1
|
Cackett G, Sýkora M, Portugal R, Dulson C, Dixon L, Werner F. Transcription termination and readthrough in African swine fever virus. Front Immunol 2024; 15:1350267. [PMID: 38545109 PMCID: PMC10965686 DOI: 10.3389/fimmu.2024.1350267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that encodes its own host-like RNA polymerase (RNAP) and factors required to produce mature mRNA. The formation of accurate mRNA 3' ends by ASFV RNAP depends on transcription termination, likely enabled by a combination of sequence motifs and transcription factors, although these are poorly understood. The termination of any RNAP is rarely 100% efficient, and the transcriptional "readthrough" at terminators can generate long mRNAs which may interfere with the expression of downstream genes. ASFV transcriptome analyses reveal a landscape of heterogeneous mRNA 3' termini, likely a combination of bona fide termination sites and the result of mRNA degradation and processing. While short-read sequencing (SRS) like 3' RNA-seq indicates an accumulation of mRNA 3' ends at specific sites, it cannot inform about which promoters and transcription start sites (TSSs) directed their synthesis, i.e., information about the complete and unprocessed mRNAs at nucleotide resolution. Methods Here, we report a rigorous analysis of full-length ASFV transcripts using long-read sequencing (LRS). We systematically compared transcription termination sites predicted from SRS 3' RNA-seq with 3' ends mapped by LRS during early and late infection. Results Using in-vitro transcription assays, we show that recombinant ASFV RNAP terminates transcription at polyT stretches in the non-template strand, similar to the archaeal RNAP or eukaryotic RNAPIII, unaided by secondary RNA structures or predicted viral termination factors. Our results cement this T-rich motif (U-rich in the RNA) as a universal transcription termination signal in ASFV. Many genes share the usage of the same terminators, while genes can also use a range of terminators to generate transcript isoforms varying enormously in length. A key factor in the latter phenomenon is the highly abundant terminator readthrough we observed, which is more prevalent during late compared with early infection. Discussion This indicates that ASFV mRNAs under the control of late gene promoters utilize different termination mechanisms and factors to early promoters and/or that cellular factors influence the viral transcriptome landscape differently during the late stages of infection.
Collapse
Affiliation(s)
- Gwenny Cackett
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Christopher Dulson
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Linda Dixon
- Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Identification of Vaccinia Virus Replisome and Transcriptome Proteins by Isolation of Proteins on Nascent DNA Coupled with Mass Spectrometry. J Virol 2017; 91:JVI.01015-17. [PMID: 28747503 DOI: 10.1128/jvi.01015-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Poxviruses replicate within the cytoplasm and encode proteins for DNA and mRNA synthesis. To investigate poxvirus replication and transcription from a new perspective, we incorporated 5-ethynyl-2'-deoxyuridine (EdU) into nascent DNA in cells infected with vaccinia virus (VACV). The EdU-labeled DNA was conjugated to fluor- or biotin-azide and visualized by confocal, superresolution, and transmission electron microscopy. Nuclear labeling decreased dramatically after infection, accompanied by intense labeling of cytoplasmic foci. The nascent DNA colocalized with the VACV single-stranded DNA binding protein I3 in multiple puncta throughout the interior of factories, which were surrounded by endoplasmic reticulum. Complexes containing EdU-biotin-labeled DNA cross-linked to proteins were captured on streptavidin beads. After elution and proteolysis, the peptides were analyzed by mass spectrometry to identify proteins associated with nascent DNA. The known viral replication proteins, a telomere binding protein, and a protein kinase were associated with nascent DNA, as were the DNA-dependent RNA polymerase and intermediate- and late-stage transcription initiation and elongation factors, plus the capping and methylating enzymes. These results suggested that the replicating pool of DNA is transcribed and that few if any additional viral proteins directly engaged in replication and transcription remain to be discovered. Among the host proteins identified by mass spectrometry, topoisomerases IIα and IIβ and PCNA were noteworthy. The association of the topoisomerases with nascent DNA was dependent on expression of the viral DNA ligase, in accord with previous proteomic studies. Further investigations are needed to determine possible roles for PCNA and other host proteins detected.IMPORTANCE Poxviruses, unlike many well-characterized animal DNA viruses, replicate entirely within the cytoplasm of animal cells, raising questions regarding the relative roles of viral and host proteins. We adapted newly developed procedures for click chemistry and iPOND (Isolation of proteins on nascent DNA) to investigate vaccinia virus (VACV), the prototype poxvirus. Nuclear DNA synthesis ceased almost immediately following VACV infection, followed swiftly by the synthesis of viral DNA within discrete cytoplasmic foci. All viral proteins known from genetic and proteomic studies to be required for poxvirus DNA replication were identified in the complexes containing nascent DNA. The additional detection of the viral DNA-dependent RNA polymerase and intermediate and late transcription factors provided evidence for a temporal coupling of replication and transcription. Further studies are needed to assess the potential roles of host proteins, including topoisomerases IIα and IIβ and PCNA, which were found associated with nascent DNA.
Collapse
|
3
|
Hindman R, Gollnick P. Nucleoside Triphosphate Phosphohydrolase I (NPH I) Functions as a 5' to 3' Translocase in Transcription Termination of Vaccinia Early Genes. J Biol Chem 2016; 291:14826-38. [PMID: 27189950 DOI: 10.1074/jbc.m116.730135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus early genes are transcribed immediately upon infection. Nucleoside triphosphate phosphohydrolase I (NPH I) is an essential component of the early gene transcription complex. NPH I hydrolyzes ATP to release transcripts during transcription termination. The ATPase activity of NPH I requires single-stranded (ss) DNA as a cofactor; however, the source of this cofactor within the transcription complex is not known. Based on available structures of transcription complexes it has been hypothesized that the ssDNA cofactor is obtained from the unpaired non-template strand within the transcription bubble. In vitro transcription on templates that lack portions of the non-template strand within the transcription bubble showed that the upstream portion of the transcription bubble is required for efficient NPH I-mediated transcript release. Complementarity between the template and non-template strands in this region is also required for NPH I-mediated transcript release. This observation complicates locating the source of the ssDNA cofactor within the transcription complex because removal of the non-template strand also disrupts transcription bubble reannealing. Prior studies have shown that ssRNA binds to NPH I, but it does not activate ATPase activity. Chimeric transcription templates with RNA in the non-template strand confirm that the source of the ssDNA cofactor for NPH I is the upstream portion of the non-template strand in the transcription bubble. Consistent with this conclusion we also show that isolated NPH I acts as a 5' to 3' translocase on single-stranded DNA.
Collapse
Affiliation(s)
- Ryan Hindman
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| | - Paul Gollnick
- From the Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260-4610
| |
Collapse
|
4
|
Duplication of the A17L locus of vaccinia virus provides an alternate route to rifampin resistance. J Virol 2014; 88:11576-85. [PMID: 25078687 DOI: 10.1128/jvi.00618-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Specific gene duplications can enable double-stranded DNA viruses to adapt rapidly to environmental pressures despite the low mutation rate of their high-fidelity DNA polymerases. We report on the rapid positive selection of a novel vaccinia virus genomic duplication mutant in the presence of the assembly inhibitor rifampin. Until now, all known rifampin-resistant vaccinia virus isolates have contained missense mutations in the D13L gene, which encodes a capsid-like scaffold protein required for stabilizing membrane curvature during the early stage of virion assembly. Here we describe a second pathway to rifampin resistance involving A17, a membrane protein that binds and anchors D13 to the immature virion. After one round of selection, a rifampin-resistant virus that contained a genomic duplication in the A17L-A21L region was recovered. The mutant had both C-terminally truncated and full-length A17L open reading frames. Expression of the truncated A17 protein was retained when the virus was passaged in the presence of rifampin but was lost in the absence of the drug, suggesting that the duplication decreased general fitness. Both forms of A17 were bound to the virion membrane and associated with D13. Moreover, insertion of an additional truncated or inducible full-length A17L open reading frame into the genome of the wild-type virus was sufficient to confer rifampin resistance. In summary, this report contains the first evidence of an alternate mechanism for resistance of poxviruses to rifampin, indicates a direct relationship between A17 levels and the resistance phenotype, and provides further evidence of the ability of double-stranded DNA viruses to acquire drug resistance through gene duplication. IMPORTANCE The present study provides the first evidence of a new mechanism of resistance of a poxvirus to the antiviral drug rifampin. In addition, it affirms the importance of the interaction between the D13 scaffold protein and the A17 membrane protein for assembly of virus particles. Resistance to rifampin was linked to a partial duplication of the gene encoding the A17 protein, similar to the resistance to hydroxyurea enabled by duplication of the gene encoding the small subunit of ribonucleotide reductase and of the K3L gene to allow adaptation to the antiviral action of protein kinase R. Gene duplication may provide a way for poxviruses and other DNA viruses with high-fidelity DNA polymerases to adjust rapidly to changes in the environment.
Collapse
|
5
|
|
6
|
Kay NE, Bainbridge TW, Condit RC, Bubb MR, Judd RE, Venkatakrishnan B, McKenna R, D'Costa SM. Biochemical and biophysical properties of a putative hub protein expressed by vaccinia virus. J Biol Chem 2013; 288:11470-81. [PMID: 23476017 DOI: 10.1074/jbc.m112.442012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
H5 is a constitutively expressed, phosphorylated vaccinia virus protein that has been implicated in viral DNA replication, post-replicative gene expression, and virus assembly. For the purpose of understanding the role of H5 in vaccinia biology, we have characterized its biochemical and biophysical properties. Previously, we have demonstrated that H5 is associated with an endoribonucleolytic activity. In this study, we have shown that this cleavage results in a 3'-OH end suitable for polyadenylation of the nascent transcript, corroborating a role for H5 in vaccinia transcription termination. Furthermore, we have shown that H5 is intrinsically disordered, with an elongated rod-shaped structure that preferentially binds double-stranded nucleic acids in a sequence nonspecific manner. The dynamic phosphorylation status of H5 influences this structure and has implications for the role of H5 in multiple processes during virus replication.
Collapse
Affiliation(s)
- Nicole E Kay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Rodríguez JM, Salas ML. African swine fever virus transcription. Virus Res 2012; 173:15-28. [PMID: 23041356 DOI: 10.1016/j.virusres.2012.09.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
African swine fever virus (ASFV), a large, enveloped, icosahedral dsDNA virus, is currently the only known DNA-containing arbovirus and the only recognized member of the family Asfarviridae. Its genome encodes more than 150 open reading frames that are densely distributed, separated by short intergenic regions. ASFV gene expression follows a complex temporal programming. Four classes of mRNAs have been identified by its distinctive accumulation kinetics. Gene transcription is coordinated with DNA replication that acts as the main switch on ASFV gene expression. Immediate early and early genes are expressed before the onset of DNA replication, whereas intermediate and late genes are expressed afterwards. ASFV mRNAs have a cap 1 structure at its 5'-end and a short poly(A) tail on its 3'-end. Transcription initiation and termination occurs at very precise positions within the genome, producing transcripts of definite length throughout the expression program. ASFV devotes approximately 20% of its genome to encode the 20 genes currently considered to be involved in the transcription and modification of its mRNAs. This transcriptional machinery gives to ASFV a remarkable independence from its host and an accurate positional and temporal control of its gene expression. Here, we review the components of the ASFV transcriptional apparatus, its expression strategies and the relevant data about the transcriptional cis-acting control sequences.
Collapse
Affiliation(s)
- Javier M Rodríguez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km 2.2, Majadahonda, 28220 Madrid, Spain.
| | | |
Collapse
|
8
|
Yutin N, Koonin EV. Hidden evolutionary complexity of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes. Virol J 2012; 9:161. [PMID: 22891861 PMCID: PMC3493329 DOI: 10.1186/1743-422x-9-161] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 08/08/2012] [Indexed: 11/27/2022] Open
Abstract
Background The Nucleo-Cytoplasmic Large DNA Viruses (NCLDV) constitute an apparently monophyletic group that consists of at least 6 families of viruses infecting a broad variety of eukaryotic hosts. A comprehensive genome comparison and maximum-likelihood reconstruction of the NCLDV evolution revealed a set of approximately 50 conserved, core genes that could be mapped to the genome of the common ancestor of this class of eukaryotic viruses. Results We performed a detailed phylogenetic analysis of these core NCLDV genes and applied the constrained tree approach to show that the majority of the core genes are unlikely to be monophyletic. Several of the core genes have been independently acquired from different sources by different NCLDV lineages whereas for the majority of these genes displacement by homologs from cellular organisms in one or more groups of the NCLDV was demonstrated. Conclusions A detailed study of the evolution of the genomic core of the NCLDV reveals substantial complexity and diversity of evolutionary scenarios that was largely unsuspected previously. The phylogenetic coherence between the core genes is sufficient to validate the hypothesis on the evolution of all NCLDV from a common ancestral virus although the set of ancestral genes might be smaller than previously inferred from patterns of gene presence-absence.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
9
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
10
|
de Souza RF, Iyer LM, Aravind L. Diversity and evolution of chromatin proteins encoded by DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:302-18. [PMID: 19878744 PMCID: PMC3243496 DOI: 10.1016/j.bbagrm.2009.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/23/2022]
Abstract
Double-stranded DNA viruses display a great variety of proteins that interact with host chromatin. Using the wealth of available genomic and functional information, we have systematically surveyed chromatin-related proteins encoded by dsDNA viruses. The distribution of viral chromatin-related proteins is primarily influenced by viral genome size and the superkingdom to which the host of the virus belongs. Smaller viruses usually encode multifunctional proteins that mediate several distinct interactions with host chromatin proteins and viral or host DNA. Larger viruses additionally encode several enzymes, which catalyze manipulations of chromosome structure, chromatin remodeling and covalent modifications of proteins and DNA. Among these viruses, it is also common to encounter transcription factors and DNA-packaging proteins such as histones and IHF/HU derived from cellular genomes, which might play a role in constituting virus-specific chromatin states. Through all size ranges a subset of domains in viral chromatin proteins appears to have been derived from those found in host proteins. Examples include the Zn-finger domains of the E6 and E7 proteins of papillomaviruses, SET domain methyltransferases and Jumonji-related demethylases in certain nucleocytoplasmic large DNA viruses and BEN domains in poxviruses and polydnaviruses. In other cases, chromatin-interacting modules, such as the LXCXE motif, appear to have been widely disseminated across distinct viral lineages, resulting in similar retinoblastoma targeting strategies. Viruses, especially those with large linear genomes, have evolved a number of mechanisms to manipulate viral chromosomes in the process of replication-associated recombination. These include topoisomerases, Rad50/SbcC-like ABC ATPases and a novel recombinase system in bacteriophages utilizing RecA and Rad52 homologs. Larger DNA viruses also encode SWI2/SNF2 and A18-like ATPases which appear to play specialized roles in transcription and recombination. Finally, it also appears that certain domains of viral provenance have given rise to key functions in eukaryotic chromatin such as a HEH domain of chromosome tethering proteins and the TET/JBP-like cytosine and thymine hydroxylases.
Collapse
Affiliation(s)
- Robson F. de Souza
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, United States of America
| |
Collapse
|
11
|
Abstract
Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.
Collapse
|
12
|
D'Costa SM, Bainbridge TW, Condit RC. Purification and properties of the vaccinia virus mRNA processing factor. J Biol Chem 2007; 283:5267-75. [PMID: 18089571 DOI: 10.1074/jbc.m709258200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mRNAs encoding the vaccinia virus F17 protein and the cowpox A-type inclusion protein are known to possess sequence-homogeneous 3' ends, generated by a post-transcriptional cleavage event. By using partially purified extracts, we have previously shown that the same factor probably cleaves both the F17 and A-type inclusion protein transcripts and that the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. In this study, we have purified the cleavage factor from vaccinia-infected HeLa cells using column chromatography and gel filtration. The factor eluted from the gel filtration column with an apparent molecular mass of approximately 440 kDa. Mass spectrometric analyses of the proteins present in the peak active fractions revealed the presence of at least one vaccinia protein with a high degree of certainty, the H5R gene product. To extend this finding, extracts were prepared from HeLa cells infected with vaccinia virus overexpressing His-tagged H5, chromatographed on a nickel affinity column, and eluted using an imidazole gradient. Cleavage activity eluted with the peak of His-tagged H5. Gel filtration of the affinity-purified material further demonstrated that cleavage activity and His-tagged H5 co-chromatographed with an apparent molecular mass of 463 kDa. We therefore conclude that H5 is specifically associated with post-transcriptional cleavage of F17R transcripts. In addition, we show that dephosphorylation of a cleavage competent extract with a nonspecific phosphatase abolishes cleavage activity implying a role for phosphorylation in cleavage activity.
Collapse
Affiliation(s)
- Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA.
| | | | | |
Collapse
|
13
|
Netherton C, Moffat K, Brooks E, Wileman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 2007; 70:101-82. [PMID: 17765705 PMCID: PMC7112299 DOI: 10.1016/s0065-3527(07)70004-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus replication can cause extensive rearrangement of host cell cytoskeletal and membrane compartments leading to the “cytopathic effect” that has been the hallmark of virus infection in tissue culture for many years. Recent studies are beginning to redefine these signs of viral infection in terms of specific effects of viruses on cellular processes. In this chapter, these concepts have been illustrated by describing the replication sites produced by many different viruses. In many cases, the cellular rearrangements caused during virus infection lead to the construction of sophisticated platforms in the cell that concentrate replicase proteins, virus genomes, and host proteins required for replication, and thereby increase the efficiency of replication. Interestingly, these same structures, called virus factories, virus inclusions, or virosomes, can recruit host components that are associated with cellular defences against infection and cell stress. It is possible that cellular defence pathways can be subverted by viruses to generate sites of replication. The recruitment of cellular membranes and cytoskeleton to generate virus replication sites can also benefit viruses in other ways. Disruption of cellular membranes can, for example, slow the transport of immunomodulatory proteins to the surface of infected cells and protect against innate and acquired immune responses, and rearrangements to cytoskeleton can facilitate virus release.
Collapse
Affiliation(s)
- Christopher Netherton
- Vaccinology Group, Pirbright Laboratories, Institute for Animal Health, Surrey, United Kingdom
| | | | | | | |
Collapse
|
14
|
Cresawn SG, Prins C, Latner DR, Condit RC. Mapping and phenotypic analysis of spontaneous isatin-beta-thiosemicarbazone resistant mutants of vaccinia virus. Virology 2007; 363:319-32. [PMID: 17336362 PMCID: PMC1950264 DOI: 10.1016/j.virol.2007.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/22/2022]
Abstract
Treatment of wild type vaccinia virus infected cells with the anti-poxviral drug isatin-beta-thiosemicarbazone (IBT) induces the viral postreplicative transcription apparatus to synthesize longer-than-normal mRNAs through an unknown mechanism. Previous studies have shown that virus mutants resistant to or dependent on IBT affect genes involved in control of viral postreplicative transcription elongation. This study was initiated in order to identify additional viral genes involved in control of vaccinia postreplicative transcription elongation. Eight independent, spontaneous IBT resistant mutants of vaccinia virus were isolated. Marker rescue experiments mapped two mutants to gene G2R, which encodes a previously characterized postreplicative gene positive transcription elongation factor. Three mutants mapped to the largest subunit of the viral RNA polymerase, rpo147, the product of gene J6R. One mutant contained missense mutations in both G2R and A24R (rpo132, the second largest subunit of the RNA polymerase). Two mutants could not be mapped, however sequence analysis demonstrated that neither of these mutants contained mutations in previously identified IBT resistance or dependence genes. Phenotypic and biochemical analysis of the mutants suggests that they possess defects in transcription elongation that compensate for the elongation enhancing effects of IBT. The results implicate the largest subunit of the RNA polymerase (rpo147) in the control of elongation, and suggest that there exist additional gene products which mediate intermediate and late transcription elongation in vaccinia virus.
Collapse
Affiliation(s)
| | | | | | - Richard C. Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610
| |
Collapse
|
15
|
Mizuki F, Namiki T, Sato H, Furukawa H, Matsusaka T, Ohshima Y, Ishibashi R, Andoh T, Tani T. Participation of XPB/Ptr8p, a component of TFIIH, in nucleocytoplasmic transport of mRNA in fission yeast. Genes Cells 2007; 12:35-47. [PMID: 17212653 DOI: 10.1111/j.1365-2443.2006.01032.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To identify novel factors involved in nuclear mRNA export in Schizosaccharomyces pombe, we isolated and characterized the ptr8(+) gene, mutation of which causes nuclear accumulation of poly (A)(+) RNA. The ptr8(+) gene encodes an S. pombe homologue of human XPB, a component of TFIIH involved in nucleotide excision repair (NER) and transcription. A temperature-sensitive mutant of ptr8(+) (ptr8-1) was highly sensitive to UV irradiation, as are human XPB cells. Northern blot analysis demonstrated that the amount of total poly (A)(+) mRNAs does not decrease significantly at the nonpermissive temperature in ptr8-1 cells, whereas a pulse-labeling assay using (35)S-methionine showed that protein synthesis decreases rapidly after incubation of cells at the nonpermissive temperature, suggesting that ptr8-1 cells have a defect in nuclear mRNA export. In Saccharomyces cerevisiae, a mutation in the SSL2 gene encoding a homologue of Ptr8p also causes a block of mRNA export at the nonpermissive temperature. In addition, expression of human XPB in ptr8-1 cells rescued the ts phenotype and the mRNA export defects, suggesting that human XPB may also play a role in mRNA export. Furthermore, we revealed a functional interaction between Ptr8p and Tho2p, a component of the TREX complex involved in mRNA export. These results suggest that XPB/Ptr8p plays roles not only in NER and transcription, but also plays a conserved role in mRNA export.
Collapse
Affiliation(s)
- Fumitaka Mizuki
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Iyer LM, Balaji S, Koonin EV, Aravind L. Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 2006; 117:156-84. [PMID: 16494962 DOI: 10.1016/j.virusres.2006.01.009] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 01/06/2006] [Accepted: 01/09/2006] [Indexed: 11/19/2022]
Abstract
A previous comparative-genomic study of large nuclear and cytoplasmic DNA viruses (NCLDVs) of eukaryotes revealed the monophyletic origin of four viral families: poxviruses, asfarviruses, iridoviruses, and phycodnaviruses [Iyer, L.M., Aravind, L., Koonin, E.V., 2001. Common origin of four diverse families of large eukaryotic DNA viruses. J. Virol. 75 (23), 11720-11734]. Here we update this analysis by including the recently sequenced giant genome of the mimiviruses and several additional genomes of iridoviruses, phycodnaviruses, and poxviruses. The parsimonious reconstruction of the gene complement of the ancestral NCLDV shows that it was a complex virus with at least 41 genes that encoded the replication machinery, up to four RNA polymerase subunits, at least three transcription factors, capping and polyadenylation enzymes, the DNA packaging apparatus, and structural components of an icosahedral capsid and the viral membrane. The phylogeny of the NCLDVs is reconstructed by cladistic analysis of the viral gene complements, and it is shown that the two principal lineages of NCLDVs are comprised of poxviruses grouped with asfarviruses and iridoviruses grouped with phycodnaviruses-mimiviruses. The phycodna-mimivirus grouping was strongly supported by several derived shared characters, which seemed to rule out the previously suggested basal position of the mimivirus [Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., La Scola, B., Suzan, M., Claverie, J.M. 2004. The 1.2-megabase genome sequence of Mimivirus. Science 306 (5700), 1344-1350]. These results indicate that the divergence of the major NCLDV families occurred at an early stage of evolution, prior to the divergence of the major eukaryotic lineages. It is shown that subsequent evolution of the NCLDV genomes involved lineage-specific expansion of paralogous gene families and acquisition of numerous genes via horizontal gene transfer from the eukaryotic hosts, other viruses, and bacteria (primarily, endosymbionts and parasites). Amongst the expansions, there are multiple families of predicted virus-specific signaling and regulatory domains. Most NCLDVs have also acquired large arrays of genes related to ubiquitin signaling, and the animal viruses in particular have independently evolved several defenses against apoptosis and immune response, including growth factors and potential inhibitors of cytokine signaling. The mimivirus displays an enormous array of genes of bacterial provenance, including a representative of a new class of predicted papain-like peptidases. It is further demonstrated that a significant number of genes found in NCLDVs also have homologs in bacteriophages, although a vertical relationship between the NCLDVs and a particular bacteriophage group could not be established. On the basis of these observations, two alternative scenarios for the origin of the NCLDVs and other groups of large DNA viruses of eukaryotes are considered. One of these scenarios posits an early assembly of an already large DNA virus precursor from which various large DNA viruses diverged through an ongoing process of displacement of the original genes by xenologous or non-orthologous genes from various sources. The second scenario posits convergent emergence, on multiple occasions, of large DNA viruses from small plasmid-like precursors through independent accretion of similar sets of genes due to strong selective pressures imposed by their life cycles and hosts.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
17
|
Oh J, Broyles SS. Host cell nuclear proteins are recruited to cytoplasmic vaccinia virus replication complexes. J Virol 2005; 79:12852-60. [PMID: 16188987 PMCID: PMC1235867 DOI: 10.1128/jvi.79.20.12852-12860.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initiation and termination of vaccinia virus postreplicative transcription have been reported to require cellular proteins, some of which are believed to be nuclear proteins. Vaccinia virus replicates in the cytoplasmic compartment of the cell, raising questions as to whether vaccinia virus has access to nuclear proteins. This was addressed here by following the fate of several nuclear proteins after infection of cells with vaccinia virus. The nuclear transcription factors YY1, SP1, and TATA binding protein were found to colocalize with virus replication complexes in the cytoplasm of infected cells. In addition, the nuclear proteins RNA polymerase II, TAFIIp32, and histone deacetylase 8, but not the structural protein lamin B, also were found in the cytoplasm of the cell. The association of YY1 with replication complexes was dependent on DNA replication and required only the DNA binding domain of the protein, indicating that DNA binding alone may be responsible for the association of nuclear transcription factors with viral replication complexes in the cytoplasm. The cytoplasmic localization of YY1 was resistant to the nuclear export inhibitor leptomycin B. Evidence is presented indicating that nuclear import and export pathways were not adversely affected by vaccinia virus infection. These observations indicate that vaccinia virus replication complexes have ready access to nuclear proteins by allowing leakage from the nucleus.
Collapse
Affiliation(s)
- Jaewook Oh
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
18
|
Pirrung MC, Pansare SV, Sarma KD, Keith KA, Kern ER. Combinatorial Optimization of Isatin-β-Thiosemicarbazones as Anti-poxvirus Agents. J Med Chem 2005; 48:3045-50. [PMID: 15828843 DOI: 10.1021/jm049147h] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel strategies are required to combat pox virus infections, whether caused by escape of viruses such as monkeypox from indigenous areas or intentional release of smallpox. Anti-smallpox drugs with a unique mode of antiviral action, inhibition of transcription termination, were known but not therapeutically useful. Using a combinatorial method, variants of the basic isatin-beta-thiosemicarbazone structure were prepared and examined for cytotoxicity and antiviral activity in vaccinia virus- and cowpox virus-infected human cells. Potent and much more selective N-aminomethyl-isatin-beta-thiosemicarbazones were discovered.
Collapse
Affiliation(s)
- Michael C Pirrung
- Department of Chemistry, Levine Science Research Center, Box 90317, Duke University, Durham, North Carolina 27708-0317, USA.
| | | | | | | | | |
Collapse
|
19
|
Kato SEM, Strahl AL, Moussatche N, Condit RC. Temperature-sensitive mutants in the vaccinia virus 4b virion structural protein assemble malformed, transcriptionally inactive intracellular mature virions. Virology 2005; 330:127-46. [PMID: 15527840 DOI: 10.1016/j.virol.2004.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 07/30/2004] [Accepted: 08/20/2004] [Indexed: 11/23/2022]
Abstract
Two noncomplementing vaccinia virus temperature-sensitive mutants, Cts8 and Cts26, were mapped to the A3L gene, which encodes the major virion structural protein, 4b. The two ts mutants display normal patterns of gene expression, DNA replication, telomere resolution, and protein processing during infection. Morphogenesis during mutant infections is normal through formation of immature virions with nucleoids (IVN) but appears to be defective in the transition from IVN to intracellular mature virus (IMV). In mutant infections, aberrant particles that have the appearance of malformed IMV accumulate. The mutant particles are wrapped in Golgi-derived membranes and exported from cells. Purified mutant particles are indistinguishable from wt particles in protein and DNA composition; however, they are defective in a permeabilized-virion-directed transcription reaction despite containing significant (Cts8) or even normal (Cts26) levels of specific transcription enzymes. These results indicate that the 4b protein is required for proper metamorphosis of IMV from IVN and that proper organization of the IMV structure is required to produce a transcriptionally active virion particle.
Collapse
Affiliation(s)
- Sayuri E M Kato
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
20
|
Dellis S, Strickland KC, McCrary WJ, Patel A, Stocum E, Wright CF. Protein interactions among the vaccinia virus late transcription factors. Virology 2005; 329:328-36. [PMID: 15518812 DOI: 10.1016/j.virol.2004.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 07/23/2004] [Accepted: 08/17/2004] [Indexed: 11/18/2022]
Abstract
The viral proteins A1L, A2L, G8R, and H5R positively modulate vaccinia virus late gene expression. Host-encoded proteins hnRNP A2 and RBM3 may also interact with these viral factors to influence late gene expression. In these studies, a yeast two-hybrid screen and in vitro pulldown and crosslinking experiments were used to investigate protein--protein interactions among these factors. These studies confirmed a previous observation that G8R interacts with itself and A1L. However, self-interactions of A1L and H5R, and interactions between A2L and G8R, A2L and H5R, and H5R and G8R were also observed. In addition, the proteins hnRNP A2 and RBM3 both showed some interaction with A2L. Illustration of these interactions is a step toward understanding the architecture of the late gene transcription complex as it occurs in poxviruses.
Collapse
Affiliation(s)
- Stephanie Dellis
- Biology Department, College of Charleston, Charleston, SC 29401, USA
| | | | | | | | | | | |
Collapse
|
21
|
Prins C, Cresawn SG, Condit RC. An isatin-beta-thiosemicarbazone-resistant vaccinia virus containing a mutation in the second largest subunit of the viral RNA polymerase is defective in transcription elongation. J Biol Chem 2004; 279:44858-71. [PMID: 15294890 DOI: 10.1074/jbc.m408167200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The vaccinia virus RNA polymerase is a multi-subunit enzyme that contains eight subunits in the postreplicative form. A prior study of a virus called IBT(r90), which contains a mutation in the A24 gene encoding the RPO132 subunit of the RNA polymerase, demonstrated that the mutation results in resistance to the anti-poxvirus drug isatin-beta-thiosemicarbazone (IBT). In this study, we utilized an in vitro transcription elongation assay to determine the effect of this mutation on transcription elongation. Both wild type and IBT(r90) polymerase complexes were studied with regard to their ability to pause during elongation, their stability in a paused state, their ability to release transcripts, and their elongation rate. We have determined that the IBT(r90) complex is specifically defective in elongation compared with the WT complex, pausing longer and more frequently than the WT complex. We have built a homology model of the RPO132 subunit with the yeast pol II rpb2 subunit to propose a structural mechanism for this elongation defect.
Collapse
Affiliation(s)
- Cindy Prins
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | |
Collapse
|
22
|
D'Costa SM, Antczak JB, Pickup DJ, Condit RC. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus. Virology 2004; 319:1-11. [PMID: 14967483 DOI: 10.1016/j.virol.2003.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/16/2003] [Accepted: 09/25/2003] [Indexed: 10/26/2022]
Abstract
Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor.
Collapse
Affiliation(s)
- Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| |
Collapse
|
24
|
Lackner CA, D'Costa SM, Buck C, Condit RC. Complementation analysis of the dales collection of vaccinia virus temperature-sensitive mutants. Virology 2003; 305:240-59. [PMID: 12573570 DOI: 10.1006/viro.2002.1745] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A collection of randomly generated temperature-sensitive (ts) vaccinia virus (strain IHD-W) mutants were reported by S. Dales et al., (1978, Virology, 84, 403-428) in 1978 and characterized by electron microscopy. We have performed further genetic analysis on the Dales collection of mutants to make the mutants more useful to the scientific community. We obtained the entire Dales collection, 97 mutants, from the American Type Culture Center (ATCC). All 97 mutants were grown and reassessed for temperature sensitivity. Of these, 16 mutants were either very leaky or showed unacceptably high reversion indices even after plaque purification and therefore were not used for further analysis. The remaining 81 ts mutants were used to perform a complete complementation analysis with each other and the existing Condit collection of ts vaccinia virus (strain WR) mutants. Twenty-two of these 81 Dales mutants were dropped during complementation analysis due to erratic or weak behavior in the complementation test. Of the 59 mutants that were fit for further investigation, 30 fall into 13 of Condit's existing complementation groups, 5 comprise 3 previously identified complementation groups independent of the Condit collection, and 24 comprise 18 new complementation groups. The 59 mutants which were successfully characterized by complementation will be accessioned by and made available to the scientific community through the ATCC.
Collapse
Affiliation(s)
- Cari A Lackner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
25
|
Latner DR, Thompson JM, Gershon PD, Storrs C, Condit RC. The positive transcription elongation factor activity of the vaccinia virus J3 protein is independent from its (nucleoside-2'-O-) methyltransferase and poly(A) polymerase stimulatory functions. Virology 2002; 301:64-80. [PMID: 12359447 DOI: 10.1006/viro.2002.1538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous genetic and biochemical experiments have shown that the vaccinia virus J3 protein has three different roles in mRNA synthesis and modification. First, J3 is a (nucleoside-2'-O-)methyltransferase which methylates the 2' position of the first transcribed nucleotide, thus converting a cap-0 to a cap-1 structure at the 5' ends of mRNAs. Second, J3 is a processivity factor for the virus coded poly(A) polymerase. Third, J3 has recently been shown to have intermediate and late gene positive transcription elongation factor activity in vivo. Previous experiments have shown that the poly(A) polymerase stimulatory activity and the (nucleoside-2'-O-)methyltransferase activity are two independent functions of the protein that can be genetically separated through site-directed mutagenesis. In this article, the relationship between the J3-mediated transcription elongation activity and the two other functions of the protein was investigated by constructing several site-directed mutant viruses that contain specific defects in either methyltransferase or poly(A) polymerase processivity functions. The results demonstrate that the J3 positive transcription elongation factor activity is a third independent function of the protein that is genetically separable from its two other functions in mRNA modification. The results also show that neither the poly(A) polymerase stimulatory nor the methyltransferase activities of the J3 protein is essential for virus growth in cell culture.
Collapse
Affiliation(s)
- Donald R Latner
- Department of molecular Genetics and microbiology and Center for Mammalian Genetics, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
26
|
Condit RC, Niles EG. Regulation of viral transcription elongation and termination during vaccinia virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:325-36. [PMID: 12213661 DOI: 10.1016/s0167-4781(02)00461-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccinia virus provides a useful genetic and biochemical tool for studies of the basic mechanisms of eukaryotic transcription. Vaccinia genes are transcribed in three successive gene classes during infection, early, intermediate, and late. Vaccinia transcription is regulated primarily by virus gene products not only during initiation, but also during elongation and termination. The factors and mechanisms regulating early elongation and termination differ from those regulating intermediate and late gene expression. Control of transcription elongation and termination in vaccinia virus bears some similarity to the same process in other prokaryotic and eukaryotic systems, yet features some novel mechanisms as well.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
27
|
Latner DR, Xiang Y, Lewis JI, Condit J, Condit RC. The vaccinia virus bifunctional gene J3 (nucleoside-2'-O-)-methyltransferase and poly(A) polymerase stimulatory factor is implicated as a positive transcription elongation factor by two genetic approaches. Virology 2000; 269:345-55. [PMID: 10753713 DOI: 10.1006/viro.2000.0243] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vaccinia virus genes A18 and G2 affect the elongation and termination of postreplicative viral gene transcription in opposite ways. Viruses with mutations in gene A18 produce abnormally long transcripts, indicating that A18 is a negative transcription elongation factor. Viruses containing mutations in gene G2 produce transcripts that are abnormally short, truncated specifically from their 3' ends, indicating that G2 is a positive transcription elongation factor. Despite the fact that both A18 and G2 are essential genes, A18-G2 double-mutant viruses are viable, presumably because the effects of the mutations are mutually compensatory. In addition, the anti-poxviral drug isatin-beta-thiosemicarbazone (IBT) seems to enhance elongation during a vaccinia infection: IBT treatment of a wildtype vaccinia infection induces a phenotype identical to an A18 mutant infection, and G2 mutant viruses are dependent on IBT for growth, presumably because IBT restores the G2 mutant truncated transcripts to a normal length. These observations inspire two independent genetic selections that have now been used to identify an additional vaccinia gene, J3, that regulates postreplicative transcription elongation. In the first selection, a single virus that contains an extragenic suppressor of the A18 temperature-sensitive mutant, Cts23, was isolated. In the second selection, several spontaneous IBT-dependent (IBT(d)) mutant viruses were isolated and characterized genetically. Marker rescue mapping and DNA sequence analysis show that the extragenic suppressor of Cts23 contains a point mutation in the J3 gene, while each of seven new IBT(d) mutants contains null mutations in the J3 gene. The J3 protein has previously been identified as a (nucleoside-2'-O-)-methyltransferase and as a processivity subunit for the heterodimeric viral poly(A) polymerase. The nature of the two independent selections used to isolate the J3 mutants strongly suggests that the J3 protein serves as a positive postreplicative transcription elongation factor during a normal virus infection.
Collapse
Affiliation(s)
- D R Latner
- Department of Molecular Genetics, Center for Mammalian Genetics, University of Florida, Gainesville, Florida, 32610-0266, USA
| | | | | | | | | |
Collapse
|
28
|
Xiang Y, Latner DR, Niles EG, Condit RC. Transcription elongation activity of the vaccinia virus J3 protein in vivo is independent of poly(A) polymerase stimulation. Virology 2000; 269:356-69. [PMID: 10753714 DOI: 10.1006/viro.2000.0242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior genetic analysis suggests that the vaccinia virus J3 gene product, previously characterized as a bifunctional (nucleoside-2'-O-)-methyltransferase and poly(A) polymerase stimulatory factor, is a postreplicative positive transcription elongation factor. To test this hypothesis, viruses bearing mutations in the J3 gene were characterized with respect to viral protein and RNA synthesis in infected cells. The analysis reveals that compared to wt virus infections, J3 mutants synthesize reduced amounts of large late viral proteins and shorter-than-normal intermediate and late mRNAs. Structural analysis of one late mRNA shows that it is specifically truncated from the 3' end, thus accounting for its shorter than normal chain length. Thus J3 mutant viruses are defective in elongation of transcription of postreplicative viral genes, strongly suggesting that the J3 gene product normally acts as a positive transcription elongation factor. Biochemical analysis of one J3 missense mutant demonstrates that it retains poly(A) stimulatory activity but is defective in (nucleoside-2'-O-)-methyltransferase activity. Thus the elongation factor activity of the J3 gene product is independent of the poly(A) stimulatory activity. It remains to be determined whether the (nucleoside-2'-O-)-methyltransferase and elongation factor activities of the J3 protein are linked or can be uncoupled by mutation.
Collapse
Affiliation(s)
- Y Xiang
- Department of Molecular Genetics, Center for Mammalian Genetics, University of Florida, Gainesville, Florida, 32610-0266, USA
| | | | | | | |
Collapse
|