1
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
2
|
Holmes SG, Nagarajan B, Desai UR. 3- O-Sulfation induces sequence-specific compact topologies in heparan sulfate that encode a dynamic sulfation code. Comput Struct Biotechnol J 2022; 20:3884-3898. [PMID: 35891779 PMCID: PMC9309406 DOI: 10.1016/j.csbj.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is arguably the most diverse linear biopolymer that is known to modulate hundreds of proteins. Whereas the configurational and conformational diversity of HS is well established in terms of varying sulfation patterns and iduronic acid (IdoA) puckers, a linear helical topology resembling a cylindrical rod is the only topology thought to be occupied by the biopolymer. We reasoned that 3-O-sulfation, a rare modification in natural HS, may induce novel topologies that contribute to selective recognition of proteins. In this work, we studied a library of 24 distinct HS hexasaccharides using molecular dynamics (MD). We discovered novel compact (C) topologies that are populated significantly by a unique group of 3-O-sulfated sequences containing IdoA residues. 3-O-sulfated sequences containing glucuronic acid (GlcA) residue and sequences devoid of 3-O-sulfate groups did not exhibit high levels of the C topology and primarily exhibited only the canonical linear (L) form. The C topology arises under dynamical conditions due to rotation around an IdoA → GlcN glycosidic linkage, especially in psi (Ψ) torsion. At an atomistic level, the L → C transformation is a multi-factorial phenomenon engineered to reduce like-charge repulsion, release one or more HS-bound water molecules, and organize a bi-dentate "IdoA-cation-IdoA" interaction. These forces also drive an L → C transformation in a 3-O-sulfated octasaccharide, which has shown evidence of the unique C topology in the co-crystallized state. The 3-O-sulfate-based generation of unique, sequence-specific, compact topologies indicate that natural HS encodes a dynamic sulfation code that could be exploited for selective recognition of target proteins.
Collapse
Affiliation(s)
- Samuel G. Holmes
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
- Corresponding author at: Institute for Structural Biology, Drug Discovery, and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA.
| |
Collapse
|
3
|
Tao L, He X, Jiang Y, Liu Y, Ouyang Y, Shen Y, Hong Q, Chu M. Genome-Wide Analyses Reveal Genetic Convergence of Prolificacy between Goats and Sheep. Genes (Basel) 2021; 12:480. [PMID: 33810234 PMCID: PMC8065816 DOI: 10.3390/genes12040480] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
The litter size of domestic goats and sheep is an economically important trait that shows variation within breeds. Strenuous efforts have been made to understand the genetic mechanisms underlying prolificacy in goats and sheep. However, there has been a paucity of research on the genetic convergence of prolificacy between goats and sheep, which likely arose because of similar natural and artificial selection forces. Here, we performed comparative genomic and transcriptomic analyses to identify the genetic convergence of prolificacy between goats and sheep. By combining genomic and transcriptomic data for the first time, we identified this genetic convergence in (1) positively selected genes (CHST11 and SDCCAG8), (2) differentially expressed genes (SERPINA14, RSAD2, and PPIG at follicular phase, and IGF1, GPRIN3, LIPG, SLC7A11, and CHST15 at luteal phase), and (3) biological pathways (genomic level: osteoclast differentiation, ErbB signaling pathway, and relaxin signaling pathway; transcriptomic level: the regulation of viral genome replication at follicular phase, and protein kinase B signaling and antigen processing and presentation at luteal phase). These results indicated the potential physiological convergence and enhanced our understanding of the overlapping genetic makeup underlying litter size in goats and sheep.
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (Y.L.)
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (Y.L.)
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Y.O.)
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (Y.L.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Y.O.)
| | - Yezhen Shen
- Annoroad Gene Technology Co., Ltd., Beijing 100176, China;
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.J.); (Y.O.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (Y.L.)
| |
Collapse
|
4
|
Swart M, Troeberg L. Effect of Polarization and Chronic Inflammation on Macrophage Expression of Heparan Sulfate Proteoglycans and Biosynthesis Enzymes. J Histochem Cytochem 2018; 67:9-27. [PMID: 30205019 DOI: 10.1369/0022155418798770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans on immune cells have the ability to bind to and regulate the bioactivity more than 400 bioactive protein ligands, including many chemokines, cytokines, and growth factors. This makes them important regulators of the phenotype and behavior of immune cells. Here we review how HS biosynthesis in macrophages is regulated during polarization and in chronic inflammatory diseases such as rheumatoid arthritis, atherosclerosis, asthma, chronic obstructive pulmonary disease and obesity, by analyzing published micro-array data and mechanistic studies in this area. We describe that macrophage expression of many HS biosynthesis and core proteins is strongly regulated by macrophage polarization, and that these expression patterns are recapitulated in chronic inflammation. Such changes in HS biosynthetic enzyme expression are likely to have a significant impact on the phenotype of macrophages in chronic inflammatory diseases by altering their interactions with chemokines, cytokines, and growth factors.
Collapse
Affiliation(s)
- Maarten Swart
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Martinez-Royo A, Alabart JL, Sarto P, Serrano M, Lahoz B, Folch J, Calvo JH. Genome-wide association studies for reproductive seasonality traits in Rasa Aragonesa sheep breed. Theriogenology 2017; 99:21-29. [DOI: 10.1016/j.theriogenology.2017.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/27/2017] [Accepted: 05/13/2017] [Indexed: 01/06/2023]
|
6
|
Abstract
Proteoglycans (PGs) regulate diverse functions in the central nervous system (CNS) by interacting with a number of growth factors, matrix proteins, and cell surface molecules. Heparan sulfate (HS) and chondroitin sulfate (CS) are two major glycosaminoglycans present in the PGs of the CNS. The functionality of these PGs is to a large extent dictated by the fine sulfation patterns present on their glycosaminoglycan (GAG) chains. In the past 15 years, there has been a significant expansion in our knowledge on the role of HS and CS chains in various neurological processes, such as neuronal growth, regeneration, plasticity, and pathfinding. However, defining the relation between distinct sulfation patterns of the GAGs and their functionality has thus far been difficult. With the emergence of novel tools for the synthesis of defined GAG structures, and techniques for their characterization, we are now in a better position to explore the structure-function relation of GAGs in the context of their sulfation patterns. In this review, we discuss the importance of GAGs on CNS development, injury, and disorders with an emphasis on their sulfation patterns. Finally, we outline several GAG-based therapeutic strategies to exploit GAG chains for ameliorating various CNS disorders.
Collapse
Affiliation(s)
- Vimal P Swarup
- Department of Bioengineering, University of Utah, Salt Lake City, 84112 UT , USA
| | | | | | | |
Collapse
|
7
|
Seneff S, Swanson N, Li C. Aluminum and Glyphosate Can Synergistically Induce Pineal Gland Pathology: Connection to Gut Dysbiosis and Neurological Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/as.2015.61005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Morley WA, Seneff S. Diminished brain resilience syndrome: A modern day neurological pathology of increased susceptibility to mild brain trauma, concussion, and downstream neurodegeneration. Surg Neurol Int 2014; 5:97. [PMID: 25024897 PMCID: PMC4093745 DOI: 10.4103/2152-7806.134731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/31/2014] [Indexed: 12/11/2022] Open
Abstract
The number of sports-related concussions has been steadily rising in recent years. Diminished brain resilience syndrome is a term coined by the lead author to describe a particular physiological state of nutrient functional deficiency and disrupted homeostatic mechanisms leading to increased susceptibility to previously considered innocuous concussion. We discuss how modern day environmental toxicant exposure, along with major changes in our food supply and lifestyle practices, profoundly reduce the bioavailability of neuro-critical nutrients such that the normal processes of homeostatic balance and resilience are no longer functional. Their diminished capacity triggers physiological and biochemical 'work around' processes that result in undesirable downstream consequences. Exposure to certain environmental chemicals, particularly glyphosate, the active ingredient in the herbicide, Roundup(®), may disrupt the body's innate switching mechanism, which normally turns off the immune response to brain injury once danger has been removed. Deficiencies in serotonin, due to disruption of the shikimate pathway, may lead to impaired melatonin supply, which reduces the resiliency of the brain through reduced antioxidant capacity and alterations in the cerebrospinal fluid, reducing critical protective buffering mechanisms in impact trauma. Depletion of certain rare minerals, overuse of sunscreen and/or overprotection from sun exposure, as well as overindulgence in heavily processed, nutrient deficient foods, further compromise the brain's resilience. Modifications to lifestyle practices, if widely implemented, could significantly reduce this trend of neurological damage.
Collapse
Affiliation(s)
| | - Stephanie Seneff
- Spoken Language Systems Group, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge MA 02139, USA
| |
Collapse
|
9
|
Thacker BE, Xu D, Lawrence R, Esko JD. Heparan sulfate 3-O-sulfation: a rare modification in search of a function. Matrix Biol 2013; 35:60-72. [PMID: 24361527 DOI: 10.1016/j.matbio.2013.12.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/02/2023]
Abstract
Many protein ligands bind to heparan sulfate, which results in their presentation, protection, oligomerization or conformational activation. Binding depends on the pattern of sulfation and arrangement of uronic acid epimers along the chains. Sulfation at the C3 position of glucosamine is a relatively rare, yet biologically significant modification, initially described as a key determinant for binding and activation of antithrombin and later for infection by type I herpes simplex virus. In mammals, a family of seven heparan sulfate 3-O-sulfotransferases installs sulfate groups at this position and constitutes the largest group of sulfotransferases involved in heparan sulfate formation. However, to date very few proteins or biological systems have been described that are influenced by 3-O-sulfation. This review describes our current understanding of the prevalence and structure of 3-O-sulfation sites, expression and substrate specificity of the 3-O-sulfotransferase family and the emerging roles of 3-O-sulfation in biology.
Collapse
Affiliation(s)
- Bryan E Thacker
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Ding Xu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093-0687, United States; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093-0687, United States.
| |
Collapse
|
10
|
Gesteira TF, Coulson-Thomas VJ, Ogata FT, Farias EHC, Cavalheiro RP, de Lima MA, Cunha GLA, Nakayasu ES, Almeida IC, Toma L, Nader HB. A novel approach for the characterisation of proteoglycans and biosynthetic enzymes in a snail model. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1862-9. [PMID: 21854878 DOI: 10.1016/j.bbapap.2011.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/13/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
Proteoglycans encompass a heterogeneous group of glycoconjugates where proteins are substituted with linear, highly negatively charged glycosaminoglycan chains. Sulphated glycosaminoglycans are ubiquitous to the animal kingdom of the Eukarya domain. Information on the distribution and characterisation of proteoglycans in invertebrate tissues is limited and restricted to a few species. By the use of multidimensional protein identification technology and immunohistochemistry, this study shows for the first time the presence and tissue localisation of different proteoglycans, such as perlecan, aggrecan, and heparan sulphate proteoglycan, amongst others, in organs of the gastropoda Achatina fulica. Through a proteomic analysis of Golgi proteins and immunohistochemistry of tissue sections, we detected the machinery involved in glycosaminoglycan biosynthesis, related to polymer formation (polymerases), as well as secondary modifications (sulphation and uronic acid epimerization). Therefore, this work not only identifies both the proteoglycan core proteins and glycosaminoglycan biosynthetic enzymes in invertebrates but also provides a novel method for the study of glycosaminoglycan and proteoglycan evolution.
Collapse
Affiliation(s)
- Tarsis F Gesteira
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yabe T, Hosoda-Yabe R, Kanamaru Y, Kiso M. A peptide found by phage display discriminates a specific structure of a trisaccharide in heparin. J Biol Chem 2011; 286:12397-406. [PMID: 21335559 DOI: 10.1074/jbc.m110.172155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of recent studies have shown that heparan sulfate can control several important biological events on the cell surface through changes in sulfation pattern. The in vivo modification of sugar chains with sulfates, however, is complicated, and the discrimination of different sulfation patterns is difficult. Heparin, which is primarily produced by mast cells, is closely approximated by the structural analog heparan sulfate. Screening of heparin-associating peptides using phage display and antithrombin-bound affinity chromatography identified a peptide, heparin-associating peptide Y (HappY), that acts as a target of immobilized heparin. The peptide consists of 12 amino acid residues with characteristic three arginines and exclusively binds to heparin and heparan sulfate but does not associate with other glycosaminoglycans. HappY recognizes three consecutive monosaccharide residues in heparin through its three arginine residues. HappY should be a useful probe to detect heparin and heparan sulfate in studies of glycobiology.
Collapse
Affiliation(s)
- Tomio Yabe
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.
| | | | | | | |
Collapse
|
12
|
Victor XV, Nguyen TKN, Ethirajan M, Tran VM, Nguyen KV, Kuberan B. Investigating the elusive mechanism of glycosaminoglycan biosynthesis. J Biol Chem 2009; 284:25842-53. [PMID: 19628873 DOI: 10.1074/jbc.m109.043208] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosaminoglycan (GAG) biosynthesis requires numerous biosynthetic enzymes and activated sulfate and sugar donors. Although the sequence of biosynthetic events is resolved using reconstituted systems, little is known about the emergence of cell-specific GAG chains (heparan sulfate, chondroitin sulfate, and dermatan sulfate) with distinct sulfation patterns. We have utilized a library of click-xylosides that have various aglycones to decipher the mechanism of GAG biosynthesis in a cellular system. Earlier studies have shown that both the concentration of the primers and the structure of the aglycone moieties can affect the composition of the newly synthesized GAG chains. However, it is largely unknown whether structural features of aglycone affect the extent of sulfation, sulfation pattern, disaccharide composition, and chain length of GAG chains. In this study, we show that aglycones can switch not only the type of GAG chains, but also their fine structures. Our findings provide suggestive evidence for the presence of GAGOSOMES that have different combinations of enzymes and their isoforms regulating the synthesis of cell-specific combinatorial structures. We surmise that click-xylosides are differentially recognized by the GAGOSOMES to generate distinct GAG structures as observed in this study. These novel click-xylosides offer new avenues to profile the cell-specific GAG chains, elucidate the mechanism of GAG biosynthesis, and to decipher the biological actions of GAG chains in model organisms.
Collapse
Affiliation(s)
- Xylophone V Victor
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | |
Collapse
|
13
|
Lindahl U, Li JP. Interactions between heparan sulfate and proteins-design and functional implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:105-59. [PMID: 19584012 DOI: 10.1016/s1937-6448(09)76003-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heparan sulfate (HS) proteoglycans at cell surfaces and in the extracellular matrix of most animal tissues are essential in development and homeostasis, and variously implicated in disease processes. Functions of HS polysaccharide chains depend on ionic interactions with a variety of proteins including growth factors and their receptors. Negatively charged sulfate and carboxylate groups are arranged in various types of domains, generated through strictly regulated biosynthetic reactions and with enormous potential for structural variability. The level of specificity of HS-protein interactions is assessed through binding experiments in vitro using saccharides of defined composition, signaling assays in cell culture, and targeted disruption of genes for biosynthetic enzymes followed by phenotype analysis. While some protein ligands appear to require strictly defined HS structure, others bind to variable saccharide domains without any apparent dependence on distinct saccharide sequence. These findings raise intriguing questions concerning the functional significance of regulation in HS biosynthesis.
Collapse
Affiliation(s)
- Ulf Lindahl
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | | |
Collapse
|
14
|
Mochizuki H, Yoshida K, Shibata Y, Kimata K. Tetrasulfated disaccharide unit in heparan sulfate: enzymatic formation and tissue distribution. J Biol Chem 2008; 283:31237-45. [PMID: 18757372 DOI: 10.1074/jbc.m801586200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that the heparan sulfate 3-O-sulfotransferase (3OST)-5 produces a novel component of heparan sulfate, i.e. the tetrasulfated disaccharide (Di-tetraS) unit ( Mochizuki, H., Yoshida, K., Gotoh, M., Sugioka, S., Kikuchi, N., Kwon, Y.-D., Tawada, A., Maeyama, K., Inaba, N., Hiruma, T., Kimata, K., and Narimatsu, H. (2003) J. Biol. Chem. 278, 26780-26787 ). In the present study, we investigated the potential of other 3OST isoforms to produce Di-tetraS with heparan sulfate and heparin as acceptor substrates. 3OST-2, 3OST-3, and 3OST-4 produce Di-tetraS units as a major product from both substrates. 3OST-5 showed the same specificity for heparin, but the production from heparan sulfate was very low. Di-tetraS production by 3OST-1 was negligible. We then investigated the presence of Di-tetraS units in heparan sulfates from various rat tissues. Di-tetraS was detected in all of the tissues analyzed. Liver and spleen contain relatively high levels of Di-tetraS, 1.6 and 0.95%, respectively. However, the content of this unit in heart, large intestine, ileum, and lung is low, less than 0.2%. We further determined the expression levels of 3OST transcripts by quantitative real time PCR. The 3OST-3 transcripts are highly expressed in spleen and liver. The 3OST-2 and -4 are specifically expressed in brain. These results indicate that the Di-tetraS unit is widely distributed throughout the body as a rare and unique component of heparan sulfate and is synthesized by tissue-specific 3OST isoforms specific for Di-tetraS production.
Collapse
Affiliation(s)
- Hideo Mochizuki
- Central Research Laboratories, Seikagaku Corporation, 3-1253 Tateno, Higashiyamato, Tokyo 207-0021, Japan.
| | | | | | | |
Collapse
|
15
|
Lawrence R, Yabe T, HajMohammadi S, Rhodes J, McNeely M, Liu J, Lamperti ED, Toselli PA, Lech M, Spear PG, Rosenberg RD, Shworak NW. The principal neuronal gD-type 3-O-sulfotransferases and their products in central and peripheral nervous system tissues. Matrix Biol 2007; 26:442-55. [PMID: 17482450 PMCID: PMC1993827 DOI: 10.1016/j.matbio.2007.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Within the nervous system, heparan sulfate (HS) of the cell surface and extracellular matrix influences developmental, physiologic and pathologic processes. HS is a functionally diverse polysaccharide that employs motifs of sulfate groups to selectively bind and modulate various effector proteins. Specific HS activities are modulated by 3-O-sulfated glucosamine residues, which are generated by a family of seven 3-O-sulfotransferases (3-OSTs). Most isoforms we herein designate as gD-type 3-OSTs because they generate HS(gD+), 3-O-sulfated motifs that bind the gD envelope protein of herpes simplex virus 1 (HSV-1) and thereby mediate viral cellular entry. Certain gD-type isoforms are anticipated to modulate neurobiologic events because a Drosophila gD-type 3-OST is essential for a conserved neurogenic signaling pathway regulated by Notch. Information about 3-OST isoforms expressed in the nervous system of mammals is incomplete. Here, we identify the 3-OST isoforms having properties compatible with their participation in neurobiologic events. We show that 3-OST-2 and 3-OST-4 are principal isoforms of brain. We find these are gD-type enzymes, as they produce products similar to a prototypical gD-type isoform, and they can modify HS to generate receptors for HSV-1 entry into cells. Therefore, 3-OST-2 and 3-OST-4 catalyze modifications similar or identical to those made by the Drosophila gD-type 3-OST that has a role in regulating Notch signaling. We also find that 3-OST-2 and 3-OST-4 are the predominant isoforms expressed in neurons of the trigeminal ganglion, and 3-OST-2/4-type 3-O-sulfated residues occur in this ganglion and in select brain regions. Thus, 3-OST-2 and 3-OST-4 are the major neural gD-type 3-OSTs, and so are prime candidates for participating in HS-dependent neurobiologic events.
Collapse
Affiliation(s)
- Roger Lawrence
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Tomio Yabe
- Department Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Sassan HajMohammadi
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
| | - John Rhodes
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
| | - Melissa McNeely
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jian Liu
- Department of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC , United States
| | - Edward D. Lamperti
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Paul A. Toselli
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - Miroslaw Lech
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patricia G. Spear
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert D. Rosenberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Nicholas W. Shworak
- Department of Medicine , Dartmouth Medical School, Hanover, NH 03756, United States
- *Address correspondence to: Nicholas W. Shworak, Angiogenesis Research Center, Section of Cardiology, Borwell Building 540W, HB7504, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, New Hampshire 03756, Tel. 603 650-6401; Fax. 603 653-0510; E-Mail:
| |
Collapse
|
16
|
Cadwallader AB, Yost HJ. Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: I. The 3-O-sulfotransferase family. Dev Dyn 2007; 235:3423-31. [PMID: 17075882 DOI: 10.1002/dvdy.20991] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains termed the HS fine structure, which gives HS specific binding affinities for extracellular ligands. HS 3-O-sulfotransferases (3-OST) catalyze the transfer of sulfate groups to the 3-O position of glucosamine residues of HS, a rare, but essential HS chain modification required for HS fine structure. We report here the first characterization and developmental expression analysis of the 3-OST gene family in a vertebrate. There are eight 3-OST genes in zebrafish: seven genes with homology to known 3-OST genes in mouse and human, as well as a novel, 3-OST-7. A phylogenetic comparison of human, mouse, and zebrafish indicates the 3-OST family can be subdivided into two distinct subgroups. We examined the mRNA expression patterns in several tissues/organs throughout early zebrafish development, including early cleavage stages, somites, brain, internal body organ primordial, and pectoral fin development. The 3-OST gene family has both specifically expressed and ubiquitously expressed genes, suggesting in vivo functional differences exist between members of this family.
Collapse
Affiliation(s)
- Adam B Cadwallader
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
17
|
Abstract
Sulfated polysaccharides are capable of binding with proteins at several levels of specificity. As highly acidic macromolecules, they can bind non-specifically to any basic patch on a protein surface at low ionic strength, and such interactions are not likely to be physiologically significant. On the other hand, several systems have been identified in which very specific substructures of sulfated polysaccharides confer high affinity for particular proteins; the best-known example of this is the pentasaccharide in heparin with high affinity for antithrombin, but other examples may be taken from the study of marine invertebrates: the importance of the fine structure of dermatan sulfate (DS) to its interaction with heparin cofactor II (HCII), and the involvement of sea urchin egg-jelly fucans in species specific fertilization. A third, intermediate, kind of specific interaction is described for the cell-surface glycosaminoglycan heparan sulfate (HS), in which patterns of sulfate substitution can show differential affinities for cytokines, growth factors, and morphogens at cell surfaces and in the intracellular matrix. This complex interplay of proteins and glycans is capable of influencing the diffusion of such proteins through tissue, as well as modulating cellular responses to them.
Collapse
Affiliation(s)
- Barbara Mulloy
- Laboratory for Molecular Structure, National Institute for Biological Standards and Control, South Mimms, Potter's Bar, Hertfordshire, EN6 3QG, UK.
| |
Collapse
|
18
|
Studelska DR, Giljum K, McDowell LM, Zhang L. Quantification of glycosaminoglycans by reversed-phase HPLC separation of fluorescent isoindole derivatives. Glycobiology 2005; 16:65-72. [PMID: 16166601 DOI: 10.1093/glycob/cwj037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides made by all animal cells. GAGs bind to hundreds of proteins, such as growth factors, cytokines, chemokines, extracellular matrix components, protease inhibitors, proteases, and lipoprotein lipase, through carbohydrate and protein interactions. These interactions control many multicellular processes. The increased use of GAGs isolated from cells and small tissue samples in bioassays and binding experiments demands a sensitive and robust quantification method. We have developed such a method, which is based on a popular assay for amino acid analysis. We have refined it to enhance GAG quantification. It allows the quantification of glucosamine- and galactosamine-containing GAGs after the reversed-phase separation of their fluorescent isoindole derivatives. The derivatives are created by the reaction of o-phthaldialdehyde and 3-mercaptopropionic acid (3MPA) with the amino group of hexosaminitol monosaccharides generated from GAG acid hydrolysis and sodium borohydride reduction. The advantages of our method include automatic derivitization, a simple chromatograph with clean separation of glucosaminitol and galactosaminitol derivatives from contaminating amino acids, excellent sensitivity with 0.04 pmol detection, and linearity from 2.5 to 1280 pmol. A major advantage is that it can be readily implemented in any laboratory with typical reversed-phase high performance liquid chromatography (HPLC) equipment.
Collapse
Affiliation(s)
- Daniel R Studelska
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|