1
|
Hegazi E, Muir TW. The spread of chemical biology into chromatin. J Biol Chem 2024; 300:107776. [PMID: 39276931 DOI: 10.1016/j.jbc.2024.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Understanding the molecular mechanisms underlying chromatin regulation, the complexity of which seems to deepen with each passing year, requires a multidisciplinary approach. While many different tools have been brought to bear in this area, here we focus on those that have emerged from the field of chemical biology. We discuss methods that allow the generation of what is now commonly referred to as "designer chromatin," a term that was coined by the late C. David (Dave) Allis. Among Dave's many talents was a remarkable ability to "brand" a nascent area (or concept) such that it was immediately relatable to the broader field. This also had the entirely intentional effect of drawing more people into the area, something that as this brief review attempts to convey has certainly happened when it comes to getting chemists involved in chromatin research.
Collapse
Affiliation(s)
- Esmat Hegazi
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
2
|
Hicks C, Rahman S, Gloor S, Fields J, Husby N, Vaidya A, Maier K, Morgan M, Keogh MC, Wolberger C. Ubiquitinated histone H2B as gatekeeper of the nucleosome acidic patch. Nucleic Acids Res 2024; 52:9978-9995. [PMID: 39149911 PMCID: PMC11381367 DOI: 10.1093/nar/gkae698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Monoubiquitination of histones H2B-K120 (H2BK120ub) and H2A-K119 (H2AK119ub) play opposing roles in regulating transcription and chromatin compaction. H2BK120ub is a hallmark of actively transcribed euchromatin, while H2AK119ub is highly enriched in transcriptionally repressed heterochromatin. Whereas H2BK120ub is known to stimulate the binding or activity of various chromatin-modifying enzymes, this post-translational modification (PTM) also interferes with the binding of several proteins to the nucleosome H2A/H2B acidic patch via an unknown mechanism. Here, we report cryoEM structures of an H2BK120ub nucleosome showing that ubiquitin adopts discrete positions that occlude the acidic patch. Molecular dynamics simulations show that ubiquitin remains stably positioned over this nucleosome region. By contrast, our cryoEM structures of H2AK119ub nucleosomes show ubiquitin adopting discrete positions that minimally occlude the acidic patch. Consistent with these observations, H2BK120ub, but not H2AK119ub, abrogates nucleosome interactions with acidic patch-binding proteins RCC1 and LANA, and single-domain antibodies specific to this region. Our results suggest a mechanism by which H2BK120ub serves as a gatekeeper to the acidic patch and point to distinct roles for histone H2AK119 and H2BK120 ubiquitination in regulating protein binding to nucleosomes.
Collapse
Affiliation(s)
- Chad W Hicks
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Sanim Rahman
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Susan L Gloor
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - James K Fields
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Anup Vaidya
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Keith E Maier
- EpiCypher Inc., 6 Davis Drive, Suite 755, Durham, NC 27709, USA
| | - Michael Morgan
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | - Cynthia Wolberger
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Ghate NB, Nadkarni KS, Barik GK, Tat SS, Sahay O, Santra MK. Histone ubiquitination: Role in genome integrity and chromatin organization. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195044. [PMID: 38763317 DOI: 10.1016/j.bbagrm.2024.195044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Maintenance of genome integrity is a precise but tedious and complex job for the cell. Several post-translational modifications (PTMs) play vital roles in maintaining the genome integrity. Although ubiquitination is one of the most crucial PTMs, which regulates the localization and stability of the nonhistone proteins in various cellular and developmental processes, ubiquitination of the histones is a pivotal epigenetic event critically regulating chromatin architecture. In addition to genome integrity, importance of ubiquitination of core histones (H2A, H2A, H3, and H4) and linker histone (H1) have been reported in several cellular processes. However, the complex interplay of histone ubiquitination and other PTMs, as well as the intricate chromatin architecture and dynamics, pose a significant challenge to unravel how histone ubiquitination safeguards genome stability. Therefore, further studies are needed to elucidate the interactions between histone ubiquitination and other PTMs, and their role in preserving genome integrity. Here, we review all types of histone ubiquitinations known till date in maintaining genomic integrity during transcription, replication, cell cycle, and DNA damage response processes. In addition, we have also discussed the role of histone ubiquitination in regulating other histone PTMs emphasizing methylation and acetylation as well as their potential implications in chromatin architecture. Further, we have also discussed the involvement of deubiquitination enzymes (DUBs) in controlling histone ubiquitination in modulating cellular processes.
Collapse
Affiliation(s)
- Nikhil Baban Ghate
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| | - Kaustubh Sanjay Nadkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Sharad Shriram Tat
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
4
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Yang Z, Zheng Y, Gao Q. Lysine lactylation in the regulation of tumor biology. Trends Endocrinol Metab 2024; 35:720-731. [PMID: 38395657 DOI: 10.1016/j.tem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Lysine lactylation (Kla), a newly discovered post-translational modification (PTM) of lysine residues, is progressively revealing its crucial role in tumor biology. A growing body of evidence supports its capacity of transcriptional regulation through histone modification and modulation of non-histone protein function. It intricately participates in a myriad of events in the tumor microenvironment (TME) by orchestrating the transitions of immune states and augmenting tumor malignancy. Its preferential modification of metabolic proteins underscores its specific regulatory influence on metabolism. This review focuses on the effect and the probable mechanisms of Kla-mediated regulation of tumor metabolism, the upstream factors that determine Kla intensity, and its potential implications for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Zijian Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingqi Zheng
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Kealy L, Runting J, Thiele D, Scheer S. An emerging maestro of immune regulation: how DOT1L orchestrates the harmonies of the immune system. Front Immunol 2024; 15:1385319. [PMID: 38962004 PMCID: PMC11219580 DOI: 10.3389/fimmu.2024.1385319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 07/05/2024] Open
Abstract
The immune system comprises a complex yet tightly regulated network of cells and molecules that play a critical role in protecting the body from infection and disease. The activity and development of each immune cell is regulated in a myriad of ways including through the cytokine milieu, the availability of key receptors, via tailored intracellular signalling cascades, dedicated transcription factors and even by directly modulating gene accessibility and expression; the latter is more commonly known as epigenetic regulation. In recent years, epigenetic regulators have begun to emerge as key players involved in modulating the immune system. Among these, the lysine methyltransferase DOT1L has gained significant attention for its involvement in orchestrating immune cell formation and function. In this review we provide an overview of the role of DOT1L across the immune system and the implications of this role on health and disease. We begin by elucidating the general mechanisms of DOT1L-mediated histone methylation and its impact on gene expression within immune cells. Subsequently, we provide a detailed and comprehensive overview of recent studies that identify DOT1L as a crucial regulator of immune cell development, differentiation, and activation. Next, we discuss the potential mechanisms of DOT1L-mediated regulation of immune cell function and shed light on how DOT1L might be contributing to immune cell homeostasis and dysfunction. We then provide food for thought by highlighting some of the current obstacles and technical limitations precluding a more in-depth elucidation of DOT1L's role. Finally, we explore the potential therapeutic implications of targeting DOT1L in the context of immune-related diseases and discuss ongoing research efforts to this end. Overall, this review consolidates the current paradigm regarding DOT1L's role across the immune network and emphasises its critical role in governing the healthy immune system and its potential as a novel therapeutic target for immune-related diseases. A deeper understanding of DOT1L's immunomodulatory functions could pave the way for innovative therapeutic approaches which fine-tune the immune response to enhance or restore human health.
Collapse
Affiliation(s)
- Liam Kealy
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jessica Runting
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel Thiele
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian Scheer
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
7
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
8
|
Ooga M. Chromatin structure in totipotent mouse early preimplantation embryos. J Reprod Dev 2024; 70:152-159. [PMID: 38462486 PMCID: PMC11153117 DOI: 10.1262/jrd.2023-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (sperm and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized oocytes have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.
Collapse
Affiliation(s)
- Masatoshi Ooga
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| |
Collapse
|
9
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Hananya N, Koren S, Muir TW. Interrogating epigenetic mechanisms with chemically customized chromatin. Nat Rev Genet 2024; 25:255-271. [PMID: 37985791 PMCID: PMC11176933 DOI: 10.1038/s41576-023-00664-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Genetic and genomic techniques have proven incredibly powerful for identifying and studying molecular players implicated in the epigenetic regulation of DNA-templated processes such as transcription. However, achieving a mechanistic understanding of how these molecules interact with chromatin to elicit a functional output is non-trivial, owing to the tremendous complexity of the biochemical networks involved. Advances in protein engineering have enabled the reconstitution of 'designer' chromatin containing customized post-translational modification patterns, which, when used in conjunction with sophisticated biochemical and biophysical methods, allow many mechanistic questions to be addressed. In this Review, we discuss how such tools complement established 'omics' techniques to answer fundamental questions on chromatin regulation, focusing on chromatin mark establishment and protein-chromatin interactions.
Collapse
Affiliation(s)
- Nir Hananya
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Shany Koren
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Onishi S, Uchiyama K, Sato K, Okada C, Kobayashi S, Hamada K, Nishizawa T, Nureki O, Ogata K, Sengoku T. Structure of the human Bre1 complex bound to the nucleosome. Nat Commun 2024; 15:2580. [PMID: 38519511 PMCID: PMC10959955 DOI: 10.1038/s41467-024-46910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/10/2024] [Indexed: 03/25/2024] Open
Abstract
Histone H2B monoubiquitination (at Lys120 in humans) regulates transcription elongation and DNA repair. In humans, H2B monoubiquitination is catalyzed by the heterodimeric Bre1 complex composed of Bre1A/RNF20 and Bre1B/RNF40. The Bre1 proteins generally function as tumor suppressors, while in certain cancers, they facilitate cancer cell proliferation. To obtain structural insights of H2BK120 ubiquitination and its regulation, we report the cryo-electron microscopy structure of the human Bre1 complex bound to the nucleosome. The two RING domains of Bre1A and Bre1B recognize the acidic patch and the nucleosomal DNA phosphates around SHL 6.0-6.5, which are ideally located to recruit the E2 enzyme and ubiquitin for H2BK120-specific ubiquitination. Mutational experiments suggest that the two RING domains bind in two orientations and that ubiquitination occurs when Bre1A binds to the acidic patch. Our results provide insights into the H2BK120-specific ubiquitination by the Bre1 proteins and suggest that H2B monoubiquitination can be regulated by nuclesomal DNA flexibility.
Collapse
Affiliation(s)
- Shuhei Onishi
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotone Uchiyama
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ko Sato
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chikako Okada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunsuke Kobayashi
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
12
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
13
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
14
|
Nil Z, Deshwar AR, Huang Y, Barish S, Zhang X, Choufani S, Le Quesne Stabej P, Hayes I, Yap P, Haldeman-Englert C, Wilson C, Prescott T, Tveten K, Vøllo A, Haynes D, Wheeler PG, Zon J, Cytrynbaum C, Jobling R, Blyth M, Banka S, Afenjar A, Mignot C, Robin-Renaldo F, Keren B, Kanca O, Mao X, Wegner DJ, Sisco K, Shinawi M, Wangler MF, Weksberg R, Yamamoto S, Costain G, Bellen HJ. Rare de novo gain-of-function missense variants in DOT1L are associated with developmental delay and congenital anomalies. Am J Hum Genet 2023; 110:1919-1937. [PMID: 37827158 PMCID: PMC10645550 DOI: 10.1016/j.ajhg.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.
Collapse
Affiliation(s)
- Zelha Nil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ashish R Deshwar
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Polona Le Quesne Stabej
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Ian Hayes
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | - Patrick Yap
- Genetic Health Service New Zealand- Northern Hub, Auckland District Health Board, Auckland, New Zealand
| | | | - Carolyn Wilson
- Mission Fullerton Genetics Center, Asheville, NC 28803, USA
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Arve Vøllo
- Department of Pediatrics, Hospital of Østfold, 1714 Grålum, Norway
| | - Devon Haynes
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA; Clinical Genetics Service, Guy's Hospital, Guy's and St Thomas' NHS Trust, London, England, UK
| | - Patricia G Wheeler
- Division of Genetics, Arnold Palmer Hospital for Children - Orlando Health, Orlando, FL, USA
| | - Jessica Zon
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rebekah Jobling
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Moira Blyth
- North of Scotland Regional Genetics Service, Clinical Genetics Centre, Ashgrove House, Foresterhill, Aberdeen, UK
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9WL Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, M13 9WL Manchester, UK
| | - Alexandra Afenjar
- Service de génétique, CRMR des malformations et maladies congénitales du cervelet et CRMR déficience intellectuelle, hôpital Trousseau, AP-HP, Paris, France
| | - Cyril Mignot
- Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière and Hôpital Trousseau, Paris, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | | | - Boris Keren
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, 75013 Paris, France
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China; Clinical Research Center for Placental Medicine in Hunan Province, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410005, China
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen Sisco
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Gilan O, Talarmain L, Bell CC, Neville D, Knezevic K, Ferguson DT, Boudes M, Chan YC, Davidovich C, Lam EYN, Dawson MA. CRISPR-ChIP reveals selective regulation of H3K79me2 by Menin in MLL leukemia. Nat Struct Mol Biol 2023; 30:1592-1606. [PMID: 37679565 DOI: 10.1038/s41594-023-01087-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Chromatin regulation involves the selective recruitment of chromatin factors to facilitate DNA repair, replication and transcription. Here we demonstrate the utility of coupling unbiased functional genomics with chromatin immunoprecipitation (CRISPR-ChIP) to identify the factors associated with active chromatin modifications in mammalian cells. Specifically, an integrated reporter containing a cis-regulatory element of interest and a single guide RNA provide a chromatinized template for a direct readout for regulators of histone modifications associated with actively transcribed genes such as H3K4me3 and H3K79me2. With CRISPR-ChIP, we identify all the nonredundant COMPASS complex members required for H3K4me3 and demonstrate that RNA polymerase II is dispensable for the maintenance of H3K4me3. As H3K79me2 has a putative oncogenic function in leukemia cells driven by MLL translocations, using CRISPR-ChIP we reveal a functional partitioning of H3K79 methylation into two distinct regulatory units: an oncogenic DOT1L complex directed by the MLL fusion protein in a Menin-dependent manner and a separate endogenous DOT1L complex, where catalytic activity is directed by MLLT10. Overall, CRISPR-ChIP provides a powerful tool for the unbiased interrogation of the mechanisms underpinning chromatin regulation.
Collapse
Affiliation(s)
- Omer Gilan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| | - Laure Talarmain
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel Neville
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Kathy Knezevic
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniel T Ferguson
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Marion Boudes
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- EMBL-Australia, Clayton, Victoria, Australia
| | - Enid Y N Lam
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Clinical Haematology, Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Victoria, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Fields JK, Hicks CW, Wolberger C. Diverse modes of regulating methyltransferase activity by histone ubiquitination. Curr Opin Struct Biol 2023; 82:102649. [PMID: 37429149 PMCID: PMC10527252 DOI: 10.1016/j.sbi.2023.102649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
Post-translational modification of histones plays a central role in regulating transcription. Methylation of histone H3 at lysines 4 (H3K4) and 79 (H3K79) play roles in activating transcription whereas methylation of H3K27 is a repressive mark. These modifications, in turn, depend upon prior monoubiquitination of specific histone residues in a phenomenon known as histone crosstalk. Earlier work had provided insights into the mechanism by which monoubiquitination histone H2BK120 stimulates H3K4 methylation by COMPASS/MLL1 and H3K79 methylation by DOT1L, and monoubiquitinated H2AK119 stimulates methylation of H3K27 by the PRC2 complex. Recent studies have shed new light on the role of individual subunits and paralogs in regulating the activity of PRC2 and how additional post-translational modifications regulate yeast Dot1 and human DOT1L, as well as provided new insights into the regulation of MLL1 by H2BK120ub.
Collapse
Affiliation(s)
- James K Fields
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Chad W Hicks
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
17
|
Chai X, Tao Q, Li L. The role of RING finger proteins in chromatin remodeling and biological functions. Epigenomics 2023; 15:1053-1068. [PMID: 37964749 DOI: 10.2217/epi-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Mammalian DNA duplexes are highly condensed with different components, including histones, enabling chromatin formation. Chromatin remodeling is involved in multiple biological processes, including gene transcription regulation and DNA damage repair. Recent research has highlighted the significant involvement of really interesting new gene (RING) finger proteins in chromatin remodeling, primarily attributed to their E3 ubiquitin ligase activities. In this review, we highlight the pivotal role of RING finger proteins in chromatin remodeling and provide an overview of their capacity to ubiquitinate specific histones, modulate ATP-dependent chromatin remodeling complexes and interact with various histone post-translational modifications. We also discuss the diverse biological effects of RING finger protein-mediated chromatin remodeling and explore potential therapeutic strategies for targeting these proteins.
Collapse
Affiliation(s)
- Xiaoxue Chai
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
18
|
cKMT1 is a new lysine methyltransferase that methylates the ferredoxin-NADP(+) oxidoreductase (FNR) and regulates energy transfer in cyanobacteria. Mol Cell Proteomics 2023; 22:100521. [PMID: 36858286 PMCID: PMC10090440 DOI: 10.1016/j.mcpro.2023.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Lysine methylation is a conserved and dynamic regulatory post-translational modification performed by lysine methyltransferases (KMTs). KMTs catalyze the transfer of mono-, di-, or tri-methyl groups to substrate proteins and play a critical regulatory role in all domains of life. To date, only one KMT has been identified in cyanobacteria. Here, we tested all of the predicted KMTs in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and we biochemically characterized sll1526 that we termed cKMT1 (cyanobacterial lysine methyltransferase 1), and determined that it can catalyze lysine methylation both in vivo and in vitro. Loss of cKMT1 alters photosynthetic electron transfer in Synechocystis. We analyzed cKMT1-regulated methylation sites in Synechocystis using a timsTOF Pro instrument. We identified 305 class I lysine methylation sites within 232 proteins, and of these, 80 methylation sites in 58 proteins were hypomethylated in ΔcKMT1 cells. We further demonstrated that cKMT1 could methylate ferredoxin-NADP(+) oxidoreductase (FNR) and its potential sites of action on FNR were identified. Amino acid residues H118 and Y219 were identified as key residues in the putative active site of cKMT1 as indicated by structure simulation, site-directed mutagenesis, and KMT activity measurement. Using mutations that mimic the unmethylated forms of FNR, we demonstrated that the inability to methylate K139 residues results in a decrease in the redox activity of FNR and affects energy transfer in Synechocystis. Together, our study identified a new KMT in Synechocystis and elucidated a methylation-mediated molecular mechanism catalyzed by cKMT1 for the regulation of energy transfer in cyanobacteria.
Collapse
|
19
|
Cobos SN, Janani C, Cruz G, Rana N, Son E, Frederic R, Paredes Casado J, Khan M, Bennett SA, Torrente MP. [PRION +] States Are Associated with Specific Histone H3 Post-Translational Modification Changes. Pathogens 2022; 11:pathogens11121436. [PMID: 36558770 PMCID: PMC9786042 DOI: 10.3390/pathogens11121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Prions are proteins able to take on alternative conformations and propagate them in a self-templating process. In Saccharomyces cerevisiae, prions enable heritable responses to environmental conditions through bet-hedging mechanisms. Hence, [PRION+] states may serve as an atypical form of epigenetic control, producing heritable phenotypic change via protein folding. However, the connections between prion states and the epigenome remain unknown. Do [PRION+] states link to canonical epigenetic channels, such as histone post-translational modifications? Here, we map out the histone H3 modification landscape in the context of the [SWI+] and [PIN+] prion states. [SWI+] is propagated by Swi1, a subunit of the SWI/SNF chromatin remodeling complex, while [PIN+] is propagated by Rnq1, a protein of unknown function. We find [SWI+] yeast display decreases in the levels of H3K36me2 and H3K56ac compared to [swi-] yeast. In contrast, decreases in H3K4me3, H3K36me2, H3K36me3 and H3K79me3 are connected to the [PIN+] state. Curing of the prion state by treatment with guanidine hydrochloride restored histone PTM to [prion-] state levels. We find histone PTMs in the [PRION+] state do not match those in loss-of-function models. Our findings shed light into the link between prion states and histone modifications, revealing novel insight into prion function in yeast.
Collapse
Affiliation(s)
- Samantha N. Cobos
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Chaim Janani
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Gabriel Cruz
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Navin Rana
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Elizaveta Son
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Rania Frederic
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
| | | | - Maliha Khan
- Biology Department, Brooklyn College, Brooklyn, NY 11210, USA
| | - Seth A. Bennett
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
- Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Mariana P. Torrente
- Chemistry Department, Brooklyn College, Brooklyn, NY 11210, USA
- Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
20
|
Korenfeld HT, Avram-Shperling A, Zukerman Y, Iluz A, Boocholez H, Ben-Shimon L, Ben-Aroya S. Reversal of histone H2B mono-ubiquitination is required for replication stress recovery. DNA Repair (Amst) 2022; 119:103387. [DOI: 10.1016/j.dnarep.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
|
21
|
Feng J, Meng X. Histone modification and histone modification-targeted anti-cancer drugs in breast cancer: Fundamentals and beyond. Front Pharmacol 2022; 13:946811. [PMID: 36188615 PMCID: PMC9522521 DOI: 10.3389/fphar.2022.946811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022] Open
Abstract
Dysregulated epigenetic enzymes and resultant abnormal epigenetic modifications (EMs) have been suggested to be closely related to tumor occurrence and progression. Histone modifications (HMs) can assist in maintaining genome stability, DNA repair, transcription, and chromatin modulation within breast cancer (BC) cells. In addition, HMs are reversible, dynamic processes involving the associations of different enzymes with molecular compounds. Abnormal HMs (e.g. histone methylation and histone acetylation) have been identified to be tightly related to BC occurrence and development, even though their underlying mechanisms remain largely unclear. EMs are reversible, and as a result, epigenetic enzymes have aroused wide attention as anti-tumor therapeutic targets. At present, treatments to restore aberrant EMs within BC cells have entered preclinical or clinical trials. In addition, no existing studies have comprehensively analyzed aberrant HMs within BC cells; in addition, HM-targeting BC treatments remain to be further investigated. Histone and non-histone protein methylation is becoming an attractive anti-tumor epigenetic therapeutic target; such methylation-related enzyme inhibitors are under development at present. Consequently, the present work focuses on summarizing relevant studies on HMs related to BC and the possible mechanisms associated with abnormal HMs. Additionally, we also aim to analyze existing therapeutic agents together with those drugs approved and tested through pre-clinical and clinical trials, to assess their roles in HMs. Moreover, epi-drugs that target HMT inhibitors and HDAC inhibitors should be tested in preclinical and clinical studies for the treatment of BC. Epi-drugs that target histone methylation (HMT inhibitors) and histone acetylation (HDAC inhibitors) have now entered clinical trials or are approved by the US Food and Drug Administration (FDA). Therefore, the review covers the difficulties in applying HM-targeting treatments in clinics and proposes feasible approaches for overcoming such difficulties and promoting their use in treating BC cases.
Collapse
|
22
|
Ai H, Sun M, Liu A, Sun Z, Liu T, Cao L, Liang L, Qu Q, Li Z, Deng Z, Tong Z, Chu G, Tian X, Deng H, Zhao S, Li JB, Lou Z, Liu L. H2B Lys34 Ubiquitination Induces Nucleosome Distortion to Stimulate Dot1L Activity. Nat Chem Biol 2022; 18:972-980. [PMID: 35739357 DOI: 10.1038/s41589-022-01067-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
Ubiquitination-dependent histone crosstalk plays critical roles in chromatin-associated processes and is highly associated with human diseases. Mechanism studies of the crosstalk have been of the central focus. Here our study on the crosstalk between H2BK34ub and Dot1L-catalyzed H3K79me suggests a novel mechanism of ubiquitination-induced nucleosome distortion to stimulate the activity of an enzyme. We determined the cryo-electron microscopy structures of Dot1L-H2BK34ub nucleosome complex and the H2BK34ub nucleosome alone. The structures reveal that H2BK34ub induces an almost identical orientation and binding pattern of Dot1L on nucleosome as H2BK120ub, which positions Dot1L for the productive conformation through direct ubiquitin-enzyme contacts. However, H2BK34-anchored ubiquitin does not directly interact with Dot1L as occurs in the case of H2BK120ub, but rather induces DNA and histone distortion around the modified site. Our findings establish the structural framework for understanding the H2BK34ub-H3K79me trans-crosstalk and highlight the diversity of mechanisms for histone ubiquitination to activate chromatin-modifying enzymes.
Collapse
Affiliation(s)
- Huasong Ai
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Maoshen Sun
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Aijun Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.,Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zixian Sun
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Tingting Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lin Cao
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, and College of Pharmacy, Nankai University, Tianjin, China
| | - Lujun Liang
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Qian Qu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Zichen Li
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Zhiheng Deng
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Zebin Tong
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Guochao Chu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Zhiyong Lou
- MOE Key Laboratory of Protein Science, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China.
| | - Lei Liu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
23
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
24
|
El-Saafin F, Devys D, Johnsen SA, Vincent SD, Tora L. SAGA-Dependent Histone H2Bub1 Deubiquitination Is Essential for Cellular Ubiquitin Balance during Embryonic Development. Int J Mol Sci 2022; 23:ijms23137459. [PMID: 35806465 PMCID: PMC9267394 DOI: 10.3390/ijms23137459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin (ub) is a small, highly conserved protein widely expressed in eukaryotic cells. Ubiquitination is a post-translational modification catalyzed by enzymes that activate, conjugate, and ligate ub to proteins. Substrates can be modified either by addition of a single ubiquitin molecule (monoubiquitination), or by conjugation of several ubs (polyubiquitination). Monoubiquitination acts as a signaling mark to control diverse biological processes. The cellular and spatial distribution of ub is determined by the opposing activities of ub ligase enzymes, and deubiquitinases (DUBs), which remove ub from proteins to generate free ub. In mammalian cells, 1–2% of total histone H2B is monoubiquitinated. The SAGA (Spt Ada Gcn5 Acetyl-transferase) is a transcriptional coactivator and its DUB module removes ub from H2Bub1. The mammalian SAGA DUB module has four subunits, ATXN7, ATXN7L3, USP22, and ENY2. Atxn7l3−/− mouse embryos, lacking DUB activity, have a five-fold increase in H2Bub1 retention, and die at mid-gestation. Interestingly, embryos lacking the ub encoding gene, Ubc, have a similar phenotype. Here we provide a current overview of data suggesting that H2Bub1 retention on the chromatin in Atxn7l3−/− embryos may lead to an imbalance in free ub distribution. Thus, we speculate that ATXN7L3-containing DUBs impact the free cellular ub pool during development.
Collapse
Affiliation(s)
- Farrah El-Saafin
- Olivia Newton-John Cancer Research Institute, Melbourne 3095, Australia;
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | | | - Stéphane D. Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- Correspondence: (S.D.V.); (L.T.); Tel.: +33-3-88653425 (S.D.V.); +33-3-88653444 (L.T.)
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- Correspondence: (S.D.V.); (L.T.); Tel.: +33-3-88653425 (S.D.V.); +33-3-88653444 (L.T.)
| |
Collapse
|
25
|
Wille CK, Sridharan R. Connecting the DOTs on Cell Identity. Front Cell Dev Biol 2022; 10:906713. [PMID: 35733849 PMCID: PMC9207516 DOI: 10.3389/fcell.2022.906713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023] Open
Abstract
DOT1-Like (DOT1L) is the sole methyltransferase of histone H3K79, a modification enriched mainly on the bodies of actively transcribing genes. DOT1L has been extensively studied in leukemia were some of the most frequent onco-fusion proteins contain portions of DOT1L associated factors that mislocalize H3K79 methylation and drive oncogenesis. However, the role of DOT1L in non-transformed, developmental contexts is less clear. Here we assess the known functional roles of DOT1L both in vitro cell culture and in vivo models of mammalian development. DOT1L is evicted during the 2-cell stage when cells are totipotent and massive epigenetic and transcriptional alterations occur. Embryonic stem cell lines that are derived from the blastocyst tolerate the loss of DOT1L, while the reduction of DOT1L protein levels or its catalytic activity greatly enhances somatic cell reprogramming to induced pluripotent stem cells. DOT1L knockout mice are embryonically lethal when organogenesis commences. We catalog the rapidly increasing studies of total and lineage specific knockout model systems that show that DOT1L is broadly required for differentiation. Reduced DOT1L activity is concomitant with increased developmental potential. Contrary to what would be expected of a modification that is associated with active transcription, loss of DOT1L activity results in more upregulated than downregulated genes. DOT1L also participates in various epigenetic networks that are both cell type and developmental stage specific. Taken together, the functions of DOT1L during development are pleiotropic and involve gene regulation at the locus specific and global levels.
Collapse
Affiliation(s)
- Coral K. Wille
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Coral K. Wille, , Rupa Sridharan,
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Coral K. Wille, , Rupa Sridharan,
| |
Collapse
|
26
|
Morgan M, Ikenoue T, Suga H, Wolberger C. Potent macrocycle inhibitors of the human SAGA deubiquitinating module. Cell Chem Biol 2022; 29:544-554.e4. [PMID: 34936860 PMCID: PMC9035043 DOI: 10.1016/j.chembiol.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator contains a four-protein subcomplex called the deubiquitinating enzyme (DUB) module that removes ubiquitin from histone H2B-K120. The human DUB module contains the catalytic subunit ubiquitin-specific protease 22 (USP22), which is overexpressed in a number of cancers that are resistant to available therapies. We screened a massive combinatorial library of cyclic peptides and identified potent inhibitors of USP22. The top hit was highly specific for USP22 compared with a panel of 44 other human DUBs. Cells treated with peptide had increased levels of H2B monoubiquitination, demonstrating the ability of the cyclic peptides to enter human cells and inhibit H2B deubiquitination. These macrocycle inhibitors are, to our knowledge, the first reported inhibitors of USP22/SAGA DUB module and show promise for development.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatsuya Ikenoue
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Erlendson AA, Freitag M. Not all Is SET for Methylation: Evolution of Eukaryotic Protein Methyltransferases. Methods Mol Biol 2022; 2529:3-40. [PMID: 35733008 DOI: 10.1007/978-1-0716-2481-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the "histone code," and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies.
Collapse
Affiliation(s)
- Allyson A Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
28
|
Ai H, Peng S, Li JB. Chemical methods for studying the crosstalk between histone H2B ubiquitylation and H3 methylation. J Pept Sci 2021; 28:e3381. [PMID: 34811838 DOI: 10.1002/psc.3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/06/2022]
Abstract
The reversible and dynamic post-translational modifications (PTMs) of histones in eukaryotic chromatin are intimately connected to cell development and gene function, and abnormal regulation of PTMs can result in cancer and neurodegenerative diseases. Specific combinations of these modifications are mediated by a series of chromatin proteins that write, erase, and read the "histone codes," but mechanistic studies of the precise biochemical and structural relationships between different sets of modifications and their effects on chromatin function constitute a unique challenge to canonical biochemical approaches. In the past decade, the development and application of chemical methods for investigating histone PTM crosstalks has received considerable attention in the field of chemical biology. In this review, taking the functional crosstalk between H2B ubiquitylation at Lys120 (H2BK120ub) and H3 methylation at Lys79 (H3K79me) as a typical example, we survey recent developments of different chemical methods, in particular, protein synthetic chemistry and protein-based chemical probes, for studying the mechanism of the functional crosstalks of histone PTMs.
Collapse
Affiliation(s)
- Huasong Ai
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuai Peng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
29
|
A DOT1B/Ribonuclease H2 Protein Complex Is Involved in R-Loop Processing, Genomic Integrity, and Antigenic Variation in Trypanosoma brucei. mBio 2021; 12:e0135221. [PMID: 34749530 PMCID: PMC8576533 DOI: 10.1128/mbio.01352-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parasite Trypanosoma brucei periodically changes the expression of protective variant surface glycoproteins (VSGs) to evade its host’s immune system in a process known as antigenic variation. One route to change VSG expression is the transcriptional activation of a previously silent VSG expression site (ES), a subtelomeric region containing the VSG genes. Homologous recombination of a different VSG from a large reservoir into the active ES represents another route. The conserved histone methyltransferase DOT1B is involved in transcriptional silencing of inactive ES and influences ES switching kinetics. The molecular machinery that enables DOT1B to execute these regulatory functions remains elusive, however. To better understand DOT1B-mediated regulatory processes, we purified DOT1B-associated proteins using complementary biochemical approaches. We identified several novel DOT1B interactors. One of these was the RNase H2 complex, previously shown to resolve RNA-DNA hybrids, maintain genome integrity, and play a role in antigenic variation. Our study revealed that DOT1B depletion results in an increase in RNA-DNA hybrids, accumulation of DNA damage, and ES switching events. Surprisingly, a similar pattern of VSG deregulation was observed in RNase H2 mutants. We propose that both proteins act together in resolving R-loops to ensure genome integrity and contribute to the tightly regulated process of antigenic variation.
Collapse
|
30
|
Cavalieri V. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Genes (Basel) 2021; 12:genes12101596. [PMID: 34680990 PMCID: PMC8535662 DOI: 10.3390/genes12101596] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of a nucleosome-based chromatin structure accompanied the evolutionary transition from prokaryotes to eukaryotes. In this scenario, histones became the heart of the complex and precisely timed coordination between chromatin architecture and functions during adaptive responses to environmental influence by means of epigenetic mechanisms. Notably, such an epigenetic machinery involves an overwhelming number of post-translational modifications at multiple residues of core and linker histones. This review aims to comprehensively describe old and recent evidence in this exciting field of research. In particular, histone post-translational modification establishing/removal mechanisms, their genomic locations and implication in nucleosome dynamics and chromatin-based processes, as well as their harmonious combination and interdependence will be discussed.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
31
|
Shirra MK, Kocik RA, Ellison MA, Arndt KM. Opposing functions of the Hda1 complex and histone H2B mono-ubiquitylation in regulating cryptic transcription in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6360461. [PMID: 34499735 PMCID: PMC8527469 DOI: 10.1093/g3journal/jkab298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022]
Abstract
Maintenance of chromatin structure under the disruptive force of transcription requires cooperation among numerous regulatory factors. Histone post-translational modifications can regulate nucleosome stability and influence the disassembly and reassembly of nucleosomes during transcription elongation. The Paf1 transcription elongation complex, Paf1C, is required for several transcription-coupled histone modifications, including the mono-ubiquitylation of H2B. In Saccharomyces cerevisiae, amino acid substitutions in the Rtf1 subunit of Paf1C greatly diminish H2B ubiquitylation and cause transcription to initiate at a cryptic promoter within the coding region of the FLO8 gene, an indicator of chromatin disruption. In a genetic screen to identify factors that functionally interact with Paf1C, we identified mutations in HDA3, a gene encoding a subunit of the Hda1C histone deacetylase (HDAC), as suppressors of an rtf1 mutation. Absence of Hda1C also suppresses the cryptic initiation phenotype of other mutants defective in H2B ubiquitylation. The genetic interactions between Hda1C and the H2B ubiquitylation pathway appear specific: loss of Hda1C does not suppress the cryptic initiation phenotypes of other chromatin mutants and absence of other HDACs does not suppress the absence of H2B ubiquitylation. Providing further support for an appropriate balance of histone acetylation in regulating cryptic initiation, absence of the Sas3 histone acetyltransferase elevates cryptic initiation in rtf1 mutants. Our data suggest that the H2B ubiquitylation pathway and Hda1C coordinately regulate chromatin structure during transcription elongation and point to a potential role for a HDAC in supporting chromatin accessibility.
Collapse
Affiliation(s)
- Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rachel A Kocik
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mitchell A Ellison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
32
|
Stodola TJ, Chi YI, De Assuncao TM, Leverence EN, Tripathi S, Dsouza NR, Mathison AJ, Volkman BF, Smith BC, Lomberk G, Zimmermann MT, Urrutia R. Computational modeling reveals key molecular properties and dynamic behavior of disruptor of telomeric silencing 1-like (DOT1L) and partnering complexes involved in leukemogenesis. Proteins 2021; 90:282-298. [PMID: 34414607 PMCID: PMC8671179 DOI: 10.1002/prot.26219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
Disruptor of telomeric silencing 1‐like (DOT1L) is the only non‐SET domain histone lysine methyltransferase (KMT) and writer of H3K79 methylation on nucleosomes marked by H2B ubiquitination. DOT1L has elicited significant attention because of its interaction or fusion with members of the AF protein family in blood cell biology and leukemogenic transformation. Here, our goal was to extend previous structural information by performing a robust molecular dynamic study of DOT1L and its leukemogenic partners combined with mutational analysis. We show that statically and dynamically, D161, G163, E186, and F223 make frequent time‐dependent interactions with SAM, while additional residues T139, K187, and N241 interact with SAM only under dynamics. Dynamics models reveal DOT1L, SAM, and H4 moving as one and show that more than twice the number of DOT1L residues interacts with these partners, relative to the static structure. Mutational analyses indicate that six of these residues are intolerant to substitution. We describe the dynamic behavior of DOT1L interacting with AF10 and AF9. Studies on the dynamics of a heterotrimeric complex of DOT1L1‐AF10 illuminated describe coordinated motions that impact the relative position of the DOT1L HMT domain to the nucleosome. The molecular motions of the DOT1L–AF9 complex are less extensive and highly dynamic, resembling a swivel‐like mechanics. Through molecular dynamics and mutational analysis, we extend the knowledge previous provided by static measurements. These results are important to consider when describing the biochemical properties of DOT1L, under normal and in disease conditions, as well as for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Timothy J Stodola
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Young-In Chi
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Thiago M De Assuncao
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Elise N Leverence
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Swarnendu Tripathi
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nikita R Dsouza
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Angela J Mathison
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gwen Lomberk
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael T Zimmermann
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raul Urrutia
- Genomic Sciences and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, GSPMC, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
33
|
Biochemical insights into Paf1 complex-induced stimulation of Rad6/Bre1-mediated H2B monoubiquitination. Proc Natl Acad Sci U S A 2021; 118:2025291118. [PMID: 34385316 DOI: 10.1073/pnas.2025291118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The highly conserved multifunctional polymerase-associated factor 1 (Paf1) complex (PAF1C), composed of five core subunits Paf1, Leo1, Ctr9, Cdc73, and Rtf1, participates in all stages of transcription and is required for the Rad6/Bre1-mediated monoubiquitination of histone H2B (H2Bub). However, the molecular mechanisms underlying the contributions of the PAF1C subunits to H2Bub are not fully understood. Here, we report that Ctr9, acting as a hub, interacts with the carboxyl-terminal acidic tail of Rad6, which is required for PAF1C-induced stimulation of H2Bub. Importantly, we found that the Ras-like domain of Cdc73 has the potential to accelerate ubiquitin discharge from Rad6 and thus facilitates H2Bub, a process that might be conserved from yeast to humans. Moreover, we found that Rtf1 HMD stimulates H2Bub, probably through accelerating ubiquitin discharge from Rad6 alone or in cooperation with Cdc73 and Bre1, and that the Paf1/Leo1 heterodimer in PAF1C specifically recognizes the histone H3 tail of nucleosomal substrates, stimulating H2Bub. Collectively, our biochemical results indicate that intact PAF1C is required to efficiently stimulate Rad6/Bre1-mediated H2Bub.
Collapse
|
34
|
Wang F, El-Saafin F, Ye T, Stierle M, Negroni L, Durik M, Fischer V, Devys D, Vincent SD, Tora L. Histone H2Bub1 deubiquitylation is essential for mouse development, but does not regulate global RNA polymerase II transcription. Cell Death Differ 2021; 28:2385-2403. [PMID: 33731875 PMCID: PMC8329007 DOI: 10.1038/s41418-021-00759-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Co-activator complexes dynamically deposit post-translational modifications (PTMs) on histones, or remove them, to regulate chromatin accessibility and/or to create/erase docking surfaces for proteins that recognize histone PTMs. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is an evolutionary conserved multisubunit co-activator complex with modular organization. The deubiquitylation module (DUB) of mammalian SAGA complex is composed of the ubiquitin-specific protease 22 (USP22) and three adaptor proteins, ATXN7, ATXN7L3 and ENY2, which are all needed for the full activity of the USP22 enzyme to remove monoubiquitin (ub1) from histone H2B. Two additional USP22-related ubiquitin hydrolases (called USP27X or USP51) have been described to form alternative DUBs with ATXN7L3 and ENY2, which can also deubiquitylate H2Bub1. Here we report that USP22 and ATXN7L3 are essential for normal embryonic development of mice, however their requirements are not identical during this process, as Atxn7l3-/- embryos show developmental delay already at embryonic day (E) 7.5, while Usp22-/- embryos are normal at this stage, but die at E14.5. Global histone H2Bub1 levels were only slightly affected in Usp22 null embryos, in contrast H2Bub1 levels were strongly increased in Atxn7l3 null embryos and derived cell lines. Our transcriptomic analyses carried out from wild type and Atxn7l3-/- mouse embryonic stem cells (mESCs), or primary mouse embryonic fibroblasts (MEFs) suggest that the ATXN7L3-related DUB activity regulates only a subset of genes in both cell types. However, the gene sets and the extent of their deregulation were different in mESCs and MEFs. Interestingly, the strong increase of H2Bub1 levels observed in the Atxn7l3-/- mESCs, or Atxn7l3-/- MEFs, does not correlate with the modest changes in RNA Polymerase II (Pol II) occupancy and lack of changes in Pol II elongation observed in the two Atxn7l3-/- cellular systems. These observations together indicate that deubiquitylation of histone H2Bub1 does not directly regulate global Pol II transcription elongation.
Collapse
Affiliation(s)
- Fang Wang
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Farrah El-Saafin
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France ,grid.482637.cPresent Address: Olivia Newton-John Cancer Research Institute, Melbourne, VIC Australia
| | - Tao Ye
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France ,Plateforme GenomEast, infrastructure France Génomique, 67404 Illkirch, France
| | - Matthieu Stierle
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Luc Negroni
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Matej Durik
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Veronique Fischer
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Didier Devys
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - Stéphane D. Vincent
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| | - László Tora
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France ,grid.7429.80000000121866389Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
35
|
Separovich RJ, Wilkins MR. Ready, SET, Go: Post-translational regulation of the histone lysine methylation network in budding yeast. J Biol Chem 2021; 297:100939. [PMID: 34224729 PMCID: PMC8329514 DOI: 10.1016/j.jbc.2021.100939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022] Open
Abstract
Histone lysine methylation is a key epigenetic modification that regulates eukaryotic transcription. Here, we comprehensively review the function and regulation of the histone methylation network in the budding yeast and model eukaryote, Saccharomyces cerevisiae. First, we outline the lysine methylation sites that are found on histone proteins in yeast (H3K4me1/2/3, H3K36me1/2/3, H3K79me1/2/3, and H4K5/8/12me1) and discuss their biological and cellular roles. Next, we detail the reduced but evolutionarily conserved suite of methyltransferase (Set1p, Set2p, Dot1p, and Set5p) and demethylase (Jhd1p, Jhd2p, Rph1p, and Gis1p) enzymes that are known to control histone lysine methylation in budding yeast cells. Specifically, we illustrate the domain architecture of the methylation enzymes and highlight the structural features that are required for their respective functions and molecular interactions. Finally, we discuss the prevalence of post-translational modifications on yeast histone methylation enzymes and how phosphorylation, acetylation, and ubiquitination in particular are emerging as key regulators of enzyme function. We note that it will be possible to completely connect the histone methylation network to the cell's signaling system, given that all methylation sites and cognate enzymes are known, most phosphosites on the enzymes are known, and the mapping of kinases to phosphosites is tractable owing to the modest set of protein kinases in yeast. Moving forward, we expect that the rich variety of post-translational modifications that decorates the histone methylation machinery will explain many of the unresolved questions surrounding the function and dynamics of this intricate epigenetic network.
Collapse
Affiliation(s)
- Ryan J Separovich
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
36
|
Francette AM, Tripplehorn SA, Arndt KM. The Paf1 Complex: A Keystone of Nuclear Regulation Operating at the Interface of Transcription and Chromatin. J Mol Biol 2021; 433:166979. [PMID: 33811920 PMCID: PMC8184591 DOI: 10.1016/j.jmb.2021.166979] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The regulation of transcription by RNA polymerase II is closely intertwined with the regulation of chromatin structure. A host of proteins required for the disassembly, reassembly, and modification of nucleosomes interacts with Pol II to aid its movement and counteract its disruptive effects on chromatin. The highly conserved Polymerase Associated Factor 1 Complex, Paf1C, travels with Pol II and exerts control over transcription elongation and chromatin structure, while broadly impacting the transcriptome in both single cell and multicellular eukaryotes. Recent studies have yielded exciting new insights into the mechanisms by which Paf1C regulates transcription elongation, epigenetic modifications, and post-transcriptional steps in eukaryotic gene expression. Importantly, these functional studies are now supported by an extensive foundation of high-resolution structural information, providing intimate views of Paf1C and its integration into the larger Pol II elongation complex. As a global regulatory factor operating at the interface between chromatin and transcription, the impact of Paf1C is broad and its influence reverberates into other domains of nuclear regulation, including genome stability, telomere maintenance, and DNA replication.
Collapse
Affiliation(s)
- Alex M Francette
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sarah A Tripplehorn
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
37
|
Mattiroli F, Penengo L. Histone Ubiquitination: An Integrative Signaling Platform in Genome Stability. Trends Genet 2021; 37:566-581. [DOI: 10.1016/j.tig.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023]
|
38
|
Golson ML. Islet Epigenetic Impacts on β-Cell Identity and Function. Compr Physiol 2021; 11:1961-1978. [PMID: 34061978 DOI: 10.1002/cphy.c200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β-cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell-fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1-18, 2021.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Ho CH, Takizawa Y, Kobayashi W, Arimura Y, Kimura H, Kurumizaka H. Structural basis of nucleosomal histone H4 lysine 20 methylation by SET8 methyltransferase. Life Sci Alliance 2021; 4:e202000919. [PMID: 33574035 PMCID: PMC7893823 DOI: 10.26508/lsa.202000919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 11/26/2022] Open
Abstract
SET8 is solely responsible for histone H4 lysine-20 (H4K20) monomethylation, which preferentially occurs in nucleosomal H4. However, the underlying mechanism by which SET8 specifically promotes the H4K20 monomethylation in the nucleosome has not been elucidated. Here, we report the cryo-EM structures of the human SET8-nucleosome complexes with histone H3 and the centromeric H3 variant, CENP-A. Surprisingly, we found that the overall cryo-EM structures of the SET8-nucleosome complexes are substantially different from the previous crystal structure models. In the complexes with H3 and CENP-A nucleosomes, SET8 specifically binds the nucleosomal acidic patch via an arginine anchor, composed of the Arg188 and Arg192 residues. Mutational analyses revealed that the interaction between the SET8 arginine anchor and the nucleosomal acidic patch plays an essential role in the H4K20 monomethylation activity. These results provide the groundwork for understanding the mechanism by which SET8 specifically accomplishes the H4K20 monomethylation in the nucleosome.
Collapse
Affiliation(s)
- Cheng-Han Ho
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
40
|
Valencia-Sánchez MI, De Ioannes P, Wang M, Truong DM, Lee R, Armache JP, Boeke JD, Armache KJ. Regulation of the Dot1 histone H3K79 methyltransferase by histone H4K16 acetylation. Science 2021; 371:371/6527/eabc6663. [PMID: 33479126 DOI: 10.1126/science.abc6663] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
Abstract
Dot1 (disruptor of telomeric silencing-1), the histone H3 lysine 79 (H3K79) methyltransferase, is conserved throughout evolution, and its deregulation is found in human leukemias. Here, we provide evidence that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone H2B ubiquitination (H2BUb). We further demonstrate that this stimulatory effect is specific to acetylation of lysine 16 (H4K16ac), a modification central to chromatin structure. We provide a mechanism of this histone cross-talk and show that H4K16ac and H2BUb play crucial roles in H3K79 di- and trimethylation in vitro and in vivo. These data reveal mechanisms that control H3K79 methylation and demonstrate how H4K16ac, H3K79me, and H2BUb function together to regulate gene transcription and gene silencing to ensure optimal maintenance and propagation of an epigenetic state.
Collapse
Affiliation(s)
- Marco Igor Valencia-Sánchez
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Pablo De Ioannes
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Miao Wang
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David M Truong
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA
| | - Rachel Lee
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jef D Boeke
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY 10016, USA
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
41
|
Ghoneim M, Fuchs HA, Musselman CA. Histone Tail Conformations: A Fuzzy Affair with DNA. Trends Biochem Sci 2021; 46:564-578. [PMID: 33551235 DOI: 10.1016/j.tibs.2020.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
The core histone tails are critical in chromatin structure and signaling. Studies over the past several decades have provided a wealth of information on the histone tails and their interaction with chromatin factors. However, the conformation of the histone tails in a chromatin relevant context has remained elusive. Only recently has enough evidence emerged to start to build a structural model of the tails in the context of nucleosomes and nucleosome arrays. Here, we review these studies and propose that the histone tails adopt a high-affinity fuzzy complex with DNA, characterized by robust but dynamic association. Furthermore, we discuss how these DNA-bound conformational ensembles promote distinct chromatin structure and signaling, and that their fuzzy nature is important in transitioning between functional states.
Collapse
Affiliation(s)
- Mohamed Ghoneim
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Harrison A Fuchs
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine A Musselman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
42
|
Challa K, Schmid CD, Kitagawa S, Cheblal A, Iesmantavicius V, Seeber A, Amitai A, Seebacher J, Hauer MH, Shimada K, Gasser SM. Damage-induced chromatome dynamics link Ubiquitin ligase and proteasome recruitment to histone loss and efficient DNA repair. Mol Cell 2021; 81:811-829.e6. [PMID: 33529595 DOI: 10.1016/j.molcel.2020.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Eukaryotic cells package their genomes around histone octamers. In response to DNA damage, checkpoint activation in yeast induces core histone degradation resulting in 20%-40% reduction in nucleosome occupancy. To gain insight into this process, we developed a new approach to analyze the chromatin-associated proteome comprehensively before and after damage. This revealed extensive changes in protein composition after Zeocin-induced damage. First, core histones and the H1 homolog Hho1 were partially lost from chromatin along with replication, transcription, and chromatin remodeling machineries, while ubiquitin ligases and the proteasome were recruited. We found that the checkpoint- and INO80C-dependent recruitment of five ubiquitin-conjugating factors (Rad6, Bre1, Pep5, Ufd4, and Rsp5) contributes to core and linker histone depletion, reducing chromatin compaction and enhancing DNA locus mobility. Importantly, loss of Rad6/Bre1, Ufd4/TRIP12, and Pep5/VPS11 compromise DNA strand invasion kinetics during homology-driven repair. Thus we provide a comprehensive overview of a functionally relevant genome-wide chromatin response to DNA damage.
Collapse
Affiliation(s)
- Kiran Challa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Christoph D Schmid
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Saho Kitagawa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza Aoba 468-1, Aoba-ku, Sendai, 981-8545, Japan
| | - Anaïs Cheblal
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Vytautas Iesmantavicius
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Andrew Seeber
- Center for Advanced Imaging, Northwest Building, 52 Oxford St., Harvard University, Cambridge, MA 02138, USA
| | - Assaf Amitai
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jan Seebacher
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Michael H Hauer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|
43
|
Cole AJ, Dickson KA, Liddle C, Stirzaker C, Shah JS, Clifton-Bligh R, Marsh DJ. Ubiquitin chromatin remodelling after DNA damage is associated with the expression of key cancer genes and pathways. Cell Mol Life Sci 2021; 78:1011-1027. [PMID: 32458023 PMCID: PMC11072370 DOI: 10.1007/s00018-020-03552-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/17/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Modification of the cancer-associated chromatin landscape in response to therapeutic DNA damage influences gene expression and contributes to cell fate. The central histone mark H2Bub1 results from addition of a single ubiquitin on lysine 120 of histone H2B and is an important regulator of gene expression. Following treatment with a platinum-based chemotherapeutic, there is a reduction in global levels of H2Bub1 accompanied by an increase in levels of the tumor suppressor p53. Although total H2Bub1 decreases following DNA damage, H2Bub1 is enriched downstream of transcription start sites of specific genes. Gene-specific H2Bub1 enrichment was observed at a defined group of genes that clustered into cancer-related pathways and correlated with increased gene expression. H2Bub1-enriched genes encompassed fifteen p53 target genes including PPM1D, BTG2, PLK2, MDM2, CDKN1A and BBC3, genes related to ERK/MAPK signalling, those participating in nucleotide excision repair including XPC, and genes involved in the immune response and platinum drug resistance including POLH. Enrichment of H2Bub1 at key cancer-related genes may function to regulate gene expression and influence the cellular response to therapeutic DNA damage.
Collapse
Affiliation(s)
- Alexander J Cole
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
- Department of Medicine, Magee Women's Cancer Research Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristie-Ann Dickson
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Clare Stirzaker
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, UNSW, Sydney, NSW, Australia
- St. Vincent's Clinical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Jaynish S Shah
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Roderick Clifton-Bligh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Deborah J Marsh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia.
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
44
|
Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov 2021; 20:265-286. [PMID: 33469207 DOI: 10.1038/s41573-020-00108-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Protein lysine methylation is a crucial post-translational modification that regulates the functions of both histone and non-histone proteins. Deregulation of the enzymes or 'writers' of protein lysine methylation, lysine methyltransferases (KMTs), is implicated in the cause of many diseases, including cancer, mental health disorders and developmental disorders. Over the past decade, significant advances have been made in developing drugs to target KMTs that are involved in histone methylation and epigenetic regulation. The first of these inhibitors, tazemetostat, was recently approved for the treatment of epithelioid sarcoma and follicular lymphoma, and several more are in clinical and preclinical evaluation. Beyond chromatin, the many KMTs that regulate protein synthesis and other fundamental biological processes are emerging as promising new targets for drug development to treat diverse diseases.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- Department of Biology, Stanford University, Stanford, CA, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang Y, Fang Y, Fang D. Overview of Histone Modification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1283:1-16. [PMID: 33155134 DOI: 10.1007/978-981-15-8104-5_1] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is the epi-information beyond the DNA sequence that can be inherited from parents to offspring. From years of studies, people have found that histone modifications, DNA methylation, and RNA-based mechanism are the main means of epigenetic control. In this chapter, we will focus on the general introductions of epigenetics, which is important in the regulation of chromatin structure and gene expression. With the development and expansion of high-throughput sequencing, various mutations of epigenetic regulators have been identified and proven to be the drivers of tumorigenesis. Epigenetic alterations are used to diagnose individual patients more accurately and specifically. Several drugs, which are targeting epigenetic changes, have been developed to treat patients regarding the awareness of precision medicine. Emerging researches are connecting the epigenetics and cancers together in the molecular mechanism exploration and the development of druggable targets.
Collapse
Affiliation(s)
- Yanjun Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Zhongxing Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Junqi Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Tianjiao Du
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Nachuan Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Yin Tang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Yuan Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China
| | - Dong Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
46
|
The Role of Histone Acetylation-/Methylation-Mediated Apoptotic Gene Regulation in Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21238894. [PMID: 33255318 PMCID: PMC7727670 DOI: 10.3390/ijms21238894] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetics, an inheritable phenomenon, which influences the expression of gene without altering the DNA sequence, offers a new perspective on the pathogenesis of hepatocellular carcinoma (HCC). Nonalcoholic steatohepatitis (NASH) is projected to account for a significant share of HCC incidence due to the growing prevalence of various metabolic disorders. One of the major molecular mechanisms involved in epigenetic regulation, post-translational histone modification seems to coordinate various aspects of NASH which will further progress to HCC. Mounting evidence suggests that the orchestrated events of cellular and nuclear changes during apoptosis can be regulated by histone modifications. This review focuses on the current advances in the study of acetylation-/methylation-mediated histone modification in apoptosis and the implication of these epigenetic regulations in HCC. The reversibility of epigenetic alterations and the agents that can target these alterations offers novel therapeutic approaches and strategies for drug development. Further molecular mechanistic studies are required to enhance information governing these epigenetic modulators, which will facilitate the design of more effective diagnosis and treatment options.
Collapse
|
47
|
Marsh DJ, Ma Y, Dickson KA. Histone Monoubiquitination in Chromatin Remodelling: Focus on the Histone H2B Interactome and Cancer. Cancers (Basel) 2020; 12:E3462. [PMID: 33233707 PMCID: PMC7699835 DOI: 10.3390/cancers12113462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Chromatin remodelling is a major mechanism by which cells control fundamental processes including gene expression, the DNA damage response (DDR) and ensuring the genomic plasticity required by stem cells to enable differentiation. The post-translational modification of histone H2B resulting in addition of a single ubiquitin, in humans at lysine 120 (K120; H2Bub1) and in yeast at K123, has key roles in transcriptional elongation associated with the RNA polymerase II-associated factor 1 complex (PAF1C) and in the DDR. H2Bub1 itself has been described as having tumour suppressive roles and a number of cancer-related proteins and/or complexes are recognised as part of the H2Bub1 interactome. These include the RING finger E3 ubiquitin ligases RNF20, RNF40 and BRCA1, the guardian of the genome p53, the PAF1C member CDC73, subunits of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodelling complex and histone methyltransferase complexes DOT1L and COMPASS, as well as multiple deubiquitinases including USP22 and USP44. While globally depleted in many primary human malignancies, including breast, lung and colorectal cancer, H2Bub1 is selectively enriched at the coding region of certain highly expressed genes, including at p53 target genes in response to DNA damage, functioning to exercise transcriptional control of these loci. This review draws together extensive literature to cement a significant role for H2Bub1 in a range of human malignancies and discusses the interplay between key cancer-related proteins and H2Bub1-associated chromatin remodelling.
Collapse
Affiliation(s)
- Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
- Kolling Institute, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Camperdown, NSW 2006, Australia
| | - Yue Ma
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| | - Kristie-Ann Dickson
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| |
Collapse
|
48
|
Zhao Z, Su Z, Liang P, Liu D, Yang S, Wu Y, Ma L, Feng J, Zhang X, Wu C, Huang J, Cui J. USP38 Couples Histone Ubiquitination and Methylation via KDM5B to Resolve Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002680. [PMID: 33240782 PMCID: PMC7675183 DOI: 10.1002/advs.202002680] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Indexed: 05/15/2023]
Abstract
Chromatin modifications, such as histone acetylation, ubiquitination, and methylation, play fundamental roles in maintaining chromatin architecture and regulating gene transcription. Although their crosstalk in chromatin remodeling has been gradually uncovered, the functional relationship between histone ubiquitination and methylation in regulating immunity and inflammation remains unclear. Here, it is reported that USP38 is a novel histone deubiquitinase that works together with the histone H3K4 modifier KDM5B to orchestrate inflammatory responses. USP38 specifically removes the monoubiquitin on H2B at lysine 120, which functions as a prerequisite for the subsequent recruitment of demethylase KDM5B to the promoters of proinflammatory cytokines Il6 and Il23a during LPS stimulation. KDM5B in turn inhibits the binding of NF-κB transcription factors to the Il6 and Il23a promoters by reducing H3K4 trimethylation. Furthermore, USP38 can bind to KDM5B and prevent it from proteasomal degradation, which further enhances the function of KDM5B in the regulation of inflammation-related genes. Loss of Usp38 in mice markedly enhances susceptibility to endotoxin shock and acute colitis, and these mice display a more severe inflammatory phenotype compared to wild-type mice. The studies identify USP38-KDM5B as a distinct chromatin modification complex that restrains inflammatory responses through manipulating the crosstalk of histone ubiquitination and methylation.
Collapse
Affiliation(s)
- Zhiyao Zhao
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
- Department of Internal MedicineGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhouGuangdong510623China
| | - Zexiong Su
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Di Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Ling Ma
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junyan Feng
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Xiya Zhang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Chenglei Wu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
49
|
Wegwitz F, Prokakis E, Pejkovska A, Kosinsky RL, Glatzel M, Pantel K, Wikman H, Johnsen SA. The histone H2B ubiquitin ligase RNF40 is required for HER2-driven mammary tumorigenesis. Cell Death Dis 2020; 11:873. [PMID: 33070155 PMCID: PMC7568723 DOI: 10.1038/s41419-020-03081-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
The HER2-positive breast cancer subtype (HER2+-BC) displays a particularly aggressive behavior. Anti-HER2 therapies have significantly improved the survival of patients with HER2+-BC. However, a large number of patients become refractory to current targeted therapies, necessitating the development of new treatment strategies. Epigenetic regulators are commonly misregulated in cancer and represent attractive molecular therapeutic targets. Monoubiquitination of histone 2B (H2Bub1) by the heterodimeric ubiquitin ligase complex RNF20/RNF40 has been described to have tumor suppressor functions and loss of H2Bub1 has been associated with cancer progression. In this study, we utilized human tumor samples, cell culture models, and a mammary carcinoma mouse model with tissue-specific Rnf40 deletion and identified an unexpected tumor-supportive role of RNF40 in HER2+-BC. We demonstrate that RNF40-driven H2B monoubiquitination is essential for transcriptional activation of RHO/ROCK/LIMK pathway components and proper actin-cytoskeleton dynamics through a trans-histone crosstalk with histone 3 lysine 4 trimethylation (H3K4me3). Collectively, this work demonstrates a previously unknown essential role of RNF40 in HER2+-BC, revealing the H2B monoubiquitination axis as a possible tumor context-dependent therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.,Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Evangelos Prokakis
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anastasija Pejkovska
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Markus Glatzel
- Institute for Neuropathology, University of Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany. .,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
50
|
Zhu W, Fan X, Zhao Q, Xu Y, Wang X, Chen J. Bre1 and Ubp8 regulate H2B mono-ubiquitination and the reversible yeast-hyphae transition in Candida albicans. Mol Microbiol 2020; 115:332-343. [PMID: 33010070 DOI: 10.1111/mmi.14619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
The reversible yeast-hyphae transition of the human fungal pathogen Candida albicans is tightly linked to its pathogenicity. In this study, we show that histone H2B mono-ubiquitination (H2Bub) at lysine 123 was maintained at a low level in the yeast state, whereas it increased significantly during yeast-to-hyphae transition and decreased when hyphae converted to yeast. The increased H2Bub level is correlated with activation of the hyphal program. H2B ubiquitination and deubiquitination are dynamically regulated by the E3 ligase Bre1 and the deubiquitinase Ubp8 during the reversible yeast-hyphae transition. The functions of Bre1 and Ubp8 in hypha-specific gene (HSG) regulation appears to be direct because both are recruited to the coding regions of HSGs during hyphal induction. The sequential recruitment of Bre1 and Ubp8 to HSGs coding regions is important for the initiation and maintenance of HSG expression. Additionally, Ubp8 contributes to the pathogenicity of C. albicans during early infection in a mouse model. Our study is the first to link H2B ubiquitination to the morphological plasticity and pathogenicity of the human fungal pathogen C. albicans and shed light on potential antifungal treatments.
Collapse
Affiliation(s)
- Wencheng Zhu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueyi Fan
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qun Zhao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinxing Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiongjun Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|