1
|
Vakili H, Jin Y, Cattini PA. Evidence for a Circadian Effect on the Reduction of Human Growth Hormone Gene Expression in Response to Excess Caloric Intake. J Biol Chem 2016; 291:13823-33. [PMID: 27151213 PMCID: PMC4919464 DOI: 10.1074/jbc.m116.722744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/02/2016] [Indexed: 11/06/2022] Open
Abstract
Rhythmicity of biological functions is fundamental for optimal adaptations to environmental cues. Growth hormone (GH) is a major metabolic homeostatic factor that is secreted with a circadian pattern, but whether it is synthesized rhythmically is unknown. We used transgenic mice containing the human (h) GH gene (hGH1) locus to investigate the rhythmicity of hGH synthesis and secretion and to show that RNA and secreted protein levels oscillate over a 24-h cycle. Analysis of hGH1 promoter sequences revealed an enhancer motif (E-box) element that binds the circadian transcriptional machinery (Bmal1 and Clock). Furthermore, Bmal1/Clock were able to transactivate the hGH1 promoter, and mutation of this E-box element adversely affected basal activity after gene transfer. The ability of Bmal1 to bind the hGH1 promoter region containing the E-box element was confirmed in the hGH1 transgenic mouse pituitary in situ Occupancy was reduced in mice fed a high fat diet during the light (inactive) stage of the daily cycle in mice and corresponded to a decrease in hGH1 RNA levels. The decreases in occupancy and RNA levels were not seen, however, during the dark (active) stage. A chromatin loop required for efficient postnatal hGH1 expression was negatively affected by the high fat diet in the light but not dark stage similar to the pattern observed with Bmal1 association with the promoter region. This is the first evidence that hGH synthesis follows a diurnal rhythm and of dynamic associations of the circadian machinery with a component of a chromosomal structure of the hGH1 locus that is essential for efficient expression.
Collapse
Affiliation(s)
- Hana Vakili
- From the Departments of Internal Medicine and
| | - Yan Jin
- Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Peter A Cattini
- Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
2
|
Tsai YC, Cooke NE, Liebhaber SA. Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster. Nucleic Acids Res 2016; 44:4651-64. [PMID: 26893355 PMCID: PMC4889918 DOI: 10.1093/nar/gkw090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR 'loops' over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed 'hCS chromatin hub'. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster.
Collapse
Affiliation(s)
- Yu-Cheng Tsai
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Nancy E Cooke
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| |
Collapse
|
3
|
Ganguly E, Bock ME, Cattini PA. Expression of Placental Members of the Human Growth Hormone Gene Family Is Increased in Response to Sequential Inhibition of DNA Methylation and Histone Deacetylation. Biores Open Access 2015; 4:446-56. [PMID: 26634190 PMCID: PMC4657510 DOI: 10.1089/biores.2015.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The genes coding for human (h) chorionic somatomammotropin (CS), hCS-A and hCS-B, and placental growth hormone (GH-V), hGH-V, are located at a single locus on chromosome 17. Efficient expression of these placental genes has been linked to local regulatory (5′ P and 3′ enhancer) sequences and a remote locus control region (LCR), in part, through gene transfer in placental and nonplacental tumor cells. However, low levels of endogenous hCS/GH-V transcripts are reported in the same cells compared with term placenta, suggesting that chromatin structure, or regulatory region accessibility, versus transcription factor availability contributes to the relatively low levels. To assess individual hCS-A, CS-B, and GH-V gene expression in placental and nonplacental tumor cells and the effect of increasing chromatin accessibility by inhibiting DNA methylation and histone deacetylation using 5-aza-2′-deoxycytidine (azadC) and trichostatin A (TSA). Low levels of hCS-A, CS-B, and GH-V were detected in placental and nonplacental tumor cells compared with term placenta. A significant >5-fold increase in activity was seen in placental, but not nonplacental, cells transfected with hybrid hCS promoter luciferase genes containing 3′ enhancer sequences. Pretreatment of placental JEG-3 cells with azadC resulted in a >10-fold increase in hCS-A, CS-B, and GH-V RNA levels with TSA treatment compared with TSA treatment alone. This effect was specific as reversing the treatment regimen did not have the same effect. An assessment of hyperacetylated H3/H4 in JEG-3 cells treated with azadC and TSA versus TSA alone revealed significant increases consistent with a more open chromatin structure, including the hCS 3′ enhancer sequences and LCR. These observations suggest that accessibility of remote and local regulatory regions required for efficient placental hGH/CS expression can be restricted by DNA methylation and histone acetylation status. This includes restricting access of the hCS 3′ enhancer sequences to available placental enhancer transcription factors.
Collapse
Affiliation(s)
- Esha Ganguly
- Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Canada
| | - Margaret E Bock
- Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Canada
| |
Collapse
|
4
|
Characterization of the humanTCAM1Ppseudogene and its activation by a potential dual promoter-enhancer: Comparison with a protein-coding mouse orthologue. FEBS Lett 2015; 589:540-7. [DOI: 10.1016/j.febslet.2015.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/17/2022]
|
5
|
Pillai S, Dasgupta P, Chellappan SP. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 2015; 1288:429-46. [PMID: 25827895 DOI: 10.1007/978-1-4939-2474-5_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies in the past decade have shown that differential gene expression depends not only on the binding of specific transcription factors to discrete promoter elements but also on the epigenetic modification of the DNA as well as histones associated with the promoter. While techniques like electrophoretic mobility shift assays could detect and characterize the binding of specific transcription factors present in cell lysates to DNA sequences in in vitro binding conditions, they were not effective in assessing the binding in intact cells. Development of chromatin immunoprecipitation technique in the past decade enabled the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. ChIP assays can provide a snapshot of how a regulatory transcription factor affects the expression of a single gene, or a variety of genes at the same time. Availability of high quality antibodies that recognizes histones modified in a specific fashion further expanded the use of ChIP assays to analyze even minute changes in histone modification and nucleosomes structure. This chapter outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors as well as histone modifications.
Collapse
Affiliation(s)
- Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
6
|
Vakili H, Jin Y, Cattini PA. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus. J Clin Invest 2014; 124:5002-12. [PMID: 25295535 DOI: 10.1172/jci77126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.
Collapse
|
7
|
Kurihara M, Shiraishi A, Satake H, Kimura AP. A conserved noncoding sequence can function as a spermatocyte-specific enhancer and a bidirectional promoter for a ubiquitously expressed gene and a testis-specific long noncoding RNA. J Mol Biol 2014; 426:3069-93. [PMID: 25020229 DOI: 10.1016/j.jmb.2014.06.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Tissue-specific gene expression is tightly regulated by various elements such as promoters, enhancers, and long noncoding RNAs (lncRNAs). In the present study, we identified a conserved noncoding sequence (CNS1) as a novel enhancer for the spermatocyte-specific mouse testicular cell adhesion molecule 1 (Tcam1) gene. CNS1 was located 3.4kb upstream of the Tcam1 gene and associated with histone H3K4 mono-methylation in testicular germ cells. By the in vitro reporter gene assay, CNS1 could enhance Tcam1 promoter activity only in GC-2spd(ts) cells, which were derived from mouse spermatocytes. When we integrated the 6.9-kb 5'-flanking sequence of Tcam1 with or without a deletion of CNS1 linked to the enhanced green fluorescent protein gene into the chromatin of GC-2spd(ts) cells, CNS1 significantly enhanced Tcam1 promoter activity. These results indicate that CNS1 could function as a spermatocyte-specific enhancer. Interestingly, CNS1 also showed high bidirectional promoter activity in the reporter assay, and consistent with this, the Smarcd2 gene and lncRNA, designated lncRNA-Tcam1, were transcribed from adjacent regions of CNS1. While Smarcd2 was ubiquitously expressed, lncRNA-Tcam1 expression was restricted to testicular germ cells, although this lncRNA did not participate in Tcam1 activation. Ubiquitous Smarcd2 expression was correlated to CpG hypo-methylation of CNS1 and partially controlled by Sp1. However, for lncRNA-Tcam1 transcription, the strong association with histone acetylation and histone H3K4 tri-methylation also appeared to be required. The present data suggest that CNS1 is a spermatocyte-specific enhancer for the Tcam1 gene and a bidirectional promoter of Smarcd2 and lncRNA-Tcam1.
Collapse
Affiliation(s)
- Misuzu Kurihara
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Shiraishi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka 618-8503, Japan
| | - Honoo Satake
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka 618-8503, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan; Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
8
|
Tsai YC, Cooke NE, Liebhaber SA. Tissue specific CTCF occupancy and boundary function at the human growth hormone locus. Nucleic Acids Res 2014; 42:4906-21. [PMID: 24561805 PMCID: PMC4005687 DOI: 10.1093/nar/gku139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The robust and tissue-specific activation of the human growth hormone (hGH) gene cluster in the pituitary and placenta constitutes an informative model for analysis of gene regulation. The five-gene hGH cluster is regulated by two partially overlapping sets of DNase I hypersensitive sites (HSs) that constitute the pituitary (HSI, II, III and V) and placental (HSIII, IV, and V) locus control regions (LCRs). The single placenta-specific LCR component, HSIV, is located at −30 kb to the cluster. Here we generate a series of hGH/BAC transgenes specifically modified to identify structural features of the hGH locus required for its appropriate placental expression. We find that placental specificity is dependent on the overall multigene configuration of the cluster whereas the distance between the cluster and its LCR impacts the level of placental expression. We further observe that a major function of the placental hGH LCR is to insulate the transgene locus from site-of-integration effects. This insulation activity is linked to placenta-specific occupancy of the chromatin architectural protein, CTCF, at HSIV. These data reveal a remarkable combination of structural configurations and regulatory determinants that must work in concert to insure robust and tightly controlled expression from a complex multigene locus.
Collapse
Affiliation(s)
- Yu-Cheng Tsai
- Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
9
|
Distinct chromatin configurations regulate the initiation and the maintenance of hGH gene expression. Mol Cell Biol 2013; 33:1723-34. [PMID: 23428872 DOI: 10.1128/mcb.01166-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many mammalian genes, initiation of transcription during embryonic development must be subsequently sustained over extensive periods of adult life. It remains unclear whether maintenance of gene expression reflects the same set of pathways as are involved in initial gene activation. The human pituitary growth hormone (hGH-N) locus is activated in the differentiating somatotrope midway through embryogenesis by a multicomponent locus control region (LCR). DNase I-hypersensitive site I (HSI) of the LCR is essential to full developmental activation of the hGH-N locus. Here we demonstrate that conditional deletion of HSI from the active hGH locus in the adult pituitary effectively silences hGH-N expression. Analyses of chromatin structure and locus positioning demonstrate that a specific subset of the HSI functions active in the embryo retain their HSI dependence in the adult pituitary. These functions sustain engagement of the hGH locus with polymerase II (Pol II) factories, histone acetylation at the hGH-N promoter, and looping of the LCR to its target promoter. These data reveal that HSI is essential to both the maintenance and the initiation phases of gene expression. These observations contribute to our mechanistic understanding of how stable patterns of mammalian gene expression are established in a terminally differentiated cell.
Collapse
|
10
|
Vakili H, Cattini PA. The hidden but positive role for glucocorticoids in the regulation of growth hormone-producing cells. Mol Cell Endocrinol 2012; 363:1-9. [PMID: 22910554 DOI: 10.1016/j.mce.2012.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/18/2012] [Accepted: 08/01/2012] [Indexed: 11/27/2022]
Abstract
Growth hormone (GH) is a prominent metabolic factor that is targeted by glucocorticoids; however, their role in GH production remains controversial. This is explained in part by discrepancies between in vitro and in vivo, short-term versus long-term exposure and even species-specific effects. The prevailing view, however, is that glucocorticoids are negative modulators of growth and GH production. An examination of recent findings from elegant avian and gene ablation in mice studies as well as clinical case reports, suggests this is not the case. The evidence suggests that the effect of glucocorticoids on growth and GH production can be uncoupled, and reveals they play a crucial and positive role in maturation of functional somatotrophs, the GH-producing cells of the anterior pituitary. Here, we provide an overview and insights into the possible roles of glucocorticoids in the development of somatotrophs before birth as well as regulation of GH production in infancy (neonatal) and adulthood (postnatal). A fully functional glucocorticoid-signaling pathway appears to be required for establishment of somatotrophs before birth, and glucocorticoids continue to be required for maintenance of GH production in the newborn. There is evidence to suggest progenitor somatotrophs may persist after birth, and perhaps account for the ability of glucocorticoid therapy to correct some cases of GH deficiency as a result of compromised glucocorticoid signaling. Finally, there is support for positive regulation of avian, murine and human GH gene activation and/or expression by glucocorticoids, however, there appears to be no common mechanism and the contribution of direct versus indirect effects remains unclear. Thus, our observations reveal a largely hidden face of glucocorticoids, specifically, a positive role in somatotroph development and GH gene activation/expression, which may enable us to better understand the differential effect of glucocorticoids on growth and GH production in human studies.
Collapse
Affiliation(s)
- Hana Vakili
- Department of Physiology, University of Manitoba, Canada.
| | | |
Collapse
|
11
|
Vakili H, Jin Y, Cattini PA. Negative regulation of human growth hormone gene expression by insulin is dependent on hypoxia-inducible factor binding in primary non-tumor pituitary cells. J Biol Chem 2012; 287:33282-92. [PMID: 22833680 DOI: 10.1074/jbc.m112.380949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides -496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides -308/-235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (-264/-259) and investigated whether HIF-1 is associated with insulin regulation of "endogenous" hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.
Collapse
Affiliation(s)
- Hana Vakili
- Department of Physiology, Division of Endocrine and Metabolic diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
12
|
Tam KJ, Watson CT, Massah S, Kolybaba AM, Breden F, Prefontaine GG, Beischlag TV. Regulatory function of conserved sequences upstream of the long-wave sensitive opsin genes in teleost fishes. Vision Res 2011; 51:2295-303. [PMID: 21971525 DOI: 10.1016/j.visres.2011.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022]
Abstract
Vertebrate opsin genes often occur in sets of tandem duplicates, and their expression varies developmentally and in response to environmental cues. We previously identified two highly conserved regions upstream of the long-wave sensitive opsin (LWS) gene cluster in teleosts. This region has since been shown in zebrafish to drive expression of LWS genes in vivo. In order to further investigate how elements in this region control opsin gene expression, we tested constructs encompassing the highly conserved regions and the less conserved portions upstream of the coding sequences in a promoter-less luciferase expression system. A ∼4500 bp construct of the upstream region, including the highly-conserved regions Reg I and Reg II, increased expression 100-fold, and successive 5' deletions reduced expression relative to the full 4.5 Kb region. Gene expression was highest when the transcription factor RORα was co-transfected with the proposed regulatory regions. Because these regions were tested in a promoter-less expression system, they include elements able to initiate and drive transcription. Teleosts exhibit complex color-mediated adaptive behavior and their adaptive significance has been well documented in several species. Therefore these upstream regions of LWS represent a model system for understanding the molecular basis of adaptive variation in gene regulation of color vision.
Collapse
Affiliation(s)
- Kevin J Tam
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | | | |
Collapse
|
13
|
Singh N, Lorbeck MT, Zervos A, Zimmerman J, Elefant F. The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem 2010; 115:493-504. [PMID: 20626565 DOI: 10.1111/j.1471-4159.2010.06892.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The histone acetyltransferase Elp3 (Elongator Protein 3) is the catalytic subunit of the highly conserved Elongator complex. Elp3 is essential for the complex functions of Elongator in both the nucleus and cytoplasm of neurons, including the epigenetic control of neuronal motility genes and the acetylation of α-tubulin that affects axonal branching and cortical neuron migration. Accordingly, misregulation of Elp3 has been implicated in human disorders that specifically affect neuronal function, including familial dysautonomia, a disease characterized by degeneration of the sensory and autonomic nervous system, and the motor neuron degenerative disorder amyotrophic lateral sclerosis. These studies underscore the importance of Elp3 in neurodevelopment and disease, and the need to further characterize the multiple nuclear and cytoplasmic based roles of ELP3 required for neurogenesis in animal models, in vivo. In this report, we investigate the behavioral and morphological consequences that result from targeted reduction of ELP3 specifically in the developing Drosophila nervous system. We demonstrate that loss of Elp3 during neurodevelopment leads to a hyperactive phenotype and sleep loss in the adult flies, a significant expansion in synaptic bouton number and axonal length and branching in the larval neuromuscular junction as well as the misregulation of certain genes known to be involved in these processes. Our results uncover a novel role for Elp3 in the regulation of synaptic bouton expansion during neurogenesis that may be linked with a requirement for sleep.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
14
|
Expression of Pit-1 in nonsomatotrope cell lines induces human growth hormone locus control region histone modification and hGH-N transcription. J Mol Biol 2009; 390:26-44. [PMID: 19427323 DOI: 10.1016/j.jmb.2009.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
The POU domain transcription factor Pit-1 is expressed in somatotropes, lactotropes, and thyrotropes of the anterior pituitary. Pit-1 is essential for the establishment of these lineages during development and regulates the expression of genes encoding the peptide hormones secreted by each cell type, including the growth hormone gene expressed in somatotropes. In contrast to rodent growth hormone loci, the human growth hormone (hGH) locus is regulated by a distal locus control region (LCR), which is required in cis for the proper expression of the hGH gene cluster in transgenic mice. The hGH LCR mediates a domain of histone acetylation targeted to the hGH locus that is associated with distal hGH-N activation, and the discrete determinants of this activity coincide with DNaseI hypersensitive site (HS) I of the LCR. The identification of three in vitro Pit-1 binding sites within the HS-I region suggested a model in which Pit-1 binding at HS-I initiates the chromatin modification mechanism associated with hGH LCR activity. To test this hypothesis directly and to determine whether Pit-1 expression is sufficient to confer hGH locus histone acetylation and activate hGH-N transcription from an inactive locus, we expressed Pit-1 in nonpituitary cell types. We show that Pit-1 expression established a domain of histone hyperacetylation at the LCR and hGH-N promoter in these cells similar to that observed in pituitary chromatin. This was accompanied by the activation of hGH-N transcription and an increase in intergenic and CD79b transcripts proximal to HS-I. These effects were coincident with Pit-1 occupancy at HS-I and the hGH-N promoter and were observed irrespective of the basal histone modification status of HS-I in the heterologous cell line. These findings are consistent with a role for Pit-1 as an initiating factor in hGH locus activation during somatotrope ontogeny, acting through binding sites at HS-I of the hGH LCR.
Collapse
|
15
|
Pillai S, Dasgupta P, Chellappan SP. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 2009; 523:323-39. [PMID: 19381928 DOI: 10.1007/978-1-59745-190-1_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies in the past decade have shown that differential gene expression depends not only on the binding of specific transcription factors to discrete promoter elements but also on the epigenetic modification of the DNA as well as histones associated with the promoter. While techniques like electrophoretic mobility shift assays could detect and characterize the binding of specific transcription factors present in cell lysates to DNA sequences in in vitro binding conditions, they were not effective in assessing the binding in intact cells. Development of chromatin immunoprecipitation technique in the past decade enabled the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. ChIP assays can provide a snapshot of how a regulatory transcription factor affects the expression of a single gene or a variety of genes at the same time. Availability of high-quality antibodies that recognizes histones modified in a specific fashion further expanded the use of ChIP assays to analyze even minute changes in histone modification and nucleosomes structure. This chapter outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors as well as histone modifications.
Collapse
Affiliation(s)
- Smitha Pillai
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | |
Collapse
|
16
|
Li YJ, Wei YS, Fu XH, Hao DL, Xue Z, Gong H, Zhang ZQ, Liu DP, Liang CC. The apolipoprotein CIII enhancer regulates both extensive histone modification and intergenic transcription of human apolipoprotein AI/CIII/AIV genes but not apolipoprotein AV. J Biol Chem 2008; 283:28436-44. [PMID: 18678879 DOI: 10.1074/jbc.m710289200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The apolipoprotein (apo) AI/CIII/AIV/AV cluster genes are expressed at different levels in the liver and intestine. The apoCIII enhancer, a common regulatory element, regulates the tissue-specific expression of apoAI, apoCIII, and apoAIV but not apoAV. To study this regulation at the chromatin level, the histone modifications and intergenic transcription in the human apoAI/CIII/AIV/AV cluster were investigated in HepG2 and Caco-2 cells and in the livers of transgenic mice carrying the human gene cluster constructs with or without the apoCIII enhancer. We found that both the promoters and the intergenic regions of the apoAI/CIII/AIV genes were hyperacetylated and formed an open subdomain that did not include the apoAV gene. Hepatic and intestinal intergenic transcripts were identified to transcribe bidirectionally with strand preferences along the cluster. The deletion of the apoCIII enhancer influenced both histone modification and intergenic transcription in the apoAI/CIII/AIV gene region. These results demonstrate that the apoCIII enhancer contributes to the maintenance of an active chromatin subdomain of the apoAI/CIII/AIV genes, but not apoAV.
Collapse
Affiliation(s)
- Ya-Jun Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ho Y, Tadevosyan A, Liebhaber SA, Cooke NE. The juxtaposition of a promoter with a locus control region transcriptional domain activates gene expression. EMBO Rep 2008; 9:891-8. [PMID: 18636089 DOI: 10.1038/embor.2008.126] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 05/29/2008] [Accepted: 06/09/2008] [Indexed: 12/27/2022] Open
Abstract
Nonlinear chromatin configurations can juxtapose widely separated elements within a genomic locus; however, it remains unclear how these structures are established and contribute to transcriptional control. A 5'-remote locus control region (LCR) regulates the human growth hormone (hGH-N) gene. HSI, a pituitary-specific component of the hGH LCR, establishes a domain of polymerase II (PolII) transcription 5' to hGH-N. Repression of this transcriptional domain by HSI deletion or PolII blockade decreases hGH-N expression. Here, we show that hGH-N activation is accompanied by positioning of the hGH-N promoter to this LCR transcriptional domain. Selectively blocking LCR transcription inhibits the formation of this active 'looped' conformation. Thus, HSI is crucial for establishing a domain of noncoding PolII transcription, and this domain is intimately linked with chromatin organization of the active hGH-N locus. This integration of LCR transcription with chromatin reconfiguration constitutes a robust pathway for long-range gene activation.
Collapse
Affiliation(s)
- Yugong Ho
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
18
|
Dasgupta P, Chellappan SP. Chromatin immunoprecipitation assays: molecular analysis of chromatin modification and gene regulation. Methods Mol Biol 2008; 383:135-52. [PMID: 18217683 DOI: 10.1007/978-1-59745-335-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Gene expression pattern in cancer cells differ significantly from their normal counter parts, owing to mutations in oncogenes and tumor suppressor genes, their downstream targets, or owing to increased proliferation, and altered apoptotic potential. Various microarray based techniques have been widely utilized to study the differential expression of genes in cancer in recent years. Along with this, attempts have been made to study the transcriptional regulatory mechanisms and chromatin modifications facilitating such differential gene expression. One of the widely used assays for this purpose is the chromatin immunoprecipitation (ChIP) assay, which enables the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. This has been of immense value, because ChIP assays can provide a snapshot of the regulatory mechanisms involved in the expression of a single gene, or a variety of genes at the same time. This review article outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors, based on the experience in studying E2F1 and histone modifications as well as other published protocols. In addition, the use of ChIP assays to carry out global analysis of transcription factor recruitment is also addressed.
Collapse
Affiliation(s)
- Piyali Dasgupta
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
19
|
Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 2008; 91:243-8. [DOI: 10.1016/j.ygeno.2007.11.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/09/2007] [Accepted: 11/10/2007] [Indexed: 02/03/2023]
|
20
|
Kimura AP, Sizova D, Handwerger S, Cooke NE, Liebhaber SA. Epigenetic activation of the human growth hormone gene cluster during placental cytotrophoblast differentiation. Mol Cell Biol 2007; 27:6555-68. [PMID: 17636034 PMCID: PMC2099626 DOI: 10.1128/mcb.00273-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hGH cluster contains a single human pituitary growth hormone gene (hGH-N) and four placenta-specific paralogs. Activation of the cluster in both tissues depends on 5' remote regulatory elements. The pituitary-specific locus control elements DNase I-hypersensitive site I (HSI) and HSII, located 14.5 kb 5' of the cluster (position -14.5), establish a continuous domain of histone acetylation that extends to and activates hGH-N in the pituitary gland. In contrast, histone modifications in placental chromatin are restricted to the more 5'-remote HSV-HSIII region (kb -28 to -32) and to the placentally expressed genes in the cluster, with minimal modification between these two regions. These data predict distinct modes of hGH cluster gene activation in the pituitary and placenta. Here we used cell culture models to track structural changes at the hGH locus through placental-gene activation. The data revealed that this process was initiated in primary cytotrophoblasts by histone H3K4 di- and trimethylation and H4 acetylation restricted to HSV and to the individual placental-gene repeat (PGR) units within the cluster. Later stages of transcriptional induction were accompanied by enhancement and extension of these modifications and by robust H3 acetylation at HSV, at HSIII, and throughout the placental-gene regions. These data suggested that elements restricted to HSIII-HSV regions and each individual PGR might be sufficient for activation of the hCS genes. This model was tested by comparing hCS transgene expression in the placentas of mouse embryos carrying a full hGH cluster to that in placentas in which the HSIII-HSV region was directly linked to the individual hCS-A PGR unit. The findings indicate that the HSIII-HSV region and the PGR units, although targeted for initial chromatin structural modifications, are insufficient to activate gene expression and that this process is dependent on additional, as-yet-unidentified chromatin determinants.
Collapse
Affiliation(s)
- Atsushi P Kimura
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Razin SV, Iarovaia OV, Sjakste N, Sjakste T, Bagdoniene L, Rynditch AV, Eivazova ER, Lipinski M, Vassetzky YS. Chromatin domains and regulation of transcription. J Mol Biol 2007; 369:597-607. [PMID: 17466329 DOI: 10.1016/j.jmb.2007.04.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/27/2007] [Accepted: 04/02/2007] [Indexed: 12/20/2022]
Abstract
Compartmentalization and compaction of DNA in the nucleus is the characteristic feature of eukaryotic cells. A fully extended DNA molecule has to be compacted 100,000 times to fit within the nucleus. At the same time it is critical that various DNA regions remain accessible for interaction with regulatory factors and transcription/replication factories. This puzzle is solved at the level of DNA packaging in chromatin that occurs in several steps: rolling of DNA onto nucleosomes, compaction of nucleosome fiber with formation of the so-called 30 nm fiber, and folding of the latter into the giant (50-200 kbp) loops, fixed onto the protein skeleton, the nuclear matrix. The general assumption is that DNA folding in the cell nucleus cannot be uniform. It has been known for a long time that a transcriptionally active chromatin fraction is more sensitive to nucleases; this was interpreted as evidence for the less tight compaction of this fraction. In this review we summarize the latest results on structure of transcriptionally active chromatin and the mechanisms of transcriptional regulation in the context of chromatin dynamics. In particular the significance of histone modifications and the mechanisms controlling dynamics of chromatin domains are discussed as well as the significance of spatial organization of the genome for functioning of distant regulatory elements.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhu X, Singh N, Donnelly C, Boimel P, Elefant F. The cloning and characterization of the histone acetyltransferase human homolog Dmel\TIP60 in Drosophila melanogaster: Dmel\TIP60 is essential for multicellular development. Genetics 2007; 175:1229-40. [PMID: 17179074 PMCID: PMC1840084 DOI: 10.1534/genetics.106.063685] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 12/14/2006] [Indexed: 11/18/2022] Open
Abstract
Chromatin packaging directly influences gene programming as it permits only certain portions of the genome to be activated in any given developmental stage, cell, and tissue type. Histone acetyltransferases (HATs) are a key class of chromatin regulatory proteins that mediate such developmental chromatin control; however, their specific roles during multicellular development remain unclear. Here, we report the first isolation and developmental characterization of a Drosophila HAT gene (Dmel\TIP60) that is the homolog of the human HAT gene TIP60. We show that Dmel\TIP60 is differentially expressed during Drosophila development, with transcript levels significantly peaking during embryogenesis. We further demonstrate that reducing endogenous Dmel\TIP60 expression in Drosophila embryonic cells by RNAi results in cellular defects and lethality. Finally, using a GAL4-targeted RNAi system in Drosophila, we show that ubiquitous or mesoderm/muscle-specific reduction of Dmel\TIP60 expression results in lethality during fly development. Our results suggest a mechanism for HAT regulation involving developmental control of HAT expression profiles and show that Dmel\TIP60 is essential for multicellular development. Significantly, our inducible and targeted HAT knockdown system in Drosophila now provides a powerful tool for effectively studying the roles of TIP60 in specific tissues and cell types during development.
Collapse
Affiliation(s)
- Xianmin Zhu
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania 19104
| | | | | | | | | |
Collapse
|
23
|
Kim A, Zhao H, Ifrim I, Dean A. Beta-globin intergenic transcription and histone acetylation dependent on an enhancer. Mol Cell Biol 2007; 27:2980-6. [PMID: 17283048 PMCID: PMC1899946 DOI: 10.1128/mcb.02337-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone acetyltransferases are associated with the elongating RNA polymerase II (Pol II) complex, supporting the idea that histone acetylation and transcription are intertwined mechanistically in gene coding sequences. Here, we studied the establishment and function of histone acetylation and transcription in noncoding sequences by using a model locus linking the beta-globin HS2 enhancer and the embryonic epsilon-globin gene in chromatin. An intact HS2 enhancer that recruits RNA Pol II is required for intergenic transcription and histone H3 acetylation and K4 methylation between the enhancer and target gene. RNA Pol II recruitment to the target gene TATA box is not required for the intergenic transcription or intergenic histone modifications, strongly implying that they are properties conferred by the enhancer. However, Pol II recruitment at HS2, intergenic transcription, and intergenic histone modification are not sufficient for transcription or modification of the target gene: these changes require initiation at the TATA box of the gene. The results suggest that intergenic and genic transcription complexes are independent and possibly differ from one another.
Collapse
Affiliation(s)
- Aeri Kim
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
24
|
Shewchuk BM, Ho Y, Liebhaber SA, Cooke NE. A single base difference between Pit-1 binding sites at the hGH promoter and locus control region specifies distinct Pit-1 conformations and functions. Mol Cell Biol 2006; 26:6535-46. [PMID: 16914737 PMCID: PMC1592842 DOI: 10.1128/mcb.00267-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of the human growth hormone (hGH-N) gene in pituitary somatotropes is mediated by a locus control region (LCR). This LCR is composed of DNase I-hypersensitive sites (HS) located -14.5 kb to -32 kb relative to the hGH-N promoter. HSI, at -14.5 kb, is the dominant determinant of hGH-N expression and is essential for establishment of a 32-kb domain of histone acetylation that encompasses the active hGH locus. This activity is conferred by three binding sites for the POU domain transcription factor Pit-1. These Pit-1 elements are sufficient to activate hGH-N expression in the mouse pituitary. In contrast, Pit-1 sites at the hGH-N promoter are consistently unable to mediate similar activity. In the present study, we demonstrate that the functional difference between the promoter-proximal and the HSI Pit-1 binding sites can be attributed in part to a single base difference. This base affects the conformation of the Pit-1/DNA complex, and reciprocal exchange of the divergent bases between the two sets of Pit-1 elements results in a partial reversal of their transgenic activities. These data support a model in which the Pit-1 binding sites in the hGH LCR allosterically program the bound Pit-1 complex for chromatin activating functions.
Collapse
Affiliation(s)
- Brian M Shewchuk
- University of Pennsylvania School of Medicine, 415 Curie Blvd., Philadelphia, PA 19103, USA
| | | | | | | |
Collapse
|
25
|
Ho Y, Elefant F, Liebhaber SA, Cooke NE. Locus control region transcription plays an active role in long-range gene activation. Mol Cell 2006; 23:365-75. [PMID: 16885026 DOI: 10.1016/j.molcel.2006.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/09/2006] [Accepted: 05/31/2006] [Indexed: 11/19/2022]
Abstract
Activation of eukaryotic genes often relies on remote chromatin determinants. How these determinants function remains poorly understood. The hGH gene is activated by a 5'-remote locus control region (LCR). Pituitary-specific DNase I hypersensitive site I (HSI), the dominant hGH LCR element, is separated from the hGH-N promoter by a 14.5 kb span that encompasses the B-lymphocyte-specific CD79b gene. Here, we describe a domain of noncoding Pol II transcription in pituitary somatotropes that includes the hGH LCR and adjacent CD79b locus. This entire "LCR domain of transcription" is HSI [corrected] dependent and terminates 3' to CD79b, leaving a gap in transcription between this domain and the target hGH-N promoter. Insertion of a Pol II terminator within the LCR blocks CD79b transcription and represses hGH-N expression. These data document an essential role for LCR transcription in long-range control, link "bystander"CD79b transcription to this process, and support a unique model for locus activation.
Collapse
Affiliation(s)
- Yugong Ho
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
26
|
Yoo EJ, Cajiao I, Kim JS, Kimura AP, Zhang A, Cooke NE, Liebhaber SA. Tissue-specific chromatin modifications at a multigene locus generate asymmetric transcriptional interactions. Mol Cell Biol 2006; 26:5569-79. [PMID: 16847312 PMCID: PMC1592780 DOI: 10.1128/mcb.00405-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Random assortment within mammalian genomes juxtaposes genes with distinct expression profiles. This organization, along with the prevalence of long-range regulatory controls, generates a potential for aberrant transcriptional interactions. The human CD79b/GH locus contains six tightly linked genes with three mutually exclusive tissue specificities and interdigitated control elements. One consequence of this compact organization is that the pituitary cell-specific transcriptional events that activate hGH-N also trigger ectopic activation of CD79b. However, the B-cell-specific events that activate CD79b do not trigger reciprocal activation of hGH-N. Here we utilized DNase I hypersensitive site mapping, chromatin immunoprecipitation, and transgenic models to explore the basis for this asymmetric relationship. The results reveal tissue-specific patterns of chromatin structures and transcriptional controls at the CD79b/GH locus in B cells distinct from those in the pituitary gland and placenta. These three unique transcriptional environments suggest a set of corresponding gene expression pathways and transcriptional interactions that are likely to be found juxtaposed at multiple sites within the eukaryotic genome.
Collapse
Affiliation(s)
- Eung Jae Yoo
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Blvd., 428 Clinical Research Building, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Calestagne-Morelli A, Ausió J. Long-range histone acetylation: biological significance, structural implications, and mechanismsThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2006; 84:518-27. [PMID: 16936824 DOI: 10.1139/o06-067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genomic characterization of various euchromatic regions in higher eukaryotes has revealed that domain-wide hyperacetylation (over several kb) occurs at a range of loci, including individual genes, gene family clusters, compound clusters, and more general clusters of unrelated genes. Patterns of long-range histone hyperacetylation are strictly conserved within each unique cellular system studied and they reflect biological variability in gene regulation. Domain-wide histone acetylation consists generally of nonuniform peaks of enriched hyperacetylation of specific core histones, histone isoforms, and (or) histone variants against a backdrop of nonspecific acetylation across the domain in question. Here we review the characteristics of long-range histone acetylation in some higher eukaryotes and draw special attention to recent literature on the multiple effects that histone hyperacetylation has on chromatin’s structural integrity and how they affect transcription. These include the thermal, ionic, cumulative, and isoform-specific (H4 K16) consequences of acetylation that result in a more dynamic core complex and chromatin fiber.
Collapse
Affiliation(s)
- Alison Calestagne-Morelli
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 220, Victoria, BC V8W 3P6, Canada
| | | |
Collapse
|
28
|
Zhao H, Kim A, Song SH, Dean A. Enhancer blocking by chicken beta-globin 5'-HS4: role of enhancer strength and insulator nucleosome depletion. J Biol Chem 2006; 281:30573-80. [PMID: 16877759 DOI: 10.1074/jbc.m606803200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-HS4 chicken beta-globin insulator functions as a positional enhancer blocker on chromatinized episomes in human cells, blocking the HS2 enhancer of the human beta-globin locus control region from activating a downstream epsilon-globin gene. 5'-HS4 interrupted formation of a domain of histone H3 and H4 acetylation encompassing the 6-kb minilocus and inhibited transfer of RNA polymerase from the enhancer to the gene promoter. We found that the enhancer blocking phenotype was amplified when the insulated locus contained a weakened HS2 enhancer in which clustered point mutations eliminated interaction of the transcription factor GATA-1. The GATA-1 mutation compromised recruitment of histone acetyltransferases and RNA polymerase II to HS2. Enhancer blocking correlated with a significant depletion of nucleosomes in the core region of the insulator as revealed by micrococcal nuclease and DNase I digestion studies. Nucleosome depletion at 5'-HS4 was dependent on interaction of the insulator protein CCCTC-binding factor (CTCF) and was required for enhancer blocking. These findings provide evidence that a domain of active chromatin is formed by spreading from an enhancer to a target gene and can be blocked by a nucleosome-free gap in an insulator.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
29
|
Trujillo MA, Sakagashira M, Eberhardt NL. The human growth hormone gene contains a silencer embedded within an Alu repeat in the 3'-flanking region. Mol Endocrinol 2006; 20:2559-75. [PMID: 16762973 DOI: 10.1210/me.2006-0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alu family sequences are middle repetitive short interspersed elements (SINEs) dispersed throughout vertebrate genomes that can modulate gene transcription. The human (h) GH locus contains 44 complete and four partial Alu elements. An Sx Alu repeat lies in close proximity to the hGH-1 and hGH-2 genes in the 3'-flanking region. Deletion of the Sx Alu repeat in reporter constructs containing hGH-1 3'-flanking sequences increased reporter activity in transfected pituitary GC cells, suggesting this region contained a repressor element. Analysis of multiple deletion fragments from the 3'-flanking region of the hGH-1 gene revealed a strong orientation- and position-independent silencing activity mapping between nucleotides 2158 and 2572 encompassing the Sx Alu repeat. Refined mapping revealed that the silencer was a complex element comprising four discrete entities, including a core repressor domain (CRD), an antisilencer domain (ASE) that contains elements mediating the orientation-independent silencer activity, and two domains flanking the CRD/ASE that modulate silencer activity in a CRD-dependent manner. The upstream modulator domain is also required for orientation-independent silencer function. EMSA with DNA fragments representing all of the silencer domains yielded a complex pattern of DNA-protein interactions indicating that numerous GC cell nuclear proteins bind specifically to the CRD, ASE, and modulator domains. The silencer is GH promoter dependent and, in turn, its presence decreases the rate of promoter-associated histone acetylation resulting in a significant decrease of RNA polymerase II recruitment to the promoter. The silencer may provide for complex regulatory control of hGH gene expression in pituitary cells.
Collapse
Affiliation(s)
- Miguel A Trujillo
- Department of Medicine, Mayo Clinic/Mayo Foundation Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
30
|
Hiroki T, Song YH, Liebhaber SA, Cooke NE. The human vitamin D-binding protein gene contains locus control determinants sufficient for autonomous activation in hepatic chromatin. Nucleic Acids Res 2006; 34:2154-65. [PMID: 16648359 PMCID: PMC1450336 DOI: 10.1093/nar/gkl174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/08/2006] [Accepted: 03/20/2006] [Indexed: 11/14/2022] Open
Abstract
The human vitamin D-binding protein (hDBP) gene is a member of a cluster that includes albumin, alpha-fetoprotein and alpha-albumin genes. The common origin, physical linkage and hepatic expression of these four genes predict shared regulatory element(s). However, separation of hDBP from the other three genes by 1.5 Mb argues that hDBP may be under autonomous control. To test for hDBP autonomy, mouse lines were generated with a transgene containing the hDBP gene along with extensive flanking sequences. Expression of this transgene was hepatic, robust and proportional to transgene copy number. DNase I hypersensitive site (HS) mapping revealed five liver-specific HS at the hDBP locus: HSI and HSIII at -2.1 kb and -0.13 kb upstream of the transcription initiation site, HSIV and HSV within intron 1 and HSVII located 3' to the poly(A) site. A second transgene with minimal flanking sequences confirmed the sufficiency of these gene-proximal determinants for hepatic activation. The hepatic-specific HS aligned with segments of phylogenetically conserved non-coding sequences. These data demonstrate the autonomy of the hDBP locus and suggest that this control is mediated by chromatin-based locus control determinants in close proximity to, and within the transcription unit.
Collapse
Affiliation(s)
- Tomoko Hiroki
- Departments of Medicine and Genetics, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Young-Han Song
- Departments of Medicine and Genetics, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Stephen A. Liebhaber
- Departments of Medicine and Genetics, University of PennsylvaniaPhiladelphia, PA 19104, USA
| | - Nancy E. Cooke
- Departments of Medicine and Genetics, University of PennsylvaniaPhiladelphia, PA 19104, USA
| |
Collapse
|
31
|
Abstract
Enhancers can activate their target genes over large linear distances. Insulators can delimit the influence of an enhancer to an appropriate target. There are a number of intertwined mechanisms by which the regulatory functions of enhancers and insulators might be carried out at the level of the chromatin fiber. Recent evidence suggests that both enhancers and insulators participate in higher-order organization of chromatin in the nucleus and in localization of their regulated sequences to both subnuclear structures and compartments. Novel experimental approaches are helping to reveal the mechanisms underlying nuclear organization of developmentally regulated genes.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Abstract
A small but growing number of loci that exhibit covalent histone modifications, such as hyperacetylation, over broad regions of 10 kb or more have been characterized. These hyperacetylated domains occur exclusively at loci containing highly expressed, tissue-specific genes, and the available evidence suggests that they are involved in the activation of these genes. Although to date little is known concerning the formation or function of these domains, rather more is known concerning repressive, heterochromatic domains, and the example provided by heterochromatin may be instructive in considering mechanisms of active domain formation.
Collapse
Affiliation(s)
- Michael Bulger
- Center for Pediatric Biomedical Research and Department of Biochemistry and Biophysics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
33
|
Kalmykova AI, Nurminsky DI, Ryzhov DV, Shevelyov YY. Regulated chromatin domain comprising cluster of co-expressed genes in Drosophila melanogaster. Nucleic Acids Res 2005; 33:1435-44. [PMID: 15755746 PMCID: PMC1062873 DOI: 10.1093/nar/gki281] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recently, the phenomenon of clustering of co-expressed genes on chromosomes was discovered in eukaryotes. To explore the hypothesis that genes within clusters occupy shared chromatin domains, we performed a detailed analysis of transcription pattern and chromatin structure of a cluster of co-expressed genes. We found that five non-homologous genes (Crtp, Yu, CK2betates, Pros28.1B and CG13581) are expressed exclusively in Drosophila melanogaster male germ-line and form a non-interrupted cluster in the 15 kb region of chromosome 2. The cluster is surrounded by genes with broader transcription patterns. Analysis of DNase I sensitivity revealed 'open' chromatin conformation in the cluster and adjacent regions in the male germ-line cells, where all studied genes are transcribed. In contrast, in somatic tissues where the cluster genes are silent, the domain of repressed chromatin encompassed four out of five cluster genes and an adjacent non-cluster gene CG13589 that is also silent in analyzed somatic tissues. The fifth cluster gene (CG13581) appears to be excluded from the chromatin domain occupied by the other four genes. Our results suggest that extensive clustering of co-expressed genes in eukaryotic genomes does in general reflect the domain organization of chromatin, although domain borders may not exactly correspond to the margins of gene clusters.
Collapse
Affiliation(s)
| | - Dmitry I. Nurminsky
- Department of Anatomy and Cell Biology, Tufts University School of MedicineBoston, MA 02111, USA
| | | | - Yuri Y. Shevelyov
- To whom correspondence should be addressed. Tel: +7 095 1960809; Fax: +7 095 1960221;
| |
Collapse
|
34
|
Matsudo H, Osano K, Arakawa H, Ono M. Effect of deletion of the DNase I hypersensitive sites on the transcription of chicken Ig-beta gene and on the maintenance of active chromatin state in the Ig-beta locus. FEBS J 2005; 272:422-32. [PMID: 15654880 DOI: 10.1111/j.1742-4658.2004.04482.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of DNase I hypersensitive sites (DHSs) in transcription of the B cell-specific Ig-beta gene and in maintenance of active chromatin state in the Ig-beta locus were examined. A total of 10 DHSs were divided into four regions, and each region was deleted separately in chicken B lymphocyte-derived DT40 cells. Deletion of three DHSs located between the Ig-beta promoter and its upstream Na channelgene, resulted in the absence of Ig-beta mRNA. Three regions except the region in the Na channel gene were involved in the transcription of Ig-beta gene. The enhancing activity of DHSs as determined by transient transfection assays did not always correlate with the effect of DHS deletion on the expression level of Ig-beta mRNA. In each deletion, cells contained the same DHSs as observed in the predeletion cells, indicating that deleted DHSs did not participate in the maintenance of DT40-specific DHSs. Enhanced acetylation of H3 and H4 histones at the Ig-beta promoter and at DT40-specific DHSs was observed in cells in which DHSs between the Na channel gene and Ig-beta promoter were deleted; therefore, these DHSs are prerequisite for transcription of the Ig-beta gene but not required for the maintenance of active chromatin state in the Ig-beta locus. Thus, epigenetic factors required for the maintenance of the active chromatin state are suggested to reside in other regions than those deleted in this study.
Collapse
Affiliation(s)
- Hiroki Matsudo
- Department of Life Science, and Frontier Project Life's Adaptation Strategies to Environmental Changes, Rikkyo University, College of Science, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
35
|
Krawczyk M, Peyraud N, Rybtsova N, Masternak K, Bucher P, Barras E, Reith W. Long distance control of MHC class II expression by multiple distal enhancers regulated by regulatory factor X complex and CIITA. THE JOURNAL OF IMMUNOLOGY 2004; 173:6200-10. [PMID: 15528357 DOI: 10.4049/jimmunol.173.10.6200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class II (MHC-II) genes are regulated by an enhanceosome complex containing two gene-specific transcription factors, regulatory factor X complex (RFX) and CIITA. These factors assemble on a strictly conserved regulatory module (S-X-X2-Y) found immediately upstream of the promoters of all classical and nonclassical MHC-II genes as well as the invariant chain (Ii) gene. To identify new targets of RFX and CIITA, we developed a computational approach based on the unique and highly constrained architecture of the composite S-Y motif. We identified six novel S'-Y' modules situated far away from the promoters of known human RFX- and CIITA-controlled genes. Four are situated at strategic positions within the MHC-II locus, and two are found within the Ii gene. These S'-Y' modules function as transcriptional enhancers, are bona fide targets of RFX and CIITA in B cells and IFN-gamma-induced cells, and induce broad domains of histone hyperacetylation. These results reveal a hitherto unexpected level of complexity involving long distance control of MHC-II expression by multiple distal regulatory elements.
Collapse
Affiliation(s)
- Michal Krawczyk
- University of Geneva Medical School, Centre Médical Universitaire, 1 rue Michel-Servet, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Cajiao I, Zhang A, Yoo EJ, Cooke NE, Liebhaber SA. Bystander gene activation by a locus control region. EMBO J 2004; 23:3854-63. [PMID: 15359275 PMCID: PMC522784 DOI: 10.1038/sj.emboj.7600365] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 07/21/2004] [Indexed: 12/29/2022] Open
Abstract
Random assortment of genes within mammalian genomes establishes the potential for interference between neighboring genes with distinct transcriptional specificities. Long-range transcriptional controls further increase this potential. Exploring this problem is of fundamental importance to understanding gene regulation. In the human genome, the Igbeta (CD79b) gene is situated between the pituitary-specific human growth hormone (hGH) gene and its locus control region (hGH LCR). Igbeta protein is considered B-cell specific; its only known role is in B-cell receptor signaling. Unexpectedly, we found that hIgbeta is transcribed at high levels in the pituitary. This Igbeta transcription is dependent on pituitary-specific epigenetic modifications generated by the hGH LCR. In contrast, expression of Igbeta at its native site in B cells is independent of hGH LCR activity. These studies demonstrated that a gene with tissue-restricted transcriptional determinants (B cell) can be robustly activated in an unrelated tissue (pituitary) due to fortuitous positioning within an active chromatin domain. This 'bystander' gene activation pathway impacts on current concepts of tissue specificity and models of active chromatin domains.
Collapse
Affiliation(s)
- Isabela Cajiao
- Departments of Genetics and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Aiwen Zhang
- Departments of Genetics and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Eung Jae Yoo
- Departments of Genetics and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Nancy E Cooke
- Departments of Genetics and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stephen A Liebhaber
- Departments of Genetics and Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Genetics, 428 Clinical Research Building, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA. Tel.: +1 215 898 7834; Fax: +1 215 573 5157; E-mail:
| |
Collapse
|
37
|
Patrone L, Henson SE, Wall R, Malone CS. A conserved sequence upstream of the B29 (Ig beta, CD79b) gene interacts with YY1. Mol Biol Rep 2004; 31:1-11. [PMID: 15040449 DOI: 10.1023/b:mole.0000013489.04734.5e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human, murine, and rat B29 (Ig beta, CD79b) genes are highly conserved in sequence and organization and exhibit strict B cell-specific expression. In the human and rat genomes, the B29 gene is located between the skeletal muscle-specific Na-channel alpha subunit (SCN4A) gene and the pituitary-specific growth hormone (GH-N) gene. The human pituitary-specific GH-N gene is controlled by a tissue-specific locus control region (LCR) located just upstream of the B29 promoter that mediates tissue-specific enhancement, histone acetylation, and an open chromatin conformation across the B29 gene in growth hormone (GH)-expressing pituitary cells. Here we show that B29 mRNA is not detected in a GH-expressing pituitary cell line and that GH-N mRNA is not detected in B cells. This differential expression suggests that the B29 gene is insulated or otherwise protected from the regulatory influences of the closely proximal GH LCR. We searched available sequences upstream of the human, mouse, and rat B29 genes and found a highly conserved sequence that fulfills the criteria recently established for non-coding DNA elements potentially involved in gene control. This B29 conserved sequence (BCS) bound ubiquitously expressed nuclear protein complexes. DNase I protection analysis of the BCS revealed a central 'footprinted' core which was confirmed to bind the multifunctional transcription factor, YY1. However, neither the BCS nor the YY1-binding core motif exhibited silencer or enhancer activity in transient transfections or position-independent insulator activity in enhancer-blocking assays. Thus, the BCS may function as a tissue-specific LCR or position-dependent insulator specifically countering the influences of the 5' GH LCR and controlling B29 gene expression.
Collapse
Affiliation(s)
- Lisa Patrone
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
38
|
Guyot B, Valverde-Garduno V, Porcher C, Vyas P. Deletion of the major GATA1 enhancer HS 1 does not affect eosinophil GATA1 expression and eosinophil differentiation. Blood 2004; 104:89-91. [PMID: 15016648 DOI: 10.1182/blood-2004-01-0108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractExpression of the myeloid transcription factor GATA1 is required for early stages of eosinophil differentiation. Defining mechanisms regulating eosinophil GATA1 expression will be important to understand development of this lineage. However, the cis-elements required for eosinophil GATA1 expression are not fully characterized. Previous work identified HS 1 as a major GATA1 enhancer, but its role in eosinophil GATA1 expression is unclear. Here, we show that mouse HS 1 deletion leaves eosinophil GATA1 mRNA expression and eosinophil differentiation unaffected. Chromatin isolated from eosinophils and encompassing HS 1 is weakly enriched for acetylated histones H3/H4. HS 1 deletion does not alter eosinophil GATA1 locus histone acetylation. In eosinophils, GATA1 and CCAAT/enhancer binding protein ϵ (C/EBPϵ) do not bind HS 1 but bind selectively a cis-element in the first GATA1 intron. Thus, HS 1 is not required for eosinophil GATA1 expression. Instead, this study suggests a previously unsuspected role for the GATA1 intron element for this function.
Collapse
Affiliation(s)
- Boris Guyot
- Department of Haematology, Weatherall Institute of Molecular Medicine, Oxford Radcliffe Hospital, United Kingdom
| | | | | | | |
Collapse
|
39
|
Zhou W, Chang S, Aune TM. Long-range histone acetylation of the Ifng gene is an essential feature of T cell differentiation. Proc Natl Acad Sci U S A 2004; 101:2440-5. [PMID: 14983028 PMCID: PMC356969 DOI: 10.1073/pnas.0306002101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone acetylation of promoters precedes activation of many genes. In addition, long-range histone acetylation patterns can be established over many kilobases of the chromatin of linked families of genes that are under common transcriptional control. It is not known whether establishment of long-range histone acetylation patterns is limited to gene families or is a common feature of many genes. The Ifng gene is not known to be a member of a gene family but exhibits complex strain-, cell lineage-, and stimulus-dependent regulation. For example, stimulation of naive T cells through their antigen receptor does not initiate Ifng gene transcription. However, stimulation of naive T cells through their antigen and IL-12 receptors initiates differentiation programs that yield effector cells with 100-fold greater rates of transcription of the Ifng gene after stimulation through the antigen receptor. Here, we demonstrate that these differentiation programs establish long-range histone hyperacetylation patterns that extend at least 50 kb in both upstream and downstream directions of the Ifng gene. Establishment of these histone acetylation patterns and Ifng gene expression is relatively IL-12-independent in T cells from autoimmune-prone nonobese diabetic mice. These results indicate that gene expression programs that mediate T cell differentiation are regulated by long-range histone acetylation patterns and that defective control of these patterns may contribute to development of autoimmunity.
Collapse
Affiliation(s)
- Weisong Zhou
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
40
|
Razin SV, Farrell CM, Recillas-Targa F. Genomic domains and regulatory elements operating at the domain level. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:63-125. [PMID: 12921236 DOI: 10.1016/s0074-7696(03)01002-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The sequencing of the complete genomes of several organisms, including humans, has so far not contributed much to our understanding of the mechanisms regulating gene expression in the course of realization of developmental programs. In this so-called "postgenomic" era, we still do not understand how (if at all) the long-range organization of the genome is related to its function. The domain hypothesis of the eukaryotic genome organization postulates that the genome is subdivided into a number of semiindependent functional units (domains) that may include one or several functionally related genes, with these domains having well-defined borders, and operate under the control of special (domain-level) regulatory systems. This hypothesis was extensively discussed in the literature over the past 15 years. Yet it is still unclear whether the hypothesis is valid or not. There is evidence both supporting and questioning this hypothesis. The most conclusive data supporting the domain hypothesis come from studies of avian and mammalian beta-globin domains. In this review we will critically discuss the present state of the studies on these and other genomic domains, paying special attention to the domain-level regulatory systems known as locus control regions (LCRs). Based on this discussion, we will try to reevaluate the domain hypothesis of the organization of the eukaryotic genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, 117334 Moscow, Russia
| | | | | |
Collapse
|
41
|
Ho Y, Liebhaber SA, Cooke NE. Activation of the human GH gene cluster: roles for targeted chromatin modification. Trends Endocrinol Metab 2004; 15:40-5. [PMID: 14693425 DOI: 10.1016/j.tem.2003.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cluster of genes encoding the human growth hormone (GH) contains an array of five highly related genes. From 5' to 3' these are: GHN, CSL (encoding chorionic somatomammotropin-like gene), CSA, GHV (encoding GH-variant gene) and CSB. These five genes are expressed in mutually exclusive tissue distributions, GHN in pituitary somatotropes and the remaining four genes in placental villous syncytiotrophoblasts. The onset of GH expression during development is dependent upon epigenetic modifications at the GH locus under the control of its distal locus control region (LCR). A clear understanding of these normal epigenetic controls on the expression of GH could lead to new insights into the development and treatment of isolated GH deficiency in children. This review focuses on the role of the LCR in histone hyperacetylation at the GH locus and subsequent effects on the tissue-specific activation of these genes.
Collapse
Affiliation(s)
- Yugong Ho
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
42
|
Gerrish K, Van Velkinburgh JC, Stein R. Conserved transcriptional regulatory domains of the pdx-1 gene. Mol Endocrinol 2003; 18:533-48. [PMID: 14701942 DOI: 10.1210/me.2003-0371] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pancreas and duodenum homeobox protein 1 (PDX-1) homeodomain-containing transcription factor affects both pancreatic endocrine cell development and adult islet beta-cell function. Cell-type-specific expression is controlled by sequences 5' flanking the pdx-1 gene transcription start site. One principal control region is located roughly between -2800 and -1600 bp and spans three conserved, distinct, and functionally important subdomains, termed areas I, II, and III. In this study, we found that an upstream control region in the rat pdx-1 gene located between -6200 and -5670 bp is also present in the mouse, chicken, and human genes. This region is capable of independently directing pancreatic beta-cell-selective reporter gene expression and potentiating area I/II-driven activity. This newly recognized conserved subdomain has been termed area IV. The islet-enriched forkhead box A2 (FoxA2), NK2 homeobox 2.2 (Nkx2.2), and pancreas and duodenum homeobox protein 1 (PDX-1) transcription factors have been shown to activate area IV-driven reporter gene expression as well as bind to this region of the endogenous gene in beta-cells. Analysis of the histone H3 and H4 acetylation level also indicated that areas I-IV are within transcriptionally active chromatin in beta-cells. Our data suggests that pdx-1 transcription is also regulated by factors acting upon conserved area IV sequences.
Collapse
Affiliation(s)
- Kevin Gerrish
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 723 Light Hall, Nashville, Tennessee 37215, USA
| | | | | |
Collapse
|
43
|
Kim A, Dean A. A human globin enhancer causes both discrete and widespread alterations in chromatin structure. Mol Cell Biol 2003; 23:8099-109. [PMID: 14585970 PMCID: PMC262396 DOI: 10.1128/mcb.23.22.8099-8109.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene activation requires alteration of chromatin structure to facilitate active transcription complex formation at a gene promoter. Nucleosome remodeling complexes and histone modifying complexes each play unique and interdependent roles in bringing about these changes. The role of distant enhancers in these structural alterations is not well understood. We studied nucleosome remodeling and covalent histone modification mediated by the beta-globin locus control region HS2 enhancer at nucleosome-level resolution throughout a 5.5-kb globin gene model locus in vivo in K562 cells. We compared the transcriptionally active locus to one in which HS2 was inactivated by mutations in the core NF-E2 sites. In contrast to inactive templates, nucleosomes were mobilized in discrete areas of the active locus, including the HS2 core and the proximal promoter. Large differences in restriction enzyme accessibility between the active and inactive templates were limited to the regions of nucleosome mobilization, which subsumed the DNase I hypersensitive sites. In contrast to this discrete pattern, histone H3 and H4 acetylation and H3 K4 methylation were elevated across the entire active locus, accompanied by depletion of linker histone H1. The coding region of the gene differed from the regulatory regions, demonstrating both nucleosome mobilization and histone hyperacetylation, but lacked differences in restriction enzyme accessibility between transcriptionally active and inactive genes. Thus, although the histone modification pattern we observe is consistent with the spreading of histone modifying activity from the distant enhancer, the pattern of nucleosome mobilization is more compatible with direct contact between an enhancer and promoter.
Collapse
Affiliation(s)
- AeRi Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, 50 South Drive, MSC 8028, Bethesda, MD 20892, USA
| | | |
Collapse
|
44
|
Myers FA, Chong W, Evans DR, Thorne AW, Crane-Robinson C. Acetylation of histone H2B mirrors that of H4 and H3 at the chicken beta-globin locus but not at housekeeping genes. J Biol Chem 2003; 278:36315-22. [PMID: 12865423 DOI: 10.1074/jbc.m305822200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetylation of histones H4 and H3 targeted to promoters/enhancers is linked to the activation of transcription, whereas widespread, long range acetylation of the same histones has been linked to the requirement for open chromatin at transcriptionally active loci and regions of V(D)J recombination. Using affinity-purified polyclonal antibodies to tetra/tri-acetylated histone H2B in chromatin immunoprecipitation (ChIP) assays with mononucleosomes from 15-day chicken embryo erythrocytes, a high resolution distribution of H2B acetylation has been determined and compared with that of H4 and H3 at the same genes/loci. At the beta-globin locus, the H2B acetylation is high throughout and in general mirrors that of H3 and H4, consistent with the observation of co-precipitation of hyperacetylated H4 together with the hyperacetylated H2B. In contrast, at the weakly expressed genes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Gas41 (housekeeping) and carbonic anhydrase (tissue specific), very little or no hyperacetylated H2B was found despite the presence of acetylated H4 and H3 at their promoters and proximal transcribed sequences. At the inactive lysozyme and ovalbumin genes essentially no acetylation of H2B, H3, or H4 was observed. Acetylation of H2B appears to be principally a feature of only the most actively transcribed genes/loci.
Collapse
Affiliation(s)
- Fiona A Myers
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, Faculty of Science, University of Portsmouth, Portsmouth PO1 2DT, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Gui CY, Dean A. A major role for the TATA box in recruitment of chromatin modifying complexes to a globin gene promoter. Proc Natl Acad Sci U S A 2003; 100:7009-14. [PMID: 12773626 PMCID: PMC165821 DOI: 10.1073/pnas.1236499100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The developmentally regulated mammalian beta-globin genes are activated by a distant locus control region/enhancer. To understand the role of chromatin remodeling complexes in this activation, we used stably replicated chromatin templates, in which transcription activation of the human embryonic epsilon-globin gene depends on the tandem Maf-recognition elements (MAREs) within the beta-globin locus control region HS2 enhancer, to which the erythroid factor NF-E2 binds. The HS2 MAREs are required for nucleosome mobilization and histone hyperacetylation at the distant promoter. Nucleosome mobilization also requires the promoter TATA box, and is independent of histone hyperacetylation. In contrast, promoter hyperacetylation requires the promoter GATA-1, and CACC-factor activator motifs, as well as the TATA box. ChIP analysis reveals that NF-E2 is associated with the active epsilon-globin promoter, which lacks an NF-E2 binding sequence, in a TATA box and HS2/MARE-dependent fashion. NF-E2 association with the epsilon-globin promoter coincides with that of RNA polymerase II at both regulatory sites. The results emphasize MARE-TATA box interactions in the recruitment of complexes modifying promoter chromatin for transcription activation and imply close physical interaction between widely separated regulatory sequences mediated through these sites.
Collapse
Affiliation(s)
- Chang-Yun Gui
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
46
|
Osano K, Ono M. State of histone modification in the rat Ig-beta/growth hormone locus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2532-9. [PMID: 12755709 DOI: 10.1046/j.1432-1033.2003.03628.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The state of acetylation in H3 and H4 histones and dimethylation in the H3 histone Lys4 residue were examined by chromatin immunoprecipitation (ChIP) at 11 targets in the rat Ig-beta/growth hormone locus. Marked enhancement of the acetylation of histones H3 and H4 and the dimethylation of H3 Lys4 was observed in the chromatin situated close to the promoter of an actively transcribed gene. Chromatin positioned near a cell-type-specific DNase I-hypersensitive site with enhancer activity had the same histone modifications as the active promoter. In one transcribed intron, chromatin with fewer histone modifications was found, and in another transcribed intron, chromatin with markedly enhanced modifications was found. In most cases, no appreciable difference in the acetylation of histones H3 and H4 was found at prominently enhanced targets. However, different acetylation levels of H3 and H4 were found at one target. The targets with enhanced dimethylation of the H3 Lys4 residue coincided with those with prominently enhanced acetylation of histones H3 and H4.
Collapse
Affiliation(s)
- Kyoichi Osano
- Department of Life Science, and Frontier Project Life's Adaptation Strategies to Environmental Changes, College of Science, Rikkyo University, Tokyo, Japan
| | | |
Collapse
|
47
|
Tang Y, Liu DP, Liang CC. Further understanding of the beta-globin locus regulation at the molecular level: looping or linking models? Genes Cells 2003; 7:889-900. [PMID: 12296820 DOI: 10.1046/j.1365-2443.2002.00568.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human beta-globin locus is a classic model of the eukaryotic multigene family with tissue- and temporally specific expression. Over the past few years, great advances have been achieved in studies of beta-globin locus regulation. The dominant role of the beta-globin locus control region (LCR) in chromatin opening and developmental switching has been challenged, and elements beyond the LCR have been studied in depth. More recently, the fields of research have been expanded to intergenic transcription, nuclear localization and histone modification. Several models have been proposed to elucidate the regulation mechanism; among them, the looping and linking models are the most prevalent. Different models are the summarization of the observations made at different times and a persuasive model must be based on a systematic understanding of the numerous observations. The objective of this review is to provide an overview of progress in the area of beta-globin regulation and then to discuss models for it.
Collapse
Affiliation(s)
- Yi Tang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, PR China
| | | | | |
Collapse
|
48
|
Boutanaev AM, Kalmykova AI, Shevelyov YY, Nurminsky DI. Large clusters of co-expressed genes in the Drosophila genome. Nature 2002; 420:666-9. [PMID: 12478293 DOI: 10.1038/nature01216] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Accepted: 10/07/2002] [Indexed: 11/09/2022]
Abstract
Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.
Collapse
Affiliation(s)
- Alexander M Boutanaev
- Department of Anatomy & Cell Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Locus control regions (LCRs) are operationally defined by their ability to enhance the expression of linked genes to physiological levels in a tissue-specific and copy number-dependent manner at ectopic chromatin sites. Although their composition and locations relative to their cognate genes are different, LCRs have been described in a broad spectrum of mammalian gene systems, suggesting that they play an important role in the control of eukaryotic gene expression. The discovery of the LCR in the beta-globin locus and the characterization of LCRs in other loci reinforces the concept that developmental and cell lineage-specific regulation of gene expression relies not on gene-proximal elements such as promoters, enhancers, and silencers exclusively, but also on long-range interactions of various cis regulatory elements and dynamic chromatin alterations.
Collapse
Affiliation(s)
- Qiliang Li
- Division of Medical Genetics, Department of Genome Sciences, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
50
|
Shewchuk BM, Liebhaber SA, Cooke NE. Specification of unique Pit-1 activity in the hGH locus control region. Proc Natl Acad Sci U S A 2002; 99:11784-9. [PMID: 12189206 PMCID: PMC129346 DOI: 10.1073/pnas.182418199] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human GH (hGH) gene cluster is regulated by a remote 5' locus control region (LCR). HSI, an LCR component located 14.5 kb 5' to the hGH-N promoter, constitutes the primary determinant of high-level hGH-N activation in pituitary somatotropes. HSI encompasses an array of three binding sites for the pituitary-specific POU homeodomain factor Pit-1. In the present report we demonstrate that all three Pit-1 sites in the HSI array contribute to LCR activity in vivo. Furthermore, these three sites as a unit are fully sufficient for position-independent and somatotrope-restricted hGH-N transgene activation. In contrast, the hGH-N transgene is not activated by Pit-1 sites native to either the hGH-N or rat (r)GH gene promoters. These findings suggest that the structures of the Pit-1 binding sites at HSI specify distinct chromatin-dependent activities essential for LCR-mediated activation of hGH in the developing pituitary.
Collapse
Affiliation(s)
- Brian M Shewchuk
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|