1
|
Shang G, Zhang W, Jia Y, Ji D, Wei E, Gao C, Zeng C, Wang C, Liu N, Ge P, Li Y, Zeng L. GAS41 promotes ITGA4-mediated PI3K/Akt/mTOR signaling pathway and glioma tumorigenesis. Biochem Pharmacol 2025; 233:116747. [PMID: 39788387 DOI: 10.1016/j.bcp.2025.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Glioma Amplified Sequence 41 (GAS41) is a chromatin-associated protein that belongs to the YEATS domain family of proteins and is frequently amplified in various tumors. However, its biological function and carcinogenic mechanism in gliomas are not fully understood. In this study, we revealed that GAS41 was upregulated in human glioma tissues and cell lines, and higher expression of GAS41 was significantly associated with poor clinical prognosis. Genetic depletion and chemical inhibition of GAS41 remarkably inhibited glioma cell proliferation and metastasis abilities and induced cellular apoptosis. Furthermore, functional annotation identified that GAS41 was involved in stimulating the expression of membrane protein ITGA4 to activate the downstream PI3K/Akt/mTOR signaling pathway in glioma cell lines. In addition, we synthesized and evaluated a series of small molecules targeting the GAS41 YEATS domain, which yielded effective anti-proliferative activities in glioma cells. Molecular docking revealed that these compounds bound to the GAS41 YEATS domain pocket in a manner similar to Compounds 9 and 3b, providing a structural basis for exploring the selective inhibition of GAS41 as part of an essential molecular framework. Overall, our study illustrates the crucial role of GAS41 in glioma progression and the malignant phenotype and suggests that targeting GAS41 may be a promising therapeutic treatment strategy for gliomas.
Collapse
Affiliation(s)
- Guanglei Shang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Wenju Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Yanjie Jia
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Enwei Wei
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Chunfeng Gao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Caroline Zeng
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Nan Liu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
2
|
Bakker M, Svensson O, So̷rensen HV, Skepö M. Exploring the Functional Landscape of the p53 Regulatory Domain: The Stabilizing Role of Post-Translational Modifications. J Chem Theory Comput 2024; 20:5842-5853. [PMID: 38973087 PMCID: PMC11270737 DOI: 10.1021/acs.jctc.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
This study focuses on the intrinsically disordered regulatory domain of p53 and the impact of post-translational modifications. Through fully atomistic explicit water molecular dynamics simulations, we show the wealth of information and detailed understanding that can be obtained by varying the number of phosphorylated amino acids and implementing a restriction in the conformational entropy of the N-termini of that intrinsically disordered region. The take-home message for the reader is to achieve a detailed understanding of the impact of phosphorylation with respect to (1) the conformational dynamics and flexibility, (2) structural effects, (3) protein interactivity, and (4) energy landscapes and conformational ensembles. Although our model system is the regulatory domain p53 of the tumor suppressor protein p53, this study contributes to understanding the general effects of intrinsically disordered phosphorylated proteins and the impact of phosphorylated groups, more specifically, how minor changes in the primary sequence can affect the properties mentioned above.
Collapse
Affiliation(s)
- Michael
J. Bakker
- Faculty
of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Oskar Svensson
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Henrik V. So̷rensen
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- MAX
IV Laboratory, Fotongatan
2, 224 84 Lund, Sweden
| | - Marie Skepö
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
- NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
3
|
Ji K, Li L, Liu H, Shen Y, Jiang J, Zhang M, Teng H, Yan X, Zhang Y, Cai Y, Zhou H. Unveiling the role of GAS41 in cancer progression. Cancer Cell Int 2023; 23:245. [PMID: 37853482 PMCID: PMC10583379 DOI: 10.1186/s12935-023-03098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
GAS41, a member of the human YEATS domain family, plays a pivotal role in human cancer development. It serves as a highly promising epigenetic reader, facilitating precise regulation of cell growth and development by recognizing essential histone modifications, including histone acetylation, benzoylation, succinylation, and crotonylation. Functional readouts of these histone modifications often coincide with cancer progression. In addition, GAS41 functions as a novel oncogene, participating in numerous signaling pathways. Here, we summarize the epigenetic functions of GAS41 and its role in the carcinoma progression. Moving forward, elucidating the downstream target oncogenes regulated by GAS41 and the developing small molecule inhibitors based on the distinctive YEATS recognition properties will be pivotal in advancing this research field.
Collapse
Affiliation(s)
- Kangkang Ji
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Li Li
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hui Liu
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yucheng Shen
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Jian Jiang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Minglei Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hongwei Teng
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Xun Yan
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yanhua Zhang
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Yong Cai
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China
| | - Hai Zhou
- Department of Central Laboratory, Binhai County People's Hospital, Yancheng, 224000, China.
| |
Collapse
|
4
|
Liu N, Konuma T, Sharma R, Wang D, Zhao N, Cao L, Ju Y, Liu D, Wang S, Bosch A, Sun Y, Zhang S, Ji D, Nagatoishi S, Suzuki N, Kikuchi M, Wakamori M, Zhao C, Ren C, Zhou TJ, Xu Y, Meslamani J, Fu S, Umehara T, Tsumoto K, Akashi S, Zeng L, Roeder RG, Walsh MJ, Zhang Q, Zhou MM. Histone H3 lysine 27 crotonylation mediates gene transcriptional repression in chromatin. Mol Cell 2023; 83:2206-2221.e11. [PMID: 37311463 PMCID: PMC11138481 DOI: 10.1016/j.molcel.2023.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/22/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023]
Abstract
Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation. Specifically, H3K27cr in chromatin is selectively recognized by the YEATS domain of GAS41 in complex with SIN3A-HDAC1 co-repressors. Proto-oncogenic transcription factor MYC recruits GAS41/SIN3A-HDAC1 complex to repress genes in chromatin, including cell-cycle inhibitor p21. GAS41 knockout or H3K27cr-binding depletion results in p21 de-repression, cell-cycle arrest, and tumor growth inhibition in mice, explaining a causal relationship between GAS41 and MYC gene amplification and p21 downregulation in colorectal cancer. Our study suggests that H3K27 crotonylation signifies a previously unrecognized, distinct chromatin state for gene transcriptional repression in contrast to H3K27 trimethylation for transcriptional silencing and H3K27 acetylation for transcriptional activation.
Collapse
Affiliation(s)
- Nan Liu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Tsuyoshi Konuma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Rajal Sharma
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deyu Wang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Nan Zhao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Lingling Cao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Ying Ju
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Di Liu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Shuai Wang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Almudena Bosch
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130000, China
| | - Donglei Ji
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Noa Suzuki
- School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Masaki Kikuchi
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | | | - Chengcheng Zhao
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Chunyan Ren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Jiachi Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yaoyao Xu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
| | - Jamel Meslamani
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shibo Fu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China
| | - Takashi Umehara
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kouhei Tsumoto
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New Nork, NY 10065, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qiang Zhang
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China; International Center of Future Science, Jilin University, Changchun 130012, China.
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
5
|
Xian Q, Song Y, Gui C, Zhou Y. Mechanistic insights into genomic structure and functions of a novel oncogene YEATS4. Front Cell Dev Biol 2023; 11:1192139. [PMID: 37435030 PMCID: PMC10332269 DOI: 10.3389/fcell.2023.1192139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
As a novel oncogene, the role of YEATS domain-containing protein 4 (YEATS4) in the occurrence, development, and treatment of tumors is now beginning to be appreciated. YEATS4 plays an important role in regulating DNA repair during replication. The upregulation of YEAST4 promotes DNA damage repair and prevents cell death, whereas its downregulation inhibits DNA replication and induces apoptosis. Additionally, accumulating evidence indicates that the aberrant activation of YEATS4 leads to changes in drug resistance, epithelial-mesenchymal transition and also in the migration and invasion capacity of tumor cells. Therefore, specific inhibition of the expression or activity of YEATS4 protein may be an effective strategy for inhibiting the proliferation, motility, differentiation, and/or survival of tumor cells. Taken together, YEATS4 has emerged as a potential target for multiple cancers and is an attractive protein for the development of small-molecule inhibitors. However, research on YEAST4 in tumor-related fields is limited and its biological functions, metabolism, and the regulatory mechanism of YEATS4 in numerous cancers remain undetermined. This review comprehensively and extensively summarizes the functions, structure and oncogenic roles of YEATS4 in cancer progression and aims to further contribute to the study of its underlying molecular mechanism and targeted drugs.
Collapse
Affiliation(s)
- Qingqing Xian
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
| | - Yiying Song
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
| | - Chengzhi Gui
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong, China
| | - Yunying Zhou
- Department of Clinical Laboratory Diagnosis, Shandong University, Jinan, Shandong, China
- Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong, China
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
6
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
7
|
Li Z, Chen R, Li Y, Zhou Q, Zhao H, Zeng K, Zhao B, Lu Z. A comprehensive overview of PPM1B: From biological functions to diseases. Eur J Pharmacol 2023; 947:175633. [PMID: 36863552 DOI: 10.1016/j.ejphar.2023.175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Reversible phosphorylation of proteins is an important mechanism that regulates cellular processes, which are precisely regulated by protein kinases and phosphatases. PPM1B is a metal ion-dependent serine/threonine protein phosphatase, which regulates multiple biological functions by targeting substrate dephosphorylation, such as cell cycle, energy metabolism, inflammatory responses. In this review, we summarized the occurrent understandings of PPM1B focused on its regulation of signaling pathways, related diseases, and small-molecular inhibitors, which may provide new insights for the identification of PPM1B inhibitors and the treatment of PPM1B-related diseases.
Collapse
Affiliation(s)
- Zhongyao Li
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China
| | - Ruoyu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Yanxia Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Qian Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Huanxin Zhao
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China
| | - Kewu Zeng
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China.
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China.
| | - Zhiyuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China.
| |
Collapse
|
8
|
Yeewa R, Chaiya P, Jantrapirom S, Shotelersuk V, Lo Piccolo L. Multifaceted roles of YEATS domain-containing proteins and novel links to neurological diseases. Cell Mol Life Sci 2022; 79:183. [PMID: 35279775 PMCID: PMC11071958 DOI: 10.1007/s00018-022-04218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
The so-called Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins, hereafter referred to as YD proteins, take control over the transcription by multiple steps of regulation either involving epigenetic remodelling of chromatin or guiding the processivity of RNA polymerase II to facilitate elongation-coupled mRNA 3' processing. Interestingly, an increasing amount of evidence suggest a wider repertoire of YD protein's functions spanning from non-coding RNA regulation, RNA-binding proteins networking, post-translational regulation of a few signalling transduction proteins and the spindle pole formation. However, such a large set of non-canonical roles is still poorly characterized. Notably, four paralogous of human YEATS domain family members, namely eleven-nineteen-leukaemia (ENL), ALL1-fused gene from chromosome 9 protein (AF9), YEATS2 and glioma amplified sequence 41 (GAS41), have a strong link to cancer yet new findings also highlight a potential novel role in neurological diseases. Here, in an attempt to more comprehensively understand the complexity of four YD proteins and to gain more insight into the novel functions they may accomplish in the neurons, we summarized the YD protein's networks, systematically searched and reviewed the YD genetic variants associated with neurodevelopmental disorders and finally interrogated the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawita Chaiya
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Centre for Genomics and Precision Medicine, The Thai Red Cross Society, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research Centre (MSTR), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Maksoud S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 2021; 58:3252-3269. [PMID: 33665742 PMCID: PMC8260465 DOI: 10.1007/s12035-021-02339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Li Y, Li L, Wu J, Qin J, Dai X, Jin T, Xu J. YEATS4 is associated with poor prognosis and promotes epithelial-to-mesenchymal transition and metastasis by regulating ZEB1 expression in breast cancer. Am J Cancer Res 2021; 11:416-440. [PMID: 33575079 PMCID: PMC7868763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023] Open
Abstract
YEATS domain-containing protein 4 (YEATS4) is implicated in several oncogenic signaling pathways, and its expression is involved in various types of cancer; regardless, the pathophysiologic effects of YEATS4 on breast cancer remain unclear. This study finds that YEATS4 is increasingly expressed with breast cancer progression, and its expression is related to poor outcome and distant metastasis. YEATS4 overexpression in breast cancer cells strengthens their malignant characteristics in vitro and in vivo, particularly inducing epithelial-to-mesenchymal transition (EMT) and consequently, metastatic capability in breast cancer cells. By contrast, deleting YEATS4 in breast cancer cells with high-grade malignancy reduced these characteristics. With regard to the molecular mechanism, YEATS4 mediates histone H3K27ac at specific sites of the ZEB1 promoter to regulate its expression at the transcription level. Depleting ZEB1 blocks YEATS4-induced EMT, migration, invasion, and metastasis. YEATS4 expression is also positively correlated with ZEB1 expression in patients with breast cancer. Co-expression of YEATS4 and ZEB1 correlates with the shortest distant metastasis-free period. Taken together, our data reveal the critical role of YEATS4 in the progression and metastasis of breast cancer, as well as support YEATS4 as a potential therapeutic target and prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Lei Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Jun Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Xueming Dai
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Tao Jin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| | - Junming Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200080, China
| |
Collapse
|
11
|
Sabapathy K, Lane DP. Understanding p53 functions through p53 antibodies. J Mol Cell Biol 2020; 11:317-329. [PMID: 30907951 PMCID: PMC6487784 DOI: 10.1093/jmcb/mjz010] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
TP53 is the most frequently mutated gene across all cancer types. Our understanding of its functions has evolved since its discovery four decades ago. Initially thought to be an oncogene, it was later realized to be a critical tumour suppressor. A significant amount of our knowledge about p53 functions have come from the use of antibodies against its various forms. The early anti-p53 antibodies contributed to the recognition of p53 accumulation as a common feature of cancer cells and to our understanding of p53 DNA-binding and transcription activities. They led to the concept that conformational changes can facilitate p53’s activity as a growth inhibitory protein. The ensuing p53 conformational-specific antibodies further underlined p53’s conformational flexibility, collectively forming the basis for current efforts to generate therapeutic molecules capable of altering the conformation of mutant p53. A subsequent barrage of antibodies against post-translational modifications on p53 has clarified p53’s roles further, especially with respect to the mechanistic details and context-dependence of its activity. More recently, the generation of p53 mutation-specific antibodies have highlighted the possibility to go beyond the general framework of our comprehension of mutant p53—and promises to provide insights into the specific properties of individual p53 mutants. This review summarizes our current knowledge of p53 functions derived through the major classes of anti-p53 antibodies, which could be a paradigm for understanding other molecular events in health and disease.
Collapse
Affiliation(s)
- Kanaga Sabapathy
- Laboratory of Molecular Carcinogenesis, Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.,Department of Biochemistry, National University of Singapore (NUS), 8 Medical Drive, Singapore, Singapore.,Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore, Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
12
|
Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11:564-577. [PMID: 31282934 PMCID: PMC6736412 DOI: 10.1093/jmcb/mjz060] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/05/2023] Open
Abstract
The last 40 years have witnessed how p53 rose from a viral binding protein to a central factor in both stress responses and tumor suppression. The exquisite regulation of p53 functions is of vital importance for cell fate decisions. Among the multiple layers of mechanisms controlling p53 function, posttranslational modifications (PTMs) represent an efficient and precise way. Major p53 PTMs include phosphorylation, ubiquitination, acetylation, and methylation. Meanwhile, other PTMs like sumoylation, neddylation, O-GlcNAcylation, adenosine diphosphate (ADP)-ribosylation, hydroxylation, and β-hydroxybutyrylation are also shown to play various roles in p53 regulation. By independent action or interaction, PTMs affect p53 stability, conformation, localization, and binding partners. Deregulation of the PTM-related pathway is among the major causes of p53-associated developmental disorders or diseases, especially in cancers. This review focuses on the roles of different p53 modification types and shows how these modifications are orchestrated to produce various outcomes by modulating p53 activities or targeted to treat different diseases caused by p53 dysregulation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Ishii N, Homma T, Watanabe R, Kimura N, Ohnishi M, Kobayashi T, Fujii J. A heterozygous deficiency in protein phosphatase Ppm1b results in an altered ovulation number in mice. Mol Med Rep 2019; 19:5353-5360. [PMID: 31059097 DOI: 10.3892/mmr.2019.10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/16/2019] [Indexed: 11/06/2022] Open
Abstract
Ppm1b, a metal‑dependent serine/threonine protein phosphatase, catalyzes the dephosphorylation of a variety of phosphorylated proteins. Ppm1b‑/‑ mouse embryos die at the fertilized oocyte stage, whereas Ppm1b+/‑ mice with a C57BL/6 background exhibit no phenotypic abnormalities. Because the C57BL/6 strain produces a limited number of pups, in an attempt to produce Ppm1b‑/‑ mice, congenic Ppm1b+/‑ mice with an ICR background were established, which are more fertile and gave birth to more pups. As a result, however, no Ppm1b‑/‑ offspring were obtained when pairs of Ppm1b+/‑ ICR mice were bred again. Ppm1b+/‑ male and female ICR mice were analyzed from the viewpoint of fecundity. The Ppm1b haploinsufficiency had no effect on testicular weight or the number of sperm in male mice. Despite the fact that the levels of Ppm1b protein in the ovaries of sexually mature Ppm1b+/‑ mice were decreased compared with those of Ppm1b+/+ mice, there appeared to be no significant difference in the histological appearance of the ovaries, litter sizes or plasma progesterone levels at the estrous stage. When superovulation was induced by stimulation using a hormone treatment, the number of ovulated oocytes were the same for Ppm1b+/‑ and Ppm1b+/+ mice at 4 weeks of age when the estrous cycle did not proceed, however, the number of ovulated oocytes was lower in sexually mature Ppm1b+/‑ mice at 11 weeks of age compared with Ppm1b+/+ mice in the first and the second superovulation cycles. These collective results suggest that follicle development is excessive in Ppm1b+/‑ mice, and that this leads to a partial depletion of matured follicles and a corresponding decrease in the number of ovulated oocytes.
Collapse
Affiliation(s)
- Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata 990‑9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata 990‑9585, Japan
| | - Ren Watanabe
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka, Yamagata 997‑8555, Japan
| | - Naoko Kimura
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka, Yamagata 997‑8555, Japan
| | - Motoko Ohnishi
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 87‑8501, Japan
| | - Takayasu Kobayashi
- Center for Gene Research, Tohoku University, Sendai, Miyagi 980‑8575, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Yamagata 990‑9585, Japan
| |
Collapse
|
14
|
Kiuchi J, Komatsu S, Imamura T, Nishibeppu K, Shoda K, Arita T, Kosuga T, Konishi H, Shiozaki A, Kubota T, Okamoto K, Fujiwara H, Ichikawa D, Tsuda H, Otsuji E. Overexpression of YEATS4 contributes to malignant outcomes in gastric carcinoma. Am J Cancer Res 2018; 8:2436-2452. [PMID: 30662802 PMCID: PMC6325477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023] Open
Abstract
YEATS domain containing 4 (YEATS4) has functions of chromatin modification and transcriptional regulation and is in a gene-amplified region (12q13) in various human cancers. In this study, we tested whether YEATS4 acts as a cancer-promoting gene through its activation/overexpression in gastric cancer (GC). We analyzed 5 GC cell lines and 135 primary tumor samples of GC, which were curatively resected in our hospital. Overexpression of the YEATS4 protein was frequently detected in GC cell lines (5/5 cell lines, 100%) and primary GC tumor tissues (32/135 cases, 23.7%). Knockdown of YEATS4 inhibited proliferation, migration and invasion of GC cells through NOTCH2 down-regulation in a TP53 mutation-independent manner, and induced apoptosis in wild-type TP53 GC cells. Moreover, knockdown of YEATS4 improved chemosensitivity for CDDP and L-OHP. Overexpression of YEATS4 protein significantly correlated with more aggressive lymphatic invasion, larger tumor size, deeper tumor depth, positive lymph node metastasis and recurrence. Patients with YEATS4-overexpressing tumors had a lower overall survival rate than those with non-expressing tumors. Multivariate analysis demonstrated that YEATS4 was independently associated with poor outcomes. These findings suggest that YEATS4 plays a pivotal role in tumor malignant potential through its overexpression and highlight its usefulness as a prognostic factor and potential therapeutic target in GC.
Collapse
Affiliation(s)
- Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of YamanashiYamanashi, Japan
| | - Hitoshi Tsuda
- Department of Pathology, National Cancer Center HospitalTokyo, Japan
- Department of Basic Pathology, National Defense Medical CollegeTokorozawa, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-Cho, Kawaramachihirokoji, Kamigyo-Ku, Kyoto, Japan
| |
Collapse
|
15
|
Miller RE, Uwamahoro N, Park JH. PPM1B depletion in U2OS cells supresses cell growth through RB1-E2F1 pathway and stimulates bleomycin-induced cell death. Biochem Biophys Res Commun 2018; 500:391-397. [DOI: 10.1016/j.bbrc.2018.04.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
|
16
|
Cho HJ, Kim JT, Lee SJ, Hwang YS, Park SY, Kim BY, Yoo J, Hong KS, Min JK, Lee CH, Lim JS, Yoon SR, Choi I, Choe YK, Lee HG. Protein phosphatase 1B dephosphorylates Rho guanine nucleotide dissociation inhibitor 1 and suppresses cancer cell migration and invasion. Cancer Lett 2018; 417:141-151. [DOI: 10.1016/j.canlet.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
|
17
|
Hsu CC, Shi J, Yuan C, Zhao D, Jiang S, Lyu J, Wang X, Li H, Wen H, Li W, Shi X. Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer. Genes Dev 2018; 32:58-69. [PMID: 29437725 PMCID: PMC5828395 DOI: 10.1101/gad.303784.117] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
Abstract
Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for "reader" proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Recently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine-binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias. The human genome encodes four YEATS domain proteins, including GAS41, a component of chromatin remodelers responsible for H2A.Z deposition onto chromatin; however, the importance of the GAS41 YEATS domain in human cancer remains largely unknown. Here we report that GAS41 is frequently amplified in human non-small cell lung cancer (NSCLC) and is required for cancer cell proliferation, survival, and transformation. Biochemical and crystal structural studies demonstrate that GAS41 binds to histone H3 acetylated on H3K27 and H3K14, a specificity that is distinct from that of AF9 or ENL. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) analyses in lung cancer cells reveal that GAS41 colocalizes with H3K27ac and H3K14ac on the promoters of actively transcribed genes. Depletion of GAS41 or disruption of the interaction between its YEATS domain and acetylated histones impairs the association of histone variant H2A.Z with chromatin and consequently suppresses cancer cell growth and survival both in vitro and in vivo. Overall, our study identifies GAS41 as a histone acetylation reader that promotes histone H2A.Z deposition in NSCLC.
Collapse
Affiliation(s)
- Chih-Chao Hsu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jiejun Shi
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chao Yuan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Dan Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shiming Jiang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jie Lyu
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaolu Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Yamagata H, Uchida S, Matsuo K, Harada K, Kobayashi A, Nakashima M, Nakano M, Otsuki K, Abe-Higuchi N, Higuchi F, Watanuki T, Matsubara T, Miyata S, Fukuda M, Mikuni M, Watanabe Y. Identification of commonly altered genes between in major depressive disorder and a mouse model of depression. Sci Rep 2017; 7:3044. [PMID: 28596527 PMCID: PMC5465183 DOI: 10.1038/s41598-017-03291-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/26/2017] [Indexed: 12/11/2022] Open
Abstract
The heterogeneity of depression (due to factors such as varying age of onset) may explain why biological markers of major depressive disorder (MDD) remain uncertain. We aimed to identify gene expression markers of MDD in leukocytes using microarray analysis. We analyzed gene expression profiles of patients with MDD (age ≥50, age of depression onset <50) (N = 10, depressed state; N = 13, remitted state). Seven-hundred and ninety-seven genes (558 upregulated, 239 downregulated when compared to those of 30 healthy subjects) were identified as potential markers for MDD. These genes were then cross-matched to microarray data obtained from a mouse model of depression (676 genes, 148 upregulated, 528 downregulated). Of the six common genes identified between patients and mice, five genes (SLC35A3, HIST1H2AL, YEATS4, ERLIN2, and PLPP5) were confirmed to be downregulated in patients with MDD by quantitative real-time polymerase chain reaction. Of these genes, HIST1H2AL was significantly decreased in a second set of independent subjects (age ≥20, age of onset <50) (N = 18, subjects with MDD in a depressed state; N = 19, healthy control participants). Taken together, our findings suggest that HIST1H2AL may be a biological marker of MDD.
Collapse
Affiliation(s)
- Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Shusaku Uchida
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Koji Matsuo
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Mami Nakashima
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Nagatoichinomiya Hospital, 17-35 Katachiyama-midoricho, Shimonoseki, Yamaguchi, 751-0885, Japan
| | - Masayuki Nakano
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Katakura Hospital, 229-3 Nishikiwa, Ube, Yamaguchi, 755-0151, Japan
| | - Koji Otsuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
- Department of Psychiatry, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Naoko Abe-Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumihiro Higuchi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Watanuki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Toshio Matsubara
- Health Service Center Organization for University Education, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi, 753-8511, Japan
| | - Shigeo Miyata
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masato Fukuda
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masahiko Mikuni
- Departments of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Hakodate Watanabe Hospital, 1-31-1 Yunokawa-cho, Hakodate, Hokkaido, 042-8678, Japan
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
19
|
YEATS Domain—A Histone Acylation Reader in Health and Disease. J Mol Biol 2017; 429:1994-2002. [DOI: 10.1016/j.jmb.2017.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/24/2023]
|
20
|
The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma. Oncogene 2015; 35:3514-23. [PMID: 26522722 PMCID: PMC5399154 DOI: 10.1038/onc.2015.412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/17/2015] [Indexed: 01/01/2023]
Abstract
Tumor-specific alternative splicing is implicated in the progression of cancer, including clear-cell renal cell carcinoma (ccRCC). Using ccRCC RNA sequencing data from The Cancer Genome Atlas, we found that epithelial splicing regulatory protein 2 (ESRP2), one of the key regulators of alternative splicing in epithelial cells, is expressed in ccRCC. ESRP2 mRNA expression did not correlate with the overall survival rate of ccRCC patients, but the expression of some ESRP-target exons correlated with the good prognosis and with the expression of Arkadia (also known as RNF111) in ccRCC. Arkadia physically interacted with ESRP2, induced polyubiquitination and modulated its splicing function. Arkadia and ESRP2 suppressed ccRCC tumor growth in a coordinated manner. Lower expression of Arkadia correlated with advanced tumor stages and poor outcomes in ccRCC patients. This study thus reveals a novel tumor-suppressive role of the Arkadia-ESRP2 axis in ccRCC.
Collapse
|
21
|
Yang J, Yuan D, Li J, Zheng S, Wang B. miR-186 downregulates protein phosphatase PPM1B in bladder cancer and mediates G1-S phase transition. Tumour Biol 2015; 37:4331-41. [DOI: 10.1007/s13277-015-4117-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/20/2015] [Indexed: 02/05/2023] Open
|
22
|
Tao K, Yang J, Hu Y, Deng A. Knockdown of YEATS4 inhibits colorectal cancer cell proliferation and induces apoptosis. Am J Transl Res 2015; 7:616-623. [PMID: 26045900 PMCID: PMC4448200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
YEATS domain containing 4 (YEATS4) is usually amplified and functions as an oncogene in human glioma. However, the biological role of YEATS4 in colorectal cancer (CRC) has not yet been discussed. In this study, we investigated the expression level of YEATS4 in 85 pairs of CRC and paracancerous tissues, and knocked down YEATS4 via a lentivirus system in RKO CRC cell line. Although YEATS4 was upregulated in CRC tissues, YEATS4 expression showed no association with any clinical features and overall survival. Inhibition of YEATS4 significantly suppressed cell proliferation and colony formation. Flow cytometry revealed that cell cycle was arrested in the G0/G1 phase and the number of apoptotic cells were significantly increased when YEATS4 expression was inhibited. In conclusion, our findings provide first evidence that YEATS4 may be an important regulator of cell proliferation and apoptosis in CRC cells.
Collapse
Affiliation(s)
- Kun Tao
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical UniversityShanghai, China
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Jing Yang
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Yuemei Hu
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Anmei Deng
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical UniversityShanghai, China
| |
Collapse
|
23
|
Ban J, Aryee DNT, Fourtouna A, van der Ent W, Kauer M, Niedan S, Machado I, Rodriguez-Galindo C, Tirado OM, Schwentner R, Picci P, Flanagan AM, Berg V, Strauss SJ, Scotlandi K, Lawlor ER, Snaar-Jagalska E, Llombart-Bosch A, Kovar H. Suppression of deacetylase SIRT1 mediates tumor-suppressive NOTCH response and offers a novel treatment option in metastatic Ewing sarcoma. Cancer Res 2014; 74:6578-88. [PMID: 25281719 DOI: 10.1158/0008-5472.can-14-1736] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The developmental receptor NOTCH plays an important role in various human cancers as a consequence of oncogenic mutations. Here we describe a novel mechanism of NOTCH-induced tumor suppression involving modulation of the deacetylase SIRT1, providing a rationale for the use of SIRT1 inhibitors to treat cancers where this mechanism is inactivated because of SIRT1 overexpression. In Ewing sarcoma cells, NOTCH signaling is abrogated by the driver oncogene EWS-FLI1. Restoration of NOTCH signaling caused growth arrest due to activation of the NOTCH effector HEY1, directly suppressing SIRT1 and thereby activating p53. This mechanism of tumor suppression was validated in Ewing sarcoma cells, B-cell tumors, and human keratinocytes where NOTCH dysregulation has been implicated pathogenically. Notably, the SIRT1/2 inhibitor Tenovin-6 killed Ewing sarcoma cells in vitro and prohibited tumor growth and spread in an established xenograft model in zebrafish. Using immunohistochemistry to analyze primary tissue specimens, we found that high SIRT1 expression was associated with Ewing sarcoma metastasis and poor prognosis. Our findings suggest a mechanistic rationale for the use of SIRT1 inhibitors being developed to treat metastatic disease in patients with Ewing sarcoma.
Collapse
Affiliation(s)
- Jozef Ban
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Dave N T Aryee
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria. Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Argyro Fourtouna
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Wietske van der Ent
- Institute of Biology and Department of Pathology, Leiden University, Leiden, The Netherlands
| | - Max Kauer
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Stephan Niedan
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Isidro Machado
- Department of Pathology, University Medical School, València, Spain
| | | | - Oscar M Tirado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Raphaela Schwentner
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Piero Picci
- Laboratory of Experimental Oncology, Rizzoli Institute, Bologna, Italy
| | | | - Verena Berg
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Sandra J Strauss
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, Rizzoli Institute, Bologna, Italy
| | - Elizabeth R Lawlor
- Translational Oncology Program, Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan
| | - Ewa Snaar-Jagalska
- Institute of Biology and Department of Pathology, Leiden University, Leiden, The Netherlands
| | | | - Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria. Department of Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Park JH, Hale TK, Smith RJ, Yang T. PPM1B depletion induces premature senescence in human IMR-90 fibroblasts. Mech Ageing Dev 2014; 138:45-52. [DOI: 10.1016/j.mad.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 01/23/2023]
|
25
|
Yang T, Burrows C, Park JH. Development of a doxycycline-inducible lentiviral plasmid with an instant regulatory feature. Plasmid 2014; 72:29-35. [PMID: 24727543 DOI: 10.1016/j.plasmid.2014.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 12/19/2022]
Abstract
Lentiviruses provide highly efficient gene delivery vehicles in both dividing and non-dividing cells. Inducible gene expression systems often employ a specific cell line that constitutively expresses a regulatory protein for transgene expression. As one of such inducible expression systems the Tet-On system uses a cell line expressing reverse tetracycline-responsive transcriptional activator (rtTA). The rtTA protein binds to the tetracycline-responsive element (TRE) in the promoter and activates transcription of a transgene in a doxycycline-dependent manner. To establish a universal and instant regulatory system without generating Tet-On cell lines, the cDNAs of rtTA and a testing target gene (PPM1B) were cloned in the bi-directional TRE-containing promoters. Here, we examined whether a basal leaky expression of rtTA allows instantly inducible expression of both rtTA itself and the target gene, PPM1B in a single plasmid using the two mini-CMV promoters. Transient transfection of the lentiviral plasmids into human embryonic kidney HEK293T cells showed a significant induction of PPM1B expression in response to doxycycline, suggesting that these lentiviral plasmids can be used as an instantly inducible mammalian expression vector. However, the expression of rtTA by lentiviral transduction shows a minimal expression without a consistent response to doxycycline, suggesting that the utility of these lentiviral vectors is limited. A potential solution to overcome lentiviral transgene inactivation is proposed.
Collapse
Affiliation(s)
- Tian Yang
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Institute of Somatology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Christopher Burrows
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jeong Hyeon Park
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
26
|
The serine/threonine phosphatase PPM1B (PP2Cβ) selectively modulates PPARγ activity. Biochem J 2013; 451:45-53. [PMID: 23320500 DOI: 10.1042/bj20121113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reversible phosphorylation is a widespread molecular mechanism to regulate the function of cellular proteins, including transcription factors. Phosphorylation of the nuclear receptor PPARγ (peroxisome-proliferator-activated receptor γ) at two conserved serine residue (Ser(112) and Ser(273)) results in an altered transcriptional activity of this transcription factor. So far, only a very limited number of cellular enzymatic activities has been described which can dephosphorylate nuclear receptors. In the present study we used immunoprecipitation assays coupled to tandem MS analysis to identify novel PPARγ-regulating proteins. We identified the serine/threonine phosphatase PPM1B [PP (protein phosphatase), Mg(2+)/Mn(2+) dependent, 1B; also known as PP2Cβ] as a novel PPARγ-interacting protein. Endogenous PPM1B protein is localized in the nucleus of mature 3T3-L1 adipocytes where it can bind to PPARγ. Furthermore we show that PPM1B can directly dephosphorylate PPARγ, both in intact cells and in vitro. In addition PPM1B increases PPARγ-mediated transcription via dephosphorylation of Ser(112). Finally, we show that knockdown of PPM1B in 3T3-L1 adipocytes blunts the expression of some PPARγ target genes while leaving others unaltered. These findings qualify the phosphatase PPM1B as a novel selective modulator of PPARγ activity.
Collapse
|
27
|
Vlachostergios PJ, Voutsadakis IA, Papandreou CN. The ubiquitin-proteasome system in glioma cell cycle control. Cell Div 2012; 7:18. [PMID: 22817864 PMCID: PMC3462126 DOI: 10.1186/1747-1028-7-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022] Open
Abstract
A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS) constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Department of Medical Oncology, University Hospital of Larissa, University of Thessaly School of Medicine, Larissa, 41110, Greece.
| | | | | |
Collapse
|
28
|
Schmitt J, Fischer U, Heisel S, Strickfaden H, Backes C, Ruggieri A, Keller A, Chang P, Meese E. GAS41 amplification results in overexpression of a new spindle pole protein. Genes Chromosomes Cancer 2012; 51:868-80. [PMID: 22619067 DOI: 10.1002/gcc.21971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 11/08/2022] Open
Abstract
Amplification is a hallmark of many human tumors but the role of most amplified genes in human tumor development is not yet understood. Previously, we identified a frequently amplified gene in glioma termed glioma-amplified sequence 41 (GAS41). Using the TCGA data portal and performing experiments on HeLa and TX3868, we analyzed the role of GAS41 amplification on GAS41 overexpression and the effect on the cell cycle. Here we show that GAS41 amplification is associated with overexpression in the majority of cases. Both induced and endogenous overexpression of GAS41 leads to an increase in multipolar spindles. We showed that GAS41 is specifically associated with pericentrosome material. As result of an increased GAS41 expression we found bipolar spindles with misaligned chromosomes. This number was even increased by a combined overexpression of GAS41 and a reduced expression of NuMA. We propose that GAS41 amplification may have an effect on the highly altered karyotype of glioblastoma via its role during spindle pole formation.
Collapse
Affiliation(s)
- Jana Schmitt
- Department of Human Genetics, Saarland University, Medical School, Homburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yien YY, Bieker JJ. Functional interactions between erythroid Krüppel-like factor (EKLF/KLF1) and protein phosphatase PPM1B/PP2Cβ. J Biol Chem 2012; 287:15193-204. [PMID: 22393050 DOI: 10.1074/jbc.m112.350496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF; KLF1) is an erythroid-specific transcription factor required for the transcription of genes that regulate erythropoiesis. In this paper, we describe the identification of a novel EKLF interactor, Ppm1b, a serine-threonine protein phosphatase that has been implicated in the attenuation of NFκB signaling and the regulation of Cdk9 phosphorylation status. We show that Ppm1b interacts with EKLF via its PEST1 sequence. However, its genetic regulatory role is complex. Using a promoter-reporter assay in an erythroid cell line, we show that Ppm1b superactivates EKLF at the β-globin and BKLF promoters, dependent on intact Ppm1b phosphatase activity. Conversely, depletion of Ppm1b in CD34(+) cells leads to a higher level of endogenous β-globin gene activation after differentiation. We also observe that Ppm1b likely has an indirect role in regulating EKLF turnover via its zinc finger domain. Together, these studies show that Ppm1b plays a multilayered role in regulating the availability and optimal activity of the EKLF protein in erythroid cells.
Collapse
Affiliation(s)
- Yvette Y Yien
- Department of Developmental and Regenerative Biology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|