1
|
Klabnik JL, Beever JE, Payton RR, Lamour KH, Schrick FN, Edwards JL. A Step Toward Understanding Direct Impacts of a Higher Estrus-Associated Temperature (HEAT): Transcript Level Changes in Cumulus-Oocyte Complexes Directly Exposed to Acute Elevated Temperature. Animals (Basel) 2025; 15:517. [PMID: 40003000 PMCID: PMC11851612 DOI: 10.3390/ani15040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Elevated body temperature (HEAT) in sexually receptive females is a normal part of the periovulatory microenvironment. The objective was to identify direct (first 6 h) and delayed (4 h or 18 h of recovery) effects at 41 °C exposure during in vitro maturation (IVM) on transcripts involved in steroidogenesis, oocyte maturation, or previously impacted by elevated temperature using targeted RNA-sequencing. Most transcripts (72.3%) were impacted in the first 2 to 4 hIVM. Twelve of the fifteen transcripts first impacted at 4 hIVM had a higher abundance and three had a lower abundance. Direct exposure to 41 °C impacted the transcripts related to progesterone production and signaling, germinal vesicle breakdown, oocyte meiotic progression, transcriptional activity and/or alternative splicing, cell cycle, cumulus expansion, and/or ovulation. Three transcripts demonstrated a delayed impact; changes were not seen until the COCs recovered for 4 h. The use of multidimensional scaling plots to 'visualize' samples highlights that oocytes exposed to an acute elevation in temperature are more advanced at the molecular level during the initial stages of maturation. Described efforts represent important steps towards providing a novel insight into the dynamic physiology of the COC in the estrual female bovid, during HEAT and after body temperature returns to baseline.
Collapse
Affiliation(s)
- Jessica L. Klabnik
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| | - Jonathan E. Beever
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
- Department of Large Animal Clinical Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Rebecca R. Payton
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| | - Kurt H. Lamour
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA;
| | - F. Neal Schrick
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| | - J. Lannett Edwards
- Department of Animal Science, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; (J.E.B.); (R.R.P.); (F.N.S.)
| |
Collapse
|
2
|
Fesquet D, Rabeharivelo G, van Dijk J, Prigent C, Morin N, Rouquier S. CCDC69 maintains genome integrity by regulating KIF2C/MCAK depolymerase activity and the stability of the chromosomal passenger complex. Sci Rep 2024; 14:30401. [PMID: 39638803 PMCID: PMC11621681 DOI: 10.1038/s41598-024-81022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
Accurate genome inheritance during cell division relies on a complex chromosome segregation mechanism. This process occurs once all the kinetochores of sister chromatids are attached to microtubules emanating from the opposite poles of the mitotic spindle. To control the precision of this mechanism, the Chromosome Passenger Complex (CPC) actively identifies and corrects improper microtubule attachments. The depolymerase activity of the kinesin KIF2C/MCAK at the kinetochores is involved in this process. CCDC69 is a poorly characterized protein, primarily identified as a regulator of central spindle assembly, whose overexpression prompts rapid microtubule depolymerization. Here, we show that CCDC69 is a cell-cycle regulated protein belonging to the Microtubule-associated Tumor Suppressor (MTUS) superfamily, and even slight deregulation of its expression induces severe early mitotic phenotypes. Myristoylation anchors CCDC69 at the plasma membrane, thus protecting microtubule network integrity. We found that CCDC69 microtubule depolymerization activity relies on KIF2C, with a fraction of CCDC69 localizing to the centromere. Importantly, we demonstrated that CCDC69 regulates the stability of the CPC by safeguarding its members from degradation during mitosis. In summary, our findings underscore CCDC69's essential role as a mitotic regulator, which is crucial for maintaining the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Didier Fesquet
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Gabriel Rabeharivelo
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Juliette van Dijk
- CRBM CNRS UMR 5237, Equipe Centrosome Cil Et Pathologies, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Claude Prigent
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Nathalie Morin
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Sylvie Rouquier
- CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
3
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
4
|
PAK1 Regulates MEC-17 Acetyltransferase Activity and Microtubule Acetylation during Proplatelet Extension. Int J Mol Sci 2020; 21:ijms21207531. [PMID: 33066011 PMCID: PMC7589885 DOI: 10.3390/ijms21207531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Mature megakaryocytes extend long processes called proplatelets from which platelets are released in the blood stream. The Rho GTPases Cdc42 and Rac as well as their downstream target, p21-activated kinase 2 (PAK2), have been demonstrated to be important for platelet formation. Here we address the role, during platelet formation, of PAK1, another target of the Rho GTPases. PAK1 decorates the bundled microtubules (MTs) of megakaryocyte proplatelets. Using a validated cell model which recapitulates proplatelet formation, elongation and platelet release, we show that lack of PAK1 activity increases the number of proplatelets but restrains their elongation. Moreover, in the absence of PAK1 activity, cells have hyperacetylated MTs and lose their MT network integrity. Using inhibitors of the tubulin deacetylase HDAC6, we demonstrate that abnormally high levels of MT acetylation are not sufficient to increase the number of proplatelets but cause loss of MT integrity. Taken together with our previous demonstration that MT acetylation is required for proplatelet formation, our data reveal that MT acetylation levels need to be tightly regulated during proplatelet formation. We identify PAK1 as a direct regulator of the MT acetylation levels during this process as we found that PAK1 phosphorylates the MT acetyltransferase MEC-17 and inhibits its activity.
Collapse
|
5
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Kanno T, Furukawa K, Horigome T. Exploring the phosphoproteome profiles during Xenopus egg activation by calcium stimulation using a fully automated phosphopeptide purification system. J Biochem 2015; 159:407-19. [PMID: 26530081 DOI: 10.1093/jb/mvv109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
To explore the phosphoproteome profiles duringXenopusegg activation by Ca(2+)-stimulation, an automated phosphopeptide purification system involving a titania column was improved by introducing 4-step elution with phosphate buffers. The number of detected phosphopeptides in the tryptic digest of aXenopusegg cytosol fraction on mass spectrometry (MS) was increased 1.5-fold and the percentage of multiply phosphorylated peptides increased from 17 to 24% with introduction of the 4-step elution method. Phosphopeptides were purified by the improved method from tryptic digests of cytosol fractions ofXenopuseggs without and with a Ca(2+)-stimulus, and then, analysed by MS. One thousand three hundred and seventy-five and 994 phosphopeptides were reproducibly detected on duplicate MS, respectively. They included 818 and 437 phosphopeptides specific to each digest, respectively. A method involving isobaric tags for relative and absolute quantitation (iTRAQ) was also applied to compare the phosphorylation levels inXenopuseggs without and with a Ca(2+)-stimulus, the ratios for 112 phosphopeptides in tryptic digests of these egg cytosol fractions being obtained. It was suggested from all the results that the phosphorylation sites and levels change duringXenopusegg activation for many known and unknown sites on structural proteins, signalling related proteins, cell cycle-related proteins and others.
Collapse
Affiliation(s)
- Takuma Kanno
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuhiro Furukawa
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsuneyoshi Horigome
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
7
|
Zhao ZS, Manser E. PAK family kinases: Physiological roles and regulation. CELLULAR LOGISTICS 2014; 2:59-68. [PMID: 23162738 PMCID: PMC3490964 DOI: 10.4161/cl.21912] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The p21-activated kinases (PAKs) are a family of Ser/Thr protein kinases that are represented by six genes in humans (PAK 1-6), and are found in all eukaryotes sequenced to date. Genetic and knockdown experiments in frogs, fish and mice indicate group I PAKs are widely expressed, required for multiple tissue development, and particularly important for immune and nervous system function in the adult. The group II PAKs (human PAKs 4-6) are more enigmatic, but their restriction to metazoans and presence at cell-cell junctions suggests these kinases emerged to regulate junctional signaling. Studies of protozoa and fungal PAKs show that they regulate cell shape and polarity through phosphorylation of multiple cytoskeletal proteins, including microtubule binding proteins, myosins and septins. This chapter discusses what we know about the regulation of PAKs and their physiological role in different model organisms, based primarily on gene knockout studies.
Collapse
Affiliation(s)
- Zhuo-Shen Zhao
- sGSK Group; Astar Neuroscience Research Partnership; Singapore
| | | |
Collapse
|
8
|
Evren S, Wen JWH, Luu O, Damm EW, Nagel M, Winklbauer R. EphA4-dependent Brachyury expression is required for dorsal mesoderm involution in the Xenopus gastrula. Development 2014; 141:3649-61. [PMID: 25209247 DOI: 10.1242/dev.111880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Xenopus provides a well-studied model of vertebrate gastrulation, but a central feature, the movement of the mesoderm to the interior of the embryo, has received little attention. Here, we analyze mesoderm involution at the Xenopus dorsal blastopore lip. We show that a phase of rapid involution - peak involution - is intimately linked to an early stage of convergent extension, which involves differential cell migration in the prechordal mesoderm and a new movement of the chordamesoderm, radial convergence. The latter process depends on Xenopus Brachyury, the expression of which at the time of peak involution is controlled by signaling through the ephrin receptor, EphA4, its ligand ephrinB2 and its downstream effector p21-activated kinase. Our findings support a conserved role for Brachyury in blastopore morphogenesis.
Collapse
Affiliation(s)
- Sevan Evren
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Jason W H Wen
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Erich W Damm
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
9
|
Santiago-Medina M, Gregus KA, Gomez TM. PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth. J Cell Sci 2013; 126:1122-33. [PMID: 23321640 DOI: 10.1242/jcs.112607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1-3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK-PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK-PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK-PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin.
Collapse
Affiliation(s)
- Miguel Santiago-Medina
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
10
|
Abstract
The water-soluble B vitamins, folate and folic acid, play an important role in reproductive health, but little is known about the effects of folic acid on infertility. The present study tested the hypothesis that folic acid affects oocyte maturation, a possible cause of female infertility. We have studied the in vitro maturation of mouse and Xenopus oocytes. Hypoxanthine (Hx) was used as an inhibitor of mouse oocyte maturation to mimic in vivo conditions by maintaining high levels of cyclic-AMP. The frequency of first polar body (PB1) formation and germinal vesicle breakdown (GVBD) in mouse oocytes was decreased by Hx. This effect was counteracted by folic acid added to the medium. PB1 extrusion and GVBD percentages rose to 27·7 and 40·0% from 12·8 and 19·9%, respectively, by exposure to 500 μM-folic acid. Folic acid also restored the spindle configuration, which had been elongated by Hx, as well as normalising the distribution of cortical granules (CG). In folic acid-treated Xenopus eggs, extracellular signal-regulated kinase 1 was phosphorylated, cyclin B2 and Mos were up-regulated and the frequency of GVBD was accelerated. Taken together, the findings suggest that folic acid facilitates oocyte maturation by altering the expression and phosphorylation of proteins involved in M-phase-promoting factor and mitogen-activated protein kinase pathways, as well as causing changes in spindle configuration and CG migration.
Collapse
|
11
|
Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. ACTA ACUST UNITED AC 2010; 190:807-22. [PMID: 20805321 PMCID: PMC2935564 DOI: 10.1083/jcb.200912056] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ran is an essential GTPase that controls nucleocytoplasmic transport, mitosis, and nuclear envelope formation. These functions are regulated by interaction of Ran with different partners, and by formation of a Ran-GTP gradient emanating from chromatin. Here, we identify a novel level of Ran regulation. We show that Ran is a substrate for p21-activated kinase 4 (PAK4) and that its phosphorylation on serine-135 increases during mitosis. The endogenous phosphorylated Ran and active PAK4 dynamically associate with different components of the microtubule spindle during mitotic progression. A GDP-bound Ran phosphomimetic mutant cannot undergo RCC1-mediated GDP/GTP exchange and cannot induce microtubule asters in mitotic Xenopus egg extracts. Conversely, phosphorylation of GTP-bound Ran facilitates aster nucleation. Finally, phosphorylation of Ran on serine-135 impedes its binding to RCC1 and RanGAP1. Our study suggests that PAK4-mediated phosphorylation of GDP- or GTP-bound Ran regulates the assembly of Ran-dependent complexes on the mitotic spindle.
Collapse
|
12
|
Abstract
IMPORTANCE OF THE FIELD Gastric cancer is one of the most common causes of cancer death worldwide. P21-activated kinases (PAKs), regulators of cancer-cell signalling networks, play fundamental roles in a range of cellular processes through their binding partners or kinase substrates. AREAS COVERED IN THIS REVIEW The complex regulation of PAKs through their upstream or downstream effectors in human cancers, especially in gastric cancer, are described and the identified inhibitors of PAKs are summarized. WHAT THE READERS WILL GAIN The structural differences and activation mechanisms between two subgroups of PAK are described. Both groups of PAKs play complicated and important roles in human gastric cancer, which indicated a possible way for us to identify the specific inhibitors targeting PAKs for gastric cancer. TAKE HOME MESSAGE PAKs play important roles in progression of many cancer types, the full mechanisms of PAKs in gastric cancer are still unclear. It seems there are different roles for two groups of PAKs in cancers. Group I PAKs play their functions mostly through their specific substrates, however, many binding partners that are independent of phosphorylation by group II PAKs were identified. Finding specific inhibitors of PAKs will help us discover the roles of PAKs and target these kinases in human gastric cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Cell Biology, China Medical University, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning 110001, P. R. China.
| | | | | |
Collapse
|
13
|
Kumar A, Molli PR, Pakala SB, Bui Nguyen TM, Rayala SK, Kumar R. PAK thread from amoeba to mammals. J Cell Biochem 2009; 107:579-85. [PMID: 19350548 DOI: 10.1002/jcb.22159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The p21-activated kinases (PAKs) are signaling nodes that play a crucial role in cellular processes including cell motility, differentiation, survival, gene transcription, and hormone signaling. PAKs are highly conserved family of serine-threonine kinases that act as effector for small GTPases Rac and Cdc42. Most of our knowledge about PAK functions has been derived from genetic approaches in lower organisms and many of these functions are similar to that seen in mammalian cells. In this review, we have summarized the extensive information generated in lower eukaryotes and very briefly discussed the current status of PAKs in humans.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington, District of Columbia 20037, USA
| | | | | | | | | | | |
Collapse
|
14
|
Nagel M, Luu O, Bisson N, Macanovic B, Moss T, Winklbauer R. Role of p21-activated kinase in cell polarity and directional mesendoderm migration in the Xenopus gastrula. Dev Dyn 2009; 238:1709-26. [PMID: 19504461 DOI: 10.1002/dvdy.21985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The p21 activated kinases (Paks) are prominently involved in the regulation of cell motility. Using a kinase-dead mutant of xPak1, we show that during Xenopus gastrulation, the kinase activity of Pak1 is required upstream of Cdc42 for the establishment of cell polarity in the migrating mesendoderm. Overactivation of Pak1 function by the expression of constitutively active xPak1 compromises the maintenance of cell polarity, by indirectly inhibiting RhoA function. Inhibition of cell polarization does not affect the migration of single mesendoderm cells. However, Pak1 inhibition interferes with the guidance of mesendoderm migration by directional cues residing in the extracellular matrix of the blastocoel roof, and with mesendoderm translocation in the embryo.
Collapse
Affiliation(s)
- Martina Nagel
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Hsuuw YD, Kuo TF, Lee KH, Liu YC, Huang YT, Lai CY, Chan WH. Ginkgolide B induces apoptosis via activation of JNK and p21-activated protein kinase 2 in mouse embryonic stem cells. Ann N Y Acad Sci 2009; 1171:501-8. [PMID: 19723096 DOI: 10.1111/j.1749-6632.2009.04691.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ginkgolide B (GKB), the major active component of Ginkgo biloba extracts, can both stimulate and inhibit apoptotic signaling. We previously showed that ginkgolide treatment of mouse blastocysts induces apoptosis, decreases cell numbers, retards the proliferation and development of mouse embryonic stem cells and blastocysts in vitro, and causes developmental injury in vivo. However, the precise molecular mechanisms underlying its actions are currently unknown. Here, our study further revealed that GKB induced apoptotic biochemical changes, including activation of JNK, caspase-3, and p21-activated protein kinase 2 (PAK2), in ESC-B5 mouse embryonic stem cells. Treatment of ESC-B5 cells with a JNK-specific inhibitor (SP600125) reduced GKB-induced activation of both JNK and caspase-3, indicating that JNK activity is required for GKB-induced caspase activation. Experiments using caspase-3 inhibitors and antisense oligonucleotides against PAK2 showed that caspase-3 activation is required for PAK2 activation and both of these activations are required for GKB-induced apoptosis in ESC-B5 cells.
Collapse
Affiliation(s)
- Yan-Der Hsuuw
- Department of Life Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Huang YT, Lai CY, Lou SL, Yeh JM, Chan WH. Activation of JNK and PAK2 is essential for citrinin-induced apoptosis in a human osteoblast cell line. ENVIRONMENTAL TOXICOLOGY 2009; 24:343-356. [PMID: 18767140 DOI: 10.1002/tox.20434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mycotoxin citrinin (CTN), a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis. Previous studies by our group showed that CTN triggers apoptosis in mouse embryonic stem cells, as well as embryonic developmental injury. Here, we investigated the precise mechanisms governing this apoptotic effect in osteoblasts. CTN induced apoptotic biochemical changes in a human osteoblast cell line, including activation of c-Jun N-terminal kinase (JNK), loss of mitochondrial membrane potential, and caspase-3 and p21-activated protein kinase 2 (PAK2) activation. Experiments using a JNK-specific inhibitor, SP600125, and antisense oligonucleotides against JNK reduced CTN-induced activation of both JNK and caspase-3 in osteoblasts, indicating that JNK is required for caspase activation in this apoptotic pathway. Experiments using caspase-3 inhibitors and antisense oligonucleotides against PAK2 revealed that active caspase-3 is essential for PAK2 activation. Moreover, both caspase-3 and PAK2 require activation for CTN-induced apoptosis of osteoblasts. Interestingly, CTN stimulates two-stage activation of JNK in human osteoblasts. Early-stage JNK activation is solely ROS-dependent, whereas late-stage activation is dependent on ROS-mediated caspase activity, and regulated by caspase-induced activation of PAK2. On the basis of these results, we propose a signaling cascade model for CTN-induced apoptosis in human osteoblasts involving ROS, JNK, caspases, and PAK2.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Bioscience Technology, Center for Nanotechnology, Chung Yuan Christian University, Chung Li, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Wu CF, Delsert C, Faure S, Traverso EE, Kloc M, Kuang J, Etkin LD, Morin N. Tumorhead distribution to cytoplasmic membrane of neural plate cells is positively regulated by Xenopus p21-activated kinase 1 (X-PAK1). Dev Biol 2007; 308:169-86. [PMID: 17560976 DOI: 10.1016/j.ydbio.2007.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 05/02/2007] [Accepted: 05/17/2007] [Indexed: 11/29/2022]
Abstract
Tumorhead (TH) regulates neural plate cell proliferation during Xenopus early development, and gain or loss of function prevents neural differentiation. TH shuttles between the nuclear and cytoplasmic/cortical cell compartments in embryonic cells. In this study, we show that subcellular distribution of TH is important for its functions. Targeting TH to the cell cortex/membrane potentiates a TH gain of function phenotype and results in neural plate expansion and inhibition of neuronal differentiation. We have found that TH subcellular localization is regulated, and that its shuttling between the nucleus and the cell cortex/cytoplasm is controlled by the catalytic activity of p21-activated kinase, X-PAK1. The phenotypes of embryos that lack, or have excess, X-PAK1 activity mimic the phenotypes induced by loss or gain of TH functions, respectively. We provide evidence that X-PAK1 is an upstream regulator of TH and discuss potential functions of TH at the cell cortex/cytoplasmic membrane and in the nucleus.
Collapse
Affiliation(s)
- Chuan-Fen Wu
- Department of Molecular Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The pivotal role of kinases in signal transduction and cellular regulation has lent them considerable appeal as pharmacological targets across a broad spectrum of cancers. p21-activated kinases (Paks) are serine/threonine kinases that function as downstream nodes for various oncogenic signalling pathways. Paks are well-known regulators of cytoskeletal remodelling and cell motility, but have recently also been shown to promote cell proliferation, regulate apoptosis and accelerate mitotic abnormalities, which results in tumour formation and cell invasiveness. Alterations in Pak expression have been detected in human tumours, which makes them an attractive new therapeutic target.
Collapse
Affiliation(s)
- Rakesh Kumar
- The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA.
| | | | | |
Collapse
|
19
|
Ma C, Benink HA, Cheng D, Montplaisir V, Wang L, Xi Y, Zheng PP, Bement WM, Liu XJ. Cdc42 activation couples spindle positioning to first polar body formation in oocyte maturation. Curr Biol 2006; 16:214-20. [PMID: 16431375 PMCID: PMC4378586 DOI: 10.1016/j.cub.2005.11.067] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/22/2005] [Accepted: 11/24/2005] [Indexed: 11/25/2022]
Abstract
During vertebrate egg maturation, cytokinesis initiates after one pole of the bipolar metaphase I spindle attaches to the oocyte cortex, resulting in the formation of a polar body and the mature egg. It is not known what signal couples the spindle pole positioning to polar body formation. We approached this question by drawing an analogy to mitotic exit in budding yeast, as asymmetric spindle attachment to the appropriate cortical region is the common regulatory cue. In budding yeast, the small G protein Cdc42 plays an important role in mitotic exit following the spindle pole attachment . We show here that inhibition of Cdc42 activation blocks polar body formation. The oocytes initiate anaphase but fail to properly form and direct a contractile ring. Endogenous Cdc42 is activated at the spindle pole-cortical contact site immediately prior to polar body formation. The cortical Cdc42 activity zone, which directly overlays the spindle pole, is circumscribed by a cortical RhoA activity zone; the latter defines the cytokinetic contractile furrow . As the RhoA ring contracts during cytokinesis, the Cdc42 zone expands, maintaining its complementary relationship with the RhoA ring. Cdc42 signaling may thus be an evolutionarily conserved mechanism that couples spindle positioning to asymmetric cytokinesis.
Collapse
Affiliation(s)
- Chunqi Ma
- Ottawa Health Research Institute (OHRI), Ottawa Hospital, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada
| | - Héléne A. Benink
- Department of Zoology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, Wisconsin 53706
| | - Daye Cheng
- Ottawa Health Research Institute (OHRI), Ottawa Hospital, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Véronique Montplaisir
- Ottawa Health Research Institute (OHRI), Ottawa Hospital, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada
| | - Ling Wang
- Ottawa Health Research Institute (OHRI), Ottawa Hospital, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Yanwei Xi
- Ottawa Health Research Institute (OHRI), Ottawa Hospital, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Pei-Pei Zheng
- Ottawa Health Research Institute (OHRI), Ottawa Hospital, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - William M. Bement
- Department of Zoology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, Wisconsin 53706
| | - X. Johné Liu
- Ottawa Health Research Institute (OHRI), Ottawa Hospital, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, K1N 6N5, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, K1N 6N5, Canada
- Correspondence:
| |
Collapse
|
20
|
Strange K, Denton J, Nehrke K. Ste20-type kinases: evolutionarily conserved regulators of ion transport and cell volume. Physiology (Bethesda) 2006; 21:61-8. [PMID: 16443823 DOI: 10.1152/physiol.00139.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ste20 serine/threonine kinases regulate fundamental cellular processes including the cell cycle, apoptosis, and stress responses. Recent studies in Caenorhabditis elegans and mammals demonstrate that Ste20 kinases also function in cell volume sensing and Cl- transport regulation. Yeast Ste20 initiates a shrinkage activated MAPK cascade that regulates organic osmolyte accumulation. Ste20 kinases thus play evolutionarily conserved roles in cellular volume sensing and regulation. They may also function in systemic osmotic homeostasis and to link cell-cycle events with cell volume.
Collapse
Affiliation(s)
- Kevin Strange
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | | | |
Collapse
|
21
|
Denton J, Nehrke K, Yin X, Morrison R, Strange K. GCK-3, a newly identified Ste20 kinase, binds to and regulates the activity of a cell cycle-dependent ClC anion channel. ACTA ACUST UNITED AC 2005; 125:113-25. [PMID: 15684092 PMCID: PMC2217494 DOI: 10.1085/jgp.200409215] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CLH-3b is a Caenorhabditis elegans ClC anion channel that is expressed in the worm oocyte. The channel is activated during oocyte meiotic maturation and in response to cell swelling by serine/threonine dephosphorylation events mediated by the type 1 phosphatases GLC-7alpha and GLC-7beta. We have now identified a new member of the Ste20 kinase superfamily, GCK-3, that interacts with the CLH-3b COOH terminus via a specific binding motif. GCK-3 inhibits CLH-3b in a phosphorylation-dependent manner when the two proteins are coexpressed in HEK293 cells. clh-3 and gck-3 are expressed predominantly in the C. elegans oocyte and the fluid-secreting excretory cell. Knockdown of gck-3 expression constitutively activates CLH-3b in nonmaturing worm oocytes. We conclude that GCK-3 functions in cell cycle- and cell volume-regulated signaling pathways that control CLH-3b activity. GCK-3 inactivates CLH-3b by phosphorylating the channel and/or associated regulatory proteins. Our studies provide new insight into physiologically relevant signaling pathways that control ClC channel activity and suggest novel mechanisms for coupling cell volume changes to cell cycle events and for coordinately regulating ion channels and transporters that control cellular Cl- content, cell volume, and epithelial fluid secretion.
Collapse
Affiliation(s)
- Jerod Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
22
|
Faure S, Cau J, de Santa Barbara P, Bigou S, Ge Q, Delsert C, Morin N. Xenopus p21-activated kinase 5 regulates blastomeres' adhesive properties during convergent extension movements. Dev Biol 2005; 277:472-92. [PMID: 15617688 DOI: 10.1016/j.ydbio.2004.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/23/2004] [Accepted: 10/01/2004] [Indexed: 11/26/2022]
Abstract
The p21-activated kinase (PAK) proteins regulate many cellular events including cell cycle progression, cell death and survival, and cytoskeleton rearrangements. We previously identified X-PAK5 that binds the actin and microtubule networks, and could potentially regulate their coordinated dynamics during cell motility. In this study, we investigated the functional importance of this kinase during gastrulation in Xenopus. X-PAK5 is mainly expressed in regions of the embryo that undergo extensive cell movements during gastrula such as the animal hemisphere and the marginal zone. Expression of a kinase-dead mutant inhibits convergent extension movements in whole embryos and in activin-treated animal cap by modifying behavior of cells. This phenotype is rescued in embryo by adding back X-PAK5 catalytic activity. The active kinase decreases cell adhesiveness when expressed in animal hemisphere and inhibits the calcium-dependent reassociation of cells, while dead X-PAK5 kinase localizes to cell-cell junctions and increases cell adhesion. In addition, endogenous X-PAK5 colocalizes with adherens junction proteins and its activity is regulated by extracellular calcium. Taken together, our results suggest that X-PAK5 regulates convergent extension movements in vivo by modulating the calcium-mediated cell-cell adhesion.
Collapse
Affiliation(s)
- Sandrine Faure
- Centre de Recherches en Biochimie Macromoléculaire, FRE 2593 CNRS, 34293 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Valiron O, Peris L, Rikken G, Schweitzer A, Saoudi Y, Remy C, Job D. Cellular disorders induced by high magnetic fields. J Magn Reson Imaging 2005; 22:334-40. [PMID: 16106367 DOI: 10.1002/jmri.20398] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate whether static high magnetic fields (HMFs), in the range of 10-17 T, affect the cytoskeleton and cell organization in different types of mammalian cells, including fibroblasts, epithelial cells, and differentiating neurons. MATERIALS AND METHODS Cells were exposed to HMF for 30 or 60 minutes and subsequently assessed for viability. Cytoskeleton arrays and focal adhesions were visualized using immunofluorescence microscopy. RESULTS Cell exposure to HMF over 10 T in the case of cycling cells, and over 15 T in the case of neurons, affected cell viability, apparently because of cell detachment from culture dishes. In the remaining adherent cells, the organization of actin assemblies was perturbed, and both cell adhesion and spreading were impaired. Moreover, in the case of neurons, exposure to HMF induced growth cone retraction and delayed cell differentiation. CONCLUSION Cell exposure to HMF (over 10T and 15 T in the case of cycling cells and neurons, respectively) affects the cell cytoskeleton, with deleterious effects on cell viability, organization, and differentiation. Further studies are needed to determine whether such perturbations, as observed here in cultured cells, have consequences in whole animals.
Collapse
Affiliation(s)
- Odile Valiron
- Institut National de la Santé et de la Recherche Médicale Unité 366, Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Saoudi Y, Rousseau B, Doussière J, Charrasse S, Gauthier-Rouvière C, Morin N, Sautet-Laugier C, Denarier E, Scaïfe R, Mioskowski C, Job D. Calcium-independent cytoskeleton disassembly induced by BAPTA. ACTA ACUST UNITED AC 2004; 271:3255-64. [PMID: 15265045 DOI: 10.1111/j.1432-1033.2004.04259.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In living organisms, Ca2+ signalling is central to cell physiology. The Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) has been widely used as a probe to test the role of calcium in a large variety of cell functions. Here we show that in most cell types BAPTA has a potent actin and microtubule depolymerizing activity and that this activity is completely independent of Ca2+ chelation. Thus, the depolymerizing effect of BAPTA is shared by a derivative (D-BAPTA) showing a dramatically reduced calcium chelating activity. Because the extraordinary depolymerizing activity of BAPTA could be due to a general depletion of cell fuel molecules such as ATP, we tested the effects of BAPTA on cellular ATP levels and on mitochondrial function. We find that BAPTA depletes ATP pools and affects mitochondrial respiration in vitro as well as mitochondrial shape and distribution in cells. However, these effects are unrelated to the Ca2+ chelating properties of BAPTA and do not account for the depolymerizing effect of BAPTA on the cell cytoskeleton. We propose that D-BAPTA should be systematically introduced in calcium signalling experiments, as controls for the known and unknown calcium independent effects of BAPTA. Additionally, the concomitant depolymerizing effect of BAPTA on both tubulin and actin assemblies is intriguing and may lead to the identification of a new control mechanism for cytoskeleton assembly.
Collapse
Affiliation(s)
- Yasmina Saoudi
- Institut National de la Santé et de la Recherche Médicale, Département Réponse et Dynamique Cellulaires, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The p21-activated kinases (PAKs) 1-3 are serine/threonine protein kinases whose activity is stimulated by the binding of active Rac and Cdc42 GTPases. Our understanding of the regulation and biology of these important signaling proteins has increased tremendously since their discovery in the mid-1990s. PAKs 1-3 are activated by a variety of GTPase-dependent and -independent mechanisms. This complexity reflects the contributions of PAK function in many cellular signaling pathways and the need to carefully control PAK action in a highly localized manner. PAKs serve as important regulators of cytoskeletal dynamics and cell motility, transcription through MAP kinase cascades, death and survival signaling, and cell-cycle progression. Consequently, PAKs have also been implicated in a number of pathological conditions and in cell transformation. We propose here a key role for PAK action in coordinating the dynamics of the actin and microtubule cytoskeletons during directional motility of cells, as well as in other functions requiring cytoskeletal polarization.
Collapse
Affiliation(s)
- Gary M Bokoch
- Departments of Immunology and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
26
|
Bisson N, Islam N, Poitras L, Jean S, Bresnick A, Moss T. The catalytic domain of xPAK1 is sufficient to induce myosin II dependent in vivo cell fragmentation independently of other apoptotic events. Dev Biol 2003; 263:264-81. [PMID: 14597201 DOI: 10.1016/j.ydbio.2003.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During apoptosis, cells are fragmented into sealed packages for safe disposal by phagocytosis, a process requiring major reorganisation of the cytoskeleton. The small p21 GTPase-activated kinases (PAKs) have been implicated in regulating cytoskeletal dynamics and a subset are activated by caspase 3/7 cleavage. However, the functional importance of this activation in apoptosis remains unknown. Using early Xenopus embryos, we have dissected xPAK1 activation from other causative events in apoptosis. An apoptotic-like cell fragmentation was observed 30 min after expression of the xPAK1 catalytic domain and occurred in the absence of other markers of apoptosis. In vitro, activated xPAK1 phosphorylated the regulatory light chain (xMLC) of myosin II at threonine 18 and serine 19, events known to activate the actin-dependent ATPase of cytoskeletal myosin. In vivo, activated xPAK1 induced hyperphosphorylation of xMLC. BDM, a myosin inhibitor, and ML-7, a MLCK inhibitor, both abrogated cell fragmentation induced by activated xPAK1, and ML-7 also inhibited xPAK1 activity. Endogenous xPAK1 was cleaved during normal apoptosis and this was associated with xPAK1 activation and increased serine 19 phosphorylation of xMLC. The data show that PAK activation is sufficient for apoptotic body formation in vivo and strongly suggest that activation of myosin II is essential for this process.
Collapse
Affiliation(s)
- Nicolas Bisson
- Cancer Research Centre and Department of Medical Biology, Faculty of Medicine, Laval University, Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC, G1R 2J6, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Reverte CG, Yuan L, Keady BT, Lacza C, Attfield KR, Mahon GM, Freeman B, Whitehead IP, Hake LE. XGef is a CPEB-interacting protein involved in Xenopus oocyte maturation. Dev Biol 2003; 255:383-98. [PMID: 12648498 DOI: 10.1016/s0012-1606(02)00089-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
XGef was isolated in a screen for proteins interacting with CPEB, a regulator of mRNA translation in early Xenopus development. XGef is a Rho-family guanine nucleotide exchange factor and activates Cdc42 in mammalian cells. Endogenous XGef (58 kDa) interacts with recombinant CPEB, and recombinant XGef interacts with endogenous CPEB in Xenopus oocytes. Injection of XGef antibodies into stage VI Xenopus oocytes blocks progesterone-induced oocyte maturation and prevents the polyadenylation and translation of c-mos mRNA; injection of XGef rescues these events. Overexpression of XGef in oocytes accelerates progesterone-induced oocyte maturation and the polyadenylation and translation of c-mos mRNA. Overexpression of a nucleotide exchange deficient version of XGef, which retains the ability to interact with CPEB, no longer accelerates oocyte maturation or Mos synthesis, suggesting that XGef exchange factor activity is required for the influence of overexpressed XGef on oocyte maturation. XGef overexpression continues to accelerate c-mos polyadenylation in the absence of Mos protein, but does not stimulate MAPK phosphorylation, MPF activation, or oocyte maturation, indicating that XGef may function through the Mos pathway to influence oocyte maturation. These results suggest that XGef may be an early acting component of the progesterone-induced oocyte maturation pathway.
Collapse
Affiliation(s)
- Carlos G Reverte
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rousseau V, Goupille O, Morin N, Barnier JV. A new constitutively active brain PAK3 isoform displays modified specificities toward Rac and Cdc42 GTPases. J Biol Chem 2003; 278:3912-20. [PMID: 12464619 DOI: 10.1074/jbc.m207251200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p21-activated kinases (PAK) are involved in the control of cytoskeleton dynamics and cell cycle progression. Here we report the characterization of a new mammalian PAK3 mRNA that contains a 45-bp alternatively spliced exon. This exon encodes for 15 amino acids that are inserted in the regulatory domain, inside the autoinhibitory domain but outside the Cdc42 and Rac interactive binding domain. The transcript of the 68-kDa new isoform named PAK3b is expressed in various areas of the adult mouse brain. In contrast to PAK3 without the exon b (PAK3a), whose basal kinase activity is weak in resting cells, PAK3b displays a high kinase activity in starved cells that is not further stimulated by active GTPases. Indeed, we demonstrate that the autoinhibitory domain of PAK3b no longer inhibits the kinase activity of PAK3. Moreover, we show that the 15-amino acid insertion within the autoinhibitory domain impedes the ability of PAK3b to bind to the GTPases Rac and Cdc42 and changes its specificity toward the GTPases. Altogether, our results show that the new PAK3b isoform has unique properties and would signal differently from PAK3a in neurons.
Collapse
Affiliation(s)
- Veronique Rousseau
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
29
|
Souopgui J, Sölter M, Pieler T. XPak3 promotes cell cycle withdrawal during primary neurogenesis in Xenopus laevis. EMBO J 2002; 21:6429-39. [PMID: 12456650 PMCID: PMC136948 DOI: 10.1093/emboj/cdf644] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have isolated the Xenopus p21-activated kinase 3 (XPak3) by virtue of its expression in the territory of primary neurogenesis in the developing embryo. XPak3, but not the other Pak variants, responds positively to X-Ngnr-1 and negatively to X-Notch-1. A constitutively active form of XPak3, generated by fusing a myristylation signal to the N-terminus (XPak3-myr), induces early cell cycle arrest at high concentrations, while ectopic expression of low amounts induces premature neuronal differentiation. Conversely, XPak3 loss of function achieved by use of an antisense morpholino oligonucleotide increases cell proliferation and inhibits neuronal differentiation; this phenotype is rescued by co-injection of XPak3-myr. We conclude that XPak3 is a novel member of the proneural pathway, functioning downstream of neurogenin to withdraw neuronally programmed cells from the mitotic cell cycle, thus allowing for their differentiation.
Collapse
Affiliation(s)
- Jacob Souopgui
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany and Department of Biochemistry, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon Corresponding author e-mail:
| | - Marion Sölter
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany and Department of Biochemistry, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon Corresponding author e-mail:
| | - Tomas Pieler
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany and Department of Biochemistry, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon Corresponding author e-mail:
| |
Collapse
|
30
|
Thiel DA, Reeder MK, Pfaff A, Coleman TR, Sells MA, Chernoff J. Cell cycle-regulated phosphorylation of p21-activated kinase 1. Curr Biol 2002; 12:1227-32. [PMID: 12176333 DOI: 10.1016/s0960-9822(02)00931-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian p21-activated kinase 1 (Pak1) is a highly conserved effector for the small GTPases Cdc42 and Rac1. In lower eukaryotes, Pak1 homologs are regulated during the cell cycle by phosphorylation. Here, we show that Pak1 is phosphorylated during mitosis in mammalian fibroblasts. This phosphorylation occurs at a single site, Thr 212, within a domain that is unique to Pak1. Cdc2 phosphorylates Pak1 at the identical site in vitro, and inhibition of Cdc2 abolishes Pak1 mitotic phosphorylation in vivo, indicating that Cdc2 is the kinase responsible for phosphorylating Pak1 in mitotic cells. Expression of a Pak1 mutant in which Thr 212 is replaced with a phosphomimic (aspartic acid) has marked effects on the rate and extent of postmitotic spreading of fibroblasts. The mitotic phosphorylation of Pak1 does not alter the basal or Rac-stimulated activity of this kinase, but it does affect the coimmunoprecipitation of at least three proteins with Pak1. These findings are the first to implicate a mammalian Pak in cell cycle regulation and suggest that Pakl, as a result of phosphorylation by Cdc2, alters its association with binding partners and/or substrates that are relevant to the morphologic changes associated with cell division.
Collapse
Affiliation(s)
- Debra A Thiel
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
31
|
Cau J, Faure S, Comps M, Delsert C, Morin N. A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J Cell Biol 2001; 155:1029-42. [PMID: 11733543 PMCID: PMC2150914 DOI: 10.1083/jcb.200104123] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Coordination of the different cytoskeleton networks in the cell is of central importance for morphogenesis, organelle transport, and motility. The Rho family proteins are well characterized for their effects on the actin cytoskeleton, but increasing evidence indicates that they may also control microtubule (MT) dynamics. Here, we demonstrate that a novel Cdc42/Rac effector, X-p21-activated kinase (PAK)5, colocalizes and binds to both the actin and MT networks and that its subcellular localization is regulated during cell cycle progression. In transfected cells, X-PAK5 promotes the formation of stabilized MTs that are associated in bundles and interferes with MTs dynamics, slowing both the elongation and shrinkage rates and inducing long paused periods. X-PAK5 subcellular localization is regulated tightly, since coexpression with active Rac or Cdc42 induces its shuttling to actin-rich structures. Thus, X-PAK5 is a novel MT-associated protein that may communicate between the actin and MT networks during cellular responses to environmental conditions.
Collapse
Affiliation(s)
- J Cau
- Centre de Recherche de Biochimie Macromoleculaire, Centre National de la Recherche Scientifique UPR 1086, 34293 Montpellier cedex 5, France
| | | | | | | | | |
Collapse
|
32
|
Abstract
The p21-activated protein kinase gamma-PAK, also known as PAK2, has very different properties from the other two highly conserved isoforms of the PAK family, alpha-PAK (PAK1) and beta-PAK (PAK3). gamma-PAK has cytostatic activity, as shown by inhibition of cleavage of early frog embryos following microinjection of gamma-PAK and by inhibition of growth when expressed in mammalian cells. gamma-PAK is activated in response to a variety of stresses including radiation- and chemically-induced DNA damage, hyperosmolarity, addition of sphingosine, serum starvation, and contact inhibition. Activation occurs through at least two signaling pathways, depending on the type of stress, one of which requires phosphoinositide 3-kinase and/or tyrosine kinase activity. During apoptosis gamma-PAK is cleaved by caspase 3 and activated and appears to have a role in the apoptotic response. gamma-PAK is present in the cytosol, associated with the membrane and in secretory granules. A wide variety of substrates have been identified for gamma-PAK. We propose gamma-PAK may be involved in coordinating the stress response, possibly in conjunction with other stress response proteins.
Collapse
Affiliation(s)
- J Roig
- Department of Biochemistry, University of California, Riverside, Riverside, California 92504, USA
| | | |
Collapse
|
33
|
Takahashi T, Koshimizu U, Abe H, Obinata T, Nakamura T. Functional involvement of Xenopus LIM kinases in progression of oocyte maturation. Dev Biol 2001; 229:554-67. [PMID: 11150247 DOI: 10.1006/dbio.2000.9999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
LIM kinases (LIMK), including LIMK1 and LIMK2, are unique LIM-family proteins containing a catalytic (kinase) domain. These kinases phosphorylate an actin-depolymerizing factor, cofilin, involved in the regulation of actin-filament dynamics. An unanswered question is the in vivo function of LIMK and how they contribute to development. When we cloned Xenopus homologues of mammalian LIMK, Xlimk1 and Xlimk2, we found that their mRNA and products were abundantly expressed in oocytes. In addition, we obtained evidence for the functional involvement of Xlimk1/2 during oocyte maturation. The microinjection of Xlimk1/2 mRNA into progesterone-treated oocytes significantly inhibited the appearance of a white maturation spot (WMS), an indicator of entry into meiosis. In oocytes lacking a WMS, the organization and/or migration of the microtubule-derived precursor of the meiotic spindle was predominantly affected. We also found that the ectopic expression of Xlimk1/2 clearly prevented dephosphorylation (activation) of Xenopus cofilin (XAC) during oocyte maturation. Furthermore, co-injection of Xlimk1/2 with the constitutively active type of XAC overcame the inhibitory effects by Xlimk1/2, suggesting that XLIMK-induced abnormality in oocyte maturation was mediated by XAC inactivation. Based on these findings, we propose that XLIMK is a putative regulator of cytoskeletal rearrangements during oocyte maturation, and the interaction between XLIMK activity and microtubule dynamics seems highly likely.
Collapse
Affiliation(s)
- T Takahashi
- Division of Biochemistry, Department of Oncology, Biomedical Research Center B7, Osaka University Medical School, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
34
|
Metzler DE, Metzler CM, Sauke DJ. Growth and Development. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Abstract
The mitotic and meiotic cell cycle share many regulators, but there are also important differences between the two processes. The meiotic maturation of Xenopus oocytes has proved useful for understanding the regulation of Cdc2-cyclin-B, a key activator of G2/M progression. New insights have been made recently into the signalling mechanisms that induce G2-arrested oocytes to resume and complete the meiotic cell cycle.
Collapse
Affiliation(s)
- A R Nebreda
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | | |
Collapse
|