1
|
Zilberman-Rudenko J, Deguchi H, Shukla M, Oyama Y, Orje JN, Guo Z, Wyseure T, Mosnier LO, McCarty OJT, Ruggeri ZM, Eckle T, Griffin JH. Cardiac Myosin Promotes Thrombin Generation and Coagulation In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2020; 40:901-913. [PMID: 32102568 DOI: 10.1161/atvbaha.120.313990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Cardiac myosin (CM) is structurally similar to skeletal muscle myosin, which has procoagulant activity. Here, we evaluated CM's ex vivo, in vivo, and in vitro activities related to hemostasis and thrombosis. Approach and Results: Perfusion of fresh human blood over CM-coated surfaces caused thrombus formation and fibrin deposition. Addition of CM to blood passing over collagen-coated surfaces enhanced fibrin formation. In a murine ischemia/reperfusion injury model, exogenous CM, when administered intravenously, augmented myocardial infarction and troponin I release. In hemophilia A mice, intravenously administered CM reduced tail-cut-initiated bleeding. These data provide proof of concept for CM's in vivo procoagulant properties. In vitro studies clarified some mechanisms for CM's procoagulant properties. Thrombin generation assays showed that CM, like skeletal muscle myosin, enhanced thrombin generation in human platelet-rich and platelet-poor plasmas and also in mixtures of purified factors Xa, Va, and prothrombin. Binding studies showed that CM, like skeletal muscle myosin, directly binds factor Xa, supporting the concept that the CM surface is a site for prothrombinase assembly. In tPA (tissue-type plasminogen activator)-induced plasma clot lysis assays, CM was antifibrinolytic due to robust CM-dependent thrombin generation that enhanced activation of TAFI (thrombin activatable fibrinolysis inhibitor). CONCLUSIONS CM in vitro is procoagulant and prothrombotic. CM in vivo can augment myocardial damage and can be prohemostatic in the presence of bleeding. CM's procoagulant and antifibrinolytic activities likely involve, at least in part, its ability to bind factor Xa and enhance thrombin generation. Future work is needed to clarify CM's pathophysiology and its mechanistic influences on hemostasis or thrombosis.
Collapse
Affiliation(s)
- Jevgenia Zilberman-Rudenko
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA (J.Z.-R., H.D., M.S., J.N.O., Z.G., T.W., L.O.M., Z.M.R., J.H.G.).,Department of Biomedical Engineering (J.Z.-R., O.J.T.M.), School of Medicine, Oregon Health & Science University, Portland
| | - Hiroshi Deguchi
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA (J.Z.-R., H.D., M.S., J.N.O., Z.G., T.W., L.O.M., Z.M.R., J.H.G.)
| | - Meenal Shukla
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA (J.Z.-R., H.D., M.S., J.N.O., Z.G., T.W., L.O.M., Z.M.R., J.H.G.)
| | - Yoshimasa Oyama
- Department of Hematology-Oncology (O.J.T.M.), School of Medicine, Oregon Health & Science University, Portland
| | - Jennifer N Orje
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA (J.Z.-R., H.D., M.S., J.N.O., Z.G., T.W., L.O.M., Z.M.R., J.H.G.)
| | - Zihan Guo
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA (J.Z.-R., H.D., M.S., J.N.O., Z.G., T.W., L.O.M., Z.M.R., J.H.G.)
| | - Tine Wyseure
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA (J.Z.-R., H.D., M.S., J.N.O., Z.G., T.W., L.O.M., Z.M.R., J.H.G.)
| | - Laurent O Mosnier
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA (J.Z.-R., H.D., M.S., J.N.O., Z.G., T.W., L.O.M., Z.M.R., J.H.G.)
| | - Owen J T McCarty
- Department of Biomedical Engineering (J.Z.-R., O.J.T.M.), School of Medicine, Oregon Health & Science University, Portland
| | - Zaverio M Ruggeri
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA (J.Z.-R., H.D., M.S., J.N.O., Z.G., T.W., L.O.M., Z.M.R., J.H.G.)
| | - Tobias Eckle
- Department of Hematology-Oncology (O.J.T.M.), School of Medicine, Oregon Health & Science University, Portland
| | - John H Griffin
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA (J.Z.-R., H.D., M.S., J.N.O., Z.G., T.W., L.O.M., Z.M.R., J.H.G.).,Department of Anesthesiology, University of Colorado School of Medicine, Aurora (Y.O., T.E.)
| |
Collapse
|
2
|
Small Molecule Effectors of Myosin Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:61-84. [DOI: 10.1007/978-3-030-38062-5_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Deguchi H, Guo Z, Hayat M, Pflimlin E, Lear S, Shen W, Griffin JH. Molecular interaction site on procoagulant myosin for factor Xa-dependent prothrombin activation. J Biol Chem 2019; 294:15176-15181. [PMID: 31481465 DOI: 10.1074/jbc.ac119.010236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle myosin has potent procoagulant activity that is based on its ability to enhance thrombin generation due to binding coagulation factors Xa and Va and accelerating prothrombin activation. A well-studied myosin inhibitor that binds to myosin's neck region inhibits myosin-dependent prothrombin activation. Hence, to identify a potential binding site(s) on skeletal muscle myosin for factor Xa, 19 peptides (25-40 residues) representing the neck region, which consists of a regulatory light chain, an essential light chain, and a heavy chain (HC), were screened for inhibition of myosin-supported prothrombin activation. Peptide HC796-835 comprising residues 796-835 of the heavy chain strongly inhibited myosin-enhanced prothrombin activation by factors Xa and Va (50% inhibition at 1.2 μm), but it did not inhibit phospholipid vesicle-enhanced prothrombin activation. Peptide inhibition studies also implicated several myosin light chain sequences located near HC796-835 as potential procoagulant sites. A peptide comprising HC796-835's C-terminal half, but not a peptide comprising its N-terminal half, inhibited myosin-enhanced prothrombin activation (50% inhibition at 1.2 μm). This inhibitory peptide (HC816-837) did not inhibit phospholipid-enhanced prothrombin activation, indicating its specificity for inhibition of myosin-dependent procoagulant mechanisms. Binding studies showed that purified factor Xa was bound to immobilized peptides HC796-835 and HC816-837 with apparent Kd values of 0.78 and 1.3 μm, respectively. In summary, these studies imply that HC residues 816-835 in the neck region of the skeletal muscle myosin directly bind factor Xa and, with contributions from light chain residues in this neck region, contribute to provision of myosin's procoagulant surface.
Collapse
Affiliation(s)
- Hiroshi Deguchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Zihan Guo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Mohammed Hayat
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Elsa Pflimlin
- Calibr, a Division of Scripps Research, La Jolla, California 92037
| | - Sam Lear
- Calibr, a Division of Scripps Research, La Jolla, California 92037
| | - Weijun Shen
- Calibr, a Division of Scripps Research, La Jolla, California 92037
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
4
|
Chantler PD. Scallop Adductor Muscles. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-444-62710-0.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Flexibility within the heads of muscle myosin-2 molecules. J Mol Biol 2013; 426:894-907. [PMID: 24333017 PMCID: PMC3919154 DOI: 10.1016/j.jmb.2013.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/25/2013] [Accepted: 11/29/2013] [Indexed: 11/26/2022]
Abstract
We show that negative-stain electron microscopy and image processing of nucleotide-free (apo) striated muscle myosin-2 subfragment-1 (S1), possessing one light chain or both light chains, is capable of resolving significant amounts of structural detail. The overall appearance of the motor and the lever is similar in rabbit, scallop and chicken S1. Projection matching of class averages of the different S1 types to projection views of two different crystal structures of apo S1 shows that all types most commonly closely resemble the appearance of the scallop S1 structure rather than the methylated chicken S1 structure. Methylation of chicken S1 has no effect on the structure of the molecule at this resolution: it too resembles the scallop S1 crystal structure. The lever is found to vary in its angle of attachment to the motor domain, with a hinge point located in the so-called pliant region between the converter and the essential light chain. The chicken S1 crystal structure lies near one end of the range of flexion observed. The Gaussian spread of angles of flexion suggests that flexibility is driven thermally, from which a torsional spring constant of ~ 23 pN·nm/rad2 is estimated on average for all S1 types, similar to myosin-5. This translates to apparent cantilever-type stiffness at the tip of the lever of 0.37 pN/nm. Because this stiffness is lower than recent estimates from myosin-2 heads attached to actin, we suggest that binding to actin leads to an allosteric stiffening of the motor–lever junction. Elasticity of muscle crossbridges is important, but its structural basis is obscure. Muscle myosin heads from rabbit, scallop and chicken share a common structure. The lever domain hinges about its connection with the motor domain. The stiffness of the motor–lever hinge is lower than estimates for crossbridges. Flexibility within the myosin head can be the basis of crossbridge stiffness.
Collapse
|
6
|
Preller M, Manstein D. Myosin Structure, Allostery, and Mechano-Chemistry. Structure 2013; 21:1911-22. [DOI: 10.1016/j.str.2013.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 01/10/2023]
|
7
|
O'Neall-Hennessey E, Reshetnikova L, Senthil Kumar VS, Robinson H, Szent-Györgyi AG, Cohen C. Purification, crystallization and preliminary X-ray crystallographic analysis of squid heavy meromyosin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:248-52. [PMID: 23519797 DOI: 10.1107/s1744309112049925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/05/2012] [Indexed: 11/10/2022]
Abstract
All muscle-based movement is dependent upon carefully choreographed interactions between the two major muscle components, myosin and actin. Regulation of vertebrate smooth and molluscan muscle contraction is myosin based (both are in the myosin II class), and requires the double-headed form of myosin. Removal of Ca2+ from these muscles promotes a relatively compact conformation of the myosin dimer, which inhibits its interaction with actin. Although atomic structures of single myosin heads are available, the structure of any double-headed portion of myosin, including the ∼375 kDa heavy meromyosin (HMM), has only been visualized at low (∼20 Å) resolution by electron microscopy. Here, the growth of three-dimensional crystals of HMM with near-atomic resolution (up to ∼5 Å) and their X-ray diffraction are reported for the first time. These crystals were grown in off-state conditions, that is in the absence of Ca2+ and the presence of nucleotide analogs, using HMM from the funnel retractor muscle of squid. In addition to the crystallization conditions, the techniques used to isolate and purify this HMM are also described. Efforts at phasing and improving the resolution of the data in order to determine the structure are ongoing.
Collapse
Affiliation(s)
- Elizabeth O'Neall-Hennessey
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
9
|
Conservation of the regulated structure of folded myosin 2 in species separated by at least 600 million years of independent evolution. Proc Natl Acad Sci U S A 2008; 105:6022-6. [PMID: 18413616 DOI: 10.1073/pnas.0707846105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The myosin 2 family of molecular motors includes isoforms regulated in different ways. Vertebrate smooth-muscle myosin is activated by phosphorylation of the regulatory light chain, whereas scallop striated adductor-muscle myosin is activated by direct calcium binding to its essential light chain. The paired heads of inhibited molecules from myosins regulated by phosphorylation have an asymmetric arrangement with motor-motor interactions. It was unknown whether such interactions were a common motif for inactivation used in other forms of myosin-linked regulation. Using electron microscopy and single-particle image processing, we show that indistinguishable structures are indeed found in myosins and heavy meromyosins isolated from scallop striated adductor muscle and turkey gizzard smooth muscle. The similarities extend beyond the shapes of the heads and interactions between them: In both myosins, the tail folds into three segments, apparently at identical sites; all three segments are in close association outside the head region; and two segments are associated in the same way with one head in the asymmetric arrangement. Thus, these organisms, which have different regulatory mechanisms and diverged from a common ancestor >600 Myr ago, have the same quaternary structure. Conservation across such a large evolutionary distance suggests that this conformation is of fundamental functional importance.
Collapse
|
10
|
Müller-Marschhausen K, Waschke J, Drenckhahn D. Physiological hydrostatic pressure protects endothelial monolayer integrity. Am J Physiol Cell Physiol 2007; 294:C324-32. [PMID: 17977944 DOI: 10.1152/ajpcell.00319.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial monolayer integrity is required to maintain endothelial barrier functions and has found to be impaired in several disorders like inflammatory edema, allergic shock, or artherosclerosis. Under physiologic conditions in vivo, endothelial cells are exposed to mechanical forces such as hydrostatic pressure, shear stress, and cyclic stretch. However, insight into the effects of hydrostatic pressure on endothelial cell biology is very limited at present. Therefore, in this study, we tested the hypothesis that physiological hydrostatic pressure protects endothelial monolayer integrity in vitro. We investigated the protective efficacy of hydrostatic pressure in microvascular myocardial endothelial (MyEnd) cells and macrovascular pulmonary artery endothelial cells (PAECs) by the application of selected pharmacological agents known to alter monolayer integrity in the absence or presence of hydrostatic pressure. In both endothelial cell lines, extracellular Ca(2+) depletion by EGTA was followed by a loss of vascular-endothelial cadherin (VE-caherin) immunostaining at cell junctions. However, hydrostatic pressure (15 cmH(2)O) blocked this effect of EGTA. Similarly, cytochalasin D-induced actin depolymerization and intercellular gap formation and cell detachment in response to the Ca(2+)/calmodulin antagonist trifluperazine (TFP) as well as thrombin-induced cell dissociation were also reduced by hydrostatic pressure. Moreover, hydrostatic pressure significantly reduced the loss of VE-cadherin-mediated adhesion in response to EGTA, cytochalasin D, and TFP in MyEnd cells as determined by laser tweezer trapping using VE-cadherin-coated microbeads. In caveolin-1-deficient MyEnd cells, which lack caveolae, hydrostatic pressure did not protect monolayer integrity compromised by EGTA, indicating that caveolae-dependent mechanisms are involved in hydrostatic pressure sensing and signaling.
Collapse
|
11
|
Abstract
Catch is characterized by maintenance of force with very low energy utilization in some invertebrate muscles. Catch is regulated by phosphorylation of the mini-titin, twitchin, and a catch component of force exists at all [Ca2+] except those resulting in maximum force. The mechanism responsible for catch force was characterized by determining how the effects of agents that inhibit the low to high force transition of the myosin cross-bridge (inorganic phosphate, butanedione monoxime, trifluoperazine, and blebbistatin) are modified by twitchin phosphorylation and [Ca2+]. In permeabilized anterior byssus retractor muscles from Mytilus edulis, catch force was identified as being sensitive to twitchin phosphorylation, whereas noncatch force was insensitive. In all cases, inhibition of the low to high force transition caused an increase in catch force. The same relationship exists between catch force and noncatch force whether force is varied by changes in [Ca2+] and/or agents that inhibit cross-bridge force production. This suggests that myosin in the high force state detaches catch force maintaining structures, whereas myosin in the low force state promotes their formation. It is unlikely that the catch structure is the myosin cross-bridge; rather, it appears that myosin interacts with the structure, most likely twitchin, and regulates its attachment and detachment.
Collapse
Affiliation(s)
- Thomas M Butler
- Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|
12
|
Azzu V, Yadin D, Patel H, Fraternali F, Chantler PD, Molloy JE. Calcium regulates scallop muscle by changing myosin flexibility. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:302-12. [PMID: 16404592 DOI: 10.1007/s00249-005-0036-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/13/2005] [Indexed: 11/26/2022]
Abstract
Muscle myosins are molecular motors that convert the chemical free energy available from ATP hydrolysis into mechanical displacement of actin filaments, bringing about muscle contraction. Myosin cross-bridges exert force on actin filaments during a cycle of attached and detached states that are coupled to each round of ATP hydrolysis. Contraction and ATPase activity of the striated adductor muscle of scallop is controlled by calcium ion binding to myosin. This mechanism of the so-called "thick filament regulation" is quite different to vertebrate striated muscle which is switched on and off via "thin filament regulation" whereby calcium ions bind to regulatory proteins associated with the actin filaments. We have used an optically based single molecule technique to measure the angular disposition adopted by the two myosin heads whilst bound to actin in the presence and absence of calcium ions. This has allowed us to directly observe the movement of individual myosin heads in aqueous solution at room temperature in real time. We address the issue of how scallop striated muscle myosin might be regulated by calcium and have interpreted our results in terms of the structures of smooth muscle myosin that also exhibit thick filament regulation.
Collapse
Affiliation(s)
- Vian Azzu
- Division of Physical Biochemistry, MRC National Institute for Medical Research, Mill Hill, NW7 1AA, London, UK
| | | | | | | | | | | |
Collapse
|
13
|
Chapter 4 Scallop adductor muscles: Structure and function. SCALLOPS: BIOLOGY, ECOLOGY AND AQUACULTURE 2006. [DOI: 10.1016/s0167-9309(06)80031-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Sellers JR, Wang F, Chantler PD. Trifluoperazine inhibits the MgATPase activity and in vitro motility of conventional and unconventional myosins. J Muscle Res Cell Motil 2004; 24:579-85. [PMID: 14870973 DOI: 10.1023/b:jure.0000009969.04562.58] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Trifluoperazine, a calmodulin antagonist, has recently been shown to inhibit the MgATPase activity of scallop myosin in the absence of light chain dissociation (Patel et al. (2000) J Biol Chem 275: 4880-4888). To investigate the generality of this observation and the mechanism by which it occurs, we have examined the ability of trifluoperazine to inhibit the enzymatic properties of other conventional and unconventional myosins. We show that trifluoperazine can inhibit the actin-activated MgATPase activity of rabbit skeletal muscle myosin II heavy meromyosin (HMM), phosphorylated turkey gizzard smooth muscle myosin II HMM, phosphorylated human nonmuscle myosin IIA HMM and myosin V subfragment-1 (S1). In all cases half maximal inhibition occurred at 50-75 microM trifluoperazine while light chains (myosin II) or calmodulin (myosin V) remained associated with the heavy chains. In vitro motility of all myosins tested was completely inhibited by trifluoperazine. Chymotryptic digestion of baculovirus-expressed myosin V HMM possessing only two calmodulin binding sites yielded a minimal motor fragment with no bound calmodulin. The MgATPase of this fragment was inhibited by trifluoperazine over the same range of concentrations as the S1 fragment of myosin.
Collapse
Affiliation(s)
- James R Sellers
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
15
|
Colegrave M, Patel H, Offer G, Chantler PD. Evaluation of the symmetric model for myosin-linked regulation: effect of site-directed mutations in the regulatory light chain on scallop myosin. Biochem J 2003; 374:89-96. [PMID: 12765546 PMCID: PMC1223580 DOI: 10.1042/bj20030404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 05/06/2003] [Accepted: 05/23/2003] [Indexed: 11/17/2022]
Abstract
Regulatory myosins are controlled through mechanisms intrinsic to their structures and can alternate between activated and inhibited states. However, the structural difference between these two states is unclear. Scallop (Pecten maximus) striated adductor myosin is activated directly by calcium. It has been proposed that the two heads of scallop myosin are symmetrically arranged and interact through their regulatory light chains [Offer and Knight (1996) J. Mol. Biol. 256, 407-416], the interface being strengthened in the inhibited state. By contrast, vertebrate smooth-muscle myosin is activated by phosphorylation. Its structure in the inhibited state has been determined from two-dimensional crystalline arrays [Wendt, Taylor, Trybus and Taylor (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 4361-4366] and is asymmetric, requiring no interaction between regulatory light chains. Using site-directed mutagenesis of the scallop regulatory light chain, we have tested the symmetric model for scallop adductor muscle myosin. Specifically, we have made myosin hybrid molecules from scallop (P. maximus) myosin, in which the normal regulatory light chains have been replaced by expressed light chains containing mutations in three residues proposed to participate in the interaction between regulatory light chains. The mutations were R126A (Arg126-->Ala), K130A and E131A; made singly, in pairs or all three together, these mutations were designed to eliminate hydrogen bonding or salt linkages between heads, which are key features of this model. Functional assays to address the competence of these hybrid myosins to bind calcium specifically, to exhibit a calcium-regulated myofibrillar Mg-ATPase and to display calcium-dependent actin sliding were performed. We conclude that the symmetrical model does not describe the inhibited state of scallop regulatory myosin and that an asymmetric structure is a plausible alternative.
Collapse
Affiliation(s)
- Melanie Colegrave
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
| | | | | | | |
Collapse
|
16
|
Grabski R, Dewit J, De Braekeleer J, Malicka-Blaskiewicz M, De Baetselier P, Verschueren H. Inhibition of T-cell invasion across cultured fibroblast monolayers by phenothiazine-related calmodulin inhibitors: impairment of lymphocyte motility by trifluoperazine and chlorpromazine, and alteration of the monolayer by pimozide. Biochem Pharmacol 2001; 61:1313-7. [PMID: 11322935 DOI: 10.1016/s0006-2952(01)00585-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenothiazines inhibit the typical shape changes displayed by activated lymphocytes and thereby their migration through polycarbonate filters. The structure activity relationship of this effect is distinct from calmodulin inhibition. Our aim was to study this effect of phenothiazines on lymphocyte migration in an environment with living solid tissue cells. We assessed the effect of trifluoperazine and chlorpromazine (TFP and CP, two strong inhibitors of lymphocyte motility) and pimozide (PIM, a much weaker inhibitor of lymphocyte motility but a strong inhibitor of calmodulin) on invasion of human Molt-4 T-cells across precultured fibroblast monolayers. As expected invasion was inhibited by TFP and CP in the micromolar range that also inhibited motility. Surprisingly, PIM inhibited monolayer invasion at least as efficiently as TFP and CP (from 2.25 microM on). Preincubation of the monolayers or the lymphoid cells show that PIM exerted this novel invasion inhibiting effect on the monolayer. TFP and CP had a much weaker effect on the monolayer. Since these three compounds inhibit calmodulin in the same order, it is likely that this effect on the monolayer was caused by inhibition of a calmodulin-dependent pathway. KN-62, a specific inhibitor of calmodulin-dependent protein kinase II acted on the monolayer like PIM, whereas ML-7, a specific inhibitor of myosin regulatory light chain kinase, inhibited lymphoid cell motility like TFP and CP. In conclusion, invasion of T-cells across cellular monolayers is inhibited both by PIM and by phenothiazines like TFP and CP, but via distinct mechanisms: TFP and CP inhibit lymphocyte motility via a calmodulin independent pathway, whereas PIM impairs the monolayer's tolerance for invasion, most likely via a calmodulin and CamKII dependent pathway.
Collapse
Affiliation(s)
- R Grabski
- Pasteur Institute Brussels, Division of Cell Biology, Engelandstraat 642, 1180, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Janes DP, Patel H, Chantler PD. Primary structure of myosin from the striated adductor muscle of the Atlantic scallop, Pecten maximus, and expression of the regulatory domain. J Muscle Res Cell Motil 2001; 21:415-22. [PMID: 11129432 DOI: 10.1023/a:1005698407859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have determined the complete cDNA and deduced amino acid sequences of the heavy chain, regulatory light chain and essential light chain which constitute the molecular structure of myosin from the striated adductor muscle of the scallop, Pecten maximus. The deduced amino acid sequences of P. maximus regulatory light chain, essential light chain and heavy chain comprise 156, 156 and 1940 amino acids, respectively. These myosin peptide sequences, obtained from the most common of the eastern Atlantic scallops, are compared with those from three other molluscan myosins: the striated adductor muscles of Argopecten irradians and Placopecten magellanicus, and myosin from the siphon retractor muscle of the squid, Loligo pealei. The Pecten heavy chain sequence resembles those of the other two scallop sequences to a much greater extent as compared with the squid sequence, amino acid identities being 97.5% (A. irradians), 95.6% (P. magellanicus) and 73.6% (L. pealei), respectively. Myosin heavy chain residues that are known to be important for regulation are conserved in Pecten maximus. Using these Pecten sequences, we have overexpressed the regulatory light chain, and a combination of essential light chain and myosin heavy chain fragment, separately, in E. coli BL21 (DE3) prior to recombination, thereby producing Pecten regulatory domains without recourse to proteolytic digestion. The expressed regulatory domain was shown to undergo a calcium-dependent increase (approximately 7%) in intrinsic tryptophan fluorescence with a mid-point at a pCa of 6.6.
Collapse
Affiliation(s)
- D P Janes
- Unit of Molecular and Cellular Biology, Royal Veterinary College, University of London, UK
| | | | | |
Collapse
|
18
|
Quevillon-Chéruel S, Janmot C, Nozais M, Lompré AM, Béchet JJ. Functional regions in the essential light chain of smooth muscle myosin as revealed by the mutagenesis approach. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6151-7. [PMID: 11012667 DOI: 10.1046/j.1432-1327.2000.01668.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The endogenous essential light chain (LC17) of myosin from intestine smooth muscle was replaced with mutated essential light chains prepared using recombinant techniques. Complete exchange was observed with histidine-tagged derivatives of LC17a, LC17b and E122A-LC17a (LC17a and LC17b are the usual constituants of smooth muscle myosin), with small changes in the ATPase activity of reconstituted myosins. Much less exchange was observed with the light-chain derivative lacking the last 12 amino acid residues, demonstrating the importance of this segment, which may act as one arm of a pair of pincers to bind the myosin heavy chain.
Collapse
Affiliation(s)
- S Quevillon-Chéruel
- Laboratoire des Gènes et Protéines Musculaires, Université de Paris-Sud, France.
| | | | | | | | | |
Collapse
|