1
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
2
|
Das JK, Ren Y, Kumar A, Peng HY, Wang L, Xiong X, Alaniz RC, de Figueiredo P, Ren X, Liu X, Ryazonov AG, Yang JM, Song J. Elongation factor-2 kinase is a critical determinant of the fate and antitumor immunity of CD8 + T cells. SCIENCE ADVANCES 2022; 8:eabl9783. [PMID: 35108044 PMCID: PMC8809536 DOI: 10.1126/sciadv.abl9783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
eEF-2K has important roles in stress responses and cellular metabolism. We report here a previously unappreciated but critical role of eEF-2K in regulating the fate and cytocidal activity of CD8+ T cells. CD8+ T cells from eEF-2K KO mice were more proliferative but had lower survival than their wild-type counterparts after their activation, followed by occurrence of premature senescence and exhaustion. eEF-2K KO CD8+ T cells were more metabolically active and showed hyperactivation of the Akt-mTOR-S6K pathway. Loss of eEF-2K substantially impaired the activity of CD8+ T cells. Furthermore, the antitumor efficacy and tumor infiltration of the CAR-CD8+ T cells lacking eEF-2K were notably reduced as compared to the control CAR-CD8+ T cells. Thus, eEF-2K is critically required for sustaining the viability and function of cytotoxic CD8+ T cells, and therapeutic augmentation of this kinase may be exploited as a novel approach to reinforcing CAR-T therapy against cancer.
Collapse
Affiliation(s)
- Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77843, USA
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77843, USA
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77843, USA
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77843, USA
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77843, USA
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77843, USA
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77843, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77843, USA
- Norman Borlaug Center, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | - Xingcong Ren
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Alexey G. Ryazonov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77843, USA
| |
Collapse
|
3
|
Fernando S, Salagaras T, Schwarz N, Sandeman L, Tan JTM, Xie J, Zareh J, Jensen K, Williamson A, Dimasi C, Chhay P, Toledo-Flores D, Long A, Manavis J, Worthington M, Fitridge R, Di Bartolo BA, Bursill CA, Nicholls SJ, Proud CG, Psaltis PJ. Eukaryotic elongation factor 2 kinase regulates foam cell formation via translation of CD36. FASEB J 2022; 36:e22154. [PMID: 35032419 DOI: 10.1096/fj.202101034r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/11/2022]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical protein kinase that controls protein synthesis in cells under stress. Although well studied in cancer, less is known about its roles in chronic inflammatory diseases. Here, we examined its regulation of macrophage cholesterol handling in the context of atherosclerosis. eEF2K mRNA expression and protein activity were upregulated in murine bone marrow-derived macrophages (BMDMs) exposed to oxidized low-density lipoprotein cholesterol (oxLDL). When incubated with oxLDL, BMDMs from eEF2K knockout (Eef2k-/- ) mice formed fewer Oil Red O+ foam cells than Eef2k+/+ BMDMs (12.5% ± 2.3% vs. 32.3% ± 2.0%, p < .01). Treatment with a selective eEF2K inhibitor, JAN-384, also decreased foam cell formation for C57BL/6J BMDMs and human monocyte-derived macrophages. Disabling eEF2K selectively decreased protein expression of the CD36 cholesterol uptake receptor, mediated by a reduction in the proportion of translationally active Cd36 mRNA. Eef2k-/- mice bred onto the Ldlr-/- background developed aortic sinus atherosclerotic plaques that were 30% smaller than Eef2k+/+ -Ldlr-/- mice after 16 weeks of high cholesterol diet (p < .05). Although accompanied by a reduction in plaque CD36+ staining (p < .05) and lower CD36 expression in circulating monocytes (p < .01), this was not associated with reduced lipid content in plaques as measured by oil red O staining. Finally, EEF2K and CD36 mRNA levels were higher in blood mononuclear cells from patients with coronary artery disease and recent myocardial infarction compared to healthy controls without coronary artery disease. These results reveal a new role for eEF2K in translationally regulating CD36 expression and foam cell formation in macrophages. Further studies are required to explore therapeutic targeting of eEF2K in atherosclerosis.
Collapse
Affiliation(s)
- Sanuja Fernando
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Thalia Salagaras
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Nisha Schwarz
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Lauren Sandeman
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Joanne T M Tan
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Jianling Xie
- Lifelong Health in Nutrition and Metabolism, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jonar Zareh
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kirk Jensen
- Lifelong Health in Nutrition and Metabolism, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Anna Williamson
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Catherine Dimasi
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Pich Chhay
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Deborah Toledo-Flores
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Aaron Long
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jim Manavis
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Michael Worthington
- Department of Cardiothoracic Surgery, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Robert Fitridge
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Vascular Surgery, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Belinda A Di Bartolo
- The Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Christina A Bursill
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen J Nicholls
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Monash Cardiovascular Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Christopher G Proud
- Lifelong Health in Nutrition and Metabolism, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Cardiology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Li X, Tong X, Liu B, Li Z, Ding J, Li J, Zheng M, Tian Y, Yan S, Huang M, Ge J. Potential predictive value of plasma heat shock protein 90α in lung cancer. J Int Med Res 2021; 49:3000605211064393. [PMID: 34904468 PMCID: PMC8689615 DOI: 10.1177/03000605211064393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective Heat shock protein 90α (HSP90α) is associated with cancer development, progression, and metastasis. This study assessed the relationships of plasma HSP90α levels with treatment efficacy and prognosis in lung cancer. Methods In this retrospective cross-sectional study, 231 patients with lung cancer were enrolled from 1 September 2016 to 31 December 2019. HSP90α levels were measured before and after treatment, and their relationships with outcomes were assessed. Results Patients with elevated HSP90α levels before treatment had a better overall response rate (ORR, 44.1% vs. 30.6%), whereas the disease control rate did not differ between patients with elevated and normal HSP90α levels (81% vs. 78.5%). Median progression-free survival (PFS) was 6.9 months in patients with elevated baseline HSP90α levels, versus 9 months in patients with normal HSP90α levels, whereas the median overall survival (OS) times in these groups were 12 and 14.1 months, respectively. Concerning HSP90α levels after treatment, ORR (20% vs. 47.1%) and DCR (67.3% vs. 90.9%) were lower in patients with increased HSP90α levels, and PFS and OS were also significantly different between the groups. Conclusions HSP90α levels before and after treatment were associated with treatment response and patient prognosis in lung cancer.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Medical Oncology, 71067Sun Yat-sen University Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xuesong Tong
- Criminal Science and Technology Office in Criminal Police Brigade of Pidu Branch of Chengdu Public Security Bureau, Chengdu, China
| | - Bin Liu
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, Sichuan Province, China
| | - Zeng Li
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, Sichuan Province, China
| | - Jing Ding
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, Sichuan Province, China
| | - Jiang Li
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, Sichuan Province, China
| | - Min Zheng
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, Sichuan Province, China
| | - Yuke Tian
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, Sichuan Province, China
| | - Siyou Yan
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, Sichuan Province, China
| | - Meiling Huang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, Sichuan Province, China
| | - Jun Ge
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science & Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Ji F, Zhou M, Sun Z, Jiang Z, Zhu H, Xie Z, Ouyang X, Zhang L, Li L. Integrative proteomics reveals the role of E3 ubiquitin ligase SYVN1 in hepatocellular carcinoma metastasis. Cancer Commun (Lond) 2021; 41:1007-1023. [PMID: 34196494 PMCID: PMC8504139 DOI: 10.1002/cac2.12192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/29/2020] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
Background Tumor metastasis is a major factor for poor prognosis of hepatocellular carcinoma (HCC), but the relationship between ubiquitination and metastasis need to be studied more systematically. We analyzed the ubiquitinome of HCC in this study to have a more comprehensive insight into human HCC metastasis. Methods The protein ubiquitination levels in 15 HCC specimens with vascular invasion and 15 without vascular invasion were detected by ubiquitinome. Proteins with significantly different ubiquitination levels between HCCs with and without vascular invasion were used to predict E3 ubiquitin ligases associated with tumor metastasis. The topological network of protein substrates and corresponding E3 ubiquitin ligases was constructed to identify the key E3 ubiquitin ligase. Besides, the growth, migration and invasion ability of LM3 and HUH7 hepatoma cell lines with and without SYVN1 expression interference were measured by cell proliferation assay, subcutaneous tumor assay, umphal vein endothelium tube formation assay, transwell migration and invasion assays. Finally, the interacting proteins of SYVN1 were screened and verified by protein interaction omics, immunofluorescence, and immunoprecipitation. Ubiquitin levels of related protein substrates in LM3 and HUH7 cells were compared in negative control, SYVN1 knockdown, and SYVN1 overexpression groups. Results In this study, our whole‐cell proteomic dataset and ubiquitinomic dataset contained approximately 5600 proteins and 12,000 ubiquitinated sites. We discovered increased ubiquitinated sites with shorter ubiquitin chains during the progression of HCC metastasis. In addition, proteomic and ubiquitinomic analyses revealed that high expression of E3 ubiquitin‐protein ligase SYVN1 is related with tumor metastasis. Furthermore, we found that SYVN1 interacted with heat shock protein 90 (HSP90) and impacted the ubiquitination of eukaryotic elongation factor 2 kinase (EEF2K). Conclusions The ubiquitination profiles of HCC with and without vascular invasion were significantly different. SYVN1 was the most important E3 ubiquitin‐protein ligase responsible for this phenomenon, and it was related with tumor metastasis and growth. Therefore, SYVN1 might be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Zhengyi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Huihui Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| |
Collapse
|
6
|
Zhu S, Liao M, Tan H, Zhu L, Chen Y, He G, Liu B. Inhibiting Eukaryotic Elongation Factor 2 Kinase: An Update on Pharmacological Small-Molecule Compounds in Cancer. J Med Chem 2021; 64:8870-8883. [PMID: 34162208 DOI: 10.1021/acs.jmedchem.0c02218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K), a member of the atypical protein kinase family of alpha-kinases, is well-known as a negative regulator of protein synthesis by phosphorylating eEF2. Notably, eEF2K functions as a key regulator of several cellular processes, leading to tumorigenesis. To date, some small-molecule compounds have been reported as potential eEF2K inhibitors in cancer drug discovery. However, an ideal targeted drug design still faces huge challenges. Alternatively, other design strategies, such as repurposed drugs, dual-target drugs, and drug combination strategies, provide insights into the improvement of cancer treatment. Here, we summarize the crucial eEF2K-modulating pathways in cancer, including AMPK, REDD1, and Src. Moreover, we discuss the inhibition of eEF2K with single-target inhibitors, repurposed drugs, dual-target inhibitors, drug combination strategies, and other emerging technologies for therapeutic purposes. Together, these inspiring findings provide insights into a promising strategy for inhibiting eEF2K with small-molecule compounds to improve potential cancer therapy.
Collapse
Affiliation(s)
- Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huidan Tan
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingjuan Zhu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA. Biochem J 2021; 477:4367-4381. [PMID: 33094805 DOI: 10.1042/bcj20200697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Emerging advances in cancer therapy have transformed the landscape towards cancer immunotherapy regimens. Recent discoveries have resulted in the development of clinical immune checkpoint inhibitors that are 'game-changers' for cancer immunotherapy. Here we show that eEF2K, an atypical protein kinase that negatively modulates the elongation stage of protein synthesis, promotes the synthesis of PD-L1, an immune checkpoint protein which helps cancer cells to escape from immunosurveillance. Ablation of eEF2K in prostate and lung cancer cells markedly reduced the expression levels of the PD-L1 protein. We show that eEF2K promotes the association of PD-L1 mRNAs with translationally active polyribosomes and that translation of the PD-L1 mRNA is regulated by a uORF (upstream open reading-frame) within its 5'-UTR (5'-untranslated region) which starts with a non-canonical CUG as the initiation codon. This inhibitory effect is attenuated by eEF2K thereby allowing higher levels of translation of the PD-L1 coding region and enhanced expression of the PD-L1 protein. Moreover, eEF2K-depleted cancer cells are more vulnerable to immune attack by natural killer cells. Therefore, control of translation elongation can modulate the translation of this specific mRNA, one which contains an uORF that starts with CUG, and perhaps others that contain a similar feature. Taken together, our data reveal that eEF2K regulates PD-L1 expression at the level of the translation of its mRNA by virtue of a uORF in its 5'-region. This, and other roles of eEF2K in cancer cell biology (e.g. in cell survival and migration), may be exploited for the design of future therapeutic strategies.
Collapse
|
8
|
Ross AB, Langer JD, Jovanovic M. Proteome Turnover in the Spotlight: Approaches, Applications, and Perspectives. Mol Cell Proteomics 2020; 20:100016. [PMID: 33556866 PMCID: PMC7950106 DOI: 10.1074/mcp.r120.002190] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023] Open
Abstract
In all cells, proteins are continuously synthesized and degraded to maintain protein homeostasis and modify gene expression levels in response to stimuli. Collectively, the processes of protein synthesis and degradation are referred to as protein turnover. At a steady state, protein turnover is constant to maintain protein homeostasis, but in dynamic responses, proteins change their rates of synthesis and degradation to adjust their proteomes to internal or external stimuli. Thus, probing the kinetics and dynamics of protein turnover lends insight into how cells regulate essential processes such as growth, differentiation, and stress response. Here, we outline historical and current approaches to measuring the kinetics of protein turnover on a proteome-wide scale in both steady-state and dynamic systems, with an emphasis on metabolic tracing using stable isotope-labeled amino acids. We highlight important considerations for designing proteome turnover experiments, key biological findings regarding the conserved principles of proteome turnover regulation, and future perspectives for both technological and biological investigation.
Collapse
Affiliation(s)
- Alison Barbara Ross
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Julian David Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany; Proteomics, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|
9
|
Galeano Niño JL, Tay SS, Tearle JLE, Xie J, Govendir MA, Kempe D, Mazalo J, Drew AP, Colakoglu F, Kummerfeld SK, Proud CG, Biro M. The Lifeact-EGFP mouse is a translationally controlled fluorescent reporter of T cell activation. J Cell Sci 2020; 133:jcs238014. [PMID: 32041902 DOI: 10.1242/jcs.238014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
It has become increasingly evident that T cell functions are subject to translational control in addition to transcriptional regulation. Here, by using live imaging of CD8+ T cells isolated from the Lifeact-EGFP mouse, we show that T cells exhibit a gain in fluorescence intensity following engagement of cognate tumour target cells. The GFP signal increase is governed by Erk1/2-dependent distal T cell receptor (TCR) signalling and its magnitude correlates with IFN-γ and TNF-α production, which are hallmarks of T cell activation. Enhanced fluorescence was due to increased translation of Lifeact-EGFP protein, without an associated increase in its mRNA. Activation-induced gains in fluorescence were also observed in naïve and CD4+ T cells from the Lifeact-EGFP reporter, and were readily detected by both flow cytometry and live cell microscopy. This unique, translationally controlled reporter of effector T cell activation simultaneously enables tracking of cell morphology, F-actin dynamics and activation state in individual migrating T cells. It is a valuable addition to the limited number of reporters of T cell dynamics and activation, and opens the door to studies of translational activity and heterogeneities in functional T cell responses in situ.
Collapse
Affiliation(s)
- Jorge Luis Galeano Niño
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Szun S Tay
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacqueline L E Tearle
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Matt A Govendir
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica Mazalo
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Feyza Colakoglu
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarah K Kummerfeld
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
- School of Biological Sciences, University of Adelaide, Frome Road, Adelaide
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Moffett JR, Arun P, Puthillathu N, Vengilote R, Ives JA, Badawy AAB, Namboodiri AM. Quinolinate as a Marker for Kynurenine Metabolite Formation and the Unresolved Question of NAD + Synthesis During Inflammation and Infection. Front Immunol 2020; 11:31. [PMID: 32153556 PMCID: PMC7047773 DOI: 10.3389/fimmu.2020.00031] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Quinolinate (Quin) is a classic example of a biochemical double-edged sword, acting as both essential metabolite and potent neurotoxin. Quin is an important metabolite in the kynurenine pathway of tryptophan catabolism leading to the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As a precursor for NAD+, Quin can direct a portion of tryptophan catabolism toward replenishing cellular NAD+ levels in response to inflammation and infection. Intracellular Quin levels increase dramatically in response to immune stimulation [e.g., lipopolysaccharide (LPS) or pokeweed mitogen (PWM)] in macrophages, microglia, dendritic cells, and other cells of the immune system. NAD+ serves numerous functions including energy production, the poly ADP ribose polymerization (PARP) reaction involved in DNA repair, and the activity of various enzymes such as the NAD+-dependent deacetylases known as sirtuins. We used highly specific antibodies to protein-coupled Quin to delineate cells that accumulate Quin as a key aspect of the response to immune stimulation and infection. Here, we describe Quin staining in the brain, spleen, and liver after LPS administration to the brain or systemic PWM administration. Quin expression was strong in immune cells in the periphery after both treatments, whereas very limited Quin expression was observed in the brain even after direct LPS injection. Immunoreactive cells exhibited diverse morphology ranging from foam cells to cells with membrane extensions related to cell motility. We also examined protein expression changes in the spleen after kynurenine administration. Acute (8 h) and prolonged (48 h) kynurenine administration led to significant changes in protein expression in the spleen, including multiple changes involved with cytoskeletal rearrangements associated with cell motility. Kynurenine administration resulted in several expression level changes in proteins associated with heat shock protein 90 (HSP90), a chaperone for the aryl-hydrocarbon receptor (AHR), which is the primary kynurenine metabolite receptor. We propose that cells with high levels of Quin are those that are currently releasing kynurenine pathway metabolites as well as accumulating Quin for sustained NAD+ synthesis from tryptophan. Further, we propose that the kynurenine pathway may be linked to the regulation of cell motility in immune and cancer cells.
Collapse
Affiliation(s)
- John R. Moffett
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Peethambaran Arun
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Ranjini Vengilote
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - John A. Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, VA, United States
| | | | - Aryan M. Namboodiri
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| |
Collapse
|
11
|
Abstract
The B cell lymphoma 2-associated anthanogene (BAG3) is an anti-apoptotic co-chaperone protein. Previous reports suggest that mutations in BAG3 are associated with dilated cardiomyopathy. This review aims to summarize the current understanding of the relationship between BAG3 mutations and dilated cardiomyopathy, primarily focusing on the role and protective mechanism of BAG3 in cardiomyocytes from individuals with dilated cardiomyopathy. The results of published studies show that BAG3 is critically important for reducing cardiomyocyte apoptosis, maintaining protein homeostasis, regulating mitochondrial stability, modulating myocardial contraction, and reducing cardiac arrhythmia, which suggests an indispensable protective mechanism of BAG3 in dilated cardiomyopathy. The significant role of BAG3 in protecting cardiomyocytes provides a new direction for the diagnosis and treatment of dilated cardiomyopathy. However, further research is required to explore the molecular mechanisms that regulate BAG3 expression, to identify a novel therapy for patients with dilated cardiomyopathy.
Collapse
|
12
|
Kalioraki MA, Artemaki PI, Sklirou AD, Kontos CK, Adamopoulos PG, Papadopoulos IN, Trougakos IP, Scorilas A. Heat shock protein beta 3 (HSPB3) is an unfavorable molecular biomarker in colorectal adenocarcinoma. Mol Carcinog 2019; 59:116-125. [PMID: 31709619 DOI: 10.1002/mc.23133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Small heat shock proteins (sHSPs) participate in numerous cellular functions including cell signaling, differentiation, and apoptosis. Deregulation of the physiological expression level of sHSPs has been associated with several malignancies. Heat shock protein beta 3 (HSPB3) is the third member of the sHSP family in human and is mainly expressed in skeletal and smooth muscles. In this study, we investigated the potential prognostic significance of HSPB3 expression in colorectal adenocarcinoma, the most frequent type of colorectal cancer. For this purpose, we isolated total RNA from 188 colorectal adenocarcinoma specimens and 68 paired noncancerous ones. After reverse transcription of 2 μg total RNA, we quantified HSPB3 levels by using an in-house-developed real-time quantitative polymerase chain reaction method, based on the SYBR Green chemistry. Comparison of HSPB3 levels among 68 pairs of colorectal tumors and their adjacent noncancerous mucosae uncovered the downregulation of HSPB3 expression in the majority of malignant colorectal tumors. More importantly, high HSPB3 expression is associated with poor relapse-free survival (RFS) and overall survival (OS) of patients with colorectal adenocarcinoma. Multivariable Cox regression analysis revealed that HSPB3 overexpression could serve as an adverse prognostic biomarker in colorectal adenocarcinoma, independent of tumor location, histological grade, and TNM stage. Patients' stratification according to tumor location, histological grade, and TNM stage revealed that high HSPB3 messenger RNA expression retains its unfavorable prognostic potential regarding OS, in particular groups of patients with substantially different prognosis. In conclusion, high HSPB3 expression is associated with poor RFS and OS of patients with colorectal adenocarcioma, independently of clinicopathological prognosticators.
Collapse
Affiliation(s)
- Maria-Anna Kalioraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Pinelopi I Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|