1
|
Abstract
The vasculature consists of vessels of different sizes that are arranged in a hierarchical pattern. Two cell populations work in concert to establish this pattern during embryonic development and adopt it to changes in blood flow demand later in life: endothelial cells that line the inner surface of blood vessels, and adjacent vascular mural cells, including smooth muscle cells and pericytes. Despite recent progress in elucidating the signalling pathways controlling their crosstalk, much debate remains with regard to how mural cells influence endothelial cell biology and thereby contribute to the regulation of blood vessel formation and diameters. In this Review, I discuss mural cell functions and their interactions with endothelial cells, focusing on how these interactions ensure optimal blood flow patterns. Subsequently, I introduce the signalling pathways controlling mural cell development followed by an overview of mural cell ontogeny with an emphasis on the distinguishing features of mural cells located on different types of blood vessels. Ultimately, I explore therapeutic strategies involving mural cells to alleviate tissue ischemia and improve vascular efficiency in a variety of diseases.
Collapse
Affiliation(s)
- Arndt F. Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
3
|
Eisa-Beygi S, Burrows PE, Link BA. Endothelial cilia dysfunction in pathogenesis of hereditary hemorrhagic telangiectasia. Front Cell Dev Biol 2022; 10:1037453. [PMID: 36438574 PMCID: PMC9686338 DOI: 10.3389/fcell.2022.1037453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/21/2022] [Indexed: 09/09/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is associated with defective capillary network, leading to dilated superficial vessels and arteriovenous malformations (AVMs) in which arteries connect directly to the veins. Loss or haploinsufficiency of components of TGF-β signaling, ALK1, ENG, SMAD4, and BMP9, have been implicated in the pathogenesis AVMs. Emerging evidence suggests that the inability of endothelial cells to detect, transduce and respond to blood flow, during early development, is an underpinning of AVM pathogenesis. Therefore, components of endothelial flow detection may be instrumental in potentiating TGF-β signaling in perfused blood vessels. Here, we argue that endothelial cilium, a microtubule-based and flow-sensitive organelle, serves as a signaling hub by coupling early flow detection with potentiation of the canonical TGF-β signaling in nascent endothelial cells. Emerging evidence from animal models suggest a role for primary cilia in mediating vascular development. We reason, on recent observations, that endothelial cilia are crucial for vascular development and that embryonic loss of endothelial cilia will curtail TGF-β signaling, leading to associated defects in arteriovenous development and impaired vascular stability. Loss or dysfunction of endothelial primary cilia may be implicated in the genesis of AVMs due, in part, to inhibition of ALK1/SMAD4 signaling. We speculate that AVMs constitute part of the increasing spectrum of ciliopathy-associated vascular defects.
Collapse
Affiliation(s)
- Shahram Eisa-Beygi
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Patricia E. Burrows
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Lu P, Wang P, Wu B, Wang Y, Liu Y, Cheng W, Feng X, Yuan X, Atteya MM, Ferro H, Sugi Y, Rydquist G, Esmaily M, Butcher JT, Chang CP, Lenz J, Zheng D, Zhou B. A SOX17-PDGFB signaling axis regulates aortic root development. Nat Commun 2022; 13:4065. [PMID: 35831318 PMCID: PMC9279414 DOI: 10.1038/s41467-022-31815-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Developmental etiologies causing complex congenital aortic root abnormalities are unknown. Here we show that deletion of Sox17 in aortic root endothelium in mice causes underdeveloped aortic root leading to a bicuspid aortic valve due to the absence of non-coronary leaflet and mispositioned left coronary ostium. The respective defects are associated with reduced proliferation of non-coronary leaflet mesenchyme and aortic root smooth muscle derived from the second heart field cardiomyocytes. Mechanistically, SOX17 occupies a Pdgfb transcriptional enhancer to promote its transcription and Sox17 deletion inhibits the endothelial Pdgfb transcription and PDGFB growth signaling to the non-coronary leaflet mesenchyme. Restoration of PDGFB in aortic root endothelium rescues the non-coronary leaflet and left coronary ostium defects in Sox17 nulls. These data support a SOX17-PDGFB axis underlying aortic root development that is critical for aortic valve and coronary ostium patterning, thereby informing a potential shared disease mechanism for concurrent anomalous aortic valve and coronary arteries.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yidong Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Cardiovascular Research Center, School of Basic Medical Sciences, Jiaotong University, Xi'an, Shanxi, China
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Cheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xuhui Feng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xinchun Yuan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Miriam M Atteya
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Haleigh Ferro
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Yukiko Sugi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Grant Rydquist
- School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Mahdi Esmaily
- School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Ching-Pin Chang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jack Lenz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Geng H, Lan R, Liu Y, Chen W, Wu M, Saikumar P, Weinberg JM, Venkatachalam MA. Proximal tubule LPA1 and LPA2 receptors use divergent signaling pathways to additively increase profibrotic cytokine secretion. Am J Physiol Renal Physiol 2021; 320:F359-F374. [PMID: 33427061 PMCID: PMC7988817 DOI: 10.1152/ajprenal.00494.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 01/01/2023] Open
Abstract
Lysophosphatidic acid (LPA) increases platelet-derived growth factor-B (PDGFB) and connective tissue growth factor (CTGF) production and secretion by proximal tubule (PT) cells through LPA2 receptor-Gqα-αvβ6-integrin-mediated activation of transforming growth factor-β1 (TGFB1). LPA2, β6-integrin, PDGFB, and CTGF increase in kidneys after ischemia-reperfusion injury (IRI), coinciding with fibrosis. The TGFB1 receptor antagonist SD-208 prevents increases of β6-integrin, TGFB1-SMAD signaling, and PDGFB/CTGF expression after IRI and ameliorates fibrosis (Geng H, Lan R, Singha PK, Gilchrist A, Weinreb PH, Violette SM, Weinberg JM, Saikumar P, Venkatachalam MA. Am J Pathol 181: 1236-1249, 2012; Geng H, Lan R, Wang G, Siddiqi AR, Naski MC, Brooks AI, Barnes JL, Saikumar P, Weinberg JM, Venkatachalam MA. Am J Pathol 174: 1291-1308, 2009). We report now that LPA1 receptor signaling through epidermal growth factor receptor (EGFR)-ERK1/2-activator protein-1 cooperates with LPA2-dependent TGFB1 signaling to additively increase PDGFB/CTGF production and secretion by PT cells. Conversely, inhibition of both pathways results in greater suppression of PDGFB/CTGF production and secretion and promotes greater PT cellular differentiation than inhibiting one pathway alone. Antagonism of the LPA-generating enzyme autotaxin suppressed signaling through both pathways. After IRI, kidneys showed not only more LPA2, nuclear SMAD2/3, and PDGFB/CTGF but also increased LPA1 and autotaxin proteins, together with enhanced EGFR/ERK1/2 activation. Remarkably, the TGFB1 receptor antagonist SD-208 prevented all of these abnormalities excepting increased LPA2. SD-208 inhibits only one arm of LPA signaling: LPA2-Gqα-αvβ6-integrin-dependent production of active TGFB1 and its receptor-bound downstream effects. Consequently, far-reaching protection by SD-208 against IRI-induced signaling alterations and tubule-interstitial pathology is not fully explained by our data. TGFB1-dependent feedforward modulation of LPA1 signaling is one possibility. SD-208 effects may also involve mitigation of injury caused by IRI-induced TGFB1 signaling in endothelial cells and monocytes. Our results have translational implications for using TGFB1 receptor antagonists, LPA1 and LPA2 inhibitors concurrently, and autotaxin inhibitors in acute kidney injury to prevent the development of chronic kidney disease.
Collapse
Affiliation(s)
- Hui Geng
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Yaguang Liu
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Wei Chen
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Meng Wu
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Pothana Saikumar
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Joel M Weinberg
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | | |
Collapse
|
7
|
Thomson CA, Nibbs RJ, McCoy KD, Mowat AM. Immunological roles of intestinal mesenchymal cells. Immunology 2020; 160:313-324. [PMID: 32181492 DOI: 10.1111/imm.13191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
The intestine is continuously exposed to an enormous variety and quantity of antigens and innate immune stimuli derived from both pathogens and harmless materials, such as food and commensal bacteria. Accordingly, the intestinal immune system is uniquely adapted to ensure appropriate responses to the different kinds of challenge; maintaining tolerance to harmless antigens in the steady-state, whilst remaining poised to deal with potential pathogens. To accomplish this, leucocytes of the intestinal immune system have to adapt to a constantly changing environment and interact with many different non-leucocytic intestinal cell types, including epithelial and endothelial cells, neurons, and a heterogenous network of intestinal mesenchymal cells (iMC). These interactions are intricately involved in the generation of protective immunity, the elaboration of inflammatory responses, and the development of inflammatory conditions, such as inflammatory bowel diseases. Here we discuss recent insights into the immunological functions of iMC under homeostatic and inflammatory conditions, focusing particularly on iMC in the mucosa and submucosa, and highlighting how an appreciation of the immunology of iMC may help understand the pathogenesis and treatment of disease.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Allan Mcl Mowat
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum Gene Ther 2018; 30:179-196. [PMID: 30024280 DOI: 10.1089/hum.2018.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrogenesis. Transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor (PDGF) are key profibrotic cytokines that regulate HSC activation and proliferation with functional convergence. Dual RNA interference against their receptors may achieve therapeutic effects. A novel RNAi strategy based on HSC-specific GFAP promoter-driven and lentiviral-expressed artificial microRNAs (amiRNAs) was devised that consists of an microRNA-30a backbone and effective shRNAs against mouse Pdgfrβ and Tgfbr2. Then, its antifibrotic efficacy was tested in primary and cultured HSCs and in mice affected with carbon tetrachloride-induced hepatic fibrosis. The study shows that amiRNA-mediated Pdgfrβ and Tgfbr2 co-silencing inhibits HSC activation and proliferation. After recombinant lentiviral particles were delivered into the liver via tail-vein injection, therapeutic amiRNAs were preferentially expressed in HSCs and efficiently co-knocked down in situ Tgfbr2 and Pdgfrβ expression, which correlates with downregulated expression of target or effector genes of their signaling, which include Pai-1, P70S6K, and D-cyclins. amiRNA-based HSC-specific co-silencing of Tgfbr2 and Pdgfrβ significantly suppressed hepatic expression of fibrotic markers α-Sma and Col1a1, extracellular matrix regulators Mmps and Timp1, and phenotypically ameliorated liver fibrosis, as indicated by reductions in serum alanine aminotransferase activity, collagen deposition, and α-Sma-positive staining. The findings provide proof of concept for the use of amiRNA-mediated co-silencing of two profibrogenic pathways in liver fibrosis treatment and highlight the therapeutic potential of concatenated amiRNAs for gene therapy.
Collapse
Affiliation(s)
- Yan Jiang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhao
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fuchu He
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China.,2 State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haijian Wang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
9
|
Shen M, Cao J, Shi H. Effects of Estrogen and Estrogen Receptors on Transcriptomes of HepG2 Cells: A Preliminary Study Using RNA Sequencing. Int J Endocrinol 2018; 2018:5789127. [PMID: 30510575 PMCID: PMC6230429 DOI: 10.1155/2018/5789127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/12/2018] [Indexed: 12/23/2022] Open
Abstract
Men have a much higher incidence of hepatocellular carcinoma (HCC), the predominant form of liver cancer, than women, suggesting that estrogens play a protective role in liver cancer development and progression. To begin to understand the potential mechanisms of estrogens' inhibitory effects on HCC development, RNA sequencing was used to generate comprehensive global transcriptome profiles of the human HCC-derived HepG2 cell line following treatment of vehicle (control), estradiol (E2), estrogen receptor alpha- (ERα-) specific agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), or ERβ-specific agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) using a small set of cells. Gene ontology (GO) analysis identified increased expression of genes involved in the biological process (BP) of response to different stimuli and metabolic processes by E2 and ER agonists, which enhanced molecular function (MF) in various enzyme activities and chemical bindings. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathway analysis indicated enhanced pathways associated with carbohydrate metabolism, complement and coagulation cascades, and HIF-1 signaling pathway by E2 and ER agonists. GO analysis also identified decreased expression of genes by E2, PPT, and DPN involved in BP related to the cell cycle and cell division, which reduced MF in activity of multiple enzymes and microtubule activity. KEGG analysis indicated that E2, PPT, and DPN suppressed pathways associated with the cell cycle; E2 and PPT suppressed pathways associated with chemical carcinogenesis and drug metabolism, and DPN suppressed DNA replication, recombination, and repair. Collectively, these differentially expressed genes across HepG2 cell transcriptome involving cellular and metabolic processes by E2 and ER agonists provided mechanistic insight into protective effects of estrogens in HCC development.
Collapse
Affiliation(s)
- Minqian Shen
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| | - Jingyi Cao
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| | - Haifei Shi
- Department of Biology, Miami University, 700 E. High St., Oxford, OH, USA
| |
Collapse
|
10
|
Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model. Oncotarget 2017; 8:18191-18205. [PMID: 28212548 PMCID: PMC5392319 DOI: 10.18632/oncotarget.15304] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023] Open
Abstract
Oral supplementation with branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in patients with liver cirrhosis potentially suppresses the incidence of hepatocellular carcinoma (HCC) and improves event-free survival. However, the detailed mechanisms of BCAA action have not been fully elucidated. BCAA were administered to atherogenic and high-fat (Ath+HF) diet-induced nonalcoholic steatohepatitis (NASH) model mice. Liver histology, tumor incidence, and gene expression profiles were evaluated. Ath+HF diet mice developed hepatic tumors at a high frequency at 68 weeks. BCAA supplementation significantly improved hepatic steatosis, inflammation, fibrosis, and tumors in Ath+HF mice at 68 weeks. GeneChip analysis demonstrated the significant resolution of pro-fibrotic gene expression by BCAA supplementation. The anti-fibrotic effect of BCAA was confirmed further using platelet-derived growth factor C transgenic mice, which develop hepatic fibrosis and tumors. In vitro, BCAA restored the transforming growth factor (TGF)-β1-stimulated expression of pro-fibrotic genes in hepatic stellate cells (HSC). In hepatocytes, BCAA restored TGF-β1-induced apoptosis, lipogenesis, and Wnt/β-Catenin signaling, and inhibited the transformation of WB-F344 rat liver epithelial stem-like cells. BCAA repressed the promoter activity of TGFβ1R1 by inhibiting the expression of the transcription factor NFY and histone acetyltransferase p300. Interestingly, the inhibitory effect of BCAA on TGF-β1 signaling was mTORC1 activity-dependent, suggesting the presence of negative feedback regulation from mTORC1 to TGF-β1 signaling. Thus, BCAA induce an anti-fibrotic effect in HSC, prevent apoptosis in hepatocytes, and decrease the incidence of HCC; therefore, BCAA supplementation would be beneficial for patients with advanced liver fibrosis with a high risk of HCC.
Collapse
|
11
|
Transforming growth factor (TGF-β1) gene polymorphisms in Egyptian patients with hepatitis B virus infection. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
12
|
Kang JH, Jung MY, Yin X, Andrianifahanana M, Hernandez DM, Leof EB. Cell-penetrating peptides selectively targeting SMAD3 inhibit profibrotic TGF-β signaling. J Clin Invest 2017; 127:2541-2554. [PMID: 28530637 DOI: 10.1172/jci88696] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
TGF-β is considered a master switch in the pathogenesis of organ fibrosis. The primary mediators of this activity are the SMAD proteins, particularly SMAD3. In the current study, we have developed a cell-penetrating peptide (CPP) conjugate of the HIV TAT protein that is fused to an aminoterminal sequence of sorting nexin 9 (SNX9), which was previously shown to bind phosphorylated SMAD3 (pSMAD3). We determined that specifically preventing the nuclear import of pSMAD3 using the TAT-SNX9 peptide inhibited profibrotic TGF-β activity in murine cells and human lung fibroblasts as well as in vivo with no demonstrable toxicity. TGF-β signaling mediated by pSMAD2, bone morphogenetic protein 4 (BMP4), EGF, or PDGF was unaffected by the TAT-SNX9 peptide. Furthermore, while the TAT-SNX9 peptide prevented TGF-β's profibrotic activity in vitro as well as in 2 murine treatment models of pulmonary fibrosis, a 3-amino acid point mutant that was unable to bind pSMAD3 proved ineffective. These findings indicate that specifically targeting pSMAD3 can ameliorate both the direct and indirect fibroproliferative actions of TGF-β.
Collapse
Affiliation(s)
| | - Mi-Yeon Jung
- Departments of Pulmonary and Critical Care Medicine and
| | - Xueqian Yin
- Departments of Pulmonary and Critical Care Medicine and
| | | | | | - Edward B Leof
- Departments of Pulmonary and Critical Care Medicine and.,Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Andrianifahanana M, Hernandez DM, Yin X, Kang JH, Jung MY, Wang Y, Yi ES, Roden AC, Limper AH, Leof EB. Profibrotic up-regulation of glucose transporter 1 by TGF-β involves activation of MEK and mammalian target of rapamycin complex 2 pathways. FASEB J 2016; 30:3733-3744. [PMID: 27480571 PMCID: PMC5067255 DOI: 10.1096/fj.201600428r] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
TGF-β plays a central role in the pathogenesis of fibroproliferative disorders. Defining the exact underlying molecular basis is therefore critical for the development of viable therapeutic strategies. Here, we show that expression of the facilitative glucose transporter 1 (GLUT1) is induced by TGF-β in fibroblast lines and primary cells and is required for the profibrotic effects of TGF-β. In addition, enhanced GLUT1 expression is observed in fibrotic areas of lungs of both patients with idiopathic pulmonary fibrosis and mice that are subjected to a fibrosis-inducing bleomycin treatment. By using pharmacologic and genetic approaches, we demonstrate that up-regulation of GLUT1 occurs via the canonical Smad2/3 pathway and requires autocrine activation of the receptor tyrosine kinases, platelet-derived and epidermal growth factor receptors. Engagement of the common downstream effector PI3K subsequently triggers activation of the MEK and mammalian target of rapamycin complex 2, which cooperate in regulating GLUT1 expression. Of note, inhibition of GLUT1 activity and/or expression is shown to impair TGF-β-driven fibrogenic processes, including cell proliferation and production of profibrotic mediators. These findings provide new perspectives on the interrelation of metabolism and profibrotic TGF-β signaling and present opportunities for potential therapeutic intervention.-Andrianifahanana, M., Hernandez, D. M., Yin, X., Kang, J.-H., Jung, M.-Y., Wang, Y., Yi, E. S., Roden, A. C., Limper, A. H., Leof, E. B. Profibrotic up-regulation of glucose transporter 1 by TGF-β involves activation of MEK and mammalian target of rapamycin complex 2 pathways.
Collapse
Affiliation(s)
- Mahefatiana Andrianifahanana
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Danielle M Hernandez
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Xueqian Yin
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jeong-Han Kang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mi-Yeon Jung
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Youli Wang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Division of Nephrology, Augusta University, Augusta, Georgia, USA
| | - Eunhee S Yi
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H Limper
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Edward B Leof
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA;
| |
Collapse
|
14
|
Zheng L, Jiao W, Song H, Qu H, Li D, Mei H, Chen Y, Yang F, Li H, Huang K, Tong Q. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis 2016; 7:e2382. [PMID: 27685626 PMCID: PMC5059886 DOI: 10.1038/cddis.2016.293] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 12/25/2022]
Abstract
Previous studies have indicated that as the only mammalian endo-β-D-glucuronidase, heparanase (HPSE) is up-regulated and associated with poor prognosis in gastric cancer, while the underlying mechanisms still remain to be determined. Herein, through integrative analysis of public datasets, we found microRNA-558 (miR-558) and SMAD family member 4 (Smad4) as the crucial transcription regulators of HPSE expression in gastric cancer, with their adjacent target sites within the promoter of HPSE. We identified that endogenous miR-558 activated the transcription and expression of HPSE in gastric cancer cell lines. In contrast, Smad4 suppressed the nascent transcription and expression of HPSE via directly binding to its promoter. Mechanistically, miR-558 recognized its complementary site within HPSE promoter to decrease the binding of Smad4 in an Argonaute 1-dependent manner. Ectopic expression or knockdown experiments indicated that miR-558 promoted the in vitro and in vivo tumorigenesis and aggressiveness of gastric cancer cell lines via attenuating Smad4-mediated repression of HPSE expression. In clinical gastric cancer specimens, up-regulation of miR-558 and down-regulation of Smad4 were positively correlated with HPSE expression. Kaplan–Meier survival analysis revealed that miR-558 and Smad4 were associated with unfavourable and favourable outcome of gastric cancer patients, respectively. Therefore, these findings demonstrate that miR-558 facilitates the progression of gastric cancer through directly targeting the HPSE promoter to attenuate Smad4-mediated repression of HPSE expression.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Huajie Song
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Hongxia Qu
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Hong Mei
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Feng Yang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Huanhuan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| | - Qiangsong Tong
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China.,Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
15
|
Charbonneau M, Lavoie RR, Lauzier A, Harper K, McDonald PP, Dubois CM. Platelet-Derived Growth Factor Receptor Activation Promotes the Prodestructive Invadosome-Forming Phenotype of Synoviocytes from Patients with Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2016; 196:3264-75. [DOI: 10.4049/jimmunol.1500502] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 02/15/2016] [Indexed: 11/19/2022]
|
16
|
Kwon H, Ahn E, Kim SY, Kang Y, Kim MO, Jin BS, Park S. Inhibition of UV-induced matrix metabolism by a myristoyl tetrapeptide. Cell Biol Int 2015; 40:257-68. [PMID: 26510539 DOI: 10.1002/cbin.10557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/23/2015] [Indexed: 11/08/2022]
Abstract
Regulation of extracellular matrix (ECM) composition is important in tissue homeostasis and function. We screened small peptides for their ability to inhibit ultraviolet (UV)-induced cell metabolism in epidermal fibroblasts. We found that UV irradiation increased matrix metalloproteinase (MMP) expression and inflammatory gene expression in human Hs68 fibroblast cells. We also demonstrated that a myristoyl tetrapeptide with the amino acid sequence Gly-Leu-Phe-Trp (mGLFW) suppressed the UV-induced expression of MMPs and inflammatory genes. Moreover, mGLFW stimulated the expression of ECM proteins in Hs68 fibroblasts. In order to provide the mechanism of action for mGLFW, we investigated UV-induced signaling changes in the presence of mGLFW using a cDNA microarray. UV exposure increased the expression of MMP genes, such as MMP1, MMP3, and MMP14, and inflammation-related genes, including interleukin 1 receptor and peroxisome proliferator-activated receptor gamma (PPARγ). Treatment with mGLFW abrogated the UV-induced expression of MMP-related genes and inflammatory genes. In addition, mGLFW increased the expression of collagen genes, including COL1A1, COL1A2, and COL5A1. We examined whether the activation of AP-1, a UV-activated transcription factor, is suppressed by mGLFW. The results demonstrated that AP-1 expression increased upon UV exposure and that this expression was inhibited by mGLFW. In conclusion, our results demonstrate that mGLFW reversed the effects of UV exposure by enhancing the expression of collagen proteins and suppressing the expression of MMPs, which degrade the ECM.
Collapse
Affiliation(s)
- Haeyoung Kwon
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Eunsook Ahn
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Seon-Young Kim
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | | | | | - Byung Suk Jin
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| | - Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Korea
| |
Collapse
|
17
|
Rivas V, Nogués L, Reglero C, Mayor F, Penela P. Role of G protein-coupled receptor kinase 2 in tumoral angiogenesis. Mol Cell Oncol 2014; 1:e969166. [PMID: 27308373 PMCID: PMC4905215 DOI: 10.4161/23723548.2014.969166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/26/2022]
Abstract
Downregulation of G protein-coupled receptor kinase 2 (GRK2) in endothelial cells has recently been identified as a relevant event in the tumoral angiogenic switch. Based on the effects of altering GRK2 dosage in cell and animal models, this kinase appears to act as a hub in key signaling pathways involved in vascular stabilization and remodeling. Accordingly, decreased GRK2 expression in endothelial cells accelerates tumor growth in mice by impairing the pericytes ensheathing the vessels, thereby promoting hypoxia and macrophage infiltration. These results raise new questions regarding the mechanisms by which transformed cells trigger the decrease in GRK2 observed in human breast cancer vessels and how GRK2 modulates the interactions between different cell types that occur in the tumor microenvironment.
Collapse
Affiliation(s)
- Verónica Rivas
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid); Universidad Autónoma de Madrid; Madrid, Spain; Instituto de Investigación Sanitaria La Princesa; Madrid, Spain
| | - Laura Nogués
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid); Universidad Autónoma de Madrid; Madrid, Spain; Instituto de Investigación Sanitaria La Princesa; Madrid, Spain
| | - Clara Reglero
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid); Universidad Autónoma de Madrid; Madrid, Spain; Instituto de Investigación Sanitaria La Princesa; Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid); Universidad Autónoma de Madrid; Madrid, Spain; Instituto de Investigación Sanitaria La Princesa; Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid); Universidad Autónoma de Madrid; Madrid, Spain; Instituto de Investigación Sanitaria La Princesa; Madrid, Spain
| |
Collapse
|
18
|
Role of TGF-β signaling pathway on Tenascin C protein upregulation in a pilocarpine seizure model. Epilepsy Res 2014; 108:1694-704. [PMID: 25445237 DOI: 10.1016/j.eplepsyres.2014.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 08/29/2014] [Accepted: 09/21/2014] [Indexed: 02/03/2023]
Abstract
Seizures have been shown to upregulate the expression of numerous extracellular matrix molecules. Tenascin C (TNC) is an extracellular matrix protein involved in several physiological roles and in pathological conditions. Though TNC upregulation has been described after excitotoxins injection, to date there is no research work on the signal transduction pathway(s) participating in TNC protein overproduction. The aim of this study was to evaluate the role of TGF-β signaling pathway on TNC upregulation. In this study, we used male rats, which were injected with saline or pilocarpine to induce status epilepticus (SE) and killed 24h, 3 and 7 days after pilocarpine administration. For evaluating biochemical changes, we measured protein content of TNC, TGF-β1 and phospho-Smad2/3 for localization of TNC in coronal brain hippocampus at 24h, 3 and 7 days after pilocarpine-caused SE. We found a significant increase of TNC protein content in hippocampal homogenates after 1, 3, and 7 days of pilocarpine-caused SE, together with an enhancement of TNC immunoreactivity in several hippocampal layers and the dentate gyrus field where more dramatic changes occurred. We also observed a significant enhancement of protein content of both the TGF-β1 and the critical downstream transduction effector phospho-Smad2/3 throughout the chronic exposure. Interestingly, animals injected with SB-431542, a TGF-β-type I receptor inhibitor, decreased TNC content in cytosolic fraction and diminished phospho-Smad2/3 content in both cytoplasmic and nuclear fraction compared with pilocarpine vehicle-injected. These findings suggest the participation of TGF-β signaling pathway on upregulation of TNC which in turn support the idea that misregulation of this signaling pathway produces changes that may contribute to disease.
Collapse
|
19
|
Kwon H, Lee YS, Kim MO, Chang MY, Won BM, Jin BS, Park S. Smad-induced alterations of matrix metabolism by a myristoyl tetra peptide. Cell Biochem Funct 2014; 32:665-74. [PMID: 25289880 DOI: 10.1002/cbf.3070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 11/06/2022]
Abstract
Regulation of extracellular matrix (ECM) components is essential for tissue homeostasis and function. We screened a small peptide that induces ECM protein synthesis for its usefulness in protecting keratinocytes. In this report, we demonstrate that myristoyl tetrapeptide Ala-Ala-Pro-Val (mAAPV) stimulates the expression of ECM proteins and inhibits the expression of metalloproteinases (MMPs) that degrade ECM proteins in Hs68 human fibroblast cells. In order to elucidate the underlying molecular mechanisms for the effects of mAAVP, we investigated the changes in gene expression in the presence of mAAPV using a cDNA microarray. Treatment with mAAPV resulted in decreased expression of MMP-related genes such as MMP1, MMP3, TIMP1 and TIMP3 and increased expression of collagen genes, including COL1A1, COL1A2, COL3A1, COL5A1 and COL6A3. The pattern of gene expression regulated by mAAPV was very similar to that of gene expression induced by transforming growth factor (TGF)-β, indicating that the TGF-β signaling pathway is crucial for simultaneous activation of several ECM-related genes by mAAPV. We examined whether the activation of SMAD, a downstream protein of TGF-β receptor, is involved in the signal transduction pathway induced by mAAPV. The results demonstrate that mAAVP directly activates SMAD2 and induces SMAD3 to bind to DNA. In conclusion, our results demonstrate that mAAPV both enhances the expression of collagen and inhibits its degradation via production of protease inhibitors that prevent enzymatic breakdown of the ECM. The results suggest that mAAPV would be a useful ECM-protecting agent.
Collapse
Affiliation(s)
- Haeyoung Kwon
- Department of Applied Chemistry, Dongduk Women's University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Pankajakshan D, Agrawal DK. Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890954 DOI: 10.19104/jbtr.2014.107] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cell therapy show great optimism in the treatment of several diseases. MSCs are attractive candidates for cell therapy because of easy isolation, high expansion potential giving unlimited pool of transplantable cells, low immunogenicity, amenability to ex vivo genetic modification, and multipotency. The stem cells orchestrate the repair process by various mechanisms such as transdifferentiation, cell fusion, microvesicles or exosomes and most importantly by secreting paracrine factors. The MSCs release several angiogenic, mitogenic, anti-apoptotic, anti-inflammatory and anti-oxidative factors that play fundamental role in regulating tissue repair in various vascular and cardiac diseases. The therapeutic release of these factors by the cells can be enhanced by several strategies like genetic modification, physiological and pharmacological preconditioning, improved cell culture and selection methods, and biomaterial based approaches. The current review describes the impact of paracrine factors released by MSCs on vascular repair and regeneration in myocardial infarction, restenosis and peripheral artery disease, and the various strategies adopted to enhance the release of these paracrine factors to enhance organ function.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
21
|
Bosmann M, Ward PA. Protein-based therapies for acute lung injury: targeting neutrophil extracellular traps. Expert Opin Ther Targets 2014; 18:703-14. [PMID: 24670033 DOI: 10.1517/14728222.2014.902938] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the acute onset of noncardiac respiratory insufficiency associated with bilateral lung infiltrations. During the past decade, mechanical ventilation strategies using low tidal volumes have reduced the mortality of ALI/ARDS to ∼ 20 - 40%. However, ALI/ARDS continues to be a major factor in global burden of diseases, with no pharmacological agents currently available. AREAS COVERED In this review, we discuss several inflammatory proteins involved in the molecular pathogenesis of ALI/ARDS. The complement cleavage product, C5a, is a peptide acting as a potent anaphylatoxin. C5a may trigger the formation of neutrophil extracellular traps (NETs) and release of histone proteins to the extracellular compartment during ALI/ARDS. NETs may activate platelets to release TGF-β, which is involved in tissue remodeling during the later phases of ALI/ARDS. Interception of C5a signaling or blockade of extracellular histones has recently shown promising beneficial effects in small animal models of ALI/ARDS. EXPERT OPINION Novel protein-based strategies for the treatment of ALI/ARDS may inspire the hopes of scientists, clinicians, and patients. Although neutralization of extracellular histones/NETs, C5a, and TGF-β is effective in experimental models of ALI/ARDS, controlled clinical trials will be necessary for further evaluation in future.
Collapse
Affiliation(s)
- Markus Bosmann
- University Medical Center, Center for Thrombosis and Hemostasis , Langenbeckstrasse 1, Mainz, 55131 , Germany +49 6131 17 8277 ; +49 6131 17 6238 ;
| | | |
Collapse
|
22
|
Rivas V, Carmona R, Muñoz-Chápuli R, Mendiola M, Nogués L, Reglero C, Miguel-Martín M, García-Escudero R, Dorn GW, Hardisson D, Mayor F, Penela P. Developmental and tumoral vascularization is regulated by G protein-coupled receptor kinase 2. J Clin Invest 2013; 123:4714-30. [PMID: 24135140 DOI: 10.1172/jci67333] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 08/15/2013] [Indexed: 12/19/2022] Open
Abstract
Tumor vessel dysfunction is a pivotal event in cancer progression. Using an in vivo neovascularization model, we identified G protein-coupled receptor kinase 2 (GRK2) as a key angiogenesis regulator. An impaired angiogenic response involving immature vessels was observed in mice hemizygous for Grk2 or in animals with endothelium-specific Grk2 silencing. ECs isolated from these animals displayed intrinsic alterations in migration, TGF-β signaling, and formation of tubular networks. Remarkably, an altered pattern of vessel growth and maturation was detected in postnatal retinas from endothelium-specific Grk2 knockout animals. Mouse embryos with systemic or endothelium-selective Grk2 ablation had marked vascular malformations involving impaired recruitment of mural cells. Moreover, decreased endothelial Grk2 dosage accelerated tumor growth in mice, along with reduced pericyte vessel coverage and enhanced macrophage infiltration, and this transformed environment promoted decreased GRK2 in ECs and human breast cancer vessels. Our study suggests that GRK2 downregulation is a relevant event in the tumoral angiogenic switch.
Collapse
MESH Headings
- Activin Receptors, Type I/physiology
- Activin Receptors, Type II
- Animals
- Cell Movement
- Cell Proliferation
- Endothelial Cells/pathology
- Endothelial Cells/physiology
- Female
- G-Protein-Coupled Receptor Kinase 2/deficiency
- G-Protein-Coupled Receptor Kinase 2/genetics
- G-Protein-Coupled Receptor Kinase 2/physiology
- Hemizygote
- Humans
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/genetics
- Neovascularization, Physiologic/genetics
- Pregnancy
- Protein Serine-Threonine Kinases/physiology
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/physiology
- Retinal Vessels/abnormalities
- Retinal Vessels/embryology
- Signal Transduction
- Transforming Growth Factor beta1/physiology
Collapse
|
23
|
Andrianifahanana M, Wilkes MC, Gupta SK, Rahimi RA, Repellin CE, Edens M, Wittenberger J, Yin X, Maidl E, Becker J, Leof EB. Profibrotic TGFβ responses require the cooperative action of PDGF and ErbB receptor tyrosine kinases. FASEB J 2013; 27:4444-54. [PMID: 23913859 DOI: 10.1096/fj.12-224907] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transforming growth factor β (TGFβ) has significant profibrotic activity both in vitro and in vivo. This reflects its capacity to stimulate fibrogenic mediators and induce the expression of other profibrotic cytokines such as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF/ErbB) ligands. Here we address both the mechanisms by which TGFβ induced ErbB ligands and the physiological significance of inhibiting multiple TGFβ-regulated processes. The data document that ErbB ligand induction requires PDGF receptor (PDGFR) mediation and engages a positive autocrine/paracrine feedback loop via ErbB receptors. Whereas PDGFRs are essential for TGFβ-stimulated ErbB ligand up-regulation, TGFβ-specific signals are also required for ErbB receptor activation. Subsequent profibrotic responses are shown to involve the cooperative action of PDGF and ErbB signaling. Moreover, using a murine treatment model of bleomycin-induced pulmonary fibrosis we found that inhibition of TGFβ/PDGF and ErbB pathways with imatinib plus lapatinib, respectively, not only prevented myofibroblast gene expression to a greater extent than either drug alone, but also essentially stabilized gas exchange (oxygen saturation) as an overall measure of lung function. These observations provide important mechanistic insights into profibrotic TGFβ signaling and indicate that targeting multiple cytokines represents a possible strategy to ameliorate organ fibrosis dependent on TGFβ.
Collapse
|
24
|
Kamato D, Burch ML, Piva TJ, Rezaei HB, Rostam MA, Xu S, Zheng W, Little PJ, Osman N. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Cell Signal 2013; 25:2017-24. [PMID: 23770288 DOI: 10.1016/j.cellsig.2013.06.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 12/30/2022]
Abstract
Transforming growth factor-β (TGF-β) is a secreted homodimeric protein that plays an important role in regulating various cellular responses including cell proliferation and differentiation, extracellular matrix production, embryonic development and apoptosis. Disruption of the TGF-β signalling pathway is associated with diverse disease states including cancer, renal and cardiac fibrosis and atherosclerosis. At the cell surface TGF-β complex consists of two type I and two type II transmembrane receptors (TβRI and TβRII respectively) which have serine/threonine kinase activity. Upon TGF-β engagement TβRII phosphorylates TβRI which in turn phosphorylates Smad2/3 on two serine residues at their C-terminus which enables binding to Smad4 to form heteromeric Smad complexes that enter the nucleus to initiate gene transcription including for extracellular matrix proteins. TGF-β signalling is also known to activate other serine/threonine kinase signalling that results in the phosphorylation of the linker region of Smad2. The Smad linker region is defined as the domain which lies between the MH1 and MH2 domains of a Smad protein. Serine/threonine kinases that are known to phosphorylate the Smad linker region include mitogen-activated protein kinases, extracellular-signal regulated kinase, Jun N-terminal kinase and p38 kinase, the tyrosine kinase Src, phosphatidylinositol 3'-kinase, cyclin-dependent kinases, rho-associated protein kinase, calcium calmodulin-dependent kinase and glycogen synthase kinase-3. This review will cover the role of Smad linker region phosphorylation downstream of TGF-β signalling in vascular cells. Key factors including the identification of the kinases that phosphorylate individual Smad residues, the upstream agents that activate these kinases, the cellular location of the phosphorylation event and the importance of the linker region in regulation and expression of genes induced by TGF-β are covered.
Collapse
Affiliation(s)
- Danielle Kamato
- Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, Health Innovations Research Institute, RMIT University, Bundoora, VIC 3083 Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yao L, Li FJ, Tang ZQ, Gao S, Wu QQ. Smad4 expression in hepatocellular carcinoma differs by hepatitis status. Asian Pac J Cancer Prev 2013; 13:1297-303. [PMID: 22799322 DOI: 10.7314/apjcp.2012.13.4.1297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIMS Primary hepatocellular carcinoma (HCC) is a common malignancy often related to hepatitis viral infection. Smad4 is known to mediate the TGF-β pathway to suppress tumorigenesis. However, the function of Smad4 in HCC is still controversial. In this study we compared levels of Smad4 in HCC tissues with or without hepatitis virus infection and adjacent normal-appearing liver. METHODS Samples from HCC patients were analyzed for Smad4 protein and mRNA expression by immunohistochemistry (IHC), RT-PCR and Western blotting. RESULTS We found that tumor tissues expressed less Smad4 mRNA and protein than the adjacent tissues. Most HCC tumor tissues were negative for Smad4 in IHC staining, while the majority of adjacent tissues were positively stained. Interestingly, protein levels were higher in HCC tissues with viral hepatitis than those without virus infection. Suppression of expression appeared closely related to HCC, so that Smad4 appears to function as a tumor suppressor gene (TSG). CONCLUSION Patients with hepatitis viral infection, at higher risk for HCC, exhibited increased Smad4 protein expression suggesting hepatitis virus may modulate Smad4 expression, which is functionally distinct from its putative role as a TSG. Smad4 expression may thus be an applicable marker for diagnosis and/or a target to develop therapeutic agents for HCC.
Collapse
Affiliation(s)
- Lei Yao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
26
|
Geng H, Lan R, Singha PK, Gilchrist A, Weinreb PH, Violette SM, Weinberg JM, Saikumar P, Venkatachalam MA. Lysophosphatidic acid increases proximal tubule cell secretion of profibrotic cytokines PDGF-B and CTGF through LPA2- and Gαq-mediated Rho and αvβ6 integrin-dependent activation of TGF-β. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1236-49. [PMID: 22885106 DOI: 10.1016/j.ajpath.2012.06.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
After ischemia-reperfusion injury (IRI), kidney tubules show activated transforming growth factor β (TGF-β) signaling and increased expression of profibrotic peptides, platelet-derived growth factor-B (PDGF-B) and connective tissue growth factor (CTGF). If tubule repair after IRI is incomplete, sustained paracrine activity of these peptides can activate interstitial fibroblast progenitors and cause fibrosis. We show that lysophosphatidic acid (LPA), a ubiquitous phospholipid that is increased at sites of injury and inflammation, signals through LPA2 receptors and Gαq proteins of cultured proximal tubule cells to transactivate latent TGF-β in a Rho/Rho-kinase and αvβ6 integrin-dependent manner. Active TGF-β peptide then initiates signaling to increase the production and secretion of PDGF-B and CTGF. In a rat model of IRI, increased TGF-β signaling that was initiated early during reperfusion did not subside during recovery, but progressively increased, causing tubulointerstitial fibrosis. This was accompanied by correspondingly increased LPA2 and β6 integrin proteins and elevated tubule expression of TGF-β1, together with PDGF-B and CTGF. Treatment with a pharmacological TGF-β type I receptor antagonist suppressed TGF-β signaling, decreased the expression of β6 integrin, PDGF-B, and CTGF, and ameliorated fibrosis. We suggest that LPA-initiated autocrine signaling is a potentially important mechanism that gives rise to paracrine profibrotic signaling in injured kidney tubule cells.
Collapse
Affiliation(s)
- Hui Geng
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. Blood 2012; 119:5320-8. [PMID: 22498737 DOI: 10.1182/blood-2011-12-395772] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is involved in vascular formation through activin receptor-like kinase (ALK)1 and ALK5. ALK5, which is expressed ubiquitously, phosphorylates Smad2 and Smad3, whereas endothelial cell (EC)-specific ALK1 activates Smad1 and Smad5. Because ALK5 kinase activity is required for ALK1 to transduce TGF-β signaling via Smad1/5 in ECs, ALK5 knockout (KO) mice were not able to give us the precise mechanisms by which TGF-β/ALK5/Smad2/3 signaling is implicated in angiogenesis. To delineate the role of Smad2/3 signaling in endothelium, the Smad2 gene in Smad3 KO mice was selectively deleted in ECs using Tie2-Cre transgenic mice, termed EC-specific Smad2/3 double KO (EC-Smad2/3KO) mice. EC-Smad2/3KO embryos revealed hemorrhage leading to embryonic lethality around E12.5. EC-Smad2/3KO embryos exhibited no abnormality of vasculogenesis and angiogenesis in both the yolk sac and the whole embryo, whereas vascular maturation was incomplete because of inadequate assembly of mural cells in the vasculature. Wide gaps between ECs and mural cells could be observed in the vasculature of EC-Smad2/3KO mice because of reduced expression of N-cadherin and sphingosine-1-phosphate receptor-1 (S1PR1) in ECs from those mice. These results indicated that Smad2/3 signaling in ECs is indispensable for maintenance of vascular integrity via the fine-tuning of N-cadherin, VE-cadherin, and S1PR1 expressions in the vasculature.
Collapse
|
28
|
Kassel KM, Sullivan BP, Luyendyk JP. Lipopolysaccharide enhances transforming growth factor β1-induced platelet-derived growth factor-B expression in bile duct epithelial cells. J Gastroenterol Hepatol 2012; 27:714-21. [PMID: 22004089 PMCID: PMC3262076 DOI: 10.1111/j.1440-1746.2011.06941.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIM Platelet-derived growth factor (PDGF)-B is a potent profibrogenic mediator expressed by bile duct epithelial cells (BDECs) that contributes to liver fibrosis after bile duct ligation. However, the mechanism of PDGF-B induction in BDECs during cholestasis is not known. Transforming growth factor β (TGFβ) and lipopolysaccharide (LPS) also contribute to the profibrogenic response after bile duct ligation. We tested the hypothesis that LPS and TGFβ1 synergistically induce PDGF-B expression in BDECs. METHODS Transformed human BDECs (MMNK-1 cells) and primary rat BDECs were stimulated with LPS and/or TGFβ1, and signaling pathways through which LPS potentiates TGFβ1-induced PDGF-B mRNA expression were investigated. RESULTS Stimulation of MMNK-1 cells with LPS alone did not significantly induce PDGF-B mRNA expression. However, LPS co-treatment enhanced TGFβ1 induction of PDGF-B mRNA in MMNK-1 cells and also in primary rat BDECs. Importantly, co-treatment of MMNK-1 cells with LPS and TGFβ1 also significantly increased PDGF-BB protein expression. Interestingly, LPS did not affect TGFβ1 activation of a SMAD-dependent reporter construct. Rather, stimulation of MMNK-1 cells with LPS, but not TGFβ1, increased JNK1/2 phosphorylation. Expression of dominant negative JNK2, but not dominant negative JNK1, inhibited the LPS potentiation of TGFβ1-induced PDGF-B mRNA expression in MMNK-1 cells. In addition, LPS treatment caused IκBα degradation and activation of a nuclear factor κB (NFκB)-dependent reporter construct. Expression of an IκBα super repressor inhibited activation of NFκB and attenuated LPS potentiation of TGFβ1-induced PDGF-B mRNA. CONCLUSIONS The results indicate that LPS activation of NFκB and JNK2 enhances TGFβ1-induced PDGF-B expression in BDECs.
Collapse
Affiliation(s)
- Karen M Kassel
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
29
|
Wang Y, Serra R. PDGF mediates TGFβ-induced migration during development of the spinous process. Dev Biol 2012; 365:110-7. [PMID: 22369999 DOI: 10.1016/j.ydbio.2012.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 01/21/2023]
Abstract
Mechanisms mediating closure of the dorsal vertebrae are not clear. Previously, we showed that deletion of TGFβ type II receptor (Tgfbr2) in sclerotome in mice results in failure in the formation of the spinous process, mimicking spina bifida occulta, a common malformation in humans. In this study, we aimed to determine whether missing dorsal structures in Tgfbr2 mutant mice were due to defects in mesenchymal migration and to clarify mechanism of TGFβ-mediated migration. First, we showed that gross alterations in dorsal vertebrae were apparent by E16.5days in Tgfbr2 mutants. In addition, histological staining showed that the mesenchyme adjacent to the developing cartilage was thin compared to controls likely due to reduced proliferation and migration of these cells. Next, we used a chemotaxis migration assay to show that TGFβ promotes migration in mixed cultures of embryonic sclerotome and associated mesenchyme. TGFβ stimulated expression of PDGF ligands and receptors in the cultures and intact PDGF signaling was required for TGFβ-mediated migration. Since PDGF ligands are expressed in the sclerotome-derived cartilage where Tgfbr2 is deleted and the receptors are predominantly expressed in the adjacent mesenchyme, we propose that TGFβ acts on the sclerotome to regulate expression of PDGF ligands, which then act on the associated mesenchyme in a paracrine fashion to mediate proliferation, migration and subsequent differentiation of the adjacent sclerotome.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
30
|
Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG, Griffin KA, Koesters R, Weinberg JM, Bidani AK, Kriz W, Venkatachalam MA. PTEN loss defines a TGF-β-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol 2012; 302:F1210-23. [PMID: 22301622 DOI: 10.1152/ajprenal.00660.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We investigated the signaling basis for tubule pathology during fibrosis after renal injury. Numerous signaling pathways are activated physiologically to direct tubule regeneration after acute kidney injury (AKI) but several persist pathologically after repair. Among these, transforming growth factor (TGF)-β is particularly important because it controls epithelial differentiation and profibrotic cytokine production. We found that increased TGF-β signaling after AKI is accompanied by PTEN loss from proximal tubules (PT). With time, subpopulations of regenerating PT with persistent loss of PTEN (phosphate and tension homolog) failed to differentiate, became growth arrested, expressed vimentin, displayed profibrotic JNK activation, and produced PDGF-B. These tubules were surrounded by fibrosis. In contrast, PTEN recovery was associated with epithelial differentiation, normal tubule repair, and less fibrosis. This beneficial outcome was promoted by TGF-β antagonism. Tubule-specific induction of TGF-β led to PTEN loss, JNK activation, and fibrosis even without prior AKI. In PT culture, high TGF-β depleted PTEN, inhibited differentiation, and activated JNK. Conversely, TGF-β antagonism increased PTEN, promoted differentiation, and decreased JNK activity. Cre-Lox PTEN deletion suppressed differentiation, induced growth arrest, and activated JNK. The low-PTEN state with JNK signaling and fibrosis was ameliorated by contralateral nephrectomy done 2 wk after unilateral ischemia, suggesting reversibility of the low-PTEN dysfunctional tubule phenotype. Vimentin-expressing tubules with low-PTEN and JNK activation were associated with fibrosis also after tubule-selective AKI, and with human chronic kidney diseases of diverse etiology. By preventing tubule differentiation, the low-PTEN state may provide a platform for signals initiated physiologically to persist pathologically and cause fibrosis after injury.
Collapse
Affiliation(s)
- Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rosevear HM, Krishnamachari Y, Ariza CA, Mallapragada SK, Salem AK, Griffith TS, De Young BR, Wald M. Effect of combined locally delivered growth factors and systemic sildenafil citrate on microrecanalization in biodegradable conduit for vas deferens reconstruction. Urology 2012; 79:967.e1-4. [PMID: 22285175 DOI: 10.1016/j.urology.2011.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/01/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To investigate the effect of the combination of locally delivered growth factors and oral sildenafil citrate on cross-conduit microrecanalization. METHODS A total of 42 rats were divided into 7 groups. Of the 42 rats, 6 underwent bilateral vasectomy and bilateral end-to-end vasovasostomy and 12 underwent bilateral vasectomy. Of the latter 12, 6 received sildenafil citrate orally (10 mg/kg/d) for 24 weeks and 6 received placebo. A total of 24 rats underwent bilateral vasectomy and bilateral reconstruction with implantation of a 5-mm biodegradable conduit that bridged the 2 vasal ends. Of the 24 rats with conduits, 12 also had 250 pg of transforming growth factor-β and 12.5 pg of platelet-derived growth factor-β sustained release nanoparticles placed in immediate proximity to the conduit. The remaining 12 rats with conduits (6 without growth factors and 6 with growth factors) also received sildenafil citrate orally (10 mg/kg/d) for 24 weeks; the others received placebo. The reconstructed segments were harvested for histologic examination at 24 weeks. RESULTS Five of 6 primary vasovasostomy and no vasectomy-only rats sired litters. Significantly more microcanals per conduit were observed in rats receiving sildenafil citrate: without growth factors, 3.9 vs. 0 canals/conduit (P < 0.001); with growth factors, 5.5 vs. 0.25 canals/conduit (P < 0.001). The rats receiving sildenafil citrate with growth factors showed a trend toward more microcanals per conduit than the rats receiving sildenafil citrate without growth factors (5.5 vs 3.9; P = .10). Rats receiving growth factors but no sildenafil citrate did not produce more canals than the rats receiving neither growth factor nor sildenafil citrate (0.25 vs 0; P = NS). CONCLUSION Orally administered sildenafil citrate enhances formation of microcanalization after postvasectomy reconstruction using a biodegradable conduit in a rat model. Locally delivered growth factors appear to increase the number of microcanals.
Collapse
Affiliation(s)
- Henry M Rosevear
- Department of Urology, University of Iowa, Iowa City, Iowa 52242-1089, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hatton N, Frech T, Smith B, Sawitzke A, Scholand MB, Markewitz B. Transforming growth factor signalling: a common pathway in pulmonary arterial hypertension and systemic sclerosis. Int J Clin Pract 2012:35-43. [PMID: 21736678 DOI: 10.1111/j.1742-1241.2011.02726.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a clinical condition characterised by the presence of precapillary pulmonary hypertension (PH). Included within the subcategorisation of PAH are heritable (HPAH) and PAH associated various conditions (APAH) including systemic sclerosis (SSc). The pathogenesis of HPAH and SSc has been linked to both a genetic predisposition and epigenetic factors. TGF-β superfamily signalling has also been implicated in the development of these conditions. In this review, we discuss the role of genetic predisposition, epigenetic factors along with dysregulation in TGF-β superfamily signalling in the pathogenesis of PAH and SSc.
Collapse
Affiliation(s)
- N Hatton
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Song MO, Lee CH, Yang HO, Freedman JH. Endosulfan upregulates AP-1 binding and ARE-mediated transcription via ERK1/2 and p38 activation in HepG2 cells. Toxicology 2011; 292:23-32. [PMID: 22146149 DOI: 10.1016/j.tox.2011.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/28/2011] [Accepted: 11/21/2011] [Indexed: 12/12/2022]
Abstract
Endosulfan is an organochlorine insecticide and has been implicated in neurotoxicity, hepatotoxicity, immunosuppression and teratogenicity. However, the molecular mechanism of endosulfan toxicity is not yet clear. Recent studies demonstrated that oxidative stress induced by endosulfan is involved in its toxicity and accumulating evidence suggests that endosulfan can modulate the activities of stress-responsive signal transduction pathways including extracellular signal regulated kinases (ERK) 1/2. However, none of the previous studies investigated the ability of endosulfan to modulate activating protein-1 (AP-1) binding and antioxidant response element (ARE)-mediated transcription as an underlying mechanism of endosulfan toxicity. In this report, we show that treatment of HepG2 cells with endosulfan significantly increased oxidative stress-responsive transcription via AP-1 activation. In addition, endosulfan-induced transcription was enhanced in cells depleted of glutathione by buthionine sulfoximine (BSO) treatment. Exposure to endosulfan resulted in a significant increase in the activities of MAPKs, ERK1/2 and p38. Endosulfan-induced increases in enzymatic activities of these MAPKs were consistent with MAPK phosphorylation. Endosulfan exposure also caused an increase in c-Jun phosphorylation. These results suggest a model for endosulfan toxicity in which endosulfan increases ERK1/2 and p38 activities and these activated MAPKs then increase c-Jun phosphorylation. Phosphorylated c-Jun, in turn, increases AP-1 activity, which results in activation of ARE-mediated transcription.
Collapse
Affiliation(s)
- Min Ok Song
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
34
|
Kim HJ, Kim CH, Ryu JH, Joo JH, Lee SN, Kim MJ, Lee JG, Bae YS, Yoon JH. Crosstalk between platelet-derived growth factor-induced Nox4 activation and MUC8 gene overexpression in human airway epithelial cells. Free Radic Biol Med 2011; 50:1039-52. [PMID: 21255638 DOI: 10.1016/j.freeradbiomed.2011.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) contribute to chronic airway inflammation, and NADPH oxidase (Nox) is an important source of ROS. However, little is known of the role that ROS play in chronic upper respiratory tract inflammation. We investigated the mechanism of ROS generation and its association with mucin gene overexpression in the nasal epithelium. The level of platelet-derived growth factor (PDGF) expression was increased in sinusitis mucosa, and high-level PDGF expression induced intracellular ROS, followed by MUC8 gene overexpression in normal human nasal epithelial cells. Knockdown of Nox4 expression with Nox4 siRNA decreased PDGF-induced intracellular ROS and MUC8 expression. Infection with an adenovirus containing Nox4 cDNA resulted in Nox4 overexpression and increased intracellular levels of ROS and MUC8 expression. PDGF and Nox4 overexpression are essential components of intracellular ROS generation and may contribute to chronic inflammation in the nasal epithelium through induction of MUC8 overexpression.
Collapse
Affiliation(s)
- Hyun Jik Kim
- Department of Otolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shepherd RD, Kos SM, Rinker KD. Flow-dependent Smad2 phosphorylation and TGIF nuclear localization in human aortic endothelial cells. Am J Physiol Heart Circ Physiol 2011; 301:H98-H107. [PMID: 21490324 DOI: 10.1152/ajpheart.00668.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Endothelial cells respond to fluid flow stimulation through transient and sustained signal pathway activation. Smad2 is a signaling molecule and transcription factor in the Smad signaling pathway, traditionally associated with TGF-β. Although phosphorylation of Smad2 in the receptor-dependent COOH-terminal region is the most appreciated way Smad2 is activated to affect gene expression, phosphorylation may also occur in the MH1-MH2 linker region (L-psmad2). Here, we show that in human aortic endothelial cells (HAEC), Smad2 was both preferentially phosphorylated in the linker region and localized to the nucleus in a flow-dependent manner. The Smad corepressor transforming growth interacting factor (TGIF) was also found to have flow-dependent nuclear localization. Tissue studies confirmed this L-psmad2 generation trend in rat aorta, indicating likely importance in arterial tissue. HAEC-based inhibitor studies demonstrated that L-psmad2 levels were not related to MAPK phosphorylation, but instead followed the pattern of pAkt(473), both with and without the phosphatidylinositol 3-kinase inhibitor PI-103. Akt and Smad species were also shown to directly interact under flow relative to static controls. To further evaluate impacts of PI-103 treatment, expression profiles for two TGF-β and shear stress-dependent genes were determined and showed that mRNAs were lower from untreated 10 dyn/cm(2) than 2 dyn/cm(2) average shear stress cultures. However, upon exposure to PI-103, this trend was reversed, with a stronger response observed at 10 dyn/cm(2). Taken together, the results of this work suggest that fluid flow exposure may influence endothelial gene expression by a novel mechanism involving Akt, L-psmad2, and TGIF.
Collapse
Affiliation(s)
- Robert D Shepherd
- Univ. of Calgary, 2500 Univ. Dr. N.W., Centre for Bioengineering Research and Education, CCIT 208, Calgary AB, Canada T2N 1N4
| | | | | |
Collapse
|
36
|
Boucher P, Herz J. Signaling through LRP1: Protection from atherosclerosis and beyond. Biochem Pharmacol 2010; 81:1-5. [PMID: 20920479 DOI: 10.1016/j.bcp.2010.09.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 11/18/2022]
Abstract
The low-density lipoprotein receptor-related protein (LRP1) is a multifunctional cell surface receptor that belongs to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 consists of an 85-kDa membrane-bound carboxyl fragment (β chain) and a non-covalently attached 515-kDa (α chain) amino-terminal fragment. Through its extracellular domain, LRP1 binds at least 40 different ligands ranging from lipoprotein and protease inhibitor complex to growth factors and extracellular matrix proteins. LRP-1 has also been shown to interact with scaffolding and signaling proteins via its intracellular domain in a phosphorylation-dependent manner and to function as a co-receptor partnering with other cell surface or integral membrane proteins. LRP-1 is thus implicated in two major physiological processes: endocytosis and regulation of signaling pathways, which are both involved in diverse biological roles including lipid metabolism, cell growth/differentiation processes, degradation of proteases, and tissue invasion. The embryonic lethal phenotype obtained after target disruption of the LRP-1 gene in the mouse highlights the biological importance of this receptor and revealed a critical, but yet undefined role in development. Tissue-specific gene deletion studies also reveal an important contribution of LRP1 in vascular remodeling, foam cell biology, the central nervous system, and in the molecular mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Philippe Boucher
- CNRS, UMR7175, Université de Strasbourg, 74, route du Rhin, Illkirch F-67401, France.
| | | |
Collapse
|
37
|
Lee J, Moon HJ, Lee JM, Joo CK. Smad3 regulates Rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem 2010; 285:26618-27. [PMID: 20547485 DOI: 10.1074/jbc.m109.073155] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that RhoA-dependent signaling regulates transforming growth factor-beta1 (TGF-beta1)-induced cytoskeletal reorganization in the human retinal pigment epithelial cell line ARPE-19. Smad pathways have also been shown to mediate TGF-beta1 activity. Here, we examined what regulates Rho GTPase activity and tested whether Smad signaling cross-talks with Rho pathways during TGF-beta1-induced actin rearrangement. Using small interfering RNAs, we found that NET1, the guanine nucleotide exchange factor of RhoA, is critical for TGF-beta1-induced cytoskeletal reorganization, N-cadherin expression, and RhoA activation. In ARPE-19 cells lacking NET1, TGF-beta1-induced stress fibers and N-cadherin expression were not observed. Interestingly, in dominant-negative Smad3-expressing or constitutively active Smad7 cells, TGF-beta1 failed to induce NET1 mRNA and protein expression. Consistent with these results, both dominant-negative Smad3 and constitutively active Smad7 blocked the cytoplasmic localization of NET1 and inhibited interactions between NET1 and RhoA. Finally, we found that NET1 is a direct gene target of TGF-beta1 via Smad3. Taken together, our results demonstrate that Smad3 regulates RhoA activation and cytoskeletal reorganization by controlling NET1 in TGF-beta1-induced ARPE-19 cells. These data define a new role for Smad3 as a modulator of RhoA activation in the regulation of TGF-beta1-induced epithelial-mesenchymal transitions.
Collapse
Affiliation(s)
- Jungeun Lee
- Laboratory of Ophthalmology and Visual Science, Catholic Research Institutes of Medical Sciences, Korean Eye Tissue and Gene Bank Related to Blindness, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | | | | | | |
Collapse
|
38
|
Yamanaka O, Saika S, Ikeda K, Miyazaki KI, Kitano A, Ohnishi Y. Connective tissue growth factor modulates extracellular matrix production in human subconjunctival fibroblasts and their proliferation and migration in vitro. Jpn J Ophthalmol 2008; 52:8-15. [PMID: 18369694 DOI: 10.1007/s10384-007-0497-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE We examined the role of connective tissue growth factor (CTGF) in transforming growth factor beta1 (TGFbeta1)-related behavior in cultured human subconjunctival fibroblasts (SCFs), protein production, mRNA expression of CTGF and type I collagen alpha1 chain (colIA1), and cell proliferation and migration. TGFbeta1 is the major factor involved in bleb scarring following filtration surgery. METHODS An antisense deoxynucleotide (antisense) (5 microM) for CTGF mRNA was used to block endogenous CTGF expression. Effects of antisense on extracellular matrix (ECM) production and immunolocalization, mRNA expression, and cell proliferation and migration were examined in human SCF cultures with or without TGFbeta1 (5 ng/ml). Cell migration was examined in an in vitro wound model of monolayer fibroblast cultures. RESULTS CTGF antisense reduced mRNA expression of CTGF and colIA1 and production of the ECM components type I collagen, and fibronectin much more markedly in cells treated with TGFbeta1 compared with control fibroblasts, and it inhibited the proliferation of cultured SCFs to 71.9% of that of controls after 13 days of culture. CTGF antisense also delayed defect closure in monolayer cell sheets. In the culture, the defect was closed by TGFbeta1 by 36 h, whereas 7.0% of the defect remained at 48 h in the antisense-treated culture. CONCLUSIONS These findings indicate that CTGF is involved in ECM production in SCFs activated by exogenous TGFbeta1 in vitro. Inhibition of CTGF expression may be effective in preventing undesirable scar formation during healing following filtration surgery.
Collapse
Affiliation(s)
- Osamu Yamanaka
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Stahl BC, Ratliff TL, De Young BR, Wald M. Involvement of Growth Factors in the Process of Post-Vasectomy Micro-Recanalization. J Urol 2008; 179:376-80. [DOI: 10.1016/j.juro.2007.08.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Indexed: 11/25/2022]
Affiliation(s)
- Brandon C. Stahl
- Departments of Urology and Pathology (BRDY), University of Iowa, Iowa City, Iowa
| | - Timothy L. Ratliff
- Departments of Urology and Pathology (BRDY), University of Iowa, Iowa City, Iowa
| | - Barry R. De Young
- Departments of Urology and Pathology (BRDY), University of Iowa, Iowa City, Iowa
| | - Moshe Wald
- Departments of Urology and Pathology (BRDY), University of Iowa, Iowa City, Iowa
| |
Collapse
|
41
|
Lan Y, Liu B, Yao H, Li F, Weng T, Yang G, Li W, Cheng X, Mao N, Yang X. Essential role of endothelial Smad4 in vascular remodeling and integrity. Mol Cell Biol 2007; 27:7683-92. [PMID: 17724086 PMCID: PMC2169040 DOI: 10.1128/mcb.00577-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
New blood vessels are formed through the assembly or sprouting of endothelial cells (ECs) and become stabilized by the formation of perivascular matrix and the association with supporting mural cells. To investigate the role of endothelial Smad4 in vascular development, we deleted the Smad4 gene specifically in ECs using the Cre-LoxP system. EC-specific Smad4 mutant mice died at embryonic day 10.5 due to cardiovascular defects, including attenuated vessels sprouting and remodeling, collapsed dorsal aortas, enlarged hearts with reduced trabeculae, and failed endocardial cushion formation. Noticeably, Smad4-deficient ECs demonstrated an intrinsic defect in tube formation in vitro. Furthermore, the mutant vascular ECs dissociated away from the surrounding cells and suffered from impaired development of vascular smooth muscle cells. The disturbed vascular integrity and maturation was associated with aberrant expression of angiopoietins and a gap junction component, connexin43. Collectively, we have provided direct functional evidence that Smad4 activity in the developing ECs is essential for blood vessel remodeling, maturation, and integrity.
Collapse
Affiliation(s)
- Yu Lan
- Genetic Laboratory of Development and Diseases, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lev PR, Salim JP, Marta RF, Osorio MJM, Goette NP, Molinas FC. Platelets possess functional TGF-beta receptors and Smad2 protein. Platelets 2007; 18:35-42. [PMID: 17365852 DOI: 10.1080/09537100600800743] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
TGF-beta1 plays a main role in tissue repair by regulating extracellular matrix production and tissue granulation. Platelets are one of the main sources of this cytokine in the circulation. The aim of this study was to evaluate the presence of the TGF-beta receptors on platelets, the effect of TGF-beta1 on platelet aggregation and the underlying intracellular mechanisms. TGF-beta receptors on platelets were studied by flow cytometry and their mRNA by PCR. Platelet aggregation was assessed by turbidimetric methods and intracellular pathways by Western blot. TGF-beta receptor type II and mRNA codifying for TbetaRI and TbetaRII were found in platelets. We demonstrated that TGF-beta1 did not trigger platelet aggregation by itself but had a modulating effect on ADP-induced platelet aggregation. Either inhibition or increase in platelet aggregation, depending on the exposure time to TGF-beta1 and the ADP concentration used, were shown. We found that platelets possess Smad2 protein and that its phosphorylation state is increased after exposure to TGF-beta1. Besides, TGF-beta1 modified the pattern of ADP-induced tyrosine phosphorylation. Increased phosphorylation levels of 64-, 80- and 125-kDa proteins during short time incubation with TGF-beta1 and increased phosphorylation of 64- and 125-kDa proteins after longer incubation were observed. The modulating effect of TGF-beta1 on platelet aggregation could play a role during pathological states in which circulating TGF-beta1 levels are increased and intravascular platelet activation is present, such as myeloproliferative disorders. In vascular injury, in which platelet activation followed by granule release generates high local ADP concentrations, it could function as a physiological mechanism of platelet activation control.
Collapse
Affiliation(s)
- P R Lev
- Facultad de Medicina, Instituto de Investigaciones Medicas Alfredo Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
43
|
Boucher P, Li WP, Matz RL, Takayama Y, Auwerx J, Anderson RG, Herz J. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome. PLoS One 2007; 2:e448. [PMID: 17505534 PMCID: PMC1864997 DOI: 10.1371/journal.pone.0000448] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 04/23/2007] [Indexed: 01/09/2023] Open
Abstract
Background The multifunctional receptor LRP1 controls expression, activity and trafficking of the PDGF receptor-β in vascular smooth muscle cells (VSMC). LRP1 is also a receptor for TGFβ1 and is required for TGFβ mediated inhibition of cell proliferation. Methods and Principal Findings We show that loss of LRP1 in VSMC (smLRP−) in vivo results in a Marfan-like syndrome with nuclear accumulation of phosphorylated Smad2/3, disruption of elastic layers, tortuous aorta, and increased expression of the TGFβ target genes thrombospondin-1 (TSP1) and PDGFRβ in the vascular wall. Treatment of smLRP1− animals with the PPARγ agonist rosiglitazone abolished nuclear pSmad accumulation, reversed the Marfan-like phenotype, and markedly reduced smooth muscle proliferation, fibrosis and atherosclerosis independent of plasma cholesterol levels. Conclusions and Significance Our findings are consistent with an activation of TGFβ signals in the LRP1-deficient vascular wall. LRP1 may function as an integrator of proliferative and anti-proliferative signals that control physiological mechanisms common to the pathogenesis of Marfan syndrome and atherosclerosis, and this is essential for maintaining vascular wall integrity.
Collapse
Affiliation(s)
- Philippe Boucher
- Institut Gilbert-Laustriat, UMR 7175 LC-1, Department of Pharmacology; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur, Illkirch, France
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wei-Ping Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rachel L. Matz
- Institut Gilbert-Laustriat, UMR 7175 LC-1, Department of Pharmacology; Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur, Illkirch, France
| | - Yoshiharu Takayama
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Johan Auwerx
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Medicale/Université Louis Pasteur, Illkirch, France
| | - Richard G.W. Anderson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
MCP-1 muscles in on pericytes. Blood 2007. [DOI: 10.1182/blood-2006-11-056812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Bruna A, Darken RS, Rojo F, Ocaña A, Peñuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, Seoane J. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 2007; 11:147-60. [PMID: 17292826 DOI: 10.1016/j.ccr.2006.11.023] [Citation(s) in RCA: 397] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/11/2006] [Accepted: 11/16/2006] [Indexed: 11/16/2022]
Abstract
TGFbeta acts as a tumor suppressor in normal epithelial cells and early-stage tumors and becomes an oncogenic factor in advanced tumors. The molecular mechanisms involved in the malignant function of TGFbeta are not fully elucidated. We demonstrate that high TGFbeta-Smad activity is present in aggressive, highly proliferative gliomas and confers poor prognosis in patients with glioma. We discern the mechanisms and molecular determinants of the TGFbeta oncogenic response with a transcriptomic approach and by analyzing primary cultured patient-derived gliomas and human glioma biopsies. The TGFbeta-Smad pathway promotes proliferation through the induction of PDGF-B in gliomas with an unmethylated PDGF-B gene. The epigenetic regulation of the PDGF-B gene dictates whether TGFbeta acts as an oncogenic factor inducing PDGF-B and proliferation in human glioma.
Collapse
Affiliation(s)
- Alejandra Bruna
- Medical Oncology Program, Vall d'Hebron University Hospital Research Institute, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Itoh Y, Kimoto K, Imaizumi M, Nakatsuka K. Inhibition of RhoA/Rho-kinase pathway suppresses the expression of type I collagen induced by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res 2007; 84:464-72. [PMID: 17217948 DOI: 10.1016/j.exer.2006.10.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/12/2006] [Accepted: 10/23/2006] [Indexed: 02/02/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a major cause of the failure of rhegmatogenous retinal detachment surgery. The pathogenesis of PVR includes a fibrotic reaction of retinal pigment epithelial (RPE) cells caused by transforming growth factor (TGF)-beta. The cellular mechanisms by which TGF-beta induces extracellular matrix protein synthesis are not fully understood. In this study, we examined whether the RhoA/Rho-kinase pathway was involved in TGF-beta2-induced collagen expression in a human RPE cell line, ARPE-19. The roles of RhoA and Rho-kinase were evaluated using biochemical inhibitors, RhoA inhibitor, simvastatin and Rho-kinase inhibitor, Y27632. The effects of simvastatin or Y27632 on the type I collagen mRNA (COL1A1 and COL1A2) expression induced by TGF-beta2 were evaluated by real-time RT-PCR. The effects of simvastatin or Y27632 on type I collagen synthesis induced by TGF-beta2 were assessed by immunocytochemical analysis with anti-type I collagen antibody. To examine the effects of simvastatin or Y27632 on COL1A2 promoter activity induced by TGF-beta2, luciferase reporter assays were also performed. Moreover, the role of RhoA itself on COL1A2 promoter activity was assessed using the constructs of constitutively active RhoA and dominant-negative RhoA. RhoA was activated within 5 min after stimulation with TGF-beta2, and its activation persisted for as long as 1 h in a dose-dependent fashion. Preincubation of ARPE-19 with simvastatin (5 microM) or Y27632 (10 microM) significantly prevented TGF-beta2-induced COL1A1 and COL1A2 gene expression. Inhibition of RhoA/Rho-kinase markedly suppressed TGF-beta2-induced type I collagen synthesis in ARPE-19. Moreover, the blockage of RhoA/Rho-kinase inhibited the increase in COL1A2 promoter activity when induced by TGF-beta2. Constitutively active RhoA increased COL1A2 promoter activity in the presence or absence of TGF-beta2. Simvastatin and Y27632 reduced active RhoA-induced COL1A2 promoter activity. The dominant-negative RhoA inhibited COL1A2 promoter activity augmentation induced by TGF-beta2. In the luciferase assay using a mutation construct of the Smad binding site in COL1A2 promoter (Smad-mut/Luc), the treatment with simvastatin and Y27632 significantly reduced TGF-beta2 induction of Smad-mut/Luc promoter activity. On the other hand, both simvastatin and Y27632 significantly reduced CAGA12-Luc activity induced by TGF-beta2. These results indicate that the RhoA/Rho-kinase pathway plays a role in relaying TGF-beta2 signal transduction to type I collagen synthesis in RPE cells in a Smad-dependent and Smad-independent fashion. The RhoA/Rho-kinase pathway may be a therapeutic target for treating PVR.
Collapse
Affiliation(s)
- Yuji Itoh
- Department of Ophthalmology, Oita University, Hasama-machi, Yufu-shi Oita 879-5593, Japan.
| | | | | | | |
Collapse
|
47
|
May P, Woldt E, Matz RL, Boucher P. The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 2007; 39:219-28. [PMID: 17457719 DOI: 10.1080/07853890701214881] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The low-density lipoprotein (LDL) receptor is the founding member of a family of seven structurally closely related transmembrane proteins (LRP1, LRP1b, megalin/LRP2, LDL receptor, very low-density lipoprotein receptor, MEGF7/LRP4, LRP8/apolipoprotein E receptor2). These proteins participate in a wide range of physiological processes, including the regulation of lipid metabolism, protection against atherosclerosis, neurodevelopment, and transport of nutrients and vitamins. While currently available data suggest that the role of the LDL receptor is limited to the regulation of cholesterol homeostasis by receptor-mediated endocytosis of lipoprotein particles, there is growing experimental evidence that the other members of the gene family have additional physiological functions as signal transducers. In this review, we focus on the latest discovered functions of two major members of this family, LRP1 and megalin/LRP2, and on the newly elucidated physiological role of a third member of the family, MEGF7/LRP4, which can also function as a modulator of diverse signaling pathways during development.
Collapse
Affiliation(s)
- Petra May
- Universität Freiburg, Medizinische Klinik II/Zentrum für Neurowissenschaften, Freiburg, Germany
| | | | | | | |
Collapse
|
48
|
Ma J, Wang Q, Fei T, Han JDJ, Chen YG. MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 2006; 109:987-94. [PMID: 17032917 DOI: 10.1182/blood-2006-07-036400] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) and its signaling mediators play crucial roles in vascular formation. Our previous microarray analysis identified monocyte chemoattractant protein-1 (MCP-1) as a TGF-beta target gene in endothelial cells (ECs). Here, we report that MCP-1 mediates the angiogenic effect of TGF-beta by recruiting vascular smooth muscle cells (VSMCs) and mesenchymal cells toward ECs. By using a chick chorioallantoic membrane assay, we show that TGF-beta promotes the formation of new blood vessels and this promotion is attenuated when MCP-1 activity is blocked by its neutralizing antibody. Wound healing and transwell assays established that MCP-1 functions as a chemoattractant to stimulate migration of VSMCs and mesenchymal 10T1/2 cells toward ECs. Furthermore, the conditioned media from TGF-beta-treated ECs stimulate VSMC migration, and inhibition of MCP-1 activity attenuates TGF-beta-induced VSMC migration toward ECs. Finally, we found that MCP-1 is a direct gene target of TGF-beta via Smad3/4. Taken together, our findings suggest that MCP-1 mediates TGF-beta-stimulated angiogenesis by enhancing migration of mural cells toward ECs and thus promoting the maturation of new blood vessels.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
49
|
Czochra P, Klopcic B, Meyer E, Herkel J, Garcia-Lazaro JF, Thieringer F, Schirmacher P, Biesterfeld S, Galle PR, Lohse AW, Kanzler S. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol 2006; 45:419-28. [PMID: 16842882 DOI: 10.1016/j.jhep.2006.04.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 04/04/2006] [Accepted: 04/18/2006] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS In hepatic fibrogenesis, stellate cells are activated leading to production and deposition of extracellular matrix. To clarify the role of PDGF-B in liver fibrogenesis, we overexpressed PDGF-B in the liver of transgenic mice. METHODS Transgenic mice for the conditional overexpression of PDGF-B in the liver under control of an albumin promoter were generated utilising the Cre/loxP system. Constitutive PDGF-B expression was achieved after breeding with mice expressing Cre-recombinase under actin promoter control. Tamoxifen inducible expression was achieved after breeding with mice expressing Cre under transthyretin receptor promoter control. Levels of fibrosis were assessed and the expression of regulators of matrix remodelling was measured. RESULTS PDGF-B expression caused hepatic stellate cell and myofibroblast activation marked by alpha-smooth muscle actin and PDGFR-beta expression. Liver fibrosis was verified macroscopically, histologically and by collagen I mRNA quantification in 4-6 week-old animals. MMP-2, MMP-9 and TIMP-1 were upregulated whereas TGF-beta expression was unchanged. CONCLUSIONS We identified PDGF-B as a proliferative and profibrogenic stimulus and potential inducer of stellate cell transdifferentiation in vivo. PDGF-B overexpression causes liver fibrosis without significantly upregulating TGF-beta1, suggesting a TGF-beta-independent mechanism. The established model provides a tool for testing anti-PDGF-B therapeutic strategies in liver fibrosis in vivo.
Collapse
Affiliation(s)
- Piotr Czochra
- Department of Medicine, Johannes Gutenberg-University, Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yamanaka O, Saika S, Ikeda K, Miyazaki KI, Ohnishi Y, Ooshima A. Interleukin-7 modulates extracellular matrix production and TGF-beta signaling in cultured human subconjunctival fibroblasts. Curr Eye Res 2006; 31:491-9. [PMID: 16769608 DOI: 10.1080/02713680600701380] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE We examined the role of interleukin-7 (IL-7) in modulation of production of extracellular matrix (ECM), immunolocalization of Smads, and cell migration and expressions of transforming growth factor-beta (TGF-beta) in cultured human subconjunctival fibroblasts. IL-7 is capable of inducing Smad7, an inhibitory Smad that interferes with TGF-beta/Smad signal. METHODS The effects of IL-7 on ECM production, immunolocalization of Smads, type I collagen, fibronectin, alpha -smooth muscle actin (alpha -SMA), and cell migration were examined in human subconjunctival fibroblast culture with or without TGF-beta1. ECM production, such as type I collagen and fibronectin, was measured by immunoassay or real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Cell migration was examined using an in vitro wound model in monolayer cultures. We also examined the effects of IL-7, PKC inhibitor, and STAT inhibitor on the expressions of TGF-beta1 and type I collagen alpha1 chain (col1A1) m-RNA by using real-time RT-PCR. RESULTS IL-7 reduced the ECM production much more markedly in the cells treated with TGF-1beta than in the control fibroblasts. TGF-beta1 strongly showed immunolocalization of phospho-Smad2, and IL-7 also showed immunolocalization of Smad7 in the nuclei. The immunoreactivities of alpha -SMA and fibronectin were weaker in the presence of IL-7 than in the control cells. IL-7 also delayed defect closure in the monolayer cell sheets, and the delay was recovered by exogenous type I collagen or fibronectin. Each of IL-7, BIS I, or AGS 490 reduced the mRNA expressions of TGF-beta1 and col1A1. CONCLUSIONS These findings indicate that IL-7 is involved in ECM production in the subconjunctival fibroblasts activated by exogenous TGF-beta1, suggesting that administration of IL-7 can be a novel therapeutic strategy in preventing undesirable bleb scar formation during healing after filtration surgery.
Collapse
Affiliation(s)
- Osamu Yamanaka
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan.
| | | | | | | | | | | |
Collapse
|