1
|
Kim SM, Heo HR, Kim CS, Shin HH. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents. Front Bioeng Biotechnol 2024; 12:1319830. [PMID: 38725991 PMCID: PMC11079243 DOI: 10.3389/fbioe.2024.1319830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bacteriophages, also known as phages, are viruses that replicate in bacteria and archaea. Phages were initially discovered as antimicrobial agents, and they have been used as therapeutic agents for bacterial infection in a process known as "phage therapy." Recently, phages have been investigated as functional nanomaterials in a variety of areas, as they can function not only as therapeutic agents but also as biosensors and tissue regenerative materials. Phages are nontoxic to humans, and they possess self-assembled nanostructures and functional properties. Additionally, phages can be easily genetically modified to display specific peptides or to screen for functional peptides via phage display. Here, we demonstrated the application of phage nanomaterials in the context of tissue engineering, sensing, and probing.
Collapse
Affiliation(s)
- Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chang Sup Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
2
|
Colotti G, Failla CM, Lacal PM, Ungarelli M, Ruffini F, Di Micco P, Orecchia A, Morea V. Neuropilin-1 is required for endothelial cell adhesion to soluble vascular endothelial growth factor receptor 1. FEBS J 2021; 289:183-198. [PMID: 34252269 PMCID: PMC9290910 DOI: 10.1111/febs.16119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022]
Abstract
Neuropilin‐1 (NRP‐1) is a semaphorin receptor involved in neuron guidance, and a co‐receptor for selected isoforms of the vascular endothelial growth factor (VEGF) family. NRP‐1 binding to several VEGF‐A isoforms promotes growth factor interaction with VEGF receptor (VEGFR)‐2, increasing receptor phosphorylation. Additionally, NRP‐1 directly interacts with VEGFR‐1, but this interaction competes with NRP‐1 binding to VEGF‐A165 and does not enhance VEGFR‐1 activation. In this work, we investigated in detail the role of NRP‐1 interaction with the soluble isoform of VEGFR‐1 (sVEGFR‐1) in angiogenesis. sVEGFR‐1 acts both as a decoy receptor for VEGFs and as an extracellular matrix protein directly binding to α5β1 integrin on endothelial cells. By combining cell adhesion assays and surface plasmon resonance experiments on purified proteins, we found that sVEGFR‐1/NRP‐1 interaction is required both for α5β1 integrin binding to sVEGFR‐1 and for endothelial cell adhesion to a sVEGFR‐1‐containing matrix. We also found that a previously reported anti‐angiogenic peptide (Flt2‐11), which maps in the second VEGFR‐1 Ig‐like domain, specifically binds NRP‐1 and inhibits NRP‐1/sVEGFR‐1 interaction, a process that likely contributes to its anti‐angiogenic activity. In view of potential translational applications, we developed a five‐residue‐long peptide, derived from Flt2‐11, which has the same ability as the parent Flt2‐11 peptide to inhibit cell adhesion to, and migration towards, sVEGFR‐1. Therefore, the Flt2‐5 peptide represents a potential anti‐angiogenic compound per se, as well as an attractive lead for the development of novel angiogenesis inhibitors acting with a different mechanism with respect to currently used therapeutics, which interfere with VEGF‐A165 binding.
Collapse
Affiliation(s)
- Gianni Colotti
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council (CNR), Rome, Italy
| | | | | | | | | | - Patrizio Di Micco
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza' University of Rome, Italy
| | - Angela Orecchia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | - Veronica Morea
- Institute of Molecular Biology and Pathology (IBPM) of the National Research Council (CNR), Rome, Italy
| |
Collapse
|
3
|
Liang CT, Roscow OMA, Zhang W. Recent developments in engineering protein-protein interactions using phage display. Protein Eng Des Sel 2021; 34:6297171. [PMID: 34117768 DOI: 10.1093/protein/gzab014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/09/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Targeted inhibition of misregulated protein-protein interactions (PPIs) has been a promising area of investigation in drug discovery and development for human diseases. However, many constraints remain, including shallow binding surfaces and dynamic conformation changes upon interaction. A particularly challenging aspect is the undesirable off-target effects caused by inherent structural similarity among the protein families. To tackle this problem, phage display has been used to engineer PPIs for high-specificity binders with improved binding affinity and greatly reduced undesirable interactions with closely related proteins. Although general steps of phage display are standardized, library design is highly variable depending on experimental contexts. Here in this review, we examined recent advances in the structure-based combinatorial library design and the advantages and limitations of different approaches. The strategies described here can be explored for other protein-protein interactions and aid in designing new libraries or improving on previous libraries.
Collapse
Affiliation(s)
- Chen T Liang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada
| | - Olivia M A Roscow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G2W1, Canada.,CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, Ontario M5G1M1, Canada
| |
Collapse
|
4
|
Lv X, Cui S, Gu Y, Li J, Du G, Liu L. Enzyme Assembly for Compartmentalized Metabolic Flux Control. Metabolites 2020; 10:E125. [PMID: 32224973 PMCID: PMC7241084 DOI: 10.3390/metabo10040125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Enzyme assembly by ligand binding or physically sequestrating enzymes, substrates, or metabolites into isolated compartments can bring key molecules closer to enhance the flux of a metabolic pathway. The emergence of enzyme assembly has provided both opportunities and challenges for metabolic engineering. At present, with the development of synthetic biology and systems biology, a variety of enzyme assembly strategies have been proposed, from the initial direct enzyme fusion to scaffold-free assembly, as well as artificial scaffolds, such as nucleic acid/protein scaffolds, and even some more complex physical compartments. These assembly strategies have been explored and applied to the synthesis of various important bio-based products, and have achieved different degrees of success. Despite some achievements, enzyme assembly, especially in vivo, still has many problems that have attracted significant attention from researchers. Here, we focus on some selected examples to review recent research on scaffold-free strategies, synthetic artificial scaffolds, and physical compartments for enzyme assembly or pathway sequestration, and we discuss their notable advances. In addition, the potential applications and challenges in the applications are highlighted.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shixiu Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yang Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.L.); (S.C.); (Y.G.); (J.L.); (G.D.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Chaudhary BP, Dahal SR, Sayania B, Kumar A, Mohanty S. Effect of Toxic Metal Binding on Tax-Interacting Protein1 (TIP1): A Protein Related to Brain Diseases. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19849161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human tax-interacting protein1 (TIP1), also known as glutaminase-interacting protein (GIP), is a small globular protein containing a PDZ domain. PDZ domains are the most common protein-protein interaction modules present in eukaryotes. In humans, TIP1 plays a very important role in many cellular pathways including β-catenin-mediated Wnt signaling, Rho-activator rhotekin-mediated Rho signaling pathway, and glutamate signaling pathway for the normal activity of the central nervous system. TIP1 also regulates potassium channel expression in the plasma membrane and is a binding partner to many proteins including viral oncoproteins, HTLV-1 Tax and HPV16 E6. Since TIP1 is at a pivotal point in many cellular processes through its interaction with a growing list of partner proteins, any impact on the proper functioning of this protein can have severe consequences on the well-being of a living system. Although metals are essential for plants and animals in trace amounts, elevated levels of heavy metals such as arsenic, cadmium, zinc, and lead are toxic causing various health problems including cardiovascular disorders, neuronal damage, renal injuries, and cancer. Here, we report the effect of heavy metals, arsenic and cadmium, on TIP1 conformation using circular dichroism and fluorescence spectroscopy techniques. Our study revealed these metals have a significant impact on the structure of TIP1 even at very low levels.
Collapse
Affiliation(s)
| | - Salik R. Dahal
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA
| | | | - Amit Kumar
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA
| | - Smita Mohanty
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
6
|
Sundell GN, Arnold R, Ali M, Naksukpaiboon P, Orts J, Güntert P, Chi CN, Ivarsson Y. Proteome-wide analysis of phospho-regulated PDZ domain interactions. Mol Syst Biol 2018; 14:e8129. [PMID: 30126976 PMCID: PMC6100724 DOI: 10.15252/msb.20178129] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
A key function of reversible protein phosphorylation is to regulate protein-protein interactions, many of which involve short linear motifs (3-12 amino acids). Motif-based interactions are difficult to capture because of their often low-to-moderate affinities. Here, we describe phosphomimetic proteomic peptide-phage display, a powerful method for simultaneously finding motif-based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C-terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD-95/Dlg/ZO-1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR We uncover site-specific phospho-regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho-regulation of motif-based interactions on a large scale.
Collapse
Affiliation(s)
- Gustav N Sundell
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Piangfan Naksukpaiboon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Julien Orts
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
The Expression of Neuropilin-1 in Human Placentas From Normal and Preeclamptic Pregnancies. Int J Gynecol Pathol 2018; 36:42-49. [PMID: 26937865 DOI: 10.1097/pgp.0000000000000283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PET) is a hypertensive disorder that affects 2% to 8% of pregnant women. Recent observations support the hypothesis that upregulation of placental anti-angiogenic factors are responsible for the clinical manifestations of the disease. Neuropilin-1 (NP-1) is a transmembrane protein that acts as a coreceptor for vascular endothelial growth factor and as a regulatory protein in the immune system. The aim of the study was to evaluate the expression of NP-1 in PET and normal placentas. Nineteen placental specimens from severe PET pregnancies were compared with 20 placental specimens of women with low-risk pregnancy. All the specimens underwent immunohistochemical staining with anti-human NP-1 antibody. The degree of NP-1 staining was measured both for intensity and extent. Our study demonstrated NP-1 immunoreactivity mainly in the decidual cells, the intermediate trophoblast, and the syncytiotrophoblast, particularly in the areas in the syncytial knots and shed particles. The particles were strongly NP-1 immunoreactive. The expression of NP-1 in the syncytiotrophoblast was lower in placentas of PET compared with control (P=0.017). Shedding of syncytiotrophoblast particles from placenta to maternal blood occurs in normal pregnancies and is enhanced during PET and contributes to the maternal vascular injury that characterizes PET. Our new observation that shows strong NP-1 immunoreactivity of these particles, and decreased NP1 expression in syncytiotrophoblast of PET placentas in comparison to the control group, may imply a role of NP-1 in PET.
Collapse
|
8
|
Seo MH, Nim S, Jeon J, Kim PM. Large-Scale Interaction Profiling of Protein Domains Through Proteomic Peptide-Phage Display Using Custom Peptidomes. Methods Mol Biol 2018; 1518:213-226. [PMID: 27873209 DOI: 10.1007/978-1-4939-6584-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions are essential to cellular functions and signaling pathways. We recently combined bioinformatics and custom oligonucleotide arrays to construct custom-made peptide-phage libraries for screening peptide-protein interactions, an approach we call proteomic peptide-phage display (ProP-PD). In this chapter, we describe protocols for phage display for the identification of natural peptide binders for a given protein. We finally describe deep sequencing for the analysis of the proteomic peptide-phage display.
Collapse
Affiliation(s)
- Moon-Hyeong Seo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Jouhyun Jeon
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada, M5S 3E1. .,Department of Molecular Genetics, University of Toronto, 160 College Street, Room 230, Toronto, ON, Canada, M5S 3E1. .,Department of Computer Science, University of Toronto, 160 College Street, Room 230, Toronto, ON, Canada, M5S 3E1.
| |
Collapse
|
9
|
Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis. Oncogene 2017; 36:6531-6541. [PMID: 28783175 DOI: 10.1038/onc.2017.243] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/30/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023]
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR2) is the main pro-angiogenic receptor expressed by endothelial cells (ECs). Using surface plasmon resonance, immunoprecipitation, enzymatic digestion, immunofluorescence and cross-linking experiments with specific sugar-binding lectins, we demonstrated that VEGFR2 bears both α,1-fucose and α(2,6)-linked sialic acid (NeuAc). However, only the latter is required for VEGF binding to VEGFR2 and consequent VEGF-dependent VEGFR2 activation and motogenic response in ECs. Notably, downregulation of β-galactoside α(2,6)-sialyltransferase expression by short hairpin RNA transduction inhibits VEGFR2 α(2,6) sialylation that is paralleled by an increase of β-galactoside α(2,3)-sialyltransferase expression. This results in an ex-novo α(2,3)-NeuAc sialylation of the receptor that functionally replaces the lacking α(2,6)-NeuAc, thus allowing VEGF/VEGFR2 interaction. In keeping with the role of VEGFR2 sialylation in angiogenesis, the α(2,6)-NeuAc-binding lectin Sambucus nigra (SNA) prevents VEGF-dependent VEGFR2 autophosphorylation and EC motility, proliferation and motogenesis. In addition, SNA exerts a VEGF-antagonist activity in tridimensional angiogenesis models in vitro and in the chick-embryo chorioallantoic membrane neovascularization assay and mouse matrigel plug assay in vivo. In conclusion, VEGFR2-associated NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, EC pro-angiogenic activation and neovessel formation. VEGFR2 sialylation may represent a target for the treatment of angiogenesis-dependent diseases.
Collapse
|
10
|
Chu LH, Ganta VC, Choi MH, Chen G, Finley SD, Annex BH, Popel AS. A multiscale computational model predicts distribution of anti-angiogenic isoform VEGF 165b in peripheral arterial disease in human and mouse. Sci Rep 2016; 6:37030. [PMID: 27853189 PMCID: PMC5113071 DOI: 10.1038/srep37030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is the growth of new blood vessels from pre-existing microvessels. Peripheral arterial disease (PAD) is caused by atherosclerosis that results in ischemia mostly in the lower extremities. Clinical trials including VEGF-A administration for therapeutic angiogenesis have not been successful. The existence of anti-angiogenic isoform (VEGF165b) in PAD muscle tissues is a potential cause for the failure of therapeutic angiogenesis. Experimental measurements show that in PAD human muscle biopsies the VEGF165b isoform is at least as abundant if not greater than the VEGF165a isoform. We constructed three-compartment models describing VEGF isoforms and receptors, in human and mouse, to make predictions on the secretion rate of VEGF165b and the distribution of various isoforms throughout the body based on the experimental data. The computational results are consistent with the data showing that in PAD calf muscles secrete mostly VEGF165b over total VEGF. In the PAD calf compartment of human and mouse models, most VEGF165a and VEGF165b are bound to the extracellular matrix. VEGF receptors VEGFR1, VEGFR2 and Neuropilin-1 (NRP1) are mostly in ‘Free State’. This study provides a computational model of VEGF165b in PAD supported by experimental measurements of VEGF165b in human and mouse, which gives insight of VEGF165b in therapeutic angiogenesis and VEGF distribution in human and mouse PAD model.
Collapse
Affiliation(s)
- Liang-Hui Chu
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Vijay Chaitanya Ganta
- Cardiovascular Medicine, Department of Medicine, and the Robert M. Berne Cardiovascular Research Center University of Virginia School of Medicine, Charlottesville, VA 22901, United States
| | - Min H Choi
- Cardiovascular Medicine, Department of Medicine, and the Robert M. Berne Cardiovascular Research Center University of Virginia School of Medicine, Charlottesville, VA 22901, United States
| | - George Chen
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Stacey D Finley
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Brian H Annex
- Cardiovascular Medicine, Department of Medicine, and the Robert M. Berne Cardiovascular Research Center University of Virginia School of Medicine, Charlottesville, VA 22901, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
11
|
Corbi-Verge C, Garton M, Nim S, Kim PM. Strategies to Develop Inhibitors of Motif-Mediated Protein-Protein Interactions as Drug Leads. Annu Rev Pharmacol Toxicol 2016; 57:39-60. [PMID: 27618737 DOI: 10.1146/annurev-pharmtox-010716-104805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein-protein interactions are fundamental for virtually all functions of the cell. A large fraction of these interactions involve short peptide motifs, and there has been increased interest in targeting them using peptide-based therapeutics. Peptides benefit from being specific, relatively safe, and easy to produce. They are also easy to modify using chemical synthesis and molecular biology techniques. However, significant challenges remain regarding the use of peptides as therapeutic agents. Identification of peptide motifs is difficult, and peptides typically display low cell permeability and sensitivity to enzymatic degradation. In this review, we outline the principal high-throughput methodologies for motif discovery and describe current methods for overcoming pharmacokinetic and bioavailability limitations.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Michael Garton
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , , .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
12
|
Hershey DM, Browne PJ, Iavarone AT, Teyra J, Lee EH, Sidhu SS, Komeili A. Magnetite Biomineralization in Magnetospirillum magneticum Is Regulated by a Switch-like Behavior in the HtrA Protease MamE. J Biol Chem 2016; 291:17941-52. [PMID: 27302060 DOI: 10.1074/jbc.m116.731000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 11/06/2022] Open
Abstract
Magnetotactic bacteria are aquatic organisms that produce subcellular magnetic particles in order to orient in the earth's geomagnetic field. MamE, a predicted HtrA protease required to produce magnetite crystals in the magnetotactic bacterium Magnetospirillum magneticum AMB-1, was recently shown to promote the proteolytic processing of itself and two other biomineralization factors in vivo Here, we have analyzed the in vivo processing patterns of three proteolytic targets and used this information to reconstitute proteolysis with a purified form of MamE. MamE cleaves a custom peptide substrate with positive cooperativity, and its autoproteolysis can be stimulated with exogenous substrates or peptides that bind to either of its PDZ domains. A misregulated form of the protease that circumvents specific genetic requirements for proteolysis causes biomineralization defects, showing that proper regulation of its activity is required during magnetite biosynthesis in vivo Our results represent the first reconstitution of the proteolytic activity of MamE and show that its behavior is consistent with the previously proposed checkpoint model for biomineralization.
Collapse
Affiliation(s)
| | | | - Anthony T Iavarone
- the California Institute for Quantitative Biosciences, and the QB3/Chemistry Mass Spectrometry Facility, and the University of California, Berkeley, California 94720 and
| | - Joan Teyra
- the Department of Molecular Genetics, Terrance Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | | | - Sachdev S Sidhu
- the Department of Molecular Genetics, Terrance Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arash Komeili
- From the Departments of Plant and Microbial Biology and the California Institute for Quantitative Biosciences, and Molecular and Cell Biology,
| |
Collapse
|
13
|
Pakulska MM, Miersch S, Shoichet MS. Designer protein delivery: From natural to engineered affinity-controlled release systems. Science 2016; 351:aac4750. [PMID: 26989257 DOI: 10.1126/science.aac4750] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shane Miersch
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
An Exquisitely Specific PDZ/Target Recognition Revealed by the Structure of INAD PDZ3 in Complex with TRP Channel Tail. Structure 2016; 24:383-91. [DOI: 10.1016/j.str.2015.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022]
|
15
|
Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 2016; 23:8. [PMID: 26786672 PMCID: PMC4717660 DOI: 10.1186/s12929-016-0223-x] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.
Collapse
Affiliation(s)
- Chien-Hsun Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
16
|
Kamisetty H, Ghosh B, Langmead CJ, Bailey-Kellogg C. Learning sequence determinants of protein:protein interaction specificity with sparse graphical models. J Comput Biol 2015; 22:474-86. [PMID: 25973864 DOI: 10.1089/cmb.2014.0289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In studying the strength and specificity of interaction between members of two protein families, key questions center on which pairs of possible partners actually interact, how well they interact, and why they interact while others do not. The advent of large-scale experimental studies of interactions between members of a target family and a diverse set of possible interaction partners offers the opportunity to address these questions. We develop here a method, DgSpi (data-driven graphical models of specificity in protein:protein interactions), for learning and using graphical models that explicitly represent the amino acid basis for interaction specificity (why) and extend earlier classification-oriented approaches (which) to predict the ΔG of binding (how well). We demonstrate the effectiveness of our approach in analyzing and predicting interactions between a set of 82 PDZ recognition modules against a panel of 217 possible peptide partners, based on data from MacBeath and colleagues. Our predicted ΔG values are highly predictive of the experimentally measured ones, reaching correlation coefficients of 0.69 in 10-fold cross-validation and 0.63 in leave-one-PDZ-out cross-validation. Furthermore, the model serves as a compact representation of amino acid constraints underlying the interactions, enabling protein-level ΔG predictions to be naturally understood in terms of residue-level constraints. Finally, the model DgSpi readily enables the design of new interacting partners, and we demonstrate that designed ligands are novel and diverse.
Collapse
Affiliation(s)
| | - Bornika Ghosh
- 3Department of Computer Science, Dartmouth, Hanover, New Hampshire
| | | | | |
Collapse
|
17
|
Molek P, Bratkovič T. Bacteriophages as scaffolds for bipartite display: designing swiss army knives on a nanoscale. Bioconjug Chem 2015; 26:367-78. [PMID: 25654261 DOI: 10.1021/acs.bioconjchem.5b00034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacteriophages have been exploited as cloning vectors and display vehicles for decades owing to their genetic and structural simplicity. In bipartite display setting, phage takes on the role of a handle to which two modules are attached, each endowing it with specific functionality, much like the Swiss army knife. This concept offers unprecedented potential for phage applications in nanobiotechnology. Here, we compare common phage display platforms and discuss approaches to simultaneously append two or more different (poly)peptides or synthetic compounds to phage coat using genetic fusions, chemical or enzymatic conjugations, and in vitro noncovalent decoration techniques. We also review current reports on design of phage frameworks to link multiple effectors, and their use in diverse scientific disciplines. Bipartite phage display had left its mark in development of biosensors, vaccines, and targeted delivery vehicles. Furthermore, multifunctionalized phages have been utilized to template assembly of inorganic materials and protein complexes, showing promise as scaffolds in material sciences and structural biology, respectively.
Collapse
Affiliation(s)
- Peter Molek
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Interaction analysis through proteomic phage display. BIOMED RESEARCH INTERNATIONAL 2014; 2014:176172. [PMID: 25295249 PMCID: PMC4177731 DOI: 10.1155/2014/176172] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance.
Collapse
|
19
|
Sangith N, Srinivasaraghavan K, Sahu I, Desai A, Medipally S, Somavarappu AK, Verma C, Venkatraman P. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules. FEBS Open Bio 2014; 4:571-83. [PMID: 25009770 PMCID: PMC4087146 DOI: 10.1016/j.fob.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 12/21/2022] Open
Abstract
The structure and functions of PSMD9, a proteasomal chaperone, are uncharacterized. PDZ-like domain of PSMD9 may recognize C-terminal residues in proteins. Using conserved C-terminal motifs in human proteome, we identify novel binding partners. hnRNPA1, GH, IL6-receptor, S14 and E12 interact with PSMD9 via a specific C-terminal motif. We predict and confirm residues in the PDZ domain that are involved in this interaction.
PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions.
Collapse
Affiliation(s)
- Nikhil Sangith
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Kannan Srinivasaraghavan
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; Experimental Therapeutics Centre (A*STAR), 31 Biopolis Street, #03-01 Helios, Singapore 138669, Singapore
| | - Indrajit Sahu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Ankita Desai
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Spandana Medipally
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Arun Kumar Somavarappu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Chandra Verma
- Bioinformatics Institute ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore ; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore ; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Prasanna Venkatraman
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| |
Collapse
|
20
|
Jia H, Aqil R, Cheng L, Chapman C, Shaikh S, Jarvis A, Chan AWE, Hartzoulakis B, Evans IM, Frolov A, Martin J, Frankel P, Djordevic S, Zachary IC, Selwood DL. N-Terminal Modification of VEGF-A C Terminus-Derived Peptides Delineates Structural Features Involved in Neuropilin-1 Binding and Functional Activity. Chembiochem 2014; 15:1161-70. [DOI: 10.1002/cbic.201300658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Indexed: 12/20/2022]
|
21
|
Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc Natl Acad Sci U S A 2014; 111:2542-7. [PMID: 24550280 DOI: 10.1073/pnas.1312296111] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.
Collapse
|
22
|
Kamisetty H, Ghosh B, Langmead CJ, Bailey-Kellogg C. Learning Sequence Determinants of Protein:protein Interaction Specificity with Sparse Graphical Models. RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY : ... ANNUAL INTERNATIONAL CONFERENCE, RECOMB ... : PROCEEDINGS. RECOMB (CONFERENCE : 2005- ) 2014; 8394:129-143. [PMID: 25414914 DOI: 10.1007/978-3-319-05269-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In studying the strength and specificity of interaction between members of two protein families, key questions center on which pairs of possible partners actually interact, how well they interact, and why they interact while others do not. The advent of large-scale experimental studies of interactions between members of a target family and a diverse set of possible interaction partners offers the opportunity to address these questions. We develop here a method, DgSpi (Data-driven Graphical models of Specificity in Protein:protein Interactions), for learning and using graphical models that explicitly represent the amino acid basis for interaction specificity (why) and extend earlier classification-oriented approaches (which) to predict the ΔG of binding (how well). We demonstrate the effectiveness of our approach in analyzing and predicting interactions between a set of 82 PDZ recognition modules, against a panel of 217 possible peptide partners, based on data from MacBeath and colleagues. Our predicted ΔG values are highly predictive of the experimentally measured ones, reaching correlation coefficients of 0.69 in 10-fold cross-validation and 0.63 in leave-one-PDZ-out cross-validation. Furthermore, the model serves as a compact representation of amino acid constraints underlying the interactions, enabling protein-level ΔG predictions to be naturally understood in terms of residue-level constraints. Finally, as a generative model, DgSpi readily enables the design of new interacting partners, and we demonstrate that designed ligands are novel and diverse.
Collapse
|
23
|
McLaughlin ME, Sidhu SS. Engineering and Analysis of Peptide-Recognition Domain Specificities by Phage Display and Deep Sequencing. Methods Enzymol 2013; 523:327-49. [DOI: 10.1016/b978-0-12-394292-0.00015-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
24
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother 2012; 8:1817-28. [PMID: 22906939 DOI: 10.4161/hv.21703] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland.
| | | | | |
Collapse
|
25
|
Banerjee M, Zoetewey DL, Ovee M, Mazumder S, Petrenko VA, Samoylova TI, Mohanty S. Specificity and promiscuity in human glutaminase interacting protein recognition: insight from the binding of the internal and C-terminal motif. Biochemistry 2012; 51:6950-60. [PMID: 22876914 DOI: 10.1021/bi3008033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A large number of cellular processes are mediated by protein-protein interactions, often specified by particular protein binding modules. PDZ domains make up an important class of protein-protein interaction modules that typically bind to the C-terminus of target proteins. These domains act as a scaffold where signaling molecules are linked to a multiprotein complex. Human glutaminase interacting protein (GIP), also known as tax interacting protein 1, is unique among PDZ domain-containing proteins because it is composed almost exclusively of a single PDZ domain rather than one of many domains as part of a larger protein. GIP plays pivotal roles in cellular signaling, protein scaffolding, and cancer pathways via its interaction with the C-terminus of a growing list of partner proteins. We have identified novel internal motifs that are recognized by GIP through combinatorial phage library screening. Leu and Asp residues in the consensus sequence were identified to be critical for binding to GIP through site-directed mutagenesis studies. Structure-based models of GIP bound to two different surrogate peptides determined from nuclear magnetic resonance constraints revealed that the binding pocket is flexible enough to accommodate either the smaller carboxylate (COO(-)) group of a C-terminal recognition motif or the bulkier aspartate side chain (CH(2)COO(-)) of an internal motif. The noncanonical ILGF loop in GIP moves in for the C-terminal motif but moves out for the internal recognition motifs, allowing binding to different partner proteins. One of the peptides colocalizes with GIP within human glioma cells, indicating that GIP might be a potential target for anticancer therapeutics.
Collapse
Affiliation(s)
- Monimoy Banerjee
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Jadwin JA, Ogiue-Ikeda M, Machida K. The application of modular protein domains in proteomics. FEBS Lett 2012; 586:2586-96. [PMID: 22710164 DOI: 10.1016/j.febslet.2012.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
The ability of modular protein domains to independently fold and bind short peptide ligands both in vivo and in vitro has allowed a significant number of protein-protein interaction studies to take advantage of them as affinity and detection reagents. Here, we refer to modular domain based proteomics as "domainomics" to draw attention to the potential of using domains and their motifs as tools in proteomics. In this review we describe core concepts of domainomics, established and emerging technologies, and recent studies by functional category. Accumulation of domain-motif binding data should ultimately provide the foundation for domain-specific interactomes, which will likely reveal the underlying substructure of protein networks as well as the selectivity and plasticity of signal transduction.
Collapse
Affiliation(s)
- Joshua A Jadwin
- Department of Genetics and Developmental Biology, Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
27
|
Pangon L, Van Kralingen C, Abas M, Daly RJ, Musgrove EA, Kohonen-Corish MRJ. The PDZ-binding motif of MCC is phosphorylated at position -1 and controls lamellipodia formation in colon epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1058-67. [PMID: 22480440 DOI: 10.1016/j.bbamcr.2012.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 01/05/2023]
Abstract
In this study, we describe a new post-translational modification at position -1 of the PDZ-binding motif in the mutated in colorectal cancer (MCC) protein and its role in lamellipodia formation. Serine 828 at position -1 of this motif is phosphorylated, which is predicted to increase MCC binding affinity with the polarity protein Scrib. We show that endogenous MCC localizes at the active migratory edge of cells, where it interacts with Scrib and the non-muscle motor protein Myosin-IIB. Expression of MCC harboring a phosphomimetic mutation MCC-S828D strongly impaired lamellipodia formation and resulted in accumulation of Myosin-IIB in the membrane cortex fraction. We propose that MCC regulates lamellipodia formation by binding to Scrib and its downstream partner Myosin-IIB in a multiprotein complex. Importantly, we propose that the function of this complex is under the regulation of a newly described phosphorylation of the PDZ-binding motif at position -1.
Collapse
Affiliation(s)
- Laurent Pangon
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
28
|
Neuropilin-1 regulates a new VEGF-induced gene, Phactr-1, which controls tubulogenesis and modulates lamellipodial dynamics in human endothelial cells. Cell Signal 2012; 24:214-23. [DOI: 10.1016/j.cellsig.2011.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 09/05/2011] [Indexed: 01/13/2023]
|
29
|
Li N, Hou T, Ding B, Wang W. Characterization of PDZ domain-peptide interaction interface based on energetic patterns. Proteins 2011; 79:3208-20. [PMID: 21928318 DOI: 10.1002/prot.23157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 11/12/2022]
Abstract
PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein-protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 217 [corrected] peptides using a method called MIEC-SVM, which energetically characterizes the domain-peptide interaction using molecular interaction energy components (MIECs) and predicts binding specificity using support vector machine (SVM). Cross-validation and leave-one-domain-out test showed that the MIEC-SVM using all 44 PDZ-peptide residue pairs at the interaction interface outperformed the sequence-based methods in the literature. A further feature (residue pair) selection procedure illustrated that 16 residue pairs were uninformative to the binding specificity, even though they contributed significantly (~50%) to the binding energy. If only using the 28 informative residue pairs, the performance of the MIEC-SVM on predicting the PDZ binding specificity was significantly improved. This analysis suggests that the informative and uninformative residue interactions between the PDZ domain and the peptide may represent those contributing to binding specificity and affinity, respectively. We performed additional structural and energetic analyses to shed light on understanding how the PDZ-peptide recognition is established. The success of the MIEC-SVM method on PDZ domains in this study and SH3 domains in our previous studies illustrates its generality on characterizing protein-peptide interactions and understanding protein recognition from a structural and energetic viewpoint.
Collapse
Affiliation(s)
- Nan Li
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0359, USA
| | | | | | | |
Collapse
|
30
|
Smith CA, Kortemme T. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design. PLoS One 2011; 6:e20451. [PMID: 21789164 PMCID: PMC3138746 DOI: 10.1371/journal.pone.0020451] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.
Collapse
Affiliation(s)
- Colin A. Smith
- Graduate Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Tanja Kortemme
- Graduate Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Rapali P, Radnai L, Süveges D, Harmat V, Tölgyesi F, Wahlgren WY, Katona G, Nyitray L, Pál G. Directed evolution reveals the binding motif preference of the LC8/DYNLL hub protein and predicts large numbers of novel binders in the human proteome. PLoS One 2011; 6:e18818. [PMID: 21533121 PMCID: PMC3078936 DOI: 10.1371/journal.pone.0018818] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/10/2011] [Indexed: 11/27/2022] Open
Abstract
LC8 dynein light chain (DYNLL) is a eukaryotic hub protein that is thought to function as a dimerization engine. Its interacting partners are involved in a wide range of cellular functions. In its dozens of hitherto identified binding partners DYNLL binds to a linear peptide segment. The known segments define a loosely characterized binding motif: [D/S]-4K-3X-2[T/V/I]-1Q0[T/V]1[D/E]2. The motifs are localized in disordered segments of the DYNLL-binding proteins and are often flanked by coiled coil or other potential dimerization domains. Based on a directed evolution approach, here we provide the first quantitative characterization of the binding preference of the DYNLL binding site. We displayed on M13 phage a naïve peptide library with seven fully randomized positions around a fixed, naturally conserved glutamine. The peptides were presented in a bivalent manner fused to a leucine zipper mimicking the natural dimer to dimer binding stoichiometry of DYNLL-partner complexes. The phage-selected consensus sequence V-5S-4R-3G-2T-1Q0T1E2 resembles the natural one, but is extended by an additional N-terminal valine, which increases the affinity of the monomeric peptide twentyfold. Leu-zipper dimerization increases the affinity into the subnanomolar range. By comparing crystal structures of an SRGTQTE-DYNLL and a dimeric VSRGTQTE-DYNLL complex we find that the affinity enhancing valine is accommodated in a binding pocket on DYNLL. Based on the in vitro evolved sequence pattern we predict a large number of novel DYNLL binding partners in the human proteome. Among these EML3, a microtubule-binding protein involved in mitosis contains an exact match of the phage-evolved consensus and binds to DYNLL with nanomolar affinity. These results significantly widen the scope of the human interactome around DYNLL and will certainly shed more light on the biological functions and organizing role of DYNLL in the human and other eukaryotic interactomes.
Collapse
Affiliation(s)
- Péter Rapali
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - László Radnai
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Dániel Süveges
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Harmat
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
- Protein Modeling Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Tölgyesi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | - Gergely Katona
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail: (LN); (GP)
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail: (LN); (GP)
| |
Collapse
|
32
|
Mzoughi O, Gaston F, Granados GC, Lakhdar-Ghazal F, Giralt E, Bahraoui E. Fusion intermediates of HIV-1 gp41 as targets for antibody production: design, synthesis, and HR1-HR2 complex purification and characterization of generated antibodies. ChemMedChem 2011; 5:1907-18. [PMID: 20922745 DOI: 10.1002/cmdc.201000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this project was to study the interaction between HR1 and HR2, the stability of the complex formed, and to characterize the antibodies produced against monomeric HR1 and HR2 peptides as well as the HR1-HR2 complex. In this work, HR1 was mimicked by peptide N36, and HR2 was mimicked by peptide C34L and its analogues C34M2, C34M3, and C34D. Whereas C34M2 and C34M3 are partially composed of D-amino acids, C34D has same sequence as C34L, but is assembled entirely of D-amino acids. Using CD analysis, SPR assays, and gel filtration chromatography, we demonstrate the physical interaction between N36 and C34L and its analogues C34M2 and C34M3, but not C34D. We show that the HR1-HR2 complex is formed rapidly (<1 min) and remains stable, as demonstrated by its inability, in contrast to each free peptide, to inhibit the formation of syncytia. To generate antibodies with predetermined specificity against the transiently exposed intermediate that corresponds to the six-helix bundle structure, purified preformed HR1-HR2 complex was used, in parallel with monomeric HR1 and HR2 peptides, as immunogens in mice. Although the produced antibodies recognize total HIV-1 envelope glycoproteins in ELISA, they are unable to neutralize HIV-1-mediated fusion at 37 °C. However, if the incubation with these antibodies is carried out at 27 °C, a temperature that allows stabilization of the transient intermediate complex, anti-peptide antibodies are able to bind their corresponding domains in HeLa cells expressing HIV-1 gp41 in co-culture with HeLa CD4-CCR5/CXCR4 during the dynamic mechanism of membrane fusion. In agreement with the latter results, these antibodies, if previously incubated for 2 h at 27 °C, are able to strongly neutralize HIV-1 entry by membrane fusion, as shown by their ability to block the formation of syncytia.
Collapse
Affiliation(s)
- Olfa Mzoughi
- Laboratoire d'Immuno-Virologie, Université Paul Sabatier, UFR SVT, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
33
|
Luck K, Travé G. Phage display can select over-hydrophobic sequences that may impair prediction of natural domain–peptide interactions. Bioinformatics 2011; 27:899-902. [DOI: 10.1093/bioinformatics/btr060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Whitaker WR, Dueber JE. Metabolic Pathway Flux Enhancement by Synthetic Protein Scaffolding. Methods Enzymol 2011; 497:447-68. [DOI: 10.1016/b978-0-12-385075-1.00019-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Shameer K, Madan LL, Veeranna S, Gopal B, Sowdhamini R. PeptideMine--a webserver for the design of peptides for protein-peptide binding studies derived from protein-protein interactomes. BMC Bioinformatics 2010; 11:473. [PMID: 20858292 PMCID: PMC2955050 DOI: 10.1186/1471-2105-11-473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 09/22/2010] [Indexed: 01/18/2023] Open
Abstract
Background Signal transduction events often involve transient, yet specific, interactions between structurally conserved protein domains and polypeptide sequences in target proteins. The identification and validation of these associating domains is crucial to understand signal transduction pathways that modulate different cellular or developmental processes. Bioinformatics strategies to extract and integrate information from diverse sources have been shown to facilitate the experimental design to understand complex biological events. These methods, primarily based on information from high-throughput experiments, have also led to the identification of new connections thus providing hypothetical models for cellular events. Such models, in turn, provide a framework for directing experimental efforts for validating the predicted molecular rationale for complex cellular processes. In this context, it is envisaged that the rational design of peptides for protein-peptide binding studies could substantially facilitate the experimental strategies to evaluate a predicted interaction. This rational design procedure involves the integration of protein-protein interaction data, gene ontology, physico-chemical calculations, domain-domain interaction data and information on functional sites or critical residues. Results Here we describe an integrated approach called "PeptideMine" for the identification of peptides based on specific functional patterns present in the sequence of an interacting protein. This approach based on sequence searches in the interacting sequence space has been developed into a webserver, which can be used for the identification and analysis of peptides, peptide homologues or functional patterns from the interacting sequence space of a protein. To further facilitate experimental validation, the PeptideMine webserver also provides a list of physico-chemical parameters corresponding to the peptide to determine the feasibility of using the peptide for in vitro biochemical or biophysical studies. Conclusions The strategy described here involves the integration of data and tools to identify potential interacting partners for a protein and design criteria for peptides based on desired biochemical properties. Alongside the search for interacting protein sequences using three different search programs, the server also provides the biochemical characteristics of candidate peptides to prune peptide sequences based on features that are most suited for a given experiment. The PeptideMine server is available at the URL: http://caps.ncbs.res.in/peptidemine
Collapse
Affiliation(s)
- Khader Shameer
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, 560065, India
| | | | | | | | | |
Collapse
|
36
|
Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv 2010; 28:849-58. [PMID: 20659548 DOI: 10.1016/j.biotechadv.2010.07.004] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 06/27/2010] [Accepted: 07/08/2010] [Indexed: 12/17/2022]
Abstract
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field.
Collapse
Affiliation(s)
- Jyoti Pande
- Department of Medicine, HSC 4N41 McMaster Univ, Hamilton, ON, Canada
| | | | | |
Collapse
|
37
|
Abstract
Phage display has been extensively used to study protein-protein interactions, receptor- and antibody-binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described.
Collapse
|
38
|
Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 2010; 8:8. [PMID: 20509869 PMCID: PMC2891790 DOI: 10.1186/1478-811x-8-8] [Citation(s) in RCA: 397] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 05/28/2010] [Indexed: 02/07/2023] Open
Abstract
PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes.
Collapse
Affiliation(s)
- Ho-Jin Lee
- Department of Structural Biology, St, Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
39
|
Quantifying protein-protein interactions in high throughput using protein domain microarrays. Nat Protoc 2010; 5:773-90. [PMID: 20360771 DOI: 10.1038/nprot.2010.36] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein microarrays provide an efficient way to identify and quantify protein-protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain-peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (K(D)s) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein-ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein-protein interaction networks.
Collapse
|
40
|
Bratkovic T. Progress in phage display: evolution of the technique and its application. Cell Mol Life Sci 2010; 67:749-67. [PMID: 20196239 PMCID: PMC11115567 DOI: 10.1007/s00018-009-0192-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/18/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
Phage display, the presentation of (poly)peptides as fusions to capsid proteins on the surface of bacterial viruses, celebrates its 25th birthday in 2010. The technique, coupled with in vitro selection, enables rapid identification and optimization of proteins based on their structural or functional properties. In the last two decades, it has advanced tremendously and has become widely accepted by the scientific community. This by no means exhaustive review aims to inform the reader of the key modifications in phage display. Novel display formats, innovative library designs and screening strategies are discussed. I will also briefly review some recent uses of the technology to illustrate its incredible versatility.
Collapse
Affiliation(s)
- Tomaz Bratkovic
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
41
|
Ernst A, Gfeller D, Kan Z, Seshagiri S, Kim PM, Bader GD, Sidhu SS. Coevolution of PDZ domain–ligand interactions analyzed by high-throughput phage display and deep sequencing. MOLECULAR BIOSYSTEMS 2010; 6:1782-90. [DOI: 10.1039/c0mb00061b] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Wang KC, Wang X, Zhong P, Luo PP. Adapter-directed display: a modular design for shuttling display on phage surfaces. J Mol Biol 2009; 395:1088-101. [PMID: 19969002 DOI: 10.1016/j.jmb.2009.11.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/20/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
A novel adapter-directed phage display system was developed with modular features. In this system, the target protein is expressed as a fusion protein consisting of adapter GR1 from the phagemid vector, while the recombinant phage coat protein is expressed as a fusion protein consisting of adapter GR2 in the helper phage vector. Surface display of the target protein is accomplished through specific heterodimerization of GR1 and GR2 adapters, followed by incorporation of the heterodimers into phage particles. A series of engineered helper phages were constructed to facilitate both display valency and formats, based on various phage coat proteins. As the target protein is independent of a specific phage coat protein, this modular system allows the target protein to be displayed on any given phage coat protein and allows various display formats from the same vector without the need for reengineering. Here, we demonstrate the shuttling display of a single-chain Fv antibody on phage surfaces between multivalent and monovalent formats, as well as the shuttling display of an antigen-binding fragment molecule on phage coat proteins pIII, pVII, and pVIII using the same phagemid vectors combined with different helper phage vectors. This adapter-directed display concept has been applied to eukaryotic yeast surface display and to a novel cross-species display that can shuttle between prokaryotic phage and eukaryotic yeast systems.
Collapse
Affiliation(s)
- Kevin Caili Wang
- Abmaxis Inc., a wholly owned subsidiary of Merck & Co, Inc, WP26-413, 770 Sumneytown Pike, West Point, PA 19486, USA.
| | | | | | | |
Collapse
|
43
|
Ernst A, Sazinsky SL, Hui S, Currell B, Dharsee M, Seshagiri S, Bader GD, Sidhu SS. Rapid Evolution of Functional Complexity in a Domain Family. Sci Signal 2009; 2:ra50. [DOI: 10.1126/scisignal.2000416] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Sharma SC, Memic A, Rupasinghe CN, Duc ACE, Spaller MR. T7 phage display as a method of peptide ligand discovery for PDZ domain proteins. Biopolymers 2009; 92:183-93. [PMID: 19235856 DOI: 10.1002/bip.21172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The use of bacteriophage T7 is presented as a peptide display platform to identify short binding sequences for PDZ domain proteins. Two different domains are examined, the 10th PDZ domain (PDZ10) of the multi-PDZ domain protein 1 (MUPP1) and the third PDZ domain (PDZ3) of postsynaptic density-95 (PSD-95) protein. Using the T7Select 415-1b construct, which displays 415 peptides per phage particle, a random heptapeptide and focused octapeptide libraries were constructed and subjected to iterative selection-enrichment cycles against surface-immobilized PDZ3 and PDZ10 proteins. The derived consensus sequences, together with those of high-frequency clones, were used as the basis for individual chemically synthesized peptides. Each peptide was subjected to isothermal titration calorimetry binding determinations against the corresponding PDZ domain under standard solution conditions. For MUPP1 PDZ10, binding analysis demonstrated that one of the heptapeptides, Ac-IGRISRV, displayed a two-fold improved affinity over the octapeptide derived from the carboxy terminus of the hc-Kit protein, which we had recently demonstrated as among the highest affinity ligands reported to date for that domain. In the case of PSD-95 PDZ3, peptides were found that possessed low-micromolar dissociation constants, as well as those that rediscovered the C-terminal sequence (KQTSV) of the protein CRIPT, a known natural binding protein of PDZ3. These successful examples of ligand discovery against two distinctly different PDZ domains demonstrate that the T7 phage platform could prove broadly applicable to the numerous other PDZ domains for which binding peptides are absent or of insufficient affinity.
Collapse
Affiliation(s)
- Sudhir C Sharma
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
45
|
Lee HJ, Wang NX, Shao Y, Zheng J. Identification of tripeptides recognized by the PDZ domain of Dishevelled. Bioorg Med Chem 2009; 17:1701-8. [PMID: 19157887 PMCID: PMC2713185 DOI: 10.1016/j.bmc.2008.12.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/11/2022]
Abstract
The development of inhibitors of Dishevelled (Dvl) PDZ protein-protein interactions attracts attention due to a possible application in drug discovery and development. Using nuclear magnetic resonance (NMR) spectroscopy, we found that a tripeptide VVV binds to the PDZ domain of Dvl, which is a key component involved in Wnt signaling. Using a computational approach calculating the binding free energy of the complexes of the Dvl PDZ domain and each of the tripeptides VXV (X: any amino acid residue except Pro), we found that a tripeptide VWV had the highest binding affinity. Consistent with the computational result, experimental results showed that the binding of the tripeptide VWV to the Dvl PDZ domain was stronger than that of the tripeptide VVV. The binding affinity of the tripeptide VWV was comparable to that of the organic molecule NSC668036, which was the first identified Dvl PDZ inhibitor. The three-dimensional structure of the complex Dvl1 PDZ/VWV was determined to investigate the role of the energetically favorable W(-1) residue in binding. These interactions were also explored by using molecular dynamic simulation and the molecular mechanics Poisson-Boltzmann surface area method. Taken together, these two tripeptides may be used as modulators of Wnt signaling or as a scaffold to optimize an antagonist for targeting Dvl1 PDZ protein-protein interaction.
Collapse
Affiliation(s)
- Ho-Jin Lee
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Nick X. Wang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Youming Shao
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jie Zheng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
46
|
Di Niro R, D'Angelo S, Secco P, Marzari R, Santoro C, Sblattero D. Profiling the autoantibody repertoire by screening phage-displayed human cDNA libraries. Methods Mol Biol 2009; 570:353-369. [PMID: 19649606 DOI: 10.1007/978-1-60327-394-7_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The advent of the serological identification of antigens by procedures such as cDNA cloning and recombinant protein expression has allowed the direct molecular definition of immunogenic proteins. The phage-display technology provides several advantages over conventional immunoscreening procedures based on plasmid or lambda-phage cDNA libraries. So far, attempts to display open reading frames, such as those encoded by cDNA fragments, on filamentous phages have not been very successful. We managed to develop a strategy based on "folding reporters" which allows filtering out open reading frames from DNA and displaying them on filamentous phages in such a way that they are amenable to subsequent selection or screening. Once the cDNA library of interest is created, phage-display technology is used for selection of novel putative antigens; these are then validated by printing isolated protein on microarray and screening with patients' sera.
Collapse
Affiliation(s)
- Roberto Di Niro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Predicting PDZ domain-peptide interactions from primary sequences. Nat Biotechnol 2008; 26:1041-5. [PMID: 18711339 DOI: 10.1038/nbt.1489] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 07/21/2008] [Indexed: 02/06/2023]
Abstract
PDZ domains constitute one of the largest families of interaction domains and function by binding the C termini of their target proteins. Using Bayesian estimation, we constructed a three-dimensional extension of a position-specific scoring matrix that predicts to which peptides a PDZ domain will bind, given the primary sequences of the PDZ domain and the peptides. The model, which was trained using interaction data from 82 PDZ domains and 93 peptides encoded in the mouse genome, successfully predicts interactions involving other mouse PDZ domains, as well as PDZ domains from Drosophila melanogaster and, to a lesser extent, PDZ domains from Caenorhabditis elegans. The model also predicts the differential effects of point mutations in peptide ligands on their PDZ domain-binding affinities. Overall, we show that our approach captures, in a single model, the binding selectivity of the PDZ domain family.
Collapse
|
48
|
Wang X, Zheng Y, Xu Y, Ben J, Gao S, Zhu X, Zhuang Y, Yue S, Bai H, Chen Y, Jiang L, Ji Y, Xu Y, Fan L, Sha J, He Z, Chen Q. A novel peptide binding to the cytoplasmic domain of class A scavenger receptor reduces lipid uptake in THP-1 macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:76-83. [PMID: 19049904 DOI: 10.1016/j.bbalip.2008.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 10/08/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022]
Abstract
Class A scavenger receptor (SR-A) contributes primarily to lipid accumulation in cells. The cytoplasmic domain of SR-A (CSR-A) is responsible for internalization of the receptor-ligand complex into cells. In the present study we tried to reduce cellular uptake of acetylated low density lipoprotein (AcLDL) by inducing the interaction between the CSR-A and a novel peptide H11, which was screened from a phage-displayed peptide library. When H11 was fused with a cross membrane peptide TAT, the fusion peptide could enter cell efficiently. The peptide H11 inhibited the binding and uptake of DiI-AcLDL and attenuated lipid accumulation in the differentiated human acute monocytic leukemia cell line (THP-1) macrophages. Furthermore, the interaction of peptide H11 with the CSR-A inhibited the expression of SR-A protein as well as the phosphorylation of c-jun N-terminal kinase 2 (JNK2) in cells, which mediates cellular lipid accumulation-related signaling pathways. These results suggest that the CSR-A can be a potential target to prevent lipid accumulation in cells. The peptide H11 may be useful in regulating SR-A functions in macrophages.
Collapse
Affiliation(s)
- Xiaohua Wang
- Institute of Reproductive Medicine, Key Laboratory of Human Functional Genomics, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin X, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS. A specificity map for the PDZ domain family. PLoS Biol 2008; 6:e239. [PMID: 18828675 PMCID: PMC2553845 DOI: 10.1371/journal.pbio.0060239] [Citation(s) in RCA: 380] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 08/19/2008] [Indexed: 12/25/2022] Open
Abstract
PDZ domains are protein–protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position −2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth. The PDZ domain is a structural domain that functions as a protein–protein interaction module that recognizes specific C-terminal peptide sequences to assemble intracellular complexes important in signaling pathways of multicellular organisms. These modules are associated with human disease and are targets of viruses and other pathogens. By examining peptide specificity and substrate diversity of roughly one half of the PDZ domains known to exist in human and the nematode Caenorhabditis elegans, we were able to show that PDZ domains are more specific than previously appreciated. PDZ domains also remain functional under high mutational pressure, and only a few of the vast number of possible PDZ domain specificities are utilized in nature. These PDZ domain specificities are conserved from human to worm, implying that the specificities evolved early and were reused over evolution instead of being reshaped. The specificity map generated here was used to predict and experimentally confirm new viral PDZ-binding motifs. We present evidence that pathogenic viruses, including avian influenza, bind host PDZ domains via these motifs, thereby competing with signaling by host complexes, which leads to disruption of growth and polarity of the host cells. A genome-scale specificity map for PDZ domains reveals how family members recognize ligands to assemble signaling complexes and also reveals how viruses target these domains to subvert host cell function.
Collapse
Affiliation(s)
- Raffi Tonikian
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yingnan Zhang
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
| | - Stephen L Sazinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bridget Currell
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Jung-Hua Yeh
- Department of Immunology, Genentech South San Francisco, California, United States of America
| | - Boris Reva
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Heike A Held
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
| | - Brent A Appleton
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
| | - Marie Evangelista
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Yan Wu
- Department of Antibody Engineering, Genentech, South San Francisco, California, United States of America
| | - Xiaofeng Xin
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew C Chan
- Department of Immunology, Genentech South San Francisco, California, United States of America
| | - Somasekar Seshagiri
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Laurence A Lasky
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Charles Boone
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * To whom correspondence should be addressed. E-mail: (SSS); (GDB); (CB)
| | - Gary D Bader
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (SSS); (GDB); (CB)
| | - Sachdev S Sidhu
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail: (SSS); (GDB); (CB)
| |
Collapse
|
50
|
Exploiting the tumor microenvironment in the development of targeted cancer gene therapy. Cancer Gene Ther 2008; 16:279-90. [PMID: 18818709 DOI: 10.1038/cgt.2008.72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The future success of cancer gene therapy is critically dependent upon the development of safe, practical and effective targeting strategies. In this study, we describe a novel and broadly applicable targeting approach in which the induction of apoptotic tumor cell death is linked to the differential expression within the tumor microenvironment of elevated levels of the pro-angiogenic cytokine vascular endothelial growth factor (VEGF). As VEGF is generally absent or produced at only low levels in most normal tissues, undesirable toxicity will not result even if the therapeutic gene in question is inadvertently expressed in non-targeted tissue sites. The basic approach makes use of a chimeric cell-surface protein in which the membrane-spanning and cytoplasmic 'death domain' of the pro-apoptotic protein Fas are fused in frame to the extracellular ligand-binding domain of the VEGF receptor Flk-1/KDR/VEGFR2 (Flk-1/Fas). The resultant chimeric Flk-1/Fas receptor was found to be stable and capable of inducing a rapid apoptotic response when expressed in tumor cells that produce endogenous VEGF. Importantly, in the absence of VEGF, transduced tumor cells remain viable although they can be triggered to die by the addition of recombinant VEGF. Given the key role played by VEGF in tumor development and progression, it is proposed that the Flk-1/Fas chimera may have great potential in the context of tumor cell-targeted cancer gene therapy.
Collapse
|