1
|
Sartre C, Peurois F, Ley M, Kryszke MH, Zhang W, Courilleau D, Fischmeister R, Ambroise Y, Zeghouf M, Cianferani S, Ferrandez Y, Cherfils J. Membranes prime the RapGEF EPAC1 to transduce cAMP signaling. Nat Commun 2023; 14:4157. [PMID: 37438343 DOI: 10.1038/s41467-023-39894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
EPAC1, a cAMP-activated GEF for Rap GTPases, is a major transducer of cAMP signaling and a therapeutic target in cardiac diseases. The recent discovery that cAMP is compartmentalized in membrane-proximal nanodomains challenged the current model of EPAC1 activation in the cytosol. Here, we discover that anionic membranes are a major component of EPAC1 activation. We find that anionic membranes activate EPAC1 independently of cAMP, increase its affinity for cAMP by two orders of magnitude, and synergize with cAMP to yield maximal GEF activity. In the cell cytosol, where cAMP concentration is low, EPAC1 must thus be primed by membranes to bind cAMP. Examination of the cell-active chemical CE3F4 in this framework further reveals that it targets only fully activated EPAC1. Together, our findings reformulate previous concepts of cAMP signaling through EPAC proteins, with important implications for drug discovery.
Collapse
Affiliation(s)
- Candice Sartre
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - François Peurois
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Marie Ley
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Marie-Hélène Kryszke
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Wenhua Zhang
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Delphine Courilleau
- Université Paris-Saclay, IPSIT-CIBLOT, Inserm US31, CNRS UAR3679, 91400, Orsay, France
| | | | - Yves Ambroise
- Université Paris-Saclay, CEA, Service de Chimie Bioorganique et de Marquage, 91191, Gif-sur-Yvette, France
| | - Mahel Zeghouf
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Yann Ferrandez
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Investigating how intrinsically disordered regions contribute to protein function using HDX-MS. Biochem Soc Trans 2022; 50:1607-1617. [DOI: 10.1042/bst20220206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
A large amount of the human proteome is composed of highly dynamic regions that do not adopt a single static conformation. These regions are defined as intrinsically disordered, and they are found in a third of all eukaryotic proteins. They play instrumental roles in many aspects of protein signaling, but can be challenging to characterize by biophysical methods. Intriguingly, many of these regions can adopt stable secondary structure upon interaction with a variety of binding partners, including proteins, lipids, and ligands. This review will discuss the application of Hydrogen-deuterium exchange mass spectrometry (HDX-MS) as a powerful biophysical tool that is particularly well suited for structural and functional characterization of intrinsically disordered regions in proteins. A focus will be on the theory of hydrogen exchange, and its practical application to identify disordered regions, as well as characterize how they participate in protein–protein and protein–membrane interfaces. A particular emphasis will be on how HDX-MS data can be presented specifically tailored for analysis of intrinsically disordered regions, as well as the technical aspects that are critical to consider when designing HDX-MS experiments for proteins containing intrinsically disordered regions.
Collapse
|
3
|
Gu W, Gao S, Wang H, Fleming KD, Hoffmann RM, Yang JW, Patel NM, Choi YM, Burke JE, Reue K, Airola MV. The middle lipin domain adopts a membrane-binding dimeric protein fold. Nat Commun 2021; 12:4718. [PMID: 34354069 PMCID: PMC8342540 DOI: 10.1038/s41467-021-24929-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Phospholipid synthesis and fat storage as triglycerides are regulated by lipin phosphatidic acid phosphatases (PAPs), whose enzymatic PAP function requires association with cellular membranes. Using hydrogen deuterium exchange mass spectrometry, we find mouse lipin 1 binds membranes through an N-terminal amphipathic helix, the Ig-like domain and HAD phosphatase catalytic core, and a middle lipin (M-Lip) domain that is conserved in mammalian and mammalian-like lipins. Crystal structures of the M-Lip domain reveal a previously unrecognized protein fold that dimerizes. The isolated M-Lip domain binds membranes both in vitro and in cells through conserved basic and hydrophobic residues. Deletion of the M-Lip domain in lipin 1 reduces PAP activity, membrane association, and oligomerization, alters subcellular localization, diminishes acceleration of adipocyte differentiation, but does not affect transcriptional co-activation. This establishes the M-Lip domain as a dimeric protein fold that binds membranes and is critical for full functionality of mammalian lipins.
Collapse
Affiliation(s)
- Weijing Gu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Shujuan Gao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Reece M Hoffmann
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jong Won Yang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Nimi M Patel
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yong Mi Choi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
4
|
Engen JR, Botzanowski T, Peterle D, Georgescauld F, Wales TE. Developments in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2020; 93:567-582. [DOI: 10.1021/acs.analchem.0c04281] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Botzanowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Florian Georgescauld
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Giladi M, Khananshvili D. Hydrogen-Deuterium Exchange Mass-Spectrometry of Secondary Active Transporters: From Structural Dynamics to Molecular Mechanisms. Front Pharmacol 2020; 11:70. [PMID: 32140107 PMCID: PMC7042309 DOI: 10.3389/fphar.2020.00070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane transporters allow the selective transport of otherwise poorly permeable solutes across the cell membrane and thus, play a key role in maintaining cellular homeostasis in all kingdoms of life. Importantly, these proteins also serve as important drug targets. Over the last decades, major progress in structural biology methods has elucidated important structure-function relationships in membrane transporters. However, structures obtained using methods such as X-ray crystallography and high-resolution cryogenic electron microscopy merely provide static snapshots of an intrinsically dynamic, multi-step transport process. Therefore, there is a growing need for developing new experimental approaches capable of exploiting the data obtained from the high-resolution snapshots in order to investigate the dynamic features of membrane proteins. Here, we present the basic principles of hydrogen-deuterium exchange mass-spectrometry (HDX-MS) and recent advancements in its use to study membrane transporters. In HDX-MS experiments, minute amounts of a protein sample can be used to investigate its structural dynamics under native conditions, without the need for chemical labelling and with practically no limit on the protein size. Thus, HDX-MS is instrumental for resolving the structure-dynamic landscapes of membrane proteins in their apo (ligand-free) and ligand-bound forms, shedding light on the molecular mechanism underlying the transport process and drug binding.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Kihara Y. Introduction: Druggable Lipid Signaling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:1-4. [PMID: 32894504 DOI: 10.1007/978-3-030-50621-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipids are essential for life. They store energy, constitute cellular membranes, serve as signaling molecules, and modify proteins. In the long history of lipid research, many drugs targeting lipid receptors and enzymes that are responsible for lipid metabolism and function have been developed and applied to a variety of diseases. For example, non-steroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed medications for fever, pain, and inflammation. The NSAIDs block prostaglandin production by inhibiting cyclooxygenases. A recent innovative breakthrough in drug discovery for the lipid biology field was the development of the sphingosine 1-phosphate receptor modulators (fingolimod, siponimod and ozanimod) for the treatment of multiple sclerosis, which were approved by the United States Food and Drug Administration in 2010, 2019 and 2020, respectively. This review series of "Druggable Lipid Signaling Pathways" provides 9 outstanding reviews that summarize the currently available drugs that target lipid signaling pathways and also outlines future directions for drug discovery. The review chapters include lipid signaling pathways (prostanoids, leukotrienes, epoxy fatty acids, sphingolipids, lysophospholipids, endocannabinoids, and phosphoinositides) and lipid signaling proteins (lysophospholipid acyltransferases, phosphoinositide 3-kinase, and G protein-coupled receptors (GPCRs)). Drugs targeting lipid signaling pathways promise to be life changing magic for the future of human health and well-being.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Defining How Oncogenic and Developmental Mutations of PIK3R1 Alter the Regulation of Class IA Phosphoinositide 3-Kinases. Structure 2019; 28:145-156.e5. [PMID: 31831213 DOI: 10.1016/j.str.2019.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022]
Abstract
The class I phosphoinositide 3-kinases (PI3Ks) are key signaling enzymes composed of a heterodimer of a p110 catalytic subunit and a p85 regulatory subunit, with PI3K mutations being causative of multiple human diseases including cancer, primary immunodeficiencies, and developmental disorders. Mutations in the p85α regulatory subunit encoded by PIK3R1 can both activate PI3K through oncogenic truncations in the iSH2 domain, or inhibit PI3K through developmental disorder mutations in the cSH2 domain. Using a combined biochemical and hydrogen deuterium exchange mass spectrometry approach we have defined the molecular basis for how these mutations alter the activity of p110α/p110δ catalytic subunits. We find that the oncogenic Q572∗ truncation of PIK3R1 disrupts all p85-inhibitory inputs, with p110α being hyper-activated compared with p110δ. In addition, we find that the R649W mutation in the cSH2 of PIK3R1 decreases sensitivity to activation by receptor tyrosine kinases. This work reveals unique insight into isoform-specific regulation of p110s by p85α.
Collapse
|