1
|
Luo D, Ratnayake R, Atanasova KR, Paul VJ, Luesch H. Targeted and functional genomics approaches to the mechanism of action of lagunamide D, a mitochondrial cytotoxin from marine cyanobacteria. Biochem Pharmacol 2023; 213:115608. [PMID: 37201874 PMCID: PMC10353561 DOI: 10.1016/j.bcp.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Lagunamide D, a cyanobacterial cyclodepsipeptide, exhibits potent antiproliferative activity against HCT116 colorectal cancer cells (IC50 5.1 nM), which were used to probe the mechanism of action. Measurements of metabolic activity, mitochondrial membrane potential, caspase 3/7 activity and cell viability indicate the rapid action of lagunamide D on mitochondrial function and downstream cytotoxic effects in HCT116 cells. Lagunamide D preferentially targets the G1 cell cycle population and arrests cells in G2/M phase at high concentration (32 nM). Transcriptomics and subsequent Ingenuity Pathway Analysis identified networks related to mitochondrial functions. Lagunamide D induced mitochondrial network redistribution at 10 nM, suggesting a mechanism shared with the structurally related aurilide family, previously reported to target mitochondrial prohibitin 1 (PHB1). Knockdown and chemical inhibition of ATP1A1 sensitized the cells to lagunamide D, as also known for aurilide B. We interrogated potential mechanisms behind this synergistic effect between lagunamide D and ATP1A1 knockdown by using pharmacological inhibitors and extended the functional analysis to a global level by performing a chemogenomic screen with a siRNA library targeting the human druggable genome, revealing targets that modulate susceptibility to lagunamide D. In addition to mitochondrial targets, the screen revealed hits involved in the ubiquitin/proteasome pathway, suggesting lagunamide D might exert its effects by additionally affecting proteostasis. Our analysis illuminated cellular processes of lagunamide D that can be modulated in parallel to mitochondrial functions. The identification of potential synergistic drug combinations that can alleviate undesirable toxicity may open possibilities to resurrect this class of compounds for anticancer therapy.
Collapse
Affiliation(s)
- Danmeng Luo
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Kalina R Atanasova
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Fort Pierce, FL 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States; Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
2
|
Awadia S, Sitto M, Ram S, Ji W, Liu Y, Damani R, Ray D, Lawrence TS, Galban CJ, Cappell SD, Rehemtulla A. The adapter protein FADD provides an alternate pathway for entry into the cell cycle by regulating APC/C-Cdh1 E3 ubiquitin ligase activity. J Biol Chem 2023; 299:104786. [PMID: 37146968 PMCID: PMC10248554 DOI: 10.1016/j.jbc.2023.104786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
The E3 ubiquitin ligase APC/C-Cdh1 maintains the G0/G1 state, and its inactivation is required for cell cycle entry. We reveal a novel role for Fas-associated protein with death domain (FADD) in the cell cycle through its function as an inhibitor of APC/C-Cdh1. Using real-time, single-cell imaging of live cells combined with biochemical analysis, we demonstrate that APC/C-Cdh1 hyperactivity in FADD-deficient cells leads to a G1 arrest despite persistent mitogenic signaling through oncogenic EGFR/KRAS. We further show that FADDWT interacts with Cdh1, while a mutant lacking a consensus KEN-box motif (FADDKEN) fails to interact with Cdh1 and results in a G1 arrest due to its inability to inhibit APC/C-Cdh1. Additionally, enhanced expression of FADDWT but not FADDKEN, in cells arrested in G1 upon CDK4/6 inhibition, leads to APC/C-Cdh1 inactivation and entry into the cell cycle in the absence of retinoblastoma protein phosphorylation. FADD's function in the cell cycle requires its phosphorylation by CK1α at Ser-194 which promotes its nuclear translocation. Overall, FADD provides a CDK4/6-Rb-E2F-independent "bypass" mechanism for cell cycle entry and thus a therapeutic opportunity for CDK4/6 inhibitor resistance.
Collapse
Affiliation(s)
- Sahezeel Awadia
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Merna Sitto
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sundaresh Ram
- Department of Radiology and Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Wenbin Ji
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yajing Liu
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Raheema Damani
- Department of Biomedical Engineering, University of Alabama, Birmingham, Alabama, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Craig J Galban
- Department of Radiology and Biomedical Engineering, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
3
|
Liu Y, Li X, Zhou X, Wang J, Ao X. FADD as a key molecular player in cancer progression. Mol Med 2022; 28:132. [DOI: 10.1186/s10020-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractCancer is a leading disease-related cause of death worldwide. Despite advances in therapeutic interventions, cancer remains a major global public health problem. Cancer pathogenesis is extremely intricate and largely unknown. Fas-associated protein with death domain (FADD) was initially identified as an adaptor protein for death receptor-mediated extrinsic apoptosis. Recent evidence suggests that FADD plays a vital role in non-apoptotic cellular processes, such as proliferation, autophagy, and necroptosis. FADD expression and activity of are modulated by a complicated network of processes, such as DNA methylation, non-coding RNA, and post-translational modification. FADD dysregulation has been shown to be closely associated with the pathogenesis of numerous types of cancer. However, the detailed mechanisms of FADD dysregulation involved in cancer progression are still not fully understood. This review mainly summarizes recent findings on the structure, functions, and regulatory mechanisms of FADD and focuses on its role in cancer progression. The clinical implications of FADD as a biomarker and therapeutic target for cancer patients are also discussed. The information reviewed herein may expand researchers’ understanding of FADD and contribute to the development of FADD-based therapeutic strategies for cancer patients.
Collapse
|
4
|
FADD in Cancer: Mechanisms of Altered Expression and Function, and Clinical Implications. Cancers (Basel) 2019; 11:cancers11101462. [PMID: 31569512 PMCID: PMC6826683 DOI: 10.3390/cancers11101462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
FADD was initially described as an adaptor molecule for death receptor-mediated apoptosis, but subsequently it has been implicated in nonapoptotic cellular processes such as proliferation and cell cycle control. During the last decade, FADD has been shown to play a pivotal role in most of the signalosome complexes, such as the necroptosome and the inflammasome. Interestingly, various mechanisms involved in regulating FADD functions have been identified, essentially posttranslational modifications and secretion. All these aspects have been thoroughly addressed in previous reviews. However, FADD implication in cancer is complex, due to pleiotropic effects. It has been reported either as anti- or protumorigenic, depending on the cell type. Regulation of FADD expression in cancer is a complex issue since both overexpression and downregulation have been reported, but the mechanisms underlying such alterations have not been fully unveiled. Posttranslational modifications also constitute a relevant mechanism controlling FADD levels and functions in tumor cells. In this review, we aim to provide detailed, updated information on alterations leading to changes in FADD expression and function in cancer. The participation of FADD in various biological processes is recapitulated, with a mention of interesting novel functions recently proposed for FADD, such as regulation of gene expression and control of metabolic pathways. Finally, we gather all the available evidence regarding the clinical implications of FADD alterations in cancer, especially as it has been proposed as a potential biomarker with prognostic value.
Collapse
|
5
|
Mouasni S, Tourneur L. FADD at the Crossroads between Cancer and Inflammation. Trends Immunol 2018; 39:1036-1053. [PMID: 30401514 DOI: 10.1016/j.it.2018.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
Initially described as an adaptor molecule for death receptor (DR)-mediated apoptosis, Fas-associated death domain (FADD) was later implicated in nonapoptotic cellular processes. During the last decade, FADD has been shown to participate and regulate most of the signalosome complexes, including necrosome, FADDosome, innateosome, and inflammasome. Given the role of these signaling complexes, FADD has emerged as a new actor in innate immunity, inflammation, and cancer development. Concomitant to these new roles, a surprising number of mechanisms deemed to regulate FADD functions have been identified, including post-translational modifications of FADD protein and FADD secretion. This review focuses on recent knowledge of the biological roles of FADD, a pleiotropic molecule having multiple partners, and its impact in cancer, innate immunity, and inflammation.
Collapse
Affiliation(s)
- Sara Mouasni
- Department of Infection, Immunity and Inflammation, Cochin Institute, 75014 Paris, France; INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Léa Tourneur
- Department of Infection, Immunity and Inflammation, Cochin Institute, 75014 Paris, France; INSERM, U1016, Paris, France; CNRS, UMR8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
6
|
Seo J, Lee EW, Shin J, Seong D, Nam YW, Jeong M, Lee SH, Lee C, Song J. K6 linked polyubiquitylation of FADD by CHIP prevents death inducing signaling complex formation suppressing cell death. Oncogene 2018; 37:4994-5006. [PMID: 29795330 DOI: 10.1038/s41388-018-0323-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023]
Abstract
Fas-associated death domain (FADD) is an adaptor protein recruiting complexes of caspase 8 to death ligand receptors to induce extrinsic apoptotic cell death in response to a TNF superfamily member. Although, formation of the complex of FADD and caspase 8 upon death stimuli has been studied in detail, posttranslational modifications fine-tuning these processes have yet to be identified. Here we revealed that K6-linked polyubiquitylation of FADD on lysines 149 and 153 mediated by C terminus HSC70-interacting protein (CHIP) plays an important role in preventing formation of the death inducing signaling complex (DISC), thus leading to the suppression of cell death. Cells depleted of CHIP showed higher sensitivity toward death ligands such as FasL and TRAIL, leading to upregulation of DISC formation composed of a death receptor, FADD, and caspase 8. CHIP was able to bind to FADD, induce K6-linked polyubiquitylation of FADD, and suppress DISC formation. By mass spectrometry, lysines 149 and 153 of FADD were found to be responsible for CHIP-mediated FADD ubiquitylation. FADD mutated at these sites was capable of more potent cell death induction as compared with the wild type and was no longer suppressed by CHIP. On the other hand, CHIP deficient in E3 ligase activity was not capable of suppressing FADD function and of FADD ubiquitylation. CHIP depletion in ME-180 cells induced significant sensitization of these cells toward TRAIL in xenograft analyses. These results imply that K6-linked ubiquitylation of FADD by CHIP is a crucial checkpoint in cytokine-dependent extrinsic apoptosis.
Collapse
Affiliation(s)
- Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Jihye Shin
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro-14-gil, Seoul, 02792, Korea
| | - Daehyeon Seong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Manhyung Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seon-Hyeong Lee
- Cancer Cell & Molecular Biology Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro-14-gil, Seoul, 02792, Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
7
|
Patel S, Murphy D, Haralambieva E, Abdulla ZA, Wong KK, Chen H, Gould E, Roncador G, Hatton C, Anderson AP, Banham AH, Pulford K. Increased Expression of Phosphorylated FADD in Anaplastic Large Cell and Other T-Cell Lymphomas. Biomark Insights 2014; 9:77-84. [PMID: 25232277 PMCID: PMC4159367 DOI: 10.4137/bmi.s16553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/03/2014] [Indexed: 01/02/2023] Open
Abstract
FAS-associated protein with death domain (FADD) is a major adaptor protein involved in extrinsic apoptosis, embryogenesis, and lymphocyte homeostasis. Although abnormalities of the FADD/death receptor apoptotic pathways have been established in tumorigenesis, fewer studies have analyzed the expression and role of phosphorylated FADD (pFADD). Our identification of FADD as a lymphoma-associated autoantigen in T-cell lymphoma patients raises the possibility that pFADD, with its correlation with cell cycle, may possess role(s) in human T-cell lymphoma development. This immunohistochemical study investigated pFADD protein expression in a range of normal tissues and lymphomas, particularly T-cell lymphomas that require improved therapies. Whereas pFADD was expressed only in scattered normal T cells, it was detected at high levels in T-cell lymphomas (eg, 84% anaplastic large cell lymphoma and 65% peripheral T cell lymphomas, not otherwise specified). The increased expression of pFADD supports further study of its clinical relevance and role in lymphomagenesis, highlighting phosphorylation of FADD as a potential therapeutic target.
Collapse
Affiliation(s)
- Suketu Patel
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Derek Murphy
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland. ; School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland. ; Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hong Chen
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edith Gould
- Center for Human Proteomics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Biotechnology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Chris Hatton
- Department of Hematology, John Radcliffe Hospital, Oxford, UK
| | - Amanda P Anderson
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| | - Karen Pulford
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, UK
| |
Collapse
|
8
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|
9
|
Eun YG, Chung DH, Kim SW, Lee YC, Kim SK, Kwon KH. A Fas-associated via death domain promoter polymorphism (rs10898853, -16C/T) as a risk factor for papillary thyroid cancer. Eur Surg Res 2014; 52:1-7. [PMID: 24434721 DOI: 10.1159/000355878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 09/23/2013] [Indexed: 01/07/2023]
Abstract
PURPOSE To determine whether a Fas-associated via death domain (FADD) promoter single-nucleotide polymorphism (SNP) is associated with susceptibility to papillary thyroid cancer (PTC) and clinicopathological features of PTC. METHODS To identify a possible association with PTC, 94 patients with PTC and 346 healthy controls were recruited. One promoter SNP (rs10898853, -16C/T) was analyzed by direct sequencing. Multiple logistic regression models (co-dominant, dominant, recessive, and log-additive models) were applied, and odds ratios (ORs), 95% confidence intervals (CIs), and p values were calculated. RESULTS The genotype of the promoter SNP (rs10898853) of FADD was found to be significantly associated with PTC in the co-dominant model 2 (T/T vs. C/C; p = 0.002, OR = 2.80, 95% CI = 1.39-5.65), the recessive model (p = 0.003, OR = 2.21, 95% CI = 1.31-3.71), and the log-additive model (p = 0.002, OR = 1.71, 95% CI = 1.20-2.44). Allele frequency analysis showed that the C allele of rs10898853 was significantly associated with an increased risk of PTC (p = 0.002, OR = 1.67, 95% CI = 1.21-2.32). CONCLUSIONS Our results suggest that the FADD promoter polymorphism is associated with susceptibility to PTC.
Collapse
Affiliation(s)
- Y G Eun
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Kyung Hee University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
10
|
Kim H, Lee HJ, Oh Y, Choi SG, Hong SH, Kim HJ, Lee SY, Choi JW, Su Hwang D, Kim KS, Kim HJ, Zhang J, Youn HJ, Noh DY, Jung YK. The DUSP26 phosphatase activator adenylate kinase 2 regulates FADD phosphorylation and cell growth. Nat Commun 2014; 5:3351. [PMID: 24548998 PMCID: PMC3948464 DOI: 10.1038/ncomms4351] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/30/2014] [Indexed: 01/16/2023] Open
Abstract
Adenylate kinase 2 (AK2), which balances adenine nucleotide pool, is a multi-functional protein. Here we show that AK2 negatively regulates tumour cell growth. AK2 forms a complex with dual-specificity phosphatase 26 (DUSP26) phosphatase and stimulates DUSP26 activity independently of its AK activity. AK2/DUSP26 phosphatase protein complex dephosphorylates fas-associated protein with death domain (FADD) and regulates cell growth. AK2 deficiency enhances cell proliferation and induces tumour formation in a xenograft assay. This anti-growth function of AK2 is associated with its DUSP26-stimulating activity. Downregulation of AK2 is frequently found in tumour cells and human cancer tissues showing high levels of phospho-FADD(Ser194). Moreover, reconstitution of AK2 in AK2-deficient tumour cells retards both cell proliferation and tumourigenesis. Consistent with this, AK2(+/-) mouse embryo fibroblasts exhibit enhanced cell proliferation with a significant alteration in phospho-FADD(Ser191). These results suggest that AK2 is an associated activator of DUSP26 and suppresses cell proliferation by FADD dephosphorylation, postulating AK2 as a negative regulator of tumour growth.
Collapse
Affiliation(s)
- Hyunjoo Kim
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
- These authors contributed equally to this work
| | - Ho-June Lee
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
- These authors contributed equally to this work
| | - Yumin Oh
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Seon-Guk Choi
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Se-Hoon Hong
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Hyo-Jin Kim
- Department of Discovery Oncology, Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, USA
| | - Song-Yi Lee
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Ji-Woo Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Deog Su Hwang
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| | - Key-Sun Kim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hyo-Joon Kim
- Department of Biochemistry, Hanyang University, Ansan, Kyeonggi-do 425-791, Korea
| | - Jianke Zhang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Hyun-Jo Youn
- Department of Surgery, Chonbuk National University Medical School, Jeonju 561-180, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Yong-Keun Jung
- School of Biological Science/Bio-Max Institute, Seoul National University, Gwanak-gu, Seoul 151-747, Korea
| |
Collapse
|
11
|
Zhuang H, Gan Z, Jiang W, Zhang X, Hua ZC. Comparative proteomics analysis reveals roles for FADD in the regulation of energy metabolism and proteolysis pathway in mouse embryonic fibroblast. Proteomics 2013; 13:2398-413. [PMID: 23744592 DOI: 10.1002/pmic.201300017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/01/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Fas-associated death domain-containing protein (FADD) is a classical apoptotic pathway adaptor. Further studies revealed that it also plays essential roles in nonapoptotic processes, which is assumed to be regulated by its phosphorylation. However, the exact mechanisms are still poorly understood. To study the nonapoptotic effects of FADD, a comprehensive strategy of proteomics identification combined with bioinformatic analysis was undertaken to identify proteins differentially expressed in three cell lines containing FADD and its mutant, FADD-A and FADD-D. The cell lines were thought to bear wild-type FADD, unphosphorylated FADD mimic and constitutive phosphorylated FADD mimic, respectively. A total of 47 proteins were identified to be significantly changed due to FADD phosphorylation. Network analysis using MetaCore™ identified a number of changed proteins that were involved in cellular metabolic process, including lipid metabolism, fatty acid metabolism, glycolysis, and oxidative phosphorylation. The finding that FADD-D cell line showed an increase in fatty acid oxidation argues that it could contribute to the leaner phenotype of FADD-D mice as reported previously. In addition, six proteins related to the ubiquitin-proteasome pathway were also specifically overexpressed in FADD-D cell line. Finally, the c-Myc gene represents a convergent hub lying at the center of dysregulated pathways, and was upregulated in FADD-D cells. Taken together, these studies allowed us to conclude that impaired mitochondrial function and proteolysis might play pivotal roles in the dysfunction associated with FADD phosphorylation-induced disorders.
Collapse
Affiliation(s)
- Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, PR China
| | | | | | | | | |
Collapse
|
12
|
Lee EW, Seo J, Jeong M, Lee S, Song J. The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 2013; 45:496-508. [PMID: 23010170 DOI: 10.5483/bmbrep.2012.45.9.186] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.
Collapse
Affiliation(s)
- Eun-Woo Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | | | | | | | | |
Collapse
|
13
|
FADD Expression as a Prognosticator in Early-Stage Glottic Squamous Cell Carcinoma of the Larynx Treated Primarily With Radiotherapy. Int J Radiat Oncol Biol Phys 2012; 83:1220-6. [PMID: 22208968 DOI: 10.1016/j.ijrobp.2011.09.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 07/31/2011] [Accepted: 09/27/2011] [Indexed: 01/07/2023]
|
14
|
Expression of serine 194-phosphorylated Fas-associated death domain protein correlates with proliferation in B-cell non-Hodgkin lymphomas. Hum Pathol 2011; 42:1117-24. [PMID: 21315423 DOI: 10.1016/j.humpath.2010.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 11/23/2022]
Abstract
Fas-associated death domain protein is a key component of the extrinsic apoptotic pathway. In addition, in animal models, Fas-associated death domain protein phosphorylation at serine 194 has been shown to affect cell proliferation, especially in T lymphocytes. The importance of Fas-associated death domain protein phosphorylation at serine 194 for the proliferation of B lymphocytes, however, is uncertain. Here we show in reactive lymph nodes that serine 194 phosphorylated Fas-associated death domain protein is expressed predominantly in the dark (proliferative) zone of germinal centers. In B-cell non-Hodgkin lymphoma cell lines, serine 194 phosphorylated Fas-associated death domain protein levels are substantially higher in highly proliferating cells and lower in serum-starved cells. We also used immunohistochemical analysis to assess Fas-associated death domain protein phosphorylation at serine 194 expression in 122 B-cell non-Hodgkin-type lymphomas. The mean percentage of serine 194 phosphorylated Fas-associated death domain protein positive tumor cells was 81% in Burkitt lymphoma, 41% in diffuse large B-cell lymphoma, 18% in follicular lymphoma, 18% in plasma cell myeloma, 12% in extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue, 11% in mantle cell lymphoma, and 2% in chronic lymphocytic leukemia/small lymphocytic lymphoma (P < .0001, Kruskal-Wallis test). Furthermore, in chronic lymphocytic leukemia/small lymphocytic lymphoma, serine 194 phosphorylated Fas-associated death domain protein was detected predominantly in proliferation centers. In the entire study group, the percentage of cells positive for serine 194 phosphorylated Fas-associated death domain protein correlated significantly with the proliferation index Ki-67 (Spearman R = 0.9, P < .0001). These data provide evidence that serine 194 phosphorylated Fas-associated death domain protein is involved in the proliferation of normal and neoplastic B cells and has features of a novel proliferation marker.
Collapse
|
15
|
Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc Natl Acad Sci U S A 2010; 107:13034-9. [PMID: 20615958 DOI: 10.1073/pnas.1005997107] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell death is an important mechanism to limit uncontrolled T-cell expansion during immune responses. Given the role of death-receptor adapter protein Fas-associated death domain (FADD) in apoptosis, it is intriguing that T-cell receptor (TCR)-induced proliferation is blocked in FADD-defective T cells. Necroptosis is an alternate form of death that can be induced by death receptors and is linked to autophagy. It requires the death domain-containing kinase RIP1 and, in certain instances, RIP3. FADD and its apoptotic partner, Caspase-8, have also been implicated in necroptosis. To accurately assess the role of FADD in mature T-cell proliferation and death, we generated a conditional T-cell-specific FADD knockout mouse strain. The T cells of these mice develop normally, but lack FADD at the mature stage. FADD-deficient T cells respond poorly to TCR triggering, exhibit slow cell cycle entry, and fail to expand over time. We find that programmed necrosis occurs during the late stage of normal T-cell proliferation and that this process is greatly amplified in FADD-deficient T cells. Inhibition of necroptosis using an inhibitor of RIP1 kinase activity rescues the FADD knockout proliferative defect. However, TCR-induced necroptosis did not appear to require autophagy or involve RIP3. Consistent with their defective CD8 T-cell response, these mice succumb to Toxoplasma gondii infection more readily than wild-type mice. We conclude that FADD constitutes a mechanism to keep TCR-induced programmed necrotic signaling in check during early phases of T-cell clonal expansion.
Collapse
|
16
|
FADD: a regulator of life and death. Trends Immunol 2010; 31:260-9. [PMID: 20576468 DOI: 10.1016/j.it.2010.05.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 12/30/2022]
Abstract
FAS-associated protein with death domain (FADD) is the key adaptor protein transmitting apoptotic signals mediated by the main death receptors (DRs). Besides being an essential instrument in cell death, FADD is also implicated in proliferation, cell cycle progression, tumor development, inflammation, innate immunity, and autophagy. Recently, many of these new functions of FADD were shown to be independent of DRs. Moreover, FADD function is dictated by protein localization and phosphorylation state. Thus, FADD is a crucial and unique controller of many essential cellular processes. The full understanding of the networks dictating the ultimate function of FADD may provide a new paradigm for other multifaceted proteins.
Collapse
|
17
|
Papoff G, Trivieri N, Crielesi R, Ruberti F, Marsilio S, Ruberti G. FADD-calmodulin interaction: a novel player in cell cycle regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:898-911. [PMID: 20420860 DOI: 10.1016/j.bbamcr.2010.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/26/2010] [Accepted: 04/12/2010] [Indexed: 11/16/2022]
Abstract
Analyses of knockout and mutant transgenic mice as well as in vitro studies demonstrated a complex role of FADD in the regulation of cell fate. FADD is involved in death receptor induced apoptosis, cell cycle progression and cell proliferation. In a search for mechanisms that might regulate FADD functions, we identified, upon the screening of a lambda-phage cDNA library, calmodulin (CaM) as a novel FADD interacting protein. CaM is a key mediator of signals by the secondary messenger calcium and it is an essential regulator of cell cycle progression and cell survival. Here, we describe the identification and characterization of two calcium dependent CaM binding sites in the alpha helices 8-9 and 10-11 of FADD. Phosphorylation of human FADD at the C-terminal serine 194, by casein kinase I alpha (CKIalpha), has been shown to regulate FADD-dependent non-apoptotic activities. Remarkably, we showed that both FADD and CaM are CKIalpha substrates and that in synchronized HeLa cells, FADD, CaM and CKIalpha co-localize at the mitotic spindle in metaphase and anaphase. Moreover, complementation experiments in Jurkat FADD-/- T cells indicated that: a) cells expressing FADD mutants in the CaM binding sites are protected from Taxol-induced G2/M cell cycle arrest; b) FADD/CaM interaction is not required for Fas receptor-mediated apoptosis although Fas and CaM might compete for binding to FADD. We suggest that the interplay of FADD, CaM and CKIalpha may have an important role in the regulation of cell fate.
Collapse
Affiliation(s)
- Giuliana Papoff
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Campus A. Buzzati-Traverso, Monterotondo, Rome, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Arsenault RJ, Jalal S, Babiuk LA, Potter A, Griebel PJ, Napper S. Kinome analysis of Toll-like receptor signaling in bovine monocytes. J Recept Signal Transduct Res 2010; 29:299-311. [PMID: 19899953 DOI: 10.3109/10799890903295127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Toll-like receptors (TLRs) are a family of pathogen recognition receptors that alert the host to the presence of microbial challenge. Each TLR responds to a specific microbial associated ligand. For example, TLR4 is activated by lipopolysaccharide (LPS), whereas TLR9 responds to microbial DNA (CpGs). In this report signal transduction responses of bovine monocytes to stimulation with LPS and CpG are described through a bovine-specific peptide array. In addition to confirming activation of the defined TLR pathway in bovine cells, unique phosphorylation events not previously attributed to TLR signaling are described and validated. For example, array data predicts phosphorylation of Tyr40 of Etk in response to LPS, but not CpG, stimulation as well as the activation of oxidative burst in CpG, but not LPS. This investigation confirms interspecies conservation of the TLR pathway in bovine as well as providing insight into the complexity and mechanisms of TLR signaling.
Collapse
Affiliation(s)
- Ryan J Arsenault
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Bradley SE, Johnson AE, Le IP, Oosterhouse E, Hledin MP, Marquez GA, Burnatowska-Hledin M. Phosphorylation of VACM-1/Cul5 by protein kinase A regulates its neddylation and antiproliferative effect. J Biol Chem 2009; 285:4883-95. [PMID: 19917606 DOI: 10.1074/jbc.m109.085225] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the VACM-1/cul5 gene in endothelial and in cancer cell lines in vitro inhibits cellular proliferation and decreases phosphorylation of MAPK. Structure-function analysis of the VACM-1 protein sequence identified consensus sites specific for phosphorylation by protein kinases A and C (PKA and PKC) and a Nedd8 protein modification site. Mutations at the PKA-specific site in VACM-1/Cul5 ((S730A)VACM-1) sequence resulted in increased cellular growth and the appearance of a Nedd8-modified VACM-1/Cul5. The aim of this study was to examine if PKA-dependent phosphorylation of VACM-1/Cul5 controls its neddylation status, phosphorylation by PKC, and ultimately growth. Our results indicate that in vitro transfection of rat adrenal medullary endothelial cells with anti-VACM-1-specific small interfering RNA oligonucleotides decreases endogenous VACM-1 protein concentration and increases cell growth. Western blot analysis of cell lysates immunoprecipitated with an antibody directed against a PKA-specific phosphorylation site and probed with anti-VACM-1-specific antibody showed that PKA-dependent phosphorylation of VACM-1 protein was decreased in cells transfected with (S730A)VACM-1 cDNA when compared with the cytomegalovirus-transfected cells. This change was associated with increased modification of VACM-1 protein by Nedd8. Induction of PKA activity with forskolin reduced modification of VACM-1 protein by Nedd8. Finally, rat adrenal medullary endothelial cells transfected with (S730A)VACM-1/cul5 cDNA and treated with phorbol 12-myristate 13-acetate (10 and 100 nm) to induce PKC activity grew significantly faster than the control cells. These results suggest that the antiproliferative effect of VACM-1/Cul5 is dependent on its posttranslational modifications and will help in the design of new anticancer therapeutics that target the Nedd8 pathway.
Collapse
Affiliation(s)
- Shirley E Bradley
- Department of Biology, Hope College, Holland, Michigan 49422-9000, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Föger N, Bulfone-Paus S, Chan AC, Lee KH. Subcellular compartmentalization of FADD as a new level of regulation in death receptor signaling. FEBS J 2009; 276:4256-65. [PMID: 19583773 DOI: 10.1111/j.1742-4658.2009.07134.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fas-associated protein with death domain (FADD) is an essential adaptor protein in death receptor-mediated signal transduction. During apoptotic signaling, FADD functions in the cytoplasm, where it couples activated receptors with initiator caspase-8. However, in resting cells, FADD is predominantly stored in the nucleus. In this study, we examined the modalities of FADD intracellular trafficking. We demonstrate that, upon CD95 activation, FADD redistributes from the nucleus to the cytoplasm. This inducible nuclear-cytoplasmic translocation of FADD is independent of CD95 internalization, formation of the death-inducing signaling complex, and caspase-8 activation. In contrast to nuclear export of FADD, its subsequent recruitment and accumulation at endosomes containing internalized CD95 requires a caspase-8-dependent feedback loop. These data indicate the existence of differential pathways directing FADD nuclear export and cytoplasmic trafficking, and identify subcellular compartmentalization of FADD as a novel regulatory mechanism in death receptor signaling.
Collapse
Affiliation(s)
- Niko Föger
- Department of Immunology and Cell Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Germany
| | | | | | | |
Collapse
|
21
|
Shackleton M, O'Reilly LA, Sutherland KD, Bath ML, Ellis S, Strasser A, Visvader JE, Lindeman GJ. Impaired lactation in mice expressing dominant-negative FADD in mammary epithelium. Dev Dyn 2009; 238:1010-6. [PMID: 19301394 DOI: 10.1002/dvdy.21917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Fas-associated death domain (FADD/Mort1) adaptor protein was originally identified as a key mediator of apoptosis, although pleiotropic functions for FADD have also been reported. FADD-mediated tumoricidal effects have been described in breast cancer cells; however, its physiological role in normal mammary gland epithelium is not well understood. To determine the role of FADD signaling during mammary gland development, we generated transgenic mice overexpressing dominant-negative FADD (DN-FADD) in mammary epithelium, using the steroid responsive mouse mammary tumor virus promoter. Transgenic mice exhibited a perturbation in lactation resulting in impaired milk production and pup growth retardation. Reduced expansion of alveoli was evident during early lactation with extensive shedding of luminal alveolar cells. Significantly more TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling)-positive cells were present at this time point and a subsequent increase in bromodeoxyuridine-positive cells was observed. These findings suggest a role for FADD in maintaining the survival of mammary secretory alveolar cells after the establishment of lactation.
Collapse
Affiliation(s)
- Mark Shackleton
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 2009; 10:348-55. [DOI: 10.1038/ni.1714] [Citation(s) in RCA: 506] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Changes in FADD levels, distribution, and phosphorylation in TNFalpha-induced apoptosis in hepatocytes is caspase-3, caspase-8 and BID dependent. Apoptosis 2008; 13:983-92. [PMID: 18543108 PMCID: PMC9976294 DOI: 10.1007/s10495-008-0228-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
FADD/MORT1 (The adaptor protein of Fas Associate Death Domain/Mediator of Receptor Induced Toxicity) is essential for signal transduction of death receptor signaling. We have previously shown that FADD is significantly up-regulated in TNFalpha/ActD induced apoptosis. Over-expression of FADD also induces death of lung cancer cells and primary hepatocytes. We hypothesize that the increase in detectable FADD levels require the proximal steps in apoptotic signaling and speculated that FADD would be redistributed in cells destined to undergo apoptosis. We show that monomeric non-phosphorylated FADD is up-regulated in hepatocytes treated with TNFalpha/ActD and that it accumulates in the cytoplasm. Nuclear phosphorylated FADD decreases with TNFalpha/ActD treatment. Dimeric FADD in the cytoplasm remains constant with TNFalpha/ActD. The change in FADD levels and distribution was dependent on caspase-3, caspase-8 activity and the presence of BID. Thus, changes in FADD levels and distribution are downstream of caspase activation and mitochondria changes that are initiated by the formation of the DISC complex. Changes in FADD levels and distribution may represent a novel feed-forward mechanism to propagate apoptosis signaling in hepatocytes.
Collapse
|
24
|
Abstract
Amplification of the 11q13 region is one of the most frequent aberrations in squamous cell carcinomas of the head and neck region (HNSCC). Amplification of 11q13 has been shown to correlate with the presence of lymph node metastases and decreased survival. The 11q13.3 amplicon carries numerous genes including cyclin D1 and cortactin. Recently, we reported that FADD becomes overexpressed upon amplification and that FADD protein expression predicts for lymph node positivity and disease-specific mortality. However, the gene within the 11q13.3 amplicon responsible for this correlation is yet to be identified. In this paper, we compared, using immunohistochemical analysis for cyclin D1, FADD and cortactin in a series of 106 laryngeal carcinomas which gene correlates best with lymph node metastases and increased disease-specific mortality. Univariate Cox regression analysis revealed that high expression of cyclin D1 (P=0.016), FADD (P=0.003) and cortactin (P=0.0006) predict for increased risk to disease-specific mortality. Multivariate Cox analysis revealed that only high cortactin expression correlates with disease-specific mortality independent of cyclin D1 and/or FADD. Of genes located in the 11q13 amplicon, cortactin expression is the best predictor for shorter disease-specific survival in late stage laryngeal carcinomas.
Collapse
|
25
|
Gibcus JH, Menkema L, Mastik MF, Hermsen MA, de Bock GH, van Velthuysen MLF, Takes RP, Kok K, Alvarez Marcos CA, van der Laan BFAM, van den Brekel MWM, Langendijk JA, Kluin PM, van der Wal JE, Schuuring E. Amplicon mapping and expression profiling identify the Fas-associated death domain gene as a new driver in the 11q13.3 amplicon in laryngeal/pharyngeal cancer. Clin Cancer Res 2008; 13:6257-66. [PMID: 17975136 DOI: 10.1158/1078-0432.ccr-07-1247] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Amplification of the 11q13 region is a frequent event in human cancer. The highest incidence (36%) is found in head and neck squamous cell carcinomas. Recently, we reported that the amplicon size in 30 laryngeal and pharyngeal carcinomas with 11q13 amplification is determined by unique genomic structures, resulting in the amplification of a set of genes rather than a single gene. EXPERIMENTAL DESIGN To investigate which gene(s) drive the 11q13 amplicon, we determined the smallest region of overlap with amplification and the expression levels of all genes within this amplicon. RESULTS Using array-based comparative genomic hybridization analysis, we detected a region of approximately 1.7 Mb containing 13 amplified genes in more than 25 of the 29 carcinomas. Quantitative reverse transcription-PCR revealed that overexpression of 8 potential driver genes including, cyclin D1, cortactin, and Fas-associated death domain (FADD), correlated significantly with DNA amplification. FADD protein levels correlated well with DNA amplification, implicating that FADD is also a candidate driver gene in the 11q13 amplicon. Analysis of 167 laryngeal carcinomas showed that increased expression of FADD (P = 0.007) and Ser(194) phosphorylated FADD (P = 0.011) were associated with a worse disease-specific survival. FADD was recently reported to be involved in cell cycle regulation, and cancer cells expressing high levels of the Ser(194) phosphorylated isoform of FADD proved to be more sensitive to Taxol-induced cell cycle arrest. CONCLUSION Because of the frequent amplification of the 11q13 region and concomitant overexpression of FADD in head and neck squamous cell carcinomas, we hypothesize that FADD is a marker to select patients that might benefit from Taxol-based chemoradiotherapy.
Collapse
Affiliation(s)
- Johan H Gibcus
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Janssen K, Pohlmann S, Jänicke RU, Schulze-Osthoff K, Fischer U. Apaf-1 and caspase-9 deficiency prevents apoptosis in a Bax-controlled pathway and promotes clonogenic survival during paclitaxel treatment. Blood 2007; 110:3662-72. [PMID: 17652622 DOI: 10.1182/blood-2007-02-073213] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Taxane derivatives such as paclitaxel elicit their antitumor effects at least in part by induction of apoptosis, but the underlying mechanisms are incompletely understood. Here, we used different cellular models with deficiencies in key regulators of apoptosis to elucidate the mechanism of paclitaxel-induced cell death. Apoptosis by paclitaxel was reported to depend on the activation of the initiator caspase-10; however, we clearly demonstrate that paclitaxel kills murine embryonic fibroblasts (MEFs) devoid of caspase-10 as well as human tumor cell lines deficient in caspase-10, caspase-8, or Fas-associating protein with death domain. In contrast, the lack of Apaf-1 or caspase-9, key regulators of the mitochondrial pathway, not only entirely protected against paclitaxel-induced apoptosis but could even confer clonogenic survival, depending on the cell type and drug concentration. Thus, paclitaxel triggers apoptosis not through caspase-10, but via caspase-9 activation at the apoptosome. This conclusion is supported by the fact that Bcl-2-overexpressing cells and Bax/Bak doubly-deficient MEFs were entirely resistant to paclitaxel-induced apoptosis. Interestingly, also the single knockout of Bim or Bax, but not that of Bak or Bid, conferred partial resistance, suggesting a particular role of these mediators in the cell-death pathway activated by paclitaxel.
Collapse
Affiliation(s)
- Katja Janssen
- Institute of Molecular Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
27
|
A novel genotyping strategy based on allele-specific inverse PCR for rapid and reliable identification of conditional FADD knockout mice. Mol Biotechnol 2007; 38:129-35. [PMID: 18219592 DOI: 10.1007/s12033-007-9002-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 08/23/2007] [Indexed: 01/14/2023]
Abstract
The apoptotic adapter protein FADD has been shown to play diverse roles in cell survival and proliferation. FADD knockout embryos died of heart defects, rendering Cre/loxP-mediated conditional FADD knockout mice a unique tool for investigating FADD-dependent nonapoptotic mechanism. Previously, these genetically engineered mice were identified by time-consuming Southern blot or controversial real-time PCR. In this article, we report a novel genotyping strategy based on allele-specific inverse PCR (ASI-PCR) for rapid and reliable identification of conditional FADD knockout mice. In this strategy, the knockout nature of FADD was simply identified by screening the absence of the wild type FADD-specific ASI-PCR product. Using this method, we accurately identified CD4-Cre-mediated T cell specific FADD knockout mice. The whole process can be accomplished in any normal biological laboratory within 12 h using genomic DNA from tail biopsy. The proposed ASI-PCR-based approach is simple, rapid, sensitive, reproducible, and especially suitable for genotyping small amount of spatiotemporally restricted biopsies and large animal population. We believe that the strategy described in this article may be of general utility in genotyping other conditional gene knockout mice.
Collapse
|
28
|
Sakamaki K, Nozaki M, Kominami K, Satou Y. The evolutionary conservation of the core components necessary for the extrinsic apoptotic signaling pathway, in Medaka fish. BMC Genomics 2007; 8:141. [PMID: 17540041 PMCID: PMC1903365 DOI: 10.1186/1471-2164-8-141] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 06/01/2007] [Indexed: 12/24/2022] Open
Abstract
Background Death receptors on the cell surface and the interacting cytosolic molecules, adaptors and initiator caspases, are essential as core components of the extrinsic apoptotic signaling pathway. While the apoptotic machinery governing the extrinsic signaling pathway is well characterized in mammals, it is not fully understood in fish. Results We identified and characterized orthologs of mammalian Fas, FADD and caspase-8 that correspond to the death receptor, adaptor and initiator caspase, from the Medaka fish (Oryzias latipes). Medaka Fas, caspase-8 and FADD exhibited protein structures similar to that of their mammalian counterparts, containing a death domain (DD), a death effector domain (DED) or both. Functional analyses indicated that these molecules possess killing activity in mammalian cell lines upon overexpression or following activation by apoptotic stimuli, suggesting similar pro-apoptotic functions in the extrinsic pathway as those in mammals. Genomic sequence analysis revealed that the Medaka fas (tnfrsf6), fadd and caspase-8 (casp8) genes are organized in a similar genomic structure as the mammalian genes. Database search and phylogenetic analysis revealed that the fas gene, but not the fadd and casp8 genes, appear to be present only in vertebrates. Conclusion Our results indicate that the core components necessary for the extrinsic apoptotic pathway are evolutionarily conserved in function and structure across vertebrate species. Based on these results, we presume the mechanism of apoptosis induction via death receptors was evolutionarily established during the appearance of vertebrates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Base Sequence
- Caspase 8/chemistry
- Caspase 8/genetics
- Caspase 8/metabolism
- Cells, Cultured
- DNA, Complementary
- Databases, Genetic
- Embryo, Mammalian
- Embryo, Nonmammalian
- Evolution, Molecular
- Exons
- Expressed Sequence Tags
- Fas Ligand Protein/chemistry
- Fas Ligand Protein/genetics
- Fas Ligand Protein/metabolism
- Fas-Associated Death Domain Protein/chemistry
- Fas-Associated Death Domain Protein/genetics
- Fas-Associated Death Domain Protein/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fluorescent Antibody Technique, Indirect
- Genome
- HeLa Cells
- Humans
- Immunohistochemistry
- Mice
- Molecular Sequence Data
- NIH 3T3 Cells
- Open Reading Frames
- Oryzias/genetics
- Oryzias/metabolism
- Phylogeny
- Protein Structure, Tertiary
- Receptors, Death Domain/chemistry
- Receptors, Death Domain/genetics
- Receptors, Death Domain/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Signal Transduction
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Katsuya Kominami
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Present address: Nihon Schering Research Center, Kobe 650-0047, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
29
|
Matsuyoshi S, Shimada K, Nakamura M, Ishida E, Konishi N. Bcl-2 phosphorylation has pathological significance in human breast cancer. Pathobiology 2007; 73:205-12. [PMID: 17119350 DOI: 10.1159/000096022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/07/2006] [Indexed: 11/19/2022] Open
Abstract
The anti-apoptotic molecule, Bcl-2, is well known to play an important role in the chemoresistance of breast cancer. We have previously demonstrated that phosphorylation of Fas-associated death domain-containing protein (FADD) at 194 serine through c-jun NH2-terminal kinase (JNK) activation sensitizes breast cancer cells to chemotherapy through accelerating cell cycle arrest at G2/M, and that Bcl-2 phosphorylation downstream of JNK/FADD plays an important role in cell growth suppression by paclitaxel. In this study, the clinicopathological association of phosphorylated Bcl-2 (P-Bcl-2) with estrogen, progesterone, c-erbB-2 receptors, p53 expressions and phosphorylated FADD/JNK (P-FADD/JNK) was analyzed immunohistochemically using 107 human breast cancer specimens. Expression of P-Bcl-2 was found to significantly correlate with lymphatic invasion, lymph node metastasis, but not histological differentiation, tumor grade or vascular and fatty invasion. The positivity of P-Bcl-2 was also significantly correlated to that of P-FADD/JNK. Thus, P-Bcl-2 as well as the P-FADD/JNK parameter might be useful markers for cancer progression, independent of the hormone receptor status, in human breast cancers.
Collapse
Affiliation(s)
- Syuichi Matsuyoshi
- Department of Pathology, Nara Medical University School of Medicine, Kashihara, Nara, Japan.
| | | | | | | | | |
Collapse
|
30
|
Inoue N, Matsuda-Minehata F, Goto Y, Sakamaki K, Manabe N. Molecular Characteristics of Porcine Fas-associated Death Domain (FADD) and Procaspase-8. J Reprod Dev 2007; 53:427-36. [PMID: 17179649 DOI: 10.1262/jrd.18136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To reveal the intracellular signal transduction molecules involved in granulosa cell apoptosis in porcine ovarian follicles, we cloned the porcine Fas-associated death domain (FADD), an adaptor protein for the cell death receptor, and procaspase-8, an initiator caspase. Porcine FADD (pFADD) was 636 bp (211 amino acids: aa) long and showed 74.0 and 65.4% homology with human and murine FADD, respectively. Porcine procaspase-8 (pprocaspase-8) was 1,431 bp (476 aa) long and 70.6 and 63.4% homologous with human and murine procaspase-8, respectively. To confirm the apoptosis-inducing abilities, we constructed pFADD and pprocaspase-8 cDNA expression vectors with enhanced green fluorescence protein (EGFP) and then transfected them into human uterine cervix tumor (HeLa-K), human granulosa cell-derived (KGN), murine granulosa-derived tumor (KK1), and porcine granulosa cell-derived (JC410) cells. When pFADD and pprocaspase-8 were overexpressed, cell death was induced in these transfected cells. However when caspase-inhibitor p35 was cotransfected, cell death was inhibited. The pFADD and pprocaspase-8 genes are well conserved, as are the physiological functions of their products.
Collapse
Affiliation(s)
- Naoko Inoue
- Laboratory of Animal Morphology and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
31
|
Matsuyoshi S, Shimada K, Nakamura M, Ishida E, Konishi N. FADD phosphorylation is critical for cell cycle regulation in breast cancer cells. Br J Cancer 2006; 94:532-9. [PMID: 16450001 PMCID: PMC2361184 DOI: 10.1038/sj.bjc.6602955] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Anti-oestrogen therapy is effective for control of hormone receptor-positive breast cancers, although the detailed molecular mechanisms, including signal transduction, remain unclear. We demonstrated here that long-term tamoxifen treatment causes G2/M cell cycle arrest through c-jun N-terminal kinase (JNK) activation, which is dependent on phosphorylation of Fas-associated death domain-containing protein (FADD) at 194 serine in an oestrogen (ER) receptor-positive breast cancer cell line, MCF-7. Expression of a dominant negative mutant form of MKK7, a kinase upstream of JNK, or mutant FADD (S194A) in MCF-7 cells suppressed the cytotoxicity of long-term tamoxifen treatment. Of great interest, similar signallings could be evoked by paclitaxel, even in an ER-negative cell line, MDA-MB-231. In addition, immunohistochemical analysis using human breast cancer specimens showed a close correlation between phosphorylated JNK and FADD expression, both being significantly reduced in cases with metastatic potential. We conclude that JNK-mediated phosphorylation of FADD plays an important role in the negative regulation of cell growth and metastasis, independent of the ER status of a breast cancer, so that JNK/FADD signals might be promising targets for cancer therapy.
Collapse
Affiliation(s)
- S Matsuyoshi
- Department of Pathology, Nara Medical University School of Medicine, Nara 634-8521, Japan.
| | | | | | | | | |
Collapse
|
32
|
Arechiga AF, Bell BD, Solomon JC, Chu IH, Dubois CL, Hall BE, George TC, Coder DM, Walsh CM. Cutting edge: FADD is not required for antigen receptor-mediated NF-kappaB activation. THE JOURNAL OF IMMUNOLOGY 2006; 175:7800-4. [PMID: 16339514 DOI: 10.4049/jimmunol.175.12.7800] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, it has been demonstrated that stimulated T cells bearing defects in caspase-8 fail to promote nuclear shuttling of NF-kappaB complexes. Such cells display strikingly similar proliferative and survival defects as T cells lacking Fas-associated death domain protein (FADD) function. We characterized NF-kappaB signaling in T cells bearing a dominant-negative FADD transgene (FADDdd). Whereas FADDdd T cells displayed proliferative defects following activation, these were not a consequence of aberrant NF-kappaB signaling, as measured by IKK/IkappaB phosphorylation and IkappaB degradation. There were no appreciable defects in nuclear translocation of p65/Rel using ImageStream, a flow-based imaging cytometer. Pretreatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, a potent caspase inhibitor, also failed to impede canonical NF-kappaB signaling. Secretion of IL-2 and up-regulation of various activation markers occurred normally. Thus, FADD does not play an essential role in NF-kappaB activation, suggesting an alternative route by which this adaptor promotes the clonal expansion of T cells.
Collapse
Affiliation(s)
- Adrian F Arechiga
- Center for Immunology and Department of Molecular Biology & Biochemistry, University of California, Irvine. CA 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schuchmann M, Ruckert F, Garcia-Lazaro JF, Karg A, Burg J, Knorr N, Siebler J, Varfolomeev EE, Wallach D, Schreiber W, Lohse AW, Galle PR. MORT1/FADD is involved in liver regeneration. World J Gastroenterol 2006; 11:7248-53. [PMID: 16437623 PMCID: PMC4725154 DOI: 10.3748/wjg.v11.i46.7248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the role of the adaptor molecule in liver regeneration after partial hepatectomy (PH). METHODS We used transgenic mice expressing an N-terminal truncated form of MORT1/FADD under the control of the albumin promoter. As previously shown, this transgenic protein abrogated CD95- and CD120a-mediated apoptosis in the liver. Cyclin A expression was detected using Western blotting. ELISA and RT-PCR were used to detect IL-6 and IL-6 mRNA, respectively. DNA synthesis in liver tissue was measured by BrdU staining. RESULTS Resection of 70% of the liver was followed by a reduced early regenerative response in the transgenic group at 36 h. Accordingly, 36 h after hepatectomy, cyclin A expression was only detectable in wild-type animals. Consequently, the onset of liver mass restoration was retarded as measured by MRI volumetry and mortality was significantly higher in the transgenic group. CONCLUSION Our data demonstrate for the first time an involvement of the death receptor molecule MORT1/FADD in liver regeneration, beyond its well described role as part of the intracellular death signaling pathway.
Collapse
Affiliation(s)
- Marcus Schuchmann
- Department of Medicine University of Mainz, Langenbeckstr. 1, Mainz 55101, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE, Thorburn A, Kidd VJ, Slaughter CA, Osborn SL, Winoto A, Tang WJ, Peter ME. Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol Cell 2005; 19:321-32. [PMID: 16061179 DOI: 10.1016/j.molcel.2005.06.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 05/03/2005] [Accepted: 06/24/2005] [Indexed: 01/20/2023]
Abstract
FADD is essential for death receptor (DR)-induced apoptosis. However, it is also critical for cell cycle progression and proliferation, activities that are regulated by phosphorylation of its C-terminal Ser194, which has also been implicated in sensitizing cancer cells to chemotherapeutic drugs and in regulating FADD's intracellular localization. We now demonstrate that casein kinase Ialpha (CKIalpha) phosphorylates FADD at Ser194 both in vitro and in vivo. FADD-CKIalpha association regulates the subcellular localization of FADD, and phosphorylated FADD was found to colocalize with CKIalpha on the spindle poles in metaphase. Inhibition of CKIalpha diminished FADD phosphorylation, prevented the ability of Taxol to arrest cells in mitosis, and blocked mitogen-induced proliferation of mouse splenocytes. In contrast, a low level of cycling splenocytes from mice expressing FADD with a mutated phosphorylation site was insensitive to CKI inhibition. These data suggest that phosphorylation of FADD by CKI is a crucial event during mitosis.
Collapse
Affiliation(s)
- Elizabeth C Alappat
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Park SM, Schickel R, Peter ME. Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol 2005; 17:610-6. [PMID: 16226446 DOI: 10.1016/j.ceb.2005.09.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 09/29/2005] [Indexed: 02/01/2023]
Abstract
Death receptors (DRs) are surface receptors that when triggered have the capacity to induce apoptosis in cells by forming the death-inducing signaling complex (DISC). The first protein recruited to form the DISC is the adaptor protein FADD/Mort1. Some members of the DR family, CD95 and the TRAIL receptors DR4 and DR5, directly bind FADD, whereas others, such as TNF receptor I and DR3, initially bind another adaptor protein, TRADD, which then recruits FADD. While all DRs can activate both apoptotic and non-apoptotic pathways, it has been widely assumed that the main physiological role of FADD-binding death receptors is to trigger apoptosis. However, recent work has ascribed multiple non-apoptotic activities to these receptors and/or the signaling components of the DISC.
Collapse
Affiliation(s)
- Sun-Mi Park
- The Ben May Institute for Cancer Research, University of Chicago, 924 E. 57th Street., Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
36
|
Shimada K, Matsuyoshi S, Nakamura M, Ishida E, Konishi N. Phosphorylation status of Fas-associated death domain-containing protein (FADD) is associated with prostate cancer progression. J Pathol 2005; 206:423-32. [PMID: 15906275 DOI: 10.1002/path.1791] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has recently been demonstrated that phosphorylation of FADD at serine 194 plays an important role in the induction of apoptosis by anti-cancer drugs in human prostate cancer cells. The present study has assessed whether this phosphorylation status is valuable as a marker for human prostate cancer progression, and has investigated its biological role in cell growth. Immunohistochemical studies revealed much higher phosphorylation of FADD at serine 194 in normal epithelial cells than in cancer cells, although FADD was found to be highly expressed to the same extent in both cases. The positivity for phosphorylated FADD was significantly lower for patients with a Gleason score greater than or equal to 7, a positive surgical margin, extracapsular or seminal vesicle invasion. In addition, a relationship was also apparent in cancer cells refractory to neoadjuvant hormonal therapy. Interestingly, in Gleason score 3 + 4 tumours, the positivity for FADD phosphorylation was statistically increased by neoadjuvant hormonal therapy, resulting in a reduced percentage of cases with a positive surgical margin and extracapsular invasion. In vitro data showed different functions of phosphorylated and non-phosphorylated FADD: in normal epithelial cells, overexpression of a phosphorylation-mimicking mutant FADD (S194E) caused G2/M cell-cycle arrest, while a non-phosphorylation-mimicking mutant (S194A) had no effect, whereas S194A overexpression resulted in cell cycle progression and enhanced colony-forming activity in cancer cells, but S194E FADD was without influence. These results clearly demonstrate that transition from phosphorylated FADD to the non-phosphorylated form might be associated with carcinogenesis and that induction of FADD phosphorylation could therefore be a target for chemohormonal therapy of human prostate cancer. Moreover, assessment of FADD phosphorylation may be useful as a new biomarker to predict cancer progression.
Collapse
Affiliation(s)
- Keiji Shimada
- Department of Pathology, Nara Medical University, School of Medicine, Nara, 634-8521, Japan
| | | | | | | | | |
Collapse
|
37
|
Tran SEF, Meinander A, Eriksson JE. Instant decisions: transcription-independent control of death-receptor-mediated apoptosis. Trends Biochem Sci 2005; 29:601-8. [PMID: 15501679 DOI: 10.1016/j.tibs.2004.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transcription-independent modulation of signaling mediated by death receptors (DRs) has emerged as an important determinant of cell survival during both development and cellular homeostasis. Frequently, a given DR signal must be redirected rapidly either to inhibit or to potentiate the apoptotic response. This process requires immediate, protein-synthesis-independent modifications of the regulatory molecules involved. Numerous mechanisms have been shown to regulate DR responses without engaging the apoptosis-directing transcription machinery. These mechanisms involve key posttranslational modifications such as phosphorylation, ubiquitination and proteolytic degradation, all of which affect the activities of proteins at different levels in the DR signaling pathways. Changes in the organization of regulatory molecules and in their interactions with other factors also affect the DR signaling pathways. The balance between these modulatory signals rapidly decides the fate of a cell.
Collapse
Affiliation(s)
- Stefanie E F Tran
- Institut de Génétique Moléculaire et Cellulaire de Montpellier, CNRS UMR 5535, 1919 route de Mende, 34293 Montpellier, France
| | | | | |
Collapse
|
38
|
Chen G, Bhojani MS, Heaford AC, Chang DC, Laxman B, Thomas DG, Griffin LB, Yu J, Coppola JM, Giordano TJ, Lin L, Adams D, Orringer MB, Ross BD, Beer DG, Rehemtulla A. Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc Natl Acad Sci U S A 2005; 102:12507-12. [PMID: 16109772 PMCID: PMC1194899 DOI: 10.1073/pnas.0500397102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In an effort to identify a clinical biomarker for lung cancer, we used cDNA microarray and 2D protein analyses to demonstrate that increased Fas-associated death domain (FADD) mRNA and protein were significantly associated with poor survival. Analyses of copy number and sequence of the FADD gene in 24 independent tumors ruled out the existence of an amplified and/or mutated FADD gene in aggressive lung cancers. Immunohistochemistry-based tissue microarray analysis showed that nuclear localization of FADD and elevation of the phosphorylated form of FADD (p-FADD) correlated with poor outcome (P = 0.003). Tumors with increased p-FADD expression showed elevated NF-kappaB (P = 0.004) activation, a frequent molecular alteration associated with tumorigenesis and metastasis in a variety of cancers. To provide a link between p-FADD and NF-kappaB, cell culture studies demonstrated that overexpression of p-FADD leads to an increase in NF-kappaB activity and a decrease in the number of cells in the G2 phase of the cell cycle, compared with cells expressing the nonphosphorylatable form of FADD or the vector control. Furthermore, cDNA microarray analyses of lung tumor samples showed that increased levels of FADD transcripts were significantly correlated with overexpression of cyclins D1 (P < 0.01) and B1 (P < 0.01), genes that are involved in the regulation of cell cycle progression and are inducible by NF-kappaB. These studies demonstrate that induction of NF-kappaB activity and its effects on cell-cycle progression may represent a molecular basis underlying the aggressive tumor behavior associated with elevated p-FADD expression in lung adenocarcinoma.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Apoptosis
- Cell Cycle/physiology
- Cell Nucleus/metabolism
- Cell Proliferation
- DNA, Neoplasm/genetics
- Electrophoresis, Gel, Two-Dimensional
- Fas-Associated Death Domain Protein
- Gene Amplification
- Gene Expression
- Humans
- Jurkat Cells
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mutation
- NF-kappa B/biosynthesis
- Oligonucleotide Array Sequence Analysis
- Phosphorylation
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Small Interfering/genetics
- Serine/chemistry
Collapse
Affiliation(s)
- Guoan Chen
- Departments of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lashinger LM, Zhu K, Williams SA, Shrader M, Dinney CPN, McConkey DJ. Bortezomib abolishes tumor necrosis factor-related apoptosis-inducing ligand resistance via a p21-dependent mechanism in human bladder and prostate cancer cells. Cancer Res 2005; 65:4902-8. [PMID: 15930312 DOI: 10.1158/0008-5472.can-04-3701] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family of cytokines that induces apoptosis in some tumor cells but not in normal cells. Unfortunately, many human cancer cell lines are refractory to TRAIL-induced cell death, and the molecular mechanisms underlying resistance are unclear. Here we report that TRAIL resistance was reversed in human bladder and prostate cancer cell lines by the proteasome inhibitor bortezomib (PS-341, Velcade). Synergistic induction of apoptosis occurred within 4 to 6 hours in cells treated with TRAIL plus bortezomib and was associated with accumulation of p21(WAF-1/Cip-1) (p21) and inhibition of cyclin-dependent kinase (cdk) activity. Roscovitine, a specific cdk1/2 inhibitor, also sensitized cells to TRAIL. Silencing p21 expression reduced levels of DNA fragmentation by 50% in cells treated with bortezomib and TRAIL, confirming that p21 was required for the response. Analysis of the TRAIL pathway revealed that caspase-8 processing was enhanced in a p21-dependent fashion in cells exposed to TRAIL and bortezomib as compared with cells treated with TRAIL alone. Thus, all downstream components of the pathway (Bid cleavage, cytochrome c release, and caspase-3 activation) were amplified. These data strongly suggest that p21-mediated cdk inhibition promotes TRAIL sensitivity via caspase-8 activation and that TRAIL and bortezomib should be combined in appropriate in vivo models as a possible approach to solid tumor therapy.
Collapse
Affiliation(s)
- Laura M Lashinger
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
40
|
Tourneur L, Buzyn A, Chiocchia G. FADD adaptor in cancer. MEDICAL IMMUNOLOGY 2005; 4:1. [PMID: 15717929 PMCID: PMC550674 DOI: 10.1186/1476-9433-4-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 02/17/2005] [Indexed: 12/30/2022]
Abstract
FADD (Fas Associated protein with Death Domain) is a key adaptor molecule transmitting the death signal mediated by death receptors. In addition, this multiple functional protein is implicated in survival/proliferation and cell cycle progression. FADD functions are regulated via cellular sublocalization, protein phosphorylation, and inhibitory molecules. In the present review, we focus on the role of the FADD adaptor in cancer. Increasing evidence shows that defects in FADD protein expression are associated with tumor progression both in mice and humans. Better knowledge of the mechanisms leading to regulation of FADD functions will improve understanding of tumor growth and the immune escape mechanisms, and could open a new field for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Tourneur
- Département d'Immunologie, Institut Cochin, INSERM U 567, CNRS UMR 8104, IFR 116, Université René Descartes, Paris V, Paris, France
| | - Agnès Buzyn
- Département d'Immunologie, Institut Cochin, INSERM U 567, CNRS UMR 8104, IFR 116, Université René Descartes, Paris V, Paris, France
- Service d'Hématologie Adultes, Hôpital Necker-Enfants Malades, Paris, France
| | - Gilles Chiocchia
- Département d'Immunologie, Institut Cochin, INSERM U 567, CNRS UMR 8104, IFR 116, Université René Descartes, Paris V, Paris, France
| |
Collapse
|
41
|
Sakamaki K, Takagi C, Kominami K, Sakata SI, Yaoita Y, Kubota HY, Nozaki M, Yonehara S, Ueno N. The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity. Genes Cells 2004; 9:1249-64. [PMID: 15569156 DOI: 10.1111/j.1365-2443.2004.00802.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
FADD is an adaptor protein that transmits apoptotic signals from death receptors such as Fas to downstream initiator caspases in mammals. We have identified and characterized the Xenopus orthologue of mammalian FADD (xFADD). xFADD contains both a death effector domain (DED) and a death domain (DD) that are structurally homologous to those of mammalian FADD. We observed xFADD binding to Xenopus caspase-8 and caspase-10 as well as to human caspase-8 and Fas through interactions with their homophilic DED and DD domains. When over-expressed, xFADD was also able to induce apoptosis in wild-type mouse embryonic fibroblasts (MEF), but not in caspase-8-deficient MEF cells. In contrast, DED-deficient xFADD (xFADDdn) acted as a dominant-negative mutant and prevented Fas-mediated apoptosis in mammalian cell lines. These results indicate that xFADD transmits apoptotic signals from Fas to caspase-8. Furthermore, we found that transgenic animals expressing xFADD in the developing heart or eye under the control of tissue-specific promoters show abnormal phenotypes. Taken together, these results suggest that xFADD can substitute functionally for its mammalian homologue in death receptor-mediated apoptosis, and we suggest that xFADD functions as a pro-apoptotic adaptor molecule in frogs. Thus, the structural and functional similarities between xFADD and mammalian FADD provide evidence that the apoptotic pathways are evolutionally conserved across vertebrate species.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Imamura R, Konaka K, Matsumoto N, Hasegawa M, Fukui M, Mukaida N, Kinoshita T, Suda T. Fas Ligand Induces Cell-autonomous NF-κB Activation and Interleukin-8 Production by a Mechanism Distinct from That of Tumor Necrosis Factor-α. J Biol Chem 2004; 279:46415-23. [PMID: 15337758 DOI: 10.1074/jbc.m403226200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fas ligand (FasL) has been well characterized as a death factor. However, recent studies revealed that FasL possesses inflammatory activity. Here we found that FasL induces production of the inflammatory chemokine IL-8 without inducing apoptosis in HEK293 cells. Reporter gene assays involving wild-type and mutated IL-8 promoters and NF-kappaB- and AP-1 reporter constructs indicated that an FasL-induced NF-kappaB and AP-1 activity are required for maximal promoter activity. FasL induced NF-kappaB activation with slower kinetics than did TNF-alpha, yet this response was cell autonomous and not mediated by secondary paracrine factors. The death domain of Fas, FADD, and caspase-8 were required for NF-kappaB activation by FasL. A dominant-negative mutant of IKKgamma inhibited the FasL-induced NF-kappaB activation. However, TRADD and RIP, which are essential for the TNF-alpha-induced NF-kappaB activation, were not involved in the FasL-induced NF-kappaB activation. Moreover, CLARP/FLIP inhibited the FasL- but not the TNF-alpha-induced NF-kappaB activation. These results show that FasL induces NF-kappaB activation and IL-8 production by a novel mechanism, distinct from that of TNF-alpha. In addition, we found that mouse FADD had a dominant-negative effect on the FasL-induced NF-kappaB activation in HEK293 cells, which may indicate a species difference between human and mouse in the FasL-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Ryu Imamura
- Center for the Development of Molecular Target Drugs, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
During their development, B-lineage cells are selected to mature, to die, to divide, or to survive and wait, ready to respond to external signals. The homeostatic balance between growth, death, and survival is mediated by signaling pathways through the B-cell antigen receptor (BCR) complex, cytokine and chemokine receptors or cell-cell coreceptor interactions. The BCR complex is a master regulator essential at key checkpoints during development. These checkpoints involve various processes, including negative selection (deletion), anergy, receptor editing, and positive selection. Without BCRs or downstream BCR-signaling components, B-lineage cells arrest during development. Removal of BCRs from mature B cells leads to their death. Here, we discuss signaling pathways in B cells that activate members of the caspase family of cysteine proteases. In some B-cell subsets, BCR signaling activates caspases, which in turn induce a program leading to cell death. However, in other contexts, caspases are involved in the proliferation of B cells. The outcome depends in part on the presence or absence of modifiers that affect signaling thresholds and on which caspases are activated. These mechanisms allow the coordinated regulation of proliferation and apoptosis that is essential for lymphoid homeostasis.
Collapse
Affiliation(s)
- Jonathan D Graves
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
44
|
Hueber AO, Bösser S, Zörnig M. Transgenic overexpression of a dominant negative mutant of FADD that, although counterselected during tumor progression, cooperates in L-myc-induced tumorigenesis. Int J Cancer 2004; 112:536-40. [PMID: 15382083 DOI: 10.1002/ijc.20422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of the so-called death receptors, e.g., CD95/Fas/Apo-1, is a potent stimulus to trigger apoptosis. Overexpression of the C-terminal FADD deletion mutant FADD-DN blocks death receptor-induced apoptosis, but despite this antiapoptotic activity, lck FADD-DN transgenic mice do not develop lymphomas. To analyze whether functional inactivation of FADD cooperates with Myc overexpression in tumorigenesis, lck FADD-DN transgenic mice were crossed with Emicro L-myc transoncogenic animals. While no tumors were detected in single transgenic FADD-DN or L-myc mice within 15 months, 5 of 17 (29%) FADD-DN/L-myc double transgenic animals developed lymphomas with an average latency period of 47 weeks. Protein analysis of FADD-DN/L-myc tumors showed, however, undetectable levels of FADD-DN protein. FADD-DN protein expression was again lost in 16 of 17 FADD-DN/p53 k.o. T-cell lymphomas, though no significant acceleration of tumorigenesis in P53-deficient lck FADD-DN mice compared to p53 k.o. animals was observed. These data suggest a strong counterselection against the FADD-DN protein during tumor progression, which could be explained by the cell cycle inhibitory activity of FADD-DN. Such counterselection would have to be compensated for by other antiapoptotic mutations, and indeed, strong upregulation of the antiapoptotic Bcl-2 family member Bcl-xL was found in one of the tumors. This in vivo mouse model demonstrates that an antiapoptotic protein involved in the onset of tumorigenesis is selected against and consequently lost during tumor progression because of its additional antiproliferative activity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Animals, Genetically Modified
- Disease Progression
- Fas-Associated Death Domain Protein
- Genes, Dominant
- Genes, myc/genetics
- Genes, myc/physiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/physiology
- bcl-X Protein
- fas Receptor
Collapse
Affiliation(s)
- Anne-Odile Hueber
- Institute of Signaling, Developmental Biology and Cancer Research, Centre National de la Recherche Scientifique Unité mixte de Recherche 6543 Centre A. Lacassagne, Nice, France
| | | | | |
Collapse
|