mutations involving Lys-155 and Pro-2 had a dramatic effect with Pro-2-->Glu leading to complete loss of activity, indicating a significant role of these residues. The results show that point mutations significantly change the specificity of Fpg protein and suggest that point mutations are also expected to change specificities of other DNA repair enzymes.
Collapse
Affiliation(s)
- O Sidorkina
- Groupe Réparation de l'ADN, Institut Gustave Roussy, Villejuif, France
| | | | | |
Collapse
|
36
|
Buchko GW, Hess NJ, Bandaru V, Wallace SS, Kennedy MA. Spectroscopic studies of zinc(II)- and cobalt(II)-associated Escherichia coli formamidopyrimidine-DNA glycosylase: extended X-ray absorption fine structure evidence for a metal-binding domain. Biochemistry 2000; 39:12441-9. [PMID: 11015225 DOI: 10.1021/bi001377k] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Formamidopyrimidine-DNA glycosylase (Fpg) is a 30.2 kDa protein that plays an important role in the base excision repair of oxidatively damaged DNA in Escherichia coli. Sequence analysis and genetic evidence suggest that zinc is associated with a C4-type motif, C(244)-X(2)-C(247)-X(16)-C(264)-X(2)-C(267), located at the C-terminus of the protein. The zinc-associated motif has been shown to be essential for damaged DNA recognition. Extended X-ray absorption fine structure (EXAFS) spectra collected on the zinc-associated protein (ZnFpg) in the lyophilized state and in 10% frozen aqueous glycerol solution show directly that the metal is coordinated to the sulfur atom of four cysteine residues. The average Zn-S bond length is 2.33 +/- 0.01 and 2.34 +/- 0.01 A, respectively, in the lyophilized state and in 10% frozen aqueous glycerol solution. Fpg was also expressed in minimal medium supplemented with cobalt nitrate to yield a blue-colored protein that was primarily cobalt-associated (CoFpg). The profiles of the circular dichroism spectra for CoFpg and ZnFpg are identical, suggesting that the substitution of Co(2+) for Zn(2+) does not alter the structure of Fpg. A similar conclusion is reached upon the analysis of two-dimensional (15)N/(1)H HSQC spectra of uniformly (15)N-labeled samples of ZnFpg and CoFpg; the spectra are similar and display features characteristic of a structured protein. Biochemical assays with a 54 nt DNA oligomer containing 7, 8-dihydro-8-oxoguanine at a specific location show that CoFpg and ZnFpg are equally active at cleaving the DNA at the site of the oxidized guanine. EXAFS spectra of CoFpg indicate that the cobalt is coordinated to the sulfur atom of four cysteine residues with an average Co-S bond length of 2.28 +/- 0.01 and 2.29 +/- 0.01 A, respectively, in the lyophilized state and in 10% frozen aqueous glycerol solution. The structural similarity between CoFpg and ZnFpg suggests that it is biologically relevant to use the paramagnetic properties of Co(2+) as a structural probe.
Collapse
Affiliation(s)
- G W Buchko
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|