1
|
Kaňa R, Kotabová E, Šedivá B, Kuthanová Trsková E. Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina-role of non-photochemical quenching, ions, photoinhibition, and cell motility. Folia Microbiol (Praha) 2019; 64:691-703. [PMID: 31352667 DOI: 10.1007/s12223-019-00742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Eva Kotabová
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Barbora Šedivá
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Eliška Kuthanová Trsková
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.,Student of Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
2
|
Kaňa R, Kotabová E, Sobotka R, Prášil O. Non-photochemical quenching in cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS One 2012; 7:e29700. [PMID: 22235327 PMCID: PMC3250475 DOI: 10.1371/journal.pone.0029700] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/03/2011] [Indexed: 01/25/2023] Open
Abstract
Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates – e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic.
| | | | | | | |
Collapse
|
3
|
Yu LJ, Kato S, Wang ZY. Examination of the putative Ca2+-binding site in the light-harvesting complex 1 of thermophilic purple sulfur bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2010; 106:215-220. [PMID: 20886371 DOI: 10.1007/s11120-010-9596-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 09/10/2010] [Indexed: 05/29/2023]
Abstract
The core light-harvesting complex (LH1) of purple sulfur photosynthetic bacterium Thermochromatium tepidum exhibits an unusual absorption maximum at 915 nm for the Q (y) transition, and is highly stable when copurified with reaction center (RC) in a LH1-RC complex form. In previous studies, we demonstrated that the calcium ions are involved in both the large red shift and the enhanced thermal stability, and possible Ca(2+)-binding sites were proposed. In this study, we further examine the putative binding sites in the LH1 polypeptides using purified chromatophores. Incubation of the chromatophores in the presence of EDTA revealed no substantial change in the absorption maximum of LH1 Q (y) transition, whereas further addition of detergents to the chromatophores-EDTA solution resulted in a blue-shift for the LH1 Q (y) peak with the final position at 892 nm. The change of the LH1 Q (y) peak to shorter wavelengths was relatively slow compared to that of the purified LH1-RC complex. The blue-shifted LH1 Q (y) transition in chromatophores can be restored to its original position by addition of Ca(2+) ions. The results suggest that the Ca(2+)-binding site is exposed on the inner surface of chromatophores, corresponding to the C-terminal region of LH1. An Asp-rich fragment in the LH1 α-polypeptide is considered to form a crucial part of the binding network. The slow response of LH1 Q (y) transition upon exposure to EDTA is discussed in terms of the membrane environment in the chromatophores.
Collapse
Affiliation(s)
- Long-Jiang Yu
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | | | | |
Collapse
|
4
|
Miqyass M, van Gorkom HJ, Yocum CF. The PSII calcium site revisited. PHOTOSYNTHESIS RESEARCH 2007; 92:275-87. [PMID: 17235491 DOI: 10.1007/s11120-006-9124-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 12/08/2006] [Indexed: 05/07/2023]
Abstract
Oxidation of H2O by photosystem II is a unique redox reaction in that it requires Ca2+ as well as Cl- as obligatory activators/cofactors of the reaction, which is catalyzed by Mn atoms. The properties of the binding site for Ca2+ in this reaction resemble those of other Ca2+ binding proteins, and recent X-ray structural data confirm that the metal is in fact ligated at least in part by amino acid side chain oxo anions. Removal of Ca2+ blocks water oxidation chemistry at an early stage in the cycle of redox reactions that result in O-O bond formation, and the intimate involvement of Ca2+ in this reaction that is implied by this result is confirmed by an ever-improving set of crystal structures of the cyanobacterial enzyme. Here, we revisit the photosystem II Ca2+ site, in part to discuss the additional information that has appeared since our earlier review of this subject (van Gorkom HJ, Yocum CF In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase), and also to reexamine earlier data, which lead us to conclude that all S-state transitions require Ca2+.
Collapse
Affiliation(s)
- M Miqyass
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, Leiden, RA 2300, The Netherlands
| | | | | |
Collapse
|
5
|
Lee CI, Lakshmi KV, Brudvig GW. Probing the Functional Role of Ca2+ in the Oxygen-Evolving Complex of Photosystem II by Metal Ion Inhibition. Biochemistry 2007; 46:3211-23. [PMID: 17309233 DOI: 10.1021/bi062033i] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosynthetic oxygen evolution in photosystem II (PSII) takes place in the oxygen-evolving complex (OEC) that is comprised of a tetranuclear manganese cluster (Mn4), a redox-active tyrosine residue (YZ), and Ca2+ and Cl- cofactors. The OEC is successively oxidized by the absorption of 4 quanta of light that results in the oxidation of water and the release of O2. Ca2+ is an essential cofactor in the water-oxidation reaction, as its depletion causes the loss of the oxygen-evolution activity in PSII. In recent X-ray crystal structures, Ca2+ has been revealed to be associated with the Mn4 cluster of PSII. Although several mechanisms have been proposed for the water-oxidation reaction of PSII, the role of Ca2+ in oxygen evolution remains unclear. In this study, we probe the role of Ca2+ in oxygen evolution by monitoring the S1 to S2 state transition in PSII membranes and PSII core complexes upon inhibition of oxygen evolution by Dy3+, Cu2+, and Cd2+ ions. By using a cation-exchange procedure in which Ca2+ is not removed prior to addition of the studied cations, we achieve a high degree of reversible inhibition of PSII membranes and PSII core complexes by Dy3+, Cu2+, and Cd2+ ions. EPR spectroscopy is used to quantitate the number of bound Dy3+ and Cu2+ ions per PSII center and to determine the proximity of Dy3+ to other paramagnetic centers in PSII. We observe, for the first time, the S2 state multiline electron paramagnetic resonance (EPR) signal in Dy3+- and Cd2+-inhibited PSII and conclude that the Ca2+ cofactor is not specifically required for the S1 to S2 state transition of PSII. This observation provides direct support for the proposal that Ca2+ plays a structural role in the early S-state transitions, which can be fulfilled by other cations of similar ionic radius, and that the functional role of Ca2+ to activate water in the O-O bond-forming reaction that occurs in the final step of the S state cycle can only be fulfilled by Ca2+ and Sr2+, which have similar Lewis acidities.
Collapse
Affiliation(s)
- Cheng-I Lee
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | | | |
Collapse
|
6
|
Dudev T, Chang LY, Lim C. Factors governing the substitution of La3+ for Ca2+ and Mg2+ in metalloproteins: a DFT/CDM study. J Am Chem Soc 2005; 127:4091-103. [PMID: 15771547 DOI: 10.1021/ja044404t] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trivalent lanthanide cations are extensively being used in biochemical experiments to probe various dication-binding sites in proteins; however, the factors governing the binding specificity of lanthanide cations for these binding sites remain unclear. Hence, we have performed systematic studies to evaluate the interactions between La3+ and model Ca2+ - and Mg2+ -binding sites using density functional theory combined with continuum dielectric methods. The calculations reveal the key factors and corresponding physical bases favoring the substitution of trivalent lanthanides for divalent Ca2+ and Mg2+ in holoproteins. Replacing Ca2+ or Mg2+ with La3+ is facilitated by (1) minimizing the solvent exposure and the flexibility of the metal-binding cavity, (2) freeing both carboxylate oxygen atoms of Asp/Glu side chains in the metal-binding site so that they could bind bidentately to La3+, (3) maximizing the number of metal-bound carboxylate groups in buried sites, but minimizing the number of metal-bound carboxylate groups in solvent-exposed sites, and (4) including an Asn/Gln side chain for sites lined with four Asp/Glu side chains. In proteins bound to both Mg2+ and Ca2+, La3+ would prefer to replace Ca2+, as compared to Mg2+. A second Mg2+-binding site with a net positive charge would hamper the Mg2+ --> La3+ exchange, as compared to the respective mononuclear site, although the La3+ substitution of the first native metal is more favorable than the second one. The findings of this work are in accord with available experimental data.
Collapse
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | |
Collapse
|
7
|
Bao L, Kaldany C, Holmstrand EC, Cox DH. Mapping the BKCa channel's "Ca2+ bowl": side-chains essential for Ca2+ sensing. ACTA ACUST UNITED AC 2004; 123:475-89. [PMID: 15111643 PMCID: PMC2234491 DOI: 10.1085/jgp.200409052] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is controversy over whether Ca2+ binds to the BKCa channel's intracellular domain or its integral-membrane domain and over whether or not mutations that reduce the channel's Ca2+ sensitivity act at the point of Ca2+ coordination. One region in the intracellular domain that has been implicated in Ca2+ sensing is the “Ca2+ bowl”. This region contains many acidic residues, and large Ca2+-bowl mutations eliminate Ca2+ sensing through what appears to be one type of high-affinity Ca2+-binding site. Here, through site-directed mutagenesis we have mapped the residues in the Ca2+ bowl that are most important for Ca2+ sensing. We find acidic residues, D898 and D900, to be essential, and we find them essential as well for Ca2+ binding to a fusion protein that contains a portion of the BKCa channel's intracellular domain. Thus, much of our data supports the conclusion that Ca2+ binds to the BKCa channel's intracellular domain, and they define the Ca2+ bowl's essential Ca2+-sensing motif. Overall, however, we have found that the relationship between mutations that disrupt Ca2+ sensing and those that disrupt Ca2+ binding is not as strong as we had expected, a result that raises the possibility that, when examined by gel-overlay, the Ca2+ bowl may be in a nonnative conformation.
Collapse
Affiliation(s)
- Lin Bao
- Molecular Cardiology Research Institute, New England Medical Center, Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
8
|
Bachmann KM, Ebbert V, Adams Iii WW, Verhoeven AS, Logan BA, Demmig-Adams B. Effects of lincomycin on PSII efficiency, non-photochemical quenching, D1 protein and xanthophyll cycle during photoinhibition and recovery. FUNCTIONAL PLANT BIOLOGY : FPB 2004; 31:803-813. [PMID: 32688951 DOI: 10.1071/fp04022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 05/10/2004] [Indexed: 06/11/2023]
Abstract
Leaves of Parthenocissus quinquefolia (L.) Planch. (Virginia creeper) were treated with lincomycin (an inhibitor of chloroplast-encoded protein synthesis), subjected to a high-light treatment and allowed to recover in low light. While lincomycin-treated leaves had similar characteristics as controls after a 1 h exposure to high light, total D1 levels in lincomycin-treated leaves were half those in controls at the end of the recovery period. In addition, lincomycin delayed recovery of maximal PSII efficiency of open centers (ratio of variable to maximal chlorophyll fluorescence, F v / F m) and of estimated PSII photochemistry rate upon return to low light subsequent to the high-light treatment. Furthermore, lincomycin treatment slowed the removal of zeaxanthin (Z) and antheraxanthin (A) during recovery in low light, and the level of thermal energy dissipation (non-photochemical fluorescence quenching, NPQ) remained elevated. In lincomycin-treated leaves infiltrated with the uncoupler nigericin immediately after high-light exposure, thermal energy dissipation, sustained with lincomycin alone, declined quickly to control levels. In summary, lincomycin treatment affected not only D1 protein turnover but also xanthophyll-cycle operation and thermal-energy dissipation. The latter effect was apparently a result of the maintenance of a high trans-thylakoid proton gradient. Similar effects were also seen subsequent to short-term exposures to high light in lincomycin-treated Spinacia oleracea L. (spinach) leaves. In contrast, lincomycin treatments under low-light levels did not induce Z formation or NPQ. These results suggest that lincomycin has the potential to lower PSII efficiency (F v / F m) through inhibition of NPQ relaxation and Z + A removal subsequent to high-light exposures.
Collapse
Affiliation(s)
- Kristine Mueh Bachmann
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0034, USA
| | - Volker Ebbert
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0034, USA
| | - William W Adams Iii
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0034, USA
| | - Amy S Verhoeven
- Biology Department, University of Saint Thomas, 2115 Summit Ave, (OWS390), St. Paul, MN 55105, USA
| | - Barry A Logan
- Biology Department, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0034, USA
| |
Collapse
|
9
|
Holt NE, Fleming GR, Niyogi KK. Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 2004; 43:8281-9. [PMID: 15222740 DOI: 10.1021/bi0494020] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxygenic photosynthesis in plants involves highly reactive intermediates and byproducts that can damage the photosynthetic apparatus and other chloroplast constituents. The potential for damage is exacerbated when the amount of absorbed light exceeds the capacity for light energy utilization in photosynthesis, a condition that can lead to decreases in photosynthetic efficiency. A feedback de-excitation mechanism (qE), measured as a component of nonphotochemical quenching of chlorophyll fluorescence, regulates photosynthetic light harvesting in excess light in response to a change in thylakoid lumen pH. qE involves de-excitation of the singlet excited state of chlorophyll in the light-harvesting antenna of photosystem II, thereby minimizing the deleterious effects of high light via thermal dissipation of excess excitation energy. While the physiological importance of qE has been recognized for many years, a description of its physical mechanism remains elusive. We summarize recent biochemical and spectroscopic results that have brought us closer to the goal of a mechanistic understanding of this fundamental photosynthetic regulatory process.
Collapse
Affiliation(s)
- Nancy E Holt
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | |
Collapse
|
10
|
Olszówka D, Krawczyk S, Maksymiec W. A study of molecular interactions in light-harvesting complexes LHCIIb, CP29, CP26 and CP24 by Stark effect spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1657:61-70. [PMID: 15238212 DOI: 10.1016/j.bbabio.2004.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 03/30/2004] [Accepted: 04/06/2004] [Indexed: 11/17/2022]
Abstract
Electric field-induced absorption changes (electrochromism or Stark effect) of the light-harvesting PSII pigment-protein complexes LHCIIb, CP29, CP26 and CP24 were investigated. The results indicate the lack of strong intermolecular interactions in the chlorophyll a (Chl a) pools of all complexes. Characteristic features occur in the electronic spectrum of Chl b, which reflect the increased values of dipole moment and polarizability differences between the ground and excited states of interacting pigment systems. The strong Stark signal recorded for LHCIIb at 650-655 nm is much weaker in CP29, where it is replaced by a unique Stark band at 639 nm. Electrochromism of Chl b in CP26 and CP24 is significantly weaker but increased electrochromic parameters were also noticed for the Chl b transition at 650 nm. The spectra in the blue region are dominated by xanthophylls. The differences in Stark spectra of Chl b are linked to differences in pigment content and organization in individual complexes and point to the possibility of electron exchange interactions between energetically similar and closely spaced Chl b molecules.
Collapse
Affiliation(s)
- Dorota Olszówka
- Institute of Physics, Maria Curie-Skłodowska University, P1. M. Curie-Skl?odowskiej 1, 20-031 Lublin, Poland
| | | | | |
Collapse
|
11
|
Boussac A, Rappaport F, Carrier P, Verbavatz JM, Gobin R, Kirilovsky D, Rutherford AW, Sugiura M. Biosynthetic Ca2+/Sr2+ Exchange in the Photosystem II Oxygen-evolving Enzyme of Thermosynechococcus elongatus. J Biol Chem 2004; 279:22809-19. [PMID: 14990562 DOI: 10.1074/jbc.m401677200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thermophilic cyanobacterium, Thermosynechococcus elongatus, has been grown in the presence of Sr2+ instead of Ca2+ with the aim of biosynthetically replacing the Ca2+ of the oxygen-evolving enzyme with Sr2+. Not only were the cells able to grow normally with Sr2+, they actively accumulated the ion to levels higher than those of Ca2+ in the normal cultures. A protocol was developed to purify a fully active Sr(2+)-containing photosystem II (PSII). The modified enzyme contained a normal polypeptide profile and 1 strontium/4 manganese, indicating that the normal enzyme contains 1 calcium/4 manganese. The Sr(2+)- and Ca(2+)-containing enzymes were compared using EPR spectroscopy, UV-visible absorption spectroscopy, and O2 polarography. The Ca2+/Sr2+ exchange resulted in the modification of the EPR spectrum of the manganese cluster and a slower turnover of the redox cycle (the so-called S-state cycle), resulting in diminished O2 evolution activity under continuous saturating light: all features reported previously by biochemical Ca2+/Sr2+ exchange in plant PSII. This allays doubts that these changes could be because of secondary effects induced by the biochemical treatments themselves. In addition, the Sr(2+)-containing PSII has other kinetics modifications: 1) it has an increased stability of the S3 redox state; 2) it shows an increase in the rate of electron donation from TyrD, the redox-active tyrosine of the D2 protein, to the oxygen-evolving complex in the S3-state forming S2; 3) the rate of oxidation of the S0-state to the S1-state by TyrD* is increased; and 4) the release of O2 is slowed down to an extent similar to that seen for the slowdown of the S3TyrZ* to S0TyrZ transition, consistent with the latter constituting the limiting step of the water oxidation mechanism in Sr(2+)-substituted enzyme as well as in the normal enzyme. The replacement of Ca2+ by Sr2+ appears to have multiple effects on kinetics properties of the enzyme that may be explained by S-state-dependent shifts in the redox properties of both the manganese complex and TyrZ as well as structural effects.
Collapse
Affiliation(s)
- Alain Boussac
- Service de Bioénergétique, DBJC, URA CNRS 2096, CEA Saclay, 91191 Gif sur Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gastaldelli M, Canino G, Croce R, Bassi R. Xanthophyll binding sites of the CP29 (Lhcb4) subunit of higher plant photosystem II investigated by domain swapping and mutation analysis. J Biol Chem 2003; 278:19190-8. [PMID: 12601013 DOI: 10.1074/jbc.m212125200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding sites for xanthophylls in the CP29 antenna protein of higher plant Photosystem II have been investigated using recombinant proteins refolded in vitro. Despite the presence of three xanthophyll species CP29 binds two carotenoids per polypeptide. The localization of neoxanthin was studied producing a chimeric protein constructed by swapping the C-helix domain from CP29 to LHCII. The resulting holoprotein did not bind neoxanthin, confirming that the N1 site is not present in CP29. Neoxanthin in CP29 was, instead, bound to the L2 site, which is thus shown to have a wider specificity with respect to the homologous site L2 in LHCII. Lutein was found in the L1 site of CP29. For each site the selectivity for individual xanthophyll species was studied as well as its role in protein stabilization, energy transfer, and photoprotection. Putative xanthophyll binding sequences, identified by primary structure analysis as a stretch of hydrophobic residues including an acidic term, were analyzed by site-directed mutagenesis or, in one case, by deleting the entire sequence. The mutant proteins were unaffected in their xanthophyll composition, thus suggesting that the target motifs had little influence in determining xanthophyll binding, whereas hydrophobic sequences in the membrane-spanning helices are important.
Collapse
Affiliation(s)
- Mirko Gastaldelli
- Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie,15-37134 Verona Italy
| | | | | | | |
Collapse
|
13
|
|
14
|
Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M, Bassi R. Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem 2002; 277:22750-8. [PMID: 11934892 DOI: 10.1074/jbc.m200604200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biochemical properties of PsbS protein, a nuclear-encoded Photosystem II subunit involved in the high energy quenching of chlorophyll fluorescence, have been studied using preparations purified from chloroplasts or obtained by overexpression in bacteria. Despite the homology with chlorophyll a/b/xanthophyll-binding proteins of the Lhc family, native PsbS protein does not show any detectable ability to bind chlorophylls or carotenoids in conditions in which Lhc proteins maintain full pigment binding. The recombinant protein, when refolded in vitro in the presence of purified pigments, neither binds chlorophylls nor xanthophylls, differently from the homologous proteins LHCII, CP26, and CP29 that refold into stable pigment-binding complexes. Thus, it is concluded that if PsbS is a pigment-binding protein in vivo, the binding mechanism must be different from that present in other Lhc proteins. Primary sequence analysis provides evidence for homology of PsbS helices I and III with the central 2-fold symmetric core of chlorophyll a/b-binding proteins. Moreover, a structural homology owed to the presence of acidic residues in each of the two lumen-exposed loops is found with the dicyclohexylcarbodiimide/Ca(2+)-binding domain of CP29. Consistently, both native and recombinant PsbS proteins showed [(14)C]dicyclohexylcarbodiimide binding, thus supporting a functional basis for its homology with CP29 on the lumen-exposed loops. This domain is suggested to be involved in sensing low luminal pH.
Collapse
Affiliation(s)
- Paola Dominici
- Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, 37134 Verona, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Croce R, Canino G, Ros F, Bassi R. Chromophore organization in the higher-plant photosystem II antenna protein CP26. Biochemistry 2002; 41:7334-43. [PMID: 12044165 DOI: 10.1021/bi0257437] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chlorophyll a/b-xanthophyll-protein CP26 complex belongs to the Lhc protein family. It binds nine chlorophylls and two xanthophylls per 26.6 kDa polypeptide. Determination of the characteristics of each binding site is needed for the understanding of functional organization of individual proteins belonging to the photosystem II supramolecular complex. The biochemical and spectroscopic features of native CP26 are presented here together with identification of pigment binding and energy transitions in different sites. The analysis has been performed via a new approach using recombinant CP26 complexes in which the chromophore content has been experimentally modified. Data were interpreted on the basis of homology with CP29 and LHCII complexes, for which detailed knowledge is available from mutation analysis. We propose that one additional Chl b is present in CP26 as compared to CP29 and that it is located in site B2. We also found that in CP26 three chlorophyll binding sites are selective for Chl a, one of them being essential for the folding of the pigment-protein complex. Two xanthophyll binding sites were identified, one of which (L1) is essential for protein folding and specifically binds lutein. The second site (L2) has lower selectivity and can bind any of the xanthophyll species present in thylakoids.
Collapse
Affiliation(s)
- Roberta Croce
- Dipartimento Scientifico e Tecnologico-Facoltà di Scienze MM.FF.NN., Strada Le Grazie 15, 37134 Verona, Italy
| | | | | | | |
Collapse
|
16
|
Ishikawa Y, Yamamoto Y, Otsubo M, Theg SM, Tamura N. Chemical modification of amine groups on PS II protein(s) retards photoassembly of the photosynthetic water-oxidizing complex. Biochemistry 2002; 41:1972-80. [PMID: 11827544 DOI: 10.1021/bi0102499] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four Mn atoms function as catalysts in the water-oxidizing complex located on the oxidizing side of PS II. We have studied the involvement of amine groups of the PS II proteins in photoligation of Mn2+ to the apo water-oxidizing complex, using the combined techniques of photoactivation and chemical modification with the modifiers methyl acetimidate (MAI), acetic acid N-hydroxysuccinimide ester (NHS), and 2,4,6-trinitrobenzenesulfonic acid (TNBS). Chemical modification of hydroxylamine-treated PS II core complexes decreased their capacity for restoration of oxygen evolution and photoligation of Mn2+ to the apo water-oxidizing complex (WOC), but did not affect their electron transfer activity in the vicinity of PS II. The number of functional high-affinity Mn-binding sites, but not of low-affinity sites, was significantly modulated by chemical modification. Kinetic analysis of photoactivation with the repetitive flashes revealed that the intermediate generated during a photoactivation process was destabilized by the chemical modification. To identify which proteins possess the amine groups involved in ligation of functional Mn, we examined the difference in NHS biotinylation between PS II core complexes with and without the Mn cluster. NHS biotinylation resulting in altered ligation of functional Mn apparently occurred on three proteins: an antenna chlorophyll binding protein (CP47), a light-harvesting chlorophyll protein (CP29), and another chlorophyll binding protein (PS II-S). Of these proteins, only the Mn-dependent biotinylation of CP47 was found to occur independently of the application of an NHS-masking concentration before removal of the functional Mn. These results suggest that lysyl residues of CP47, and perhaps also CP29 and PS II-S, function in direct photoligation of Mn2+ to the apo WOC.
Collapse
Affiliation(s)
- Yasuo Ishikawa
- Department of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
17
|
Wentworth M, Ruban AV, Horton P. Kinetic analysis of nonphotochemical quenching of chlorophyll fluorescence. 2. Isolated light-harvesting complexes. Biochemistry 2001; 40:9902-8. [PMID: 11502184 DOI: 10.1021/bi0103718] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chlorophyll fluorescence yield of purified photosystem II light-harvesting complexes can be lowered by manipulation of experimental conditions. In several important respects, this quenching resembles the nonphotochemical quenching observed in isolated chloroplasts and leaves, therefore providing a model system for investigating the underlying mechanism. A methodology based on the principles of enzyme kinetic analysis has already been applied to isolated chloroplasts, and this same experimental approach was used here with purified LHCIIb, CP26, and CP29. It was found that the kinetics of the decrease in fluorescence yield robustly fitted a second-order kinetic model with respect to time after induction of quenching. The second-order rate constant was dependent upon the complex that was analyzed, the detergent concentration, the solution pH, and the presence of exogenous xanthophyll cycle carotenoids. In contrast, the formation of an absorbance change at 683 nm that accompanies quenching displayed first-order kinetics. The reversal of quenching also displayed second-order kinetics. These data show that quenching results from a binary reaction, possibly arising between two chlorophyll molecules. On the basis of these data, a model for the regulation of nonphotochemical quenching based upon the allosteric control of the conformation of light-harvesting complexes by protonation and xanthophyll binding is presented.
Collapse
Affiliation(s)
- M Wentworth
- Robert Hill Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | |
Collapse
|
18
|
Teramoto H, Ono T, Minagawa J. Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2001; 42:849-56. [PMID: 11522911 DOI: 10.1093/pcp/pce115] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Lhcb gene family in green plants encodes several light-harvesting Chl a/b-binding (LHC) proteins that collect and transfer light energy to the reaction centers of PSII. We comprehensively characterized the Lhcb gene family in the unicellular green alga, Chlamydomonas reinhardtii, using the expressed sequence tag (EST) databases. A total of 699 among over 15,000 ESTs related to the Lhcb genes were assigned to eight, including four new, genes that we isolated and sequenced here. A sequence comparison revealed that six of the Lhcb genes from C. reinhardtii correspond to the major LHC (LHCII) proteins from higher plants, and that the other two genes (Lhcb4 and Lhcb5) correspond to the minor LHC proteins (CP29 and CP26). No ESTs corresponding to another minor LHC protein (CP24) were found. The six LHCII proteins in C. reinhardtii cannot be assigned to any of the three types proposed for higher plants (Lhcb1-Lhcb3), but were classified as follows: Type I is encoded by LhcII-1.1, LhcII-1.2 and LhcII-1.3, and Types II, III and IV are encoded by LhcII-2, LhcII-3 and LhcII-4, respectively. These findings suggest that the ancestral LHC protein diverged into LHCII, CP29 and CP26 before, and that LHCII diverged into multiple types after the phylogenetic separation of green algae and higher plants.
Collapse
Affiliation(s)
- H Teramoto
- Laboratory for Photo-Biology, Photodynamics Research Center, The Institute of Physical and Chemical Research (RIKEN), Sendai, 980-0845 Japan.
| | | | | |
Collapse
|
19
|
Boekema EJ, van Breemen JF, van Roon H, Dekker JP. Conformational changes in photosystem II supercomplexes upon removal of extrinsic subunits. Biochemistry 2000; 39:12907-15. [PMID: 11041855 DOI: 10.1021/bi0009183] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem II is a multisubunit pigment-protein complex embedded in the thylakoid membranes of chloroplasts. It consists of a large number of intrinsic membrane proteins involved in light-harvesting and electron-transfer processes and of a number of extrinsic proteins required to stabilize photosynthetic oxygen evolution. We studied the structure of dimeric supercomplexes of photosystem II and its associated light-harvesting antenna by electron microscopy and single-particle image analysis. Comparison of averaged projections from native complexes and complexes without extrinsic polypeptides indicates that the removal of 17 and 23 kDa extrinsic subunits induces a shift of about 1.2 nm in the position of the monomeric peripheral antenna protein CP29 toward the central part of the supercomplex. Removal of the 33 kDa extrinsic protein induces an inward shift of the strongly bound trimeric light-harvesting complex II (S-LHCII) of about 0.9 nm, and in addition destabilizes the monomer-monomer interactions in the central core dimer, leading to structural rearrangements of the core monomers. It is concluded that the extrinsic subunits keep the S-LHCII and CP29 subunits in proper positions at some distance from the central part of the photosystem II core dimer to ensure a directed transfer of excitation energy through the monomeric peripheral antenna proteins CP26 and CP29 and/or to maintain sequestered domains of inorganic cofactors required for oxygen evolution.
Collapse
Affiliation(s)
- E J Boekema
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|