1
|
Rubio C, Luna R, Rosiles A, Rubio-Osornio M. Caloric Restriction and Ketogenic Diet Therapy for Epilepsy: A Molecular Approach Involving Wnt Pathway and K ATP Channels. Front Neurol 2020; 11:584298. [PMID: 33250850 PMCID: PMC7676225 DOI: 10.3389/fneur.2020.584298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Epilepsy is a neurological disorder in which, in many cases, there is poor pharmacological control of seizures. Nevertheless, it may respond beneficially to alternative treatments such as dietary therapy, like the ketogenic diet or caloric restriction. One of the mechanisms of these diets is to produce a hyperpolarization mediated by the adenosine triphosphate (ATP)-sensitive potassium (KATP) channels (KATP channels). An extracellular increase of K+ prevents the release of Ca2+ by inhibiting the signaling of the Wnt pathway and the translocation of β-catenin to the cell nucleus. Wnt ligands hyperpolarize the cells by activating K+ current by Ca2+. Each of the diets described in this paper has in common a lower use of carbohydrates, which leads to biochemical, genetic processes presumed to be involved in the reduction of epileptic seizures. Currently, there is not much information about the genetic processes implicated as well as the possible beneficial effects of diet therapy on epilepsy. In this review, we aim to describe some of the possible genes involved in Wnt pathways, their regulation through the KATP channels which are implicated in each one of the diets, and how they can reduce epileptic seizures at the molecular level.
Collapse
Affiliation(s)
- Carmen Rubio
- Neurophysiology Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Rudy Luna
- Neurophysiology Department, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Artemio Rosiles
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Moisés Rubio-Osornio
- Experimental Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
2
|
Melton ED, Sorokin DY, Overmars L, Lapidus AL, Pillay M, Ivanova N, Del Rio TG, Kyrpides NC, Woyke T, Muyzer G. Draft genome sequence of Dethiobacter alkaliphilus strain AHT1 T, a gram-positive sulfidogenic polyextremophile. Stand Genomic Sci 2017; 12:57. [PMID: 28943998 PMCID: PMC5609068 DOI: 10.1186/s40793-017-0268-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/08/2017] [Indexed: 12/01/2022] Open
Abstract
Dethiobacter alkaliphilus strain AHT1T is an anaerobic, sulfidogenic, moderately salt-tolerant alkaliphilic chemolithotroph isolated from hypersaline soda lake sediments in northeastern Mongolia. It is a Gram-positive bacterium with low GC content, within the phylum Firmicutes. Here we report its draft genome sequence, which consists of 34 contigs with a total sequence length of 3.12 Mbp. D. alkaliphilus strain AHT1T was sequenced by the Joint Genome Institute (JGI) as part of the Community Science Program due to its relevance to bioremediation and biotechnological applications.
Collapse
Affiliation(s)
- Emily Denise Melton
- Department of Freshwater and Marine Ecology, Microbial Systems Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, RAS, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lex Overmars
- Department of Freshwater and Marine Ecology, Microbial Systems Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Alla L Lapidus
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State, University, St. Petersburg, Russia
| | - Manoj Pillay
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | | | - Nikos C Kyrpides
- Joint Genome Institute, Walnut Creek, CA USA.,Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Woyke
- Joint Genome Institute, Walnut Creek, CA USA
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Microbial Systems Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Ngugi DK, Miyake S, Cahill M, Vinu M, Hackmann TJ, Blom J, Tietbohl MD, Berumen ML, Stingl U. Genomic diversification of giant enteric symbionts reflects host dietary lifestyles. Proc Natl Acad Sci U S A 2017; 114:E7592-E7601. [PMID: 28835538 PMCID: PMC5594648 DOI: 10.1073/pnas.1703070114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Herbivorous surgeonfishes are an ecologically successful group of reef fish that rely on marine algae as their principal food source. Here, we elucidated the significance of giant enteric symbionts colonizing these fishes regarding their roles in the digestive processes of hosts feeding predominantly on polysiphonous red algae and brown Turbinaria algae, which contain different polysaccharide constituents. Using metagenomics, single-cell genomics, and metatranscriptomic analyses, we provide evidence of metabolic diversification of enteric microbiota involved in the degradation of algal biomass in these fishes. The enteric microbiota is also phylogenetically and functionally simple relative to the complex lignocellulose-degrading microbiota of terrestrial herbivores. Over 90% of the enzymes for deconstructing algal polysaccharides emanate from members of a single bacterial lineage, "Candidatus Epulopiscium" and related giant bacteria. These symbionts lack cellulases but encode a distinctive and lineage-specific array of mostly intracellular carbohydrases concurrent with the unique and tractable dietary resources of their hosts. Importantly, enzymes initiating the breakdown of the abundant and complex algal polysaccharides also originate from these symbionts. These are also highly transcribed and peak according to the diel lifestyle of their host, further supporting their importance and host-symbiont cospeciation. Because of their distinctive genomic blueprint, we propose the classification of these giant bacteria into three candidate genera. Collectively, our findings show that the acquisition of metabolically distinct "Epulopiscium" symbionts in hosts feeding on compositionally varied algal diets is a key niche-partitioning driver in the nutritional ecology of herbivorous surgeonfishes.
Collapse
Affiliation(s)
- David Kamanda Ngugi
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Sou Miyake
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Matt Cahill
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Manikandan Vinu
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Timothy J Hackmann
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University of Giessen, D-35392 Giessen, Germany
| | - Matthew D Tietbohl
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ulrich Stingl
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
4
|
Counts JA, Zeldes BM, Lee LL, Straub CT, Adams MWW, Kelly RM. Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28206708 DOI: 10.1002/wsbm.1377] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
The current upper thermal limit for life as we know it is approximately 120°C. Microorganisms that grow optimally at temperatures of 75°C and above are usually referred to as 'extreme thermophiles' and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, heterotrophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs-basically, anywhere there is hot water. Initial efforts to study extreme thermophiles faced challenges with their isolation from difficult to access locales, problems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermophiles were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiological, metabolic and biotechnological features. The bacterial genera Caldicellulosiruptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermophiles to date. The recent emergence of genetic tools for many of these organisms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. WIREs Syst Biol Med 2017, 9:e1377. doi: 10.1002/wsbm.1377 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Laura L Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Singharoy A, Chipot C, Moradi M, Schulten K. Chemomechanical Coupling in Hexameric Protein-Protein Interfaces Harnesses Energy within V-Type ATPases. J Am Chem Soc 2017; 139:293-310. [PMID: 27936329 PMCID: PMC5518570 DOI: 10.1021/jacs.6b10744] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP synthase is the most prominent bioenergetic macromolecular motor in all life forms, utilizing the proton gradient across the cell membrane to fuel the synthesis of ATP. Notwithstanding the wealth of available biochemical and structural information inferred from years of experiments, the precise molecular mechanism whereby vacuolar (V-type) ATP synthase fulfills its biological function remains largely fragmentary. Recently, crystallographers provided the first high-resolution view of ATP activity in Enterococcus hirae V1-ATPase. Employing a combination of transition-path sampling and high-performance free-energy methods, the sequence of conformational transitions involved in a functional cycle accompanying ATP hydrolysis has been investigated in unprecedented detail over an aggregate simulation time of 65 μs. Our simulated pathways reveal that the chemical energy produced by ATP hydrolysis is harnessed via the concerted motion of the protein-protein interfaces in the V1-ring, and is nearly entirely consumed in the rotation of the central stalk. Surprisingly, in an ATPase devoid of a central stalk, the interfaces of this ring are perfectly designed for inducing ATP hydrolysis. However, in a complete V1-ATPase, the mechanical property of the central stalk is a key determinant of the rate of ATP turnover. The simulations further unveil a sequence of events, whereby unbinding of the hydrolysis product (ADP + Pi) is followed by ATP uptake, which, in turn, leads to the torque generation step and rotation of the center stalk. Molecular trajectories also bring to light multiple intermediates, two of which have been isolated in independent crystallography experiments.
Collapse
Affiliation(s)
- Abhishek Singharoy
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Christophe Chipot
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7565, Université de Lorraine , B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
- Department of Physics, University of Illinois at Urbana-Champaign , 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Klaus Schulten
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign , 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Cordova LT, Lu J, Cipolla RM, Sandoval NR, Long CP, Antoniewicz MR. Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by (13)C metabolic flux analysis and whole genome sequencing. Metab Eng 2016; 37:63-71. [PMID: 27164561 DOI: 10.1016/j.ymben.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 01/20/2023]
Abstract
We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and (13)C-metabolic flux analysis ((13)C-MFA) with [1,6-(13)C]glucose, [5-(13)C]xylose, and [1,6-(13)C]glucose+[5-(13)C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90°C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81°C, the maximum growth rate on glucose and xylose was 0.44 and 0.46h(-1), respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. (13)C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, (13)C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, (13)C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain.
Collapse
Affiliation(s)
- Lauren T Cordova
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Jing Lu
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Robert M Cipolla
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Nicholas R Sandoval
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Christopher P Long
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA
| | - Maciek R Antoniewicz
- Department of Chemical & Biomolecular Engineering, Metabolic Engineering and Systems Biology Laboratory, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
7
|
Emerson JB, Thomas BC, Alvarez W, Banfield JF. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ Microbiol 2015; 18:1686-703. [DOI: 10.1111/1462-2920.12817] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/31/2015] [Accepted: 02/12/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Joanne B. Emerson
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley CA 94720-4767 USA
| | - Brian C. Thomas
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley CA 94720-4767 USA
| | - Walter Alvarez
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley CA 94720-4767 USA
| | - Jillian F. Banfield
- Department of Earth and Planetary Science; University of California, Berkeley; Berkeley CA 94720-4767 USA
- Department of Environmental Science, Policy, and Management; University of California, Berkeley; Berkeley CA 94720-4767 USA
| |
Collapse
|
8
|
Swarup A, Lu J, DeWoody KC, Antoniewicz MR. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8. Metab Eng 2014; 24:173-80. [DOI: 10.1016/j.ymben.2014.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/03/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
|
9
|
Lee NR, Lakshmanan M, Aggarwal S, Song JW, Karimi IA, Lee DY, Park JB. Genome-scale metabolic network reconstruction and in silico flux analysis of the thermophilic bacterium Thermus thermophilus HB27. Microb Cell Fact 2014; 13:61. [PMID: 24774833 PMCID: PMC4021367 DOI: 10.1186/1475-2859-13-61] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/17/2014] [Indexed: 01/18/2023] Open
Abstract
Background Thermus thermophilus, an extremely thermophilic bacterium, has been widely recognized as a model organism for studying how microbes can survive and adapt under high temperature environment. However, the thermotolerant mechanisms and cellular metabolism still remains mostly unravelled. Thus, it is highly required to consider systems biological approaches where T. thermophilus metabolic network model can be employed together with high throughput experimental data for elucidating its physiological characteristics under such harsh conditions. Results We reconstructed a genome-scale metabolic model of T. thermophilus, iTT548, the first ever large-scale network of a thermophilic bacterium, accounting for 548 unique genes, 796 reactions and 635 unique metabolites. Our initial comparative analysis of the model with Escherichia coli has revealed several distinctive metabolic reactions, mainly in amino acid metabolism and carotenoid biosynthesis, producing relevant compounds to retain the cellular membrane for withstanding high temperature. Constraints-based flux analysis was, then, applied to simulate the metabolic state in glucose minimal and amino acid rich media. Remarkably, resulting growth predictions were highly consistent with the experimental observations. The subsequent comparative flux analysis under different environmental conditions highlighted that the cells consumed branched chain amino acids preferably and utilized them directly in the relevant anabolic pathways for the fatty acid synthesis. Finally, gene essentiality study was also conducted via single gene deletion analysis, to identify the conditional essential genes in glucose minimal and complex media. Conclusions The reconstructed genome-scale metabolic model elucidates the phenotypes of T. thermophilus, thus allowing us to gain valuable insights into its cellular metabolism through in silico simulations. The information obtained from such analysis would not only shed light on the understanding of physiology of thermophiles but also helps us to devise metabolic engineering strategies to develop T. thermophilus as a thermostable microbial cell factory.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong-Yup Lee
- Department of Food Science & Engineering, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Korea.
| | | |
Collapse
|
10
|
Zhang C, Marcia M, Langer JD, Peng G, Michel H. Role of the N-terminal signal peptide in the membrane insertion ofAquifex aeolicusF1F0ATP synthase c-subunit. FEBS J 2013; 280:3425-35. [DOI: 10.1111/febs.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Chunli Zhang
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Marco Marcia
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven CT USA
| | - Julian D. Langer
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| | - Guohong Peng
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
- Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
| | - Hartmut Michel
- Max Planck Institute of Biophysics; Department of Molecular Membrane Biology; Frankfurt am Main Germany
| |
Collapse
|
11
|
Wakai S, Masanari M, Ikeda T, Yamaguchi N, Ueshima S, Watanabe K, Nishihara H, Sambongi Y. Oxidative phosphorylation in a thermophilic, facultative chemoautotroph, Hydrogenophilus thermoluteolus, living prevalently in geothermal niches. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:235-242. [PMID: 23584967 DOI: 10.1111/1758-2229.12005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/01/2012] [Indexed: 06/02/2023]
Abstract
Hydrogenophilus is a thermophilic, facultative chemoautotroph, which lives prevalently in high temperature geothermal niches. Despite the environmental distribution, little is known about its oxidative phosphorylation. Here, we show that inverted membrane vesicles derived from Hydrogenophilus thermoluteolus cells autotrophically cultivated with H2 formed a proton gradient on the addition of succinate, dl-lactate, and NADH, and exhibited oxidation activity toward these three organic compounds. These indicate the capability of mixotrophic growth of this bacterium. Biochemical analysis demonstrated that the same vesicles contained an F-type ATP synthase. The F1 sector of the ATP synthase purified from H. thermoluteolus membranes exhibited optimal ATPase activity at 65°C. Transformed Escherichia coli membranes expressing H. thermoluteolus F-type ATP synthase exhibited the same temperature optimum for the ATPase. These findings shed light on H. thermoluteolus oxidative phosphorylation from the aspects of membrane bioenergetics and ATPase biochemistry, which must be fundamental and advantageous in the biogeochemical cycles occurred in the high temperature geothermal niches.
Collapse
Affiliation(s)
- Satoshi Wakai
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Barrera NP, Zhou M, Robinson CV. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 2012; 23:1-8. [PMID: 22980035 DOI: 10.1016/j.tcb.2012.08.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/19/2022]
Abstract
Cellular membranes comprise hundreds of lipids in which protein complexes, such as ion channels, receptors, and scaffolding complexes, are embedded. These protein assemblies act as signalling and trafficking platforms for processes fundamental to life. Much effort in recent years has focused on identifying the protein components of these complexes after their extraction from the lipid membrane in detergent micelles. Spectacular advances have been made using X-ray crystallography, providing in some cases detailed information about the mechanism of pumping and channel gating. These structural studies are leading to a growing realisation that, to understand their function, it is not only the structures of the protein components that are important but also knowledge of the protein-lipid interactions. This review highlights recent insights gained from this knowledge, surveys methods being developed for probing these interactions, and focuses specifically on the potential of mass spectrometry in this growing area of research.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Physiology, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile.
| | | | | |
Collapse
|
13
|
Kishikawa JI, Yokoyama K. Reconstitution of vacuolar-type rotary H+-ATPase/synthase from Thermus thermophilus. J Biol Chem 2012; 287:24597-603. [PMID: 22582389 PMCID: PMC3397886 DOI: 10.1074/jbc.m112.367813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Vacuolar-type rotary H+-ATPase/synthase (VoV1) from Thermus thermophilus, composed of nine subunits, A, B, D, F, C, E, G, I, and L, has been reconstituted from individually isolated V1 (A3B3D1F1) and Vo (C1E2G2I1L12) subcomplexes in vitro. A3B3D and A3B3 also reconstituted with Vo, resulting in a holoenzyme-like complexes. However, A3B3D-Vo and A3B3-Vo did not show ATP synthesis and dicyclohexylcarbodiimide-sensitive ATPase activity. The reconstitution process was monitored in real time by fluorescence resonance energy transfer (FRET) between an acceptor dye attached to subunit F or D in V1 or A3B3D and a donor dye attached to subunit C in Vo. The estimated dissociation constants Kd for VoV1 and A3B3D-Vo were ∼0.3 and ∼1 nm at 25 °C, respectively. These results suggest that the A3B3 domain tightly associated with the two EG peripheral stalks of Vo, even in the absence of the central shaft subunits. In addition, F subunit is essential for coupling of ATP hydrolysis and proton translocation and has a key role in the stability of whole complex. However, the contribution of the F subunit to the association of A3B3 with Vo is much lower than that of the EG peripheral stalks.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | | |
Collapse
|
14
|
Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC, Matak-Vinković D, Murata T, Bernal RA, Stock D, Robinson CV. Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 2011; 334:380-385. [PMID: 22021858 PMCID: PMC3927129 DOI: 10.1126/science.1210148] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of electrospray to propel large viruses into a mass spectrometer is established and is rationalized by analogy to the atmospheric transmission of the common cold. Much less clear is the fate of membrane-embedded molecular machines in the gas phase. Here we show that rotary adenosine triphosphatases (ATPases)/synthases from Thermus thermophilus and Enterococcus hirae can be maintained intact with membrane and soluble subunit interactions preserved in vacuum. Mass spectra reveal subunit stoichiometries and the identity of tightly bound lipids within the membrane rotors. Moreover, subcomplexes formed in solution and gas phases reveal the regulatory effects of nucleotide binding on both ATP hydrolysis and proton translocation. Consequently, we can link specific lipid and nucleotide binding with distinct regulatory roles.
Collapse
Affiliation(s)
- Min Zhou
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| | - Nina Morgner
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| | - Nelson P Barrera
- Department of Chemistry, Lensfield Road, University of Cambridge CB2 1EW
- Department of Physiology, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Argyris Politis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| | - Shoshanna C Isaacson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| | | | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Ricardo A Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Daniela Stock
- The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst NSW 2010
- Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ
| |
Collapse
|
15
|
Furuike S, Nakano M, Adachi K, Noji H, Kinosita K, Yokoyama K. Resolving stepping rotation in Thermus thermophilus H(+)-ATPase/synthase with an essentially drag-free probe. Nat Commun 2011; 2:233. [PMID: 21407199 PMCID: PMC3072102 DOI: 10.1038/ncomms1215] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/26/2011] [Indexed: 11/09/2022] Open
Abstract
Vacuole-type ATPases (VoV1) and FoF1 ATP synthases couple ATP hydrolysis/synthesis in the soluble V1 or F1 portion with proton (or Na+) flow in the membrane-embedded Vo or Fo portion through rotation of one common shaft. Here we show at submillisecond resolutions the ATP-driven rotation of isolated V1 and the whole VoV1 from Thermus thermophilus, by attaching a 40-nm gold bead for which viscous drag is almost negligible. V1 made 120° steps, commensurate with the presence of three catalytic sites. Dwells between the steps involved at least two events other than ATP binding, one likely to be ATP hydrolysis. VoV1 exhibited 12 dwell positions per revolution, consistent with the 12-fold symmetry of the Vo rotor in T. thermophilus. Unlike F1 that undergoes 80°–40° substepping, chemo-mechanical checkpoints in isolated V1 are all at the ATP-waiting position, and Vo adds further bumps through stator–rotor interactions outside and remote from V1. Rotary ATPases FoF1 and VoV1 couple ATP hydrolysis with proton flow. Furuike et al. observe ATP-driven rotation in V1 and VoV1, at submillisecond resolution, and find that rate-limiting reactions in V1 all occur at the same angle, and stator–rotor interactions in Vo introduce additional checkpoints.
Collapse
Affiliation(s)
- Shou Furuike
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Ma B, Xiang Y, An L. Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase. Cell Signal 2011; 23:1244-56. [PMID: 21397012 DOI: 10.1016/j.cellsig.2011.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 12/09/2022]
Abstract
Vacuolar-type H(+)-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V(1) responsible for ATP hydrolysis, and subunits a, c, c', c″, and d assembly the 250-kDa membrane-integral V(0) harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V(1) and V(0) subunits, in which the V(1) must be completely assembled prior to association with the V(0), accordingly the V(0) failing to assemble cannot provide a membrane anchor for the V(1), thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V(1) and V(0), the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca(2+), and its inhibitors and activators.
Collapse
Affiliation(s)
- Binyun Ma
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, 730000, Lanzhou, China
| | | | | |
Collapse
|
17
|
Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor. Proc Natl Acad Sci U S A 2010; 107:1367-72. [PMID: 20080582 DOI: 10.1073/pnas.0911085107] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eubacterium Thermus thermophilus uses a macromolecular assembly closely related to eukaryotic V-ATPase to produce its supply of ATP. This simplified V-ATPase offers several advantages over eukaryotic V-ATPases for structural analysis and investigation of the mechanism of the enzyme. Here we report the structure of the complex at approximately 16 A resolution as determined by single particle electron cryomicroscopy (cryo-EM). The resolution of the map and our use of cryo-EM, rather than negative stain EM, reveals detailed information about the internal organization of the assembly. We could separate the map into segments corresponding to subunits A and B, the threefold pseudosymmetric C-subunit, a central rotor consisting of subunits D and F, the L-ring, the stator subcomplex consisting of subunits I, E, and G, and a micelle of bound detergent. The architecture of the V(O) region shows a remarkably small area of contact between the I-subunit and the ring of L-subunits and is consistent with a two half-channel model for proton translocation. The arrangement of structural elements in V(O) gives insight into the mechanism of torque generation from proton translocation.
Collapse
|
18
|
Numoto N, Hasegawa Y, Takeda K, Miki K. Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. EMBO Rep 2009; 10:1228-34. [PMID: 19779483 DOI: 10.1038/embor.2009.202] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 11/09/2022] Open
Abstract
V-type ATPases (V-ATPases) are categorized as rotary ATP synthase/ATPase complexes. The V-ATPases are distinct from F-ATPases in terms of their rotation scheme, architecture and subunit composition. However, there is no detailed structural information on V-ATPases despite the abundant biochemical and biophysical research. Here, we report a crystallographic study of V1-ATPase, from Thermus thermophilus, which is a soluble component consisting of A, B, D and F subunits. The structure at 4.5 A resolution reveals inter-subunit interactions and nucleotide binding. In particular, the structure of the central stalk composed of D and F subunits was shown to be characteristic of V1-ATPases. Small conformational changes of respective subunits and significant rearrangement of the quaternary structure observed in the three AB pairs were related to the interaction with the straight central stalk. The rotation mechanism is discussed based on a structural comparison between V1-ATPases and F1-ATPases.
Collapse
Affiliation(s)
- Nobutaka Numoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
19
|
Tomashek JJ, Brusilow WS. Stoichiometry of energy coupling by proton-translocating ATPases: a history of variability. J Bioenerg Biomembr 2009; 32:493-500. [PMID: 15254384 DOI: 10.1023/a:1005617024904] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the central energy-coupling reactions in living systems is the intraconversion of ATP with a transmembrane proton gradient, carried out by proton-translocating F- and V-type ATPases/synthases. These reversible enzymes can hydrolyze ATP and pump protons, or can use the energy of a transmembrane proton gradient to synthesize ATP from ADP and inorganic phosphate. The stoichiometry of these processes (H(+)/ATP, or coupling ratio) has been studied in many systems for many years, with no universally agreed upon solution. Recent discoveries concerning the structure of the ATPases, their assembly and the stoichiometry of their numerous subunits, particularly the proton-carrying proteolipid (subunit c) of the F(O) and V(0) sectors, have shed new light on this question and raise the possibility of variable coupling ratios modulated by variable proteolipid stoichiometries.
Collapse
Affiliation(s)
- J J Tomashek
- Wayne State University School of Medicine, Department of Biochemistry and Molecular Biology, Detroit, Michigan 48201, USA
| | | |
Collapse
|
20
|
Takeda M, Suno-Ikeda C, Shimabukuro K, Yoshida M, Yokoyama K. Mechanism of inhibition of the V-type molecular motor by tributyltin chloride. Biophys J 2009; 96:1210-7. [PMID: 19186155 DOI: 10.1016/j.bpj.2008.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 10/09/2008] [Indexed: 11/30/2022] Open
Abstract
Tributyltin chloride (TBT-Cl) is an endocrine disruptor found in many animal species, and it is also known to be an inhibitor for the V-ATPases that are emerging as potential targets in the treatment of diseases such as osteoporosis and cancer. We demonstrated by using biochemical and single-molecular imaging techniques that TBT-Cl arrests an elementary step for rotary catalysis of the V(1) motor domain. In the presence of TBT-Cl, the consecutive rotation of V(1) paused for a long duration ( approximately 0.5 s), even at saturated ATP concentrations, and the pausing positions were localized at 120 degrees intervals. Analysis of both the pausing time and moving time revealed that TBT-Cl has little effect on the binding affinity for ATP, but, rather, it arrests the catalytic event(s). This is the first report to demonstrate that an inhibitor arrests an elementary step for rotary catalysis of a V-type ATP-driven rotary motor.
Collapse
Affiliation(s)
- Mizuho Takeda
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
21
|
Thermus thermophilus as biological model. Extremophiles 2009; 13:213-31. [DOI: 10.1007/s00792-009-0226-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/31/2008] [Indexed: 10/21/2022]
|
22
|
Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of prokaryotic V-ATPase from Thermus thermophilus. Proc Natl Acad Sci U S A 2007; 104:20256-61. [PMID: 18077374 DOI: 10.1073/pnas.0706914105] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP synthesis by V-ATPase from the thermophilic bacterium Thermus thermophilus driven by the acid-base transition was investigated. The rate of ATP synthesis increased in parallel with the increase in proton motive force (PMF) >110 mV, which is composed of a difference in proton concentration (DeltapH) and the electrical potential differences (DeltaPsi) across membranes. The optimum rate of synthesis reached 85 s(-1), and the H(+)/ATP ratio of 4.0 +/- 0.1 was obtained. ATP was synthesized at a considerable rate solely by DeltapH, indicating DeltaPsi was not absolutely required for synthesis. Consistent with the H(+)/ATP ratio, cryoelectron micrograph images of 2D crystals of the membrane-bound rotor ring of the V-ATPase at 7.0-A resolution showed the presence of 12 V(o)-c subunits, each composed of two transmembrane helices. These results indicate that symmetry mismatch between the rotor and catalytic domains is not obligatory for rotary ATPases/synthases.
Collapse
|
23
|
Lokanath NK, Matsuura Y, Kuroishi C, Takahashi N, Kunishima N. Dimeric Core Structure of Modular Stator Subunit E of Archaeal H+-ATPase. J Mol Biol 2007; 366:933-44. [PMID: 17189637 DOI: 10.1016/j.jmb.2006.11.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/29/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Archaeal H(+)-ATPase (A-ATPase) is composed of an A(1) region that hydrolyzes ATP and an integral membrane part A(0) that conducts protons. Subunit E is a component of peripheral stator(s) that physically links A(1) and A(0) parts of the A-ATPase. Here we report the first crystal structure of subunit E of A-ATPase from Pyrococcus horikoshii OT3 at 1.85 A resolution. The protomer structure of subunit E represents a novel fold. The quaternary structure of subunit E is a homodimer, which may constitute the core part of the stator. To investigate the relationship with other stator subunit H, the complex of subunits EH was prepared and characterized using electrophoresis, mass spectrometry, N-terminal sequencing and circular dichroism spectroscopy, which revealed the polymeric and highly helical nature of the EH complex with equimolar stoichiometry of both the subunits. On the basis of the modular architecture of stator subunits, it is suggested that both cytoplasm and membrane sides of the EH complex may interact with other subunits to link A(1) and A(0) parts.
Collapse
Affiliation(s)
- Neratur K Lokanath
- Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-Gun, Hyogo, Japan
| | | | | | | | | |
Collapse
|
24
|
Hosaka T, Takase K, Murata T, Kakinuma Y, Yamato I. Deletion analysis of the subunit genes of V-type Na+-ATPase from Enterococcus hirae. J Biochem 2006; 139:1045-52. [PMID: 16788055 DOI: 10.1093/jb/mvj108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The V1Vo-ATPase from Enterococcus hirae catalyzes ATP hydrolysis coupled with sodium translocation. Mutants with deletions of each of 10 subunits (NtpA, B, C, D, E, F, G, H, I, and K) were constructed by insertion of a chloramphenicol acetyltransferase gene into the corresponding subunit gene in the genome. Measurements of cell growth rates, 22Na+ efflux activities, and ATP hydrolysis activities of the membranes of the deletion mutants indicated that V-ATPase requires nine of the subunits, the exception being the NtpH subunit. The results of Western blotting and V1-ATPase dissociation analysis suggested that the A, B, C, D, E, F, and G subunits constitute the V1 moiety, whereas the V0 moiety comprises the I and K subunits.
Collapse
Affiliation(s)
- Toshiaki Hosaka
- Genomic Sciences Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045
| | | | | | | | | |
Collapse
|
25
|
Schwarzenlander C, Averhoff B. Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006; 273:4210-8. [PMID: 16939619 DOI: 10.1111/j.1742-4658.2006.05416.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Horizontal gene transfer has been a major force for genome plasticity over evolutionary history, and is largely responsible for fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Recently, by performing a genome-wide mutagenesis approach with Thermus thermophilus HB27, we identified the first genes in a thermophilic bacterium for the uptake of free DNA, a process called natural transformation. Here, we present the first data on the biochemistry and bioenergetics of the DNA transport process in this thermophile. We report that linear and circular plasmid DNA are equally well taken up with a high maximal velocity of 1.5 microg DNA.(mg protein)(-1).min(-1), demonstrating an extremely efficient binding and uptake rate of 40 kb.s(-1).cell(-1). Uncouplers and ATPase inhibitors immediately inhibited DNA uptake, providing clear evidence that DNA translocation in HB27 is an energy-dependent process. DNA uptake studies with genomic DNA of Bacteria, Archaea and Eukarya revealed that Thermus thermophilus HB27 takes up DNA from members of all three domains of life. We propose that the extraordinary broad substrate specificity of the highly efficient Thermus thermophilus HB27 DNA uptake system may contribute significantly to thermoadaptation of Thermus thermophilus HB27 and to interdomain DNA transfer in hot environments.
Collapse
Affiliation(s)
- Cornelia Schwarzenlander
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt, Germany
| | | |
Collapse
|
26
|
Abstract
The prokaryotic V-type ATPase/synthases (prokaryotic V-ATPases) have simpler subunit compositions than eukaryotic V-ATPases, and thus are useful subjects for studying chemical, physical and structural properties of V-ATPase. In this review, we focus on the results of recent studies on the structure/function relationships in the V-ATPase from the eubacterium Thermus thermophilus. First, we describe single-molecule analyses of T. thermophilus V-ATPase. Using the single-molecule technique, it was established that the V-ATPase is a rotary motor. Second, we discuss arrangement of subunits in V-ATPase. Third, the crystal structure of the C-subunit (homolog of eukaryotic d-subunit) is described. This funnel-shape subunit appears to cap the proteolipid ring in the V(0) domain in order to accommodate the V(1) central stalk. This structure seems essential for the regulatory reversible association/dissociation of the V(1) and the V(0) domains. Last, we discuss classification of the V-ATPase family. We propose that the term prokaryotic V-ATPases should be used rather than the term archaeal-type ATPase (A-ATPase).
Collapse
Affiliation(s)
- Ken Yokoyama
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Nagatsuta, Midori-ku, Yokohama, Japan.
| | | |
Collapse
|
27
|
Gerle C, Tani K, Yokoyama K, Tamakoshi M, Yoshida M, Fujiyoshi Y, Mitsuoka K. Two-dimensional crystallization and analysis of projection images of intact Thermus thermophilus V-ATPase. J Struct Biol 2005; 153:200-6. [PMID: 16377206 DOI: 10.1016/j.jsb.2005.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 10/31/2005] [Accepted: 11/07/2005] [Indexed: 11/24/2022]
Abstract
H(+)-ATPase/synthases are membrane-bound rotary nanomotors that are essential for energy conversion in nearly all life forms. A member of the family of the vacuolar-type ATPases (V-ATPases) from Thermus thermophilus, sometimes also termed A-type ATPase, was purified to homogeneity and subjected to two-dimensional (2D) crystallization trials. A novel approach to the 2D crystallization of unstable complexes yielded densely packed sheets of V-ATPase, exhibiting crystalline arrays. Aggregation of the V-ATPase under acidic conditions during reconstitution circumvented the continuous dissociation of the whole complex into the V(1) and V(o) domains. The resulting three-dimensional aggregates were converted into 2D sheets by the use of a basic buffer, and after a short annealing cycle, ordered arrays of up to 1.5 microm diameter appeared. Fourier transforms calculated from micrographs taken from the negatively stained sample showed diffraction spots to a resolution of 23A. The Fourier transforms of the untilted images revealed unit-cell dimensions of a=232A, b=132A, and gamma=90 degrees , and a projection map was calculated by merging 11 images. The most probable molecular packing suggests p22(1)2(1) symmetry of the crystals and dimer contacts between the V(1) domains.
Collapse
Affiliation(s)
- Christoph Gerle
- Department of Biophysics, Faculty of Science, Kyoto University, Oiwake, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Makyio H, Iino R, Ikeda C, Imamura H, Tamakoshi M, Iwata M, Stock D, Bernal RA, Carpenter EP, Yoshida M, Yokoyama K, Iwata S. Structure of a central stalk subunit F of prokaryotic V-type ATPase/synthase from Thermus thermophilus. EMBO J 2005; 24:3974-83. [PMID: 16281059 PMCID: PMC1283957 DOI: 10.1038/sj.emboj.7600859] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 10/07/2005] [Indexed: 01/28/2023] Open
Abstract
The crystal structure of subunit F of vacuole-type ATPase/synthase (prokaryotic V-ATPase) was determined to of 2.2 A resolution. The subunit reveals unexpected structural similarity to the response regulator proteins that include the Escherichia coli chemotaxis response regulator CheY. The structure was successfully placed into the low-resolution EM structure of the prokaryotic holo-V-ATPase at a location indicated by the results of crosslinking experiments. The crystal structure, together with the single-molecule analysis using fluorescence resonance energy transfer, showed that the subunit F exhibits two conformations, a 'retracted' form in the absence and an 'extended' form in the presence of ATP. Our results postulated that the subunit F is a regulatory subunit in the V-ATPase.
Collapse
Affiliation(s)
- Hisayoshi Makyio
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yokohama, Japan
- Department of Biological Sciences, Imperial College London, London, UK
| | - Ryota Iino
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yokohama, Japan
| | - Chiyo Ikeda
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yokohama, Japan
| | - Hiromi Imamura
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yokohama, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Momi Iwata
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yokohama, Japan
- Department of Biological Sciences, Imperial College London, London, UK
| | | | | | | | - Masasuke Yoshida
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yokohama, Japan
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Japan
| | - Ken Yokoyama
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yokohama, Japan
- Tel.: +81 45 924 5891; Fax: +81 45 922 5239; E-mail:
| | - So Iwata
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yokohama, Japan
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 20 759 43064; Fax: +44 20 759 43022; E-mail:
| |
Collapse
|
29
|
Furutani M, Hata JI, Shomura Y, Itami K, Yoshida T, Izumoto Y, Togi A, Ideno A, Yasunaga T, Miki K, Maruyama T. An engineered chaperonin caging a guest protein: Structural insights and potential as a protein expression tool. Protein Sci 2005; 14:341-50. [PMID: 15659368 PMCID: PMC2253423 DOI: 10.1110/ps.041043905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The structure of a chaperonin caging a substrate protein is not quite clear. We made engineered group II chaperonins fused with a guest protein and analyzed their structural and functional features. Thermococcus sp. KS-1 chaperonin alpha-subunit (TCP) which forms an eightfold symmetric double-ring structure was used. Expression plasmids were constructed which carried two or four TCP genes ligated head to tail in phase and a target protein gene at the 3' end of the linked TCP genes. Electron microscopy showed that the expressed gene products with the molecular sizes of ~120 kDa (di-TCP) and ~230 kDa (tetra-TCP) formed double-ring complexes similar to those of wild-type TCP. The tetra-TCP retained ATPase activity and its thermostability was significantly higher than that of the wild type. A 260-kDa fusion protein of tetra-TCP and green fluorescent protein (GFP, 27 kDa) was able to form the double-ring complexes with green fluorescence. Image analyses indicated that the GFP moiety of tetra-TCP/GFP fusion protein was accommodated in the central cavity, and tetra-TCP/GFP formed the closed-form similar to that crystallographically resolved in group II chaperonins. Furthermore, it was suggested that caging GFP expanded the cavity around the bottom. Using this tetra-TCP fusion strategy, two virus structural proteins (21-25 kDa) toxic to host cells or two antibody fragments (25-36 kDa) prone to aggregate were well expressed in the soluble fraction of Escherichia coli. These fusion products also assembled to double-ring complexes, suggesting encapsulation of the guest proteins. The antibody fragments liberated by site-specific protease digestion exhibited ligand-binding activities.
Collapse
Affiliation(s)
- Masahiro Furutani
- Sekisui Chemical Co. Ltd., Hyakuyama 2-1, Shimamoto-cho, Mishima-gun, Osaka 618-8589, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lokanath NK, Ukita Y, Sugahara M, Kunishima N. Purification, crystallization and preliminary crystallographic analysis of the vacuole-type ATPase subunit E from Pyrococcus horikoshii OT3. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:56-8. [PMID: 16508090 PMCID: PMC1952376 DOI: 10.1107/s1744309104026430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 10/19/2004] [Indexed: 11/10/2022]
Abstract
The vacuole-type ATPases in eukaryotic cells translocate protons across various biological membranes including the vacuolar membrane by consuming ATP molecules. The E subunit of the multisubunit complex V-ATPase from Pyrococcus horikoshii OT3, which has a molecular weight of 22.88 kDa, has been cloned, overexpressed in Escherichia coli, purified and crystallized by the microbatch method using PEG 4000 as a precipitant at 296 K. A data set to 1.85 A resolution with 98.8% completeness and an Rmerge of 6.5% was collected from a single flash-cooled crystal using synchrotron radiation. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 52.196, b = 55.317, c = 77.481 A, and is most likely to contain one molecule per asymmetric unit.
Collapse
Affiliation(s)
- Neratur K. Lokanath
- Highthroughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoko Ukita
- Highthroughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mitsuaki Sugahara
- Highthroughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Naoki Kunishima
- Highthroughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
31
|
Bernal RA, Stock D. Three-Dimensional Structure of the Intact Thermus thermophilus H+-ATPase/Synthase by Electron Microscopy. Structure 2004; 12:1789-98. [PMID: 15458628 DOI: 10.1016/j.str.2004.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/27/2004] [Accepted: 07/28/2004] [Indexed: 11/20/2022]
Abstract
ATPases are unique rotary motors that are essential to all living organisms because of their role in energy interconversion. A three-dimensional reconstruction of the intact H+-ATPase/synthase from Thermus thermophilus has revealed the presence of two interconnected peripheral stalks, a well-defined central stalk, and a hexagonally shaped hydrophobic domain. The peripheral stalks are each attached to the water soluble sector at a noncatalytic subunit interface and extend down toward the membrane where they interact with a strong elongated tube of density that runs parallel to the membrane and connects the two stalks. The central stalk is well resolved, especially with respect to its interaction with a single catalytic subunit giving rise to an asymmetry comparable to that identified in F-ATPases. The hexagonal shape of the membrane domain might suggest the presence of 12 proteolipids arranged as dimers, analogous to the proposed arrangement in the related eukaryotic V-ATPases.
Collapse
Affiliation(s)
- Ricardo A Bernal
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | |
Collapse
|
32
|
Lolkema JS, Chaban Y, Boekema EJ. Subunit composition, structure, and distribution of bacterial V-type ATPases. J Bioenerg Biomembr 2004; 35:323-35. [PMID: 14635778 DOI: 10.1023/a:1025776831494] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The overall structure of V-ATPase complexes resembles that of F-type ATPases, but the stalk region is different and more complex. Database searches followed by sequence analysis of the five water-soluble stalk region subunits C-G revealed that (i) to date V-ATPases are found in 16 bacterial species, (ii) bacterial V-ATPases are closer to archaeal A-ATPases than to eukaryotic V-ATPases, and (iii) different groups of bacterial V-ATPases exist. Inconsistencies in the nomenclature of types and subunits are addressed. Attempts to assign subunit positions in V-ATPases based on biochemical experiments, chemical cross-linking, and electron microscopy are discussed. A structural model for prokaryotic and eukaryotic V-ATPases is proposed. The prokaryotic V-ATPase is considered to have a central stalk between headpiece and membrane flanked by two peripheral stalks. The eukaryotic V-ATPases have one additional peripheral stalk.
Collapse
Affiliation(s)
- Juke S Lolkema
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
33
|
Henne A, Brüggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ. The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 2004; 22:547-53. [PMID: 15064768 DOI: 10.1038/nbt956] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 01/18/2004] [Indexed: 11/09/2022]
Abstract
Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T. thermophilus HB27, the first for the genus Thermus. The genome consists of a 1,894,877 base pair chromosome and a 232,605 base pair megaplasmid, designated pTT27. The 2,218 identified putative genes were compared to those of the closest relative sequenced so far, the mesophilic bacterium Deinococcus radiodurans. Both organisms share a similar set of proteins, although their genomes lack extensive synteny. Many new genes of potential interest for biotechnological applications were found in T. thermophilus HB27. Candidates include various proteases and key enzymes of other fundamental biological processes such as DNA replication, DNA repair and RNA maturation.
Collapse
Affiliation(s)
- Anke Henne
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Imamura H, Ikeda C, Yoshida M, Yokoyama K. The F subunit of Thermus thermophilus V1-ATPase promotes ATPase activity but is not necessary for rotation. J Biol Chem 2004; 279:18085-90. [PMID: 14963028 DOI: 10.1074/jbc.m314204200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V(1)-ATPase from the thermophilic bacterium Thermus thermophilus is a molecular rotary motor with a subunit composition of A(3)B(3)DF, and its central rotor is composed of the D and F subunits. To determine the role of the F subunit, we generated an A(3)B(3)D subcomplex and compared it with A(3)B(3)DF. The ATP hydrolyzing activity of A(3)B(3)D (V(max) = 20 s(-1)) was lower than that of A(3)B(3)DF (V(max) = 31 s(-1)) and was more susceptible to MgADP inhibition during ATP hydrolysis. A(3)B(3)D was able to bind the F subunit to form A(3)B(3)DF. The C-terminally truncated F((Delta85-106)) subunit was also bound to A(3)B(3)D, but the F((Delta69-106)) subunit was not, indicating the importance of residues 69-84 of the F subunit for association with A(3)B(3)D. The ATPase activity of A(3)B(3)DF((Delta85-106)) (V(max) = 24 s(-1)) was intermediate between that of A(3)B(3)D and A(3)B(3)DF. A single molecule experiment showed the rotation of the D subunit in A(3)B(3)D, implying that the F subunit is a dispensable component for rotation itself. Thus, the F subunit binds peripherally to the D subunit, but promotes V(1)-ATPase catalysis.
Collapse
Affiliation(s)
- Hiromi Imamura
- ATP System Project, Exploration Research for Advanced Technology, Japan Science and Technology Agency, 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan
| | | | | | | |
Collapse
|
35
|
Iwata M, Imamura H, Stambouli E, Ikeda C, Tamakoshi M, Nagata K, Makyio H, Hankamer B, Barber J, Yoshida M, Yokoyama K, Iwata S. Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc Natl Acad Sci U S A 2004; 101:59-64. [PMID: 14684831 PMCID: PMC314138 DOI: 10.1073/pnas.0305165101] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Indexed: 11/18/2022] Open
Abstract
The vacuole-type ATPases (V-ATPases) exist in various intracellular compartments of eukaryotic cells to regulate physiological processes by controlling the acidic environment. The crystal structure of the subunit C of Thermus thermophilus V-ATPase, homologous to eukaryotic subunit d of V-ATPases, has been determined at 1.95-A resolution and located into the holoenzyme complex structure obtained by single particle analysis as suggested by the results of subunit cross-linking experiments. The result shows that V-ATPase is substantially longer than the related F-type ATPase, due to the insertion of subunit C between the V(1) (soluble) and the V(o) (membrane bound) domains. Subunit C, attached to the V(o) domain, seems to have a socket like function in attaching the central-stalk subunits of the V(1) domain. This architecture seems essential for the reversible association/dissociation of the V(1) and the V(o) domains, unique for V-ATPase activity regulation.
Collapse
Affiliation(s)
- Momi Iwata
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yokoyama K, Nagata K, Imamura H, Ohkuma S, Yoshida M, Tamakoshi M. Subunit arrangement in V-ATPase from Thermus thermophilus. J Biol Chem 2003; 278:42686-91. [PMID: 12913005 DOI: 10.1074/jbc.m305853200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The V0V1-ATPase of Thermus thermophilus catalyzes ATP synthesis coupled with proton translocation. It consists of an ATPase-active V1 part (ABDF) and a proton channel V0 part (CLEGI), but the arrangement of each subunit is still largely unknown. Here we found that acid treatment of V0V1-ATPase induced its dissociation into two subcomplexes, one with subunit composition ABDFCL and the other with EGI. Exposure of the isolated V0 to acid or 8 m urea also produced two subcomplexes, EGI and CL. Thus, the C subunit (homologue of d subunit, yeast Vma6p) associates with the L subunit ring tightly, and I (homologue of 100-kDa subunit, yeast Vph1p), E, and G subunits constitute a stable complex. Based on these observations and our recent demonstration that D, F, and L subunits rotate relative to A3B3 (Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315; Yokoyama, K., Nakano, M., Imamura, H., Yoshida, M., and Tamakoshi, M. (2003) J. Biol. Chem. 278, 24255-24258), we propose that C, D, F, and L subunits constitute the central rotor shaft and A, B, E, G, and I subunits comprise the surrounding stator apparatus in the V0V1-ATPase.
Collapse
Affiliation(s)
- Ken Yokoyama
- ATP System Project, ERATO, Japan Science and Technology Corp., 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Castán P, Casares L, Barbé J, Berenguer J. Temperature-dependent hypermutational phenotype in recA mutants of Thermus thermophilus HB27. J Bacteriol 2003; 185:4901-7. [PMID: 12897010 PMCID: PMC166453 DOI: 10.1128/jb.185.16.4901-4907.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The recA gene from Thermus thermophilus HB27 was cloned and engineered to obtain insertion (recA::kat) and deletion (deltarecA) derivatives. Transcription of recA in this extreme thermophile was induced by mitomycin C, leading to the synthesis of a monocistronic mRNA. This DNA damage-mediated induction was dependent on the integrity of recA. In addition to UV sensitivity, the recA mutants of T. thermophilus showed severe pleiotropic defects, ranging from irregular nucleoid condensation and segregation to a dramatic reduction in viability during culture. An increase in the frequency of both carotenoidless and auxotrophic mutants within surviving cells of the deltarecA strain indicated a high mutation rate. As RecA is not required for plasmid transformation, we have used the alpha-lacZ gene fragment and the ampicillin resistance gene from Escherichia coli as passenger reporters to confirm such high mutation rates. Our data support the idea that the absence of RecA results in a hypermutational phenotype in T. thermophilus. Furthermore, a direct relationship is deduced between the growth temperature and mutation rate, which finally has a deleterious effect on cell survival in the absence of RecA.
Collapse
Affiliation(s)
- Pablo Castán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Yokoyama K, Nakano M, Imamura H, Yoshida M, Tamakoshi M. Rotation of the proteolipid ring in the V-ATPase. J Biol Chem 2003; 278:24255-8. [PMID: 12707282 DOI: 10.1074/jbc.m303104200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V0V1-ATPase is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. We demonstrated recently the rotation of the central stalk subunits in V1, a catalytic sector of V0V1-ATPase (Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315), but the rotation of the proteolipid ring, a predicted counterpart rotor in the membrane V0 sector, has remained to be proven. V0V1-ATPase that retained sensitivity to N',N'-dicyclohexylcarbodiimide was isolated from Thermus thermophilus, immobilized onto a glass surface through the N termini of the A subunits of V1, and decorated with a bead attached to a proteolipid subunit of V0. Rotation of beads was observed in the presence of ATP, and direction of rotation was always counterclockwise viewed from the membrane side. The rotation proceeded at approximately 3.0 rev/s in average at 4 mm ATP and was abolished by N',N'-dicyclohexylcarbodiimide treatment. Thus, the rotation of the central stalk in V1 accompanies rotation of a proteolipid ring of V0 in the functioning V0V1-ATPase.
Collapse
Affiliation(s)
- Ken Yokoyama
- ATP System Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan.
| | | | | | | | | |
Collapse
|
39
|
Hirata T, Iwamoto-Kihara A, Sun-Wada GH, Okajima T, Wada Y, Futai M. Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem 2003; 278:23714-9. [PMID: 12670943 DOI: 10.1074/jbc.m302756200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type ATPases V1V0 (V-ATPases) are found ubiquitously in the endomembrane organelles of eukaryotic cells. In this study, we genetically introduced a His tag and a biotin tag onto the c and G subunits, respectively, of Saccharomyces cerevisiae V-ATPase. Using this engineered enzyme, we observed directly the continuous counter-clockwise rotation of an actin filament attached to the G subunit when the enzyme was immobilized on a glass surface through the c subunit. V-ATPase generated essentially the same torque as the F-ATPase (ATP synthase). The rotation was inhibited by concanamycin and nitrate but not by azide. These results demonstrated that the V- and F-ATPase carry out a common rotational catalysis.
Collapse
Affiliation(s)
- Tomoyuki Hirata
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Imamura H, Nakano M, Noji H, Muneyuki E, Ohkuma S, Yoshida M, Yokoyama K. Evidence for rotation of V1-ATPase. Proc Natl Acad Sci U S A 2003; 100:2312-5. [PMID: 12598655 PMCID: PMC151337 DOI: 10.1073/pnas.0436796100] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
V(o)V(1)-ATPase is responsible for acidification of eukaryotic intracellular compartments and ATP synthesis of Archaea and some eubacteria. From the similarity to F(o)F(1)-ATP synthase, V(o)V(1)-ATPase has been assumed to be a rotary motor, but to date there are no experimental data to support this. Here we visualized the rotation of single molecules of V(1)-ATPase, a catalytic subcomplex of V(o)V(1)-ATPase. V(1)-ATPase from Thermus thermophilus was immobilized onto a glass surface, and a bead was attached to the D or F subunit through the biotin-streptavidin linkage. In both cases we observed ATP-dependent rotations of beads, the direction of which was always counterclockwise viewed from the membrane side. Given that three ATP molecules are hydrolyzed per one revolution, rates of rotation agree consistently with rates of ATP hydrolysis at saturating ATP concentrations. This study provides experimental evidence that V(o)V(1)-ATPase is a rotary motor and that both D and F subunits constitute a rotor shaft.
Collapse
Affiliation(s)
- Hiromi Imamura
- ATP System Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, 5800-3 Nagatsuta, Midori-ku, Yokohama 226-0026, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Yoshida T, Kawaguchi R, Taguchi H, Yoshida M, Yasunaga T, Wakabayashi T, Yohda M, Maruyama T. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J Mol Biol 2002; 315:73-85. [PMID: 11771967 DOI: 10.1006/jmbi.2001.5220] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group II chaperonins of archaea and eukaryotes are distinct from group I chaperonins of bacteria. Whereas group I chaperonins require the co-chaperonin Cpn-10 or GroES for protein folding, no co-chaperonin has been known for group II. The protein folding mechanism of group II chaperonins is not yet clear. To understand this mechanism, we examined protein refolding by the recombinant alpha or beta-subunit chaperonin homo-oligomer (alpha16mer and beta16mer) from a hyperthermoplilic archaeum, Thermococcus strain KS-1, using a model substrate, green fluorescent protein (GFP). The alpha16mer and beta16mer captured the non-native GFP and promoted its refolding without any co-chaperonin in an ATP dependent manner. A non-hydrolyzable ATP analog, AMP-PNP, induced the GFP refolding mediated by beta16mer but not by the alpha16mer. A mutant alpha-subunit chaperonin homo-oligomer (trap-alpha) could capture the non-native protein but lacked the ability to refold it. Although trap-alpha suppressed ATP-dependent refolding of GFP mediated by alpha16mer or beta16mer, it did not affect the AMP-PNP-dependent refolding. This indicated that the GFP refolding mediated by beta16mer with AMP-PNP was not accessible to the trap-alpha. Gel filtration chromatography and a protease protection experiment revealed that this refolded GFP, in the presence of AMP-PNP, was associated with beta16mer. After the completion of GFP refolding mediated by beta16mer with AMP-PNP, addition of ATP induced an additional refolding of GFP. Furthermore, the beta16mer preincubated with AMP-PNP showed the ability to capture the non-native GFP. These suggest that AMP-PNP induced one of two chaperonin rings (cis-ring) to close and induced protein refolding in this ring, and that the other ring (trans-ring) could capture the unfolded GFP which was refolded by adding ATP. The present data indicate that, in the group II chaperonin of Thermococcus strain KS-1, the protein folding proceeds in its cis-ring in an ATP-dependent fashion without any co-chaperonin.
Collapse
Affiliation(s)
- Takao Yoshida
- Kamaishi Laboratories, Marine Biotechnology Institute Co. Ltd., 3-75-1 Heita, Kamaishi, 026-0001, Iwate, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kawamura Y, Arakawa K, Maeshima M, Yoshida S. ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase. ACTA ACUST UNITED AC 2001; 268:2801-9. [PMID: 11358495 DOI: 10.1046/j.1432-1327.2001.02139.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vacuolar H+-ATPase (V-ATPase) consists of a catalytic head, a stalk part and a membrane domain. We indirectly investigated the interaction between the A subunit (catalytic head) and the E subunit (stalk part) using an ATP analogue, adenosine 5'-[beta,gamma-imino]triphosphate (AMP-PNP), which holds the enzyme in the substrate-binding state. AMP-PNP treatment caused a mobility shift of the E subunit with a faster migration in SDS/polyacrylamide gel electrophoresis without a reductant, while ATP treatment did not. A mobility shift of the E subunit has been detected in several plants. As polypeptides with intramolecular disulfide bonds migrate faster than those without disulfide bonds, the mobility shift may be due to the formation of an intramolecular disulfide bond by two cysteine residues conserved among several plant species. The mobility shift may be involved in the binding of AMP-PNP to the ATP-binding site, which exists in the A and B subunits, as it was inhibited by the addition of ATP. Pretreatment with 2'-3'-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), which modifies the ATP-binding site of the B subunit under UV illumination, did not inhibit the mobility shift of the E subunit caused by AMP-PNP treatment. The response of V-ATPase following the AMP-PNP binding may cause a conformational change in the E subunit into a form that is susceptible to oxidation of cysteine residues. This is the first demonstration of interaction between the A and E subunits in the substrate-binding state of a plant V-ATPase.
Collapse
Affiliation(s)
- Y Kawamura
- Cryobiosystem Research Center, Iwate University, Iwate, Japan
| | | | | | | |
Collapse
|
43
|
Ishii N, Saijo S, Sato T, Tanaka N, Harata K. Crystallization and preliminary X-ray studies of V(1)-ATPase of Thermus thermophilus HB8 complexed with Mg-ADP. J Struct Biol 2001; 134:88-92. [PMID: 11469881 DOI: 10.1006/jsbi.2001.4358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystals have been grown of the V(1)-ATPase sector of the V-type ATP synthase complex (V(0)V(1)) from the thermophilic eubacterium Thermus thermophilus HB8. These crystals are grown by the vapor diffusion method in the presence of 5 mM Mg-ADP, from solutions containing 100 mM sodium acetate and 2 M sodium formate, pH 5.5. The crystals diffracted X rays beyond 3.4 A in resolution on a synchrotron radiation source. The crystals belong to the trigonal space group P3, with unit cell dimensions of a = b = 89.0 A, c = 179.2 A, and gamma = 120 degrees. The unit cell presumably contains one molecule of V(1)-ATPase and the V(m) value is calculated as 3.0 A(3)/Da.
Collapse
Affiliation(s)
- N Ishii
- Biophysical Chemistry Laboratory, National Institute of Bioscience and Human Technology, 1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | | | | | | | | |
Collapse
|